Last active
March 6, 2018 15:03
-
-
Save huseinzol05/35eaf345308e8fab3bc74c2a075cd49a to your computer and use it in GitHub Desktop.
average pooling 2d numpy with back-propagation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "nf = 3 # number of filters\n", | |
| "rf = 3 # filter size\n", | |
| "stride = 2\n", | |
| "x = np.random.randn(1, 7, 7, 3)\n", | |
| "out = np.zeros((1, 3, 3, nf))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "for k in range(x.shape[0]):\n", | |
| " for z in range(nf):\n", | |
| " h_range = int((x.shape[1] - rf) / stride) + 1\n", | |
| " for _h in range(h_range):\n", | |
| " w_range = int((x.shape[2] - rf) / stride) + 1\n", | |
| " for _w in range(w_range):\n", | |
| " out[k, _h, _w, z] = np.mean(x[k, _h * stride:_h * stride + rf, _w * stride:_w * stride + rf, :])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# we assumed de = out\n", | |
| "dx = np.zeros((x.shape))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "for k in range(x.shape[0]):\n", | |
| " for z in range(nf):\n", | |
| " h_range = int((x.shape[1] - rf) / stride) + 1\n", | |
| " for _h in range(h_range):\n", | |
| " w_range = int((x.shape[2] - rf) / stride) + 1\n", | |
| " for _w in range(w_range):\n", | |
| " dx[k, _h * stride:_h * stride + rf, _w * stride:_w * stride + rf, :] = out[k, _h, _w, z]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[[[-0.15306527, -0.15306527, -0.15306527],\n", | |
| " [-0.15306527, -0.15306527, -0.15306527],\n", | |
| " [-0.03723158, -0.03723158, -0.03723158],\n", | |
| " [-0.03723158, -0.03723158, -0.03723158],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885]],\n", | |
| "\n", | |
| " [[-0.15306527, -0.15306527, -0.15306527],\n", | |
| " [-0.15306527, -0.15306527, -0.15306527],\n", | |
| " [-0.03723158, -0.03723158, -0.03723158],\n", | |
| " [-0.03723158, -0.03723158, -0.03723158],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885],\n", | |
| " [-0.08554885, -0.08554885, -0.08554885]],\n", | |
| "\n", | |
| " [[ 0.18894809, 0.18894809, 0.18894809],\n", | |
| " [ 0.18894809, 0.18894809, 0.18894809],\n", | |
| " [ 0.23032554, 0.23032554, 0.23032554],\n", | |
| " [ 0.23032554, 0.23032554, 0.23032554],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547]],\n", | |
| "\n", | |
| " [[ 0.18894809, 0.18894809, 0.18894809],\n", | |
| " [ 0.18894809, 0.18894809, 0.18894809],\n", | |
| " [ 0.23032554, 0.23032554, 0.23032554],\n", | |
| " [ 0.23032554, 0.23032554, 0.23032554],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547],\n", | |
| " [ 0.03334547, 0.03334547, 0.03334547]],\n", | |
| "\n", | |
| " [[ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663]],\n", | |
| "\n", | |
| " [[ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663]],\n", | |
| "\n", | |
| " [[ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.48257824, 0.48257824, 0.48257824],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.39374719, 0.39374719, 0.39374719],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663],\n", | |
| " [ 0.08488663, 0.08488663, 0.08488663]]]])" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "dx" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment