Skip to content

Instantly share code, notes, and snippets.

# Plot histogram
(def d (read-dataset "/Users/mikaelhuss/Desktop/SAGE-liver-CVD/deliver_clinical_traits.txt" :header true :delim \tab))
(view (histogram (filter number? (sel d :cols 5))))
# Or the same with with-data
(with-data
(read-dataset "/Users/mikaelhuss/Desktop/SAGE-liver-CVD/deliver_clinical_traits.txt" :header true :delim \tab)
(view (histogram (filter number? ($ 5 )))))
@hussius
hussius / kallisto_setup.sh
Last active December 11, 2020 15:45
Kallisto setup
# Download Kallisto and sratools (the latter to be able to download from SRA)
wget https://github.com/pachterlab/kallisto/releases/download/v0.42.3/kallisto_mac-v0.42.3.tar.gz
tar zvxf kallisto_mac-v0.42.3.tar.gz
wget http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.5.2/sratoolkit.2.5.2-mac64.tar.gz
tar zxvf sratoolkit.2.5.2-mac64.tar.gz
# Download and merge human cDNA and ncDNA files from Ensembl for the index.
wget ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz
wget ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz
cat Homo_sapiens.GRCh38.cdna.all.fa.gz Homo_sapiens.GRCh38.ncrna.fa.gz > Homo_sapiens.GRCh38.rna.fa.gz
@hussius
hussius / sleuth_commands.R
Created September 14, 2015 07:52
Sleuth commands
# Installation (only needs to be done once)
source("http://bioconductor.org/biocLite.R")
biocLite("rhdf5")
install.packages("devtools")
devtools::install_github("pachterlab/sleuth")
# Now load the package
library("sleuth")
# A function (borrowed from the Sleuth documentation) for connecting Ensembl transcript names to common gene names
@hussius
hussius / ae_toy_example.py
Last active June 28, 2019 17:12
Toy example of single-layer autoencoder in TensorFlow
import tensorflow as tf
import numpy as np
import math
#import pandas as pd
#import sys
input = np.array([[2.0, 1.0, 1.0, 2.0],
[-2.0, 1.0, -1.0, 2.0],
[0.0, 1.0, 0.0, 2.0],
[0.0, -1.0, 0.0, -2.0],
import sys
for line in open(sys.argv[1]):
if 'layer' in line:
fname = '_'.join(line.strip().split()) + '_activities.txt'
outf = open(fname,'w')
else:
outf.write(line)
import sys
f = open(sys.argv[1])
wts = [] # This will be a list of list of lists (=list of matrices) with weights
bias_in = [] # List of lists of bias values in the input part of each sublayer
bias_out = [] # List of lists of bias values in the output part of each sublayer
prefs = [] # Prefixes for file names
state = None # state can be None, 'weight', 'bias_in' or 'bias_out'
@hussius
hussius / merge_kallisto_TPM.R
Last active November 17, 2016 09:38
R script for merging Kallisto TPMs from output directories below path given as command-line argument
args = commandArgs(trailingOnly=TRUE)
path=args[1]
files=Sys.glob(paste0(path,"/*/abundance.tsv"))
#print(files)
merge_two <- function(x,y){
#print(dim(x))
if ("tpm" %in% colnames(x)){
x_ <- x[,c(1,5)]
}
else{
@hussius
hussius / sum_by_gene.py
Created November 17, 2016 09:39
Sum transcript TPMs by gene using the FASTA file used for a Kallisto index
import sys
import gzip
if len(sys.argv)<3:
sys.exit("python sum_per_gene.py <cDNA FASTA file> <TPM table>")
ensg = {}
mapf = gzip.open(sys.argv[1])
ctr = 0
library(tensorflow)
tf$reset_default_graph()
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3 + rnorm(n, mean=0, sd=0.025)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b
1. Install appropriate version of the Tensorflow (Python) framework from https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html
In my case (Mac OS X 10.11), I did:
- Get the .whl file (this is more likely to work than a direct pip install)
wget https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl
- Install using non-Anaconda pip
/usr/local/bin/pip3 install tensorflow-0.11.0-py3-none-any.whl_