Skip to content

Instantly share code, notes, and snippets.

@huseinzol05
Last active March 6, 2018 15:03
Show Gist options
  • Select an option

  • Save huseinzol05/35eaf345308e8fab3bc74c2a075cd49a to your computer and use it in GitHub Desktop.

Select an option

Save huseinzol05/35eaf345308e8fab3bc74c2a075cd49a to your computer and use it in GitHub Desktop.
average pooling 2d numpy with back-propagation
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"nf = 3 # number of filters\n",
"rf = 3 # filter size\n",
"stride = 2\n",
"x = np.random.randn(1, 7, 7, 3)\n",
"out = np.zeros((1, 3, 3, nf))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"for k in range(x.shape[0]):\n",
" for z in range(nf):\n",
" h_range = int((x.shape[1] - rf) / stride) + 1\n",
" for _h in range(h_range):\n",
" w_range = int((x.shape[2] - rf) / stride) + 1\n",
" for _w in range(w_range):\n",
" out[k, _h, _w, z] = np.mean(x[k, _h * stride:_h * stride + rf, _w * stride:_w * stride + rf, :])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# we assumed de = out\n",
"dx = np.zeros((x.shape))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"for k in range(x.shape[0]):\n",
" for z in range(nf):\n",
" h_range = int((x.shape[1] - rf) / stride) + 1\n",
" for _h in range(h_range):\n",
" w_range = int((x.shape[2] - rf) / stride) + 1\n",
" for _w in range(w_range):\n",
" dx[k, _h * stride:_h * stride + rf, _w * stride:_w * stride + rf, :] = out[k, _h, _w, z]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[[-0.15306527, -0.15306527, -0.15306527],\n",
" [-0.15306527, -0.15306527, -0.15306527],\n",
" [-0.03723158, -0.03723158, -0.03723158],\n",
" [-0.03723158, -0.03723158, -0.03723158],\n",
" [-0.08554885, -0.08554885, -0.08554885],\n",
" [-0.08554885, -0.08554885, -0.08554885],\n",
" [-0.08554885, -0.08554885, -0.08554885]],\n",
"\n",
" [[-0.15306527, -0.15306527, -0.15306527],\n",
" [-0.15306527, -0.15306527, -0.15306527],\n",
" [-0.03723158, -0.03723158, -0.03723158],\n",
" [-0.03723158, -0.03723158, -0.03723158],\n",
" [-0.08554885, -0.08554885, -0.08554885],\n",
" [-0.08554885, -0.08554885, -0.08554885],\n",
" [-0.08554885, -0.08554885, -0.08554885]],\n",
"\n",
" [[ 0.18894809, 0.18894809, 0.18894809],\n",
" [ 0.18894809, 0.18894809, 0.18894809],\n",
" [ 0.23032554, 0.23032554, 0.23032554],\n",
" [ 0.23032554, 0.23032554, 0.23032554],\n",
" [ 0.03334547, 0.03334547, 0.03334547],\n",
" [ 0.03334547, 0.03334547, 0.03334547],\n",
" [ 0.03334547, 0.03334547, 0.03334547]],\n",
"\n",
" [[ 0.18894809, 0.18894809, 0.18894809],\n",
" [ 0.18894809, 0.18894809, 0.18894809],\n",
" [ 0.23032554, 0.23032554, 0.23032554],\n",
" [ 0.23032554, 0.23032554, 0.23032554],\n",
" [ 0.03334547, 0.03334547, 0.03334547],\n",
" [ 0.03334547, 0.03334547, 0.03334547],\n",
" [ 0.03334547, 0.03334547, 0.03334547]],\n",
"\n",
" [[ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663]],\n",
"\n",
" [[ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663]],\n",
"\n",
" [[ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.48257824, 0.48257824, 0.48257824],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.39374719, 0.39374719, 0.39374719],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663],\n",
" [ 0.08488663, 0.08488663, 0.08488663]]]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dx"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment