You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This gist started with a collection of resources I was maintaining on stream data processing — also known as distributed logs, data pipelines, event sourcing, CQRS, and other names.
Over time the set of resources grew quite large and I received some interest in a more guided, opinionated path for learning about stream data processing. So I added the reading list.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Convert titles in bibtex citation library to title case
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This is my technical interview cheat sheet. Feel free to fork it or do whatever you want with it. PLEASE let me know if there are any errors or if anything crucial is missing. I will add more links soon.
Studying for a Tech Interview Sucks, so Here's a Cheat Sheet to Help
This list is meant to be a both a quick guide and reference for further research into these topics. It's basically a summary of that comp sci course you never took or forgot about, so there's no way it can cover everything in depth. It also will be available as a gist on Github for everyone to edit and add to.
Data Structure Basics
###Array
####Definition:
Stores data elements based on an sequential, most commonly 0 based, index.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Here are 10 one-liners which show the power of scala programming, impress your friends and woo women; ok, maybe not. However, these one liners are a good set of examples using functional programming and scala syntax you may not be familiar with. I feel there is no better way to learn than to see real examples.
Updated: June 17, 2011 - I'm amazed at the popularity of this post, glad everyone enjoyed it and to see it duplicated across so many languages. I've included some of the suggestions to shorten up some of my scala examples. Some I intentionally left longer as a way for explaining / understanding what the functions were doing, not necessarily to produce the shortest possible code; so I'll include both.
1. Multiple Each Item in a List by 2
The map function takes each element in the list and applies it to the corresponding function. In this example, we take each element and multiply it by 2. This will return a list of equivalent size, compare to o