Created
November 19, 2018 06:32
-
-
Save hygull/0bfd63250fc444033c03b62ef791025e to your computer and use it in GitHub Desktop.
Pandas, to_datetime(), concat(), plot(), isnull(), loc[a:b, c:d]
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rahul Yadav</td>\n", | |
" <td>36</td>\n", | |
" <td>500000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>New Delhi (Delhi)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" <td>55</td>\n", | |
" <td>550000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Rishikesh Agrawani</td>\n", | |
" <td>26</td>\n", | |
" <td>200000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Anupam Shukla</td>\n", | |
" <td>27</td>\n", | |
" <td>250000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>Robery Griesemer</td>\n", | |
" <td>44</td>\n", | |
" <td>600000.0</td>\n", | |
" <td>JavaScript developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Gudal Sharma</td>\n", | |
" <td>24</td>\n", | |
" <td>100000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Quinton Clark</td>\n", | |
" <td>35</td>\n", | |
" <td>45000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>New City</td>\n", | |
" <td>UAE</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Niyati Jain</td>\n", | |
" <td>24</td>\n", | |
" <td>80000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Rajim</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Malinikesh Agrawani</td>\n", | |
" <td>22</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Student</td>\n", | |
" <td>Kondagaon</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Hira Dewangan</td>\n", | |
" <td>24</td>\n", | |
" <td>50000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>New Raipur</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Hemkesh Agrawani</td>\n", | |
" <td>24</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Student</td>\n", | |
" <td>Kondagaon</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Larry Page</td>\n", | |
" <td>45</td>\n", | |
" <td>6000000.0</td>\n", | |
" <td>Computer Scientist</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession \\\n", | |
"0 Rahul Yadav 36 500000.0 PHP developer \n", | |
"1 James Gosling 55 550000.0 Java developer \n", | |
"2 Rishikesh Agrawani 26 200000.0 Python developer \n", | |
"3 Anupam Shukla 27 250000.0 PHP developer \n", | |
"4 Robery Griesemer 44 600000.0 JavaScript developer \n", | |
"5 Gudal Sharma 24 100000.0 Python developer \n", | |
"6 Quinton Clark 35 45000.0 Java developer \n", | |
"7 Niyati Jain 24 80000.0 Python developer \n", | |
"8 Malinikesh Agrawani 22 NaN Student \n", | |
"9 Hira Dewangan 24 50000.0 Python developer \n", | |
"10 Hemkesh Agrawani 24 NaN Student \n", | |
"11 Larry Page 45 6000000.0 Computer Scientist \n", | |
"\n", | |
" Address Country Sex \n", | |
"0 New Delhi (Delhi) India Male \n", | |
"1 Newyork USA Male \n", | |
"2 Raipur (CG) India Male \n", | |
"3 Raipur (CG) India Male \n", | |
"4 Newyork USA Male \n", | |
"5 Raipur (CG) India Female \n", | |
"6 New City UAE Male \n", | |
"7 Rajim India Female \n", | |
"8 Kondagaon India Female \n", | |
"9 New Raipur India Male \n", | |
"10 Kondagaon India Male \n", | |
"11 Newyork USA Male " | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users = pd.read_csv(\"Users.csv\"); # Reading data from csv named Users.csv (Manually written, not copied from Internet)\n", | |
"users" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Fullname 12\n", | |
"Age 12\n", | |
"Salary 10\n", | |
"Profession 12\n", | |
"Address 12\n", | |
"Country 12\n", | |
"Sex 12\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.count() # Non-NA elements in Series" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 7\n", | |
"1 7\n", | |
"2 7\n", | |
"3 7\n", | |
"4 7\n", | |
"5 7\n", | |
"6 7\n", | |
"7 7\n", | |
"8 6\n", | |
"9 7\n", | |
"10 6\n", | |
"11 7\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.count(axis=\"columns\") # Non-NA values in each row" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Fullname 12\n", | |
"Age 12\n", | |
"Salary 10\n", | |
"Profession 12\n", | |
"Address 12\n", | |
"Country 12\n", | |
"Sex 12\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.count(axis=\"index\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Fullname 0\n", | |
"Age 0\n", | |
"Salary 2\n", | |
"Profession 0\n", | |
"Address 0\n", | |
"Country 0\n", | |
"Sex 0\n", | |
"dtype: int64" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.isnull().sum() # NA values in columns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users[\"Salary\"].isnull().values.any() # Is any Salary equals NA" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"2" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users[\"Salary\"].isnull().sum() # Count of salaries with NA values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index(['Fullname', 'Age', 'Salary', 'Profession', 'Address', 'Country', 'Sex'], dtype='object')" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.columns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Fullname False\n", | |
"Age False\n", | |
"Salary True\n", | |
"Profession False\n", | |
"Address False\n", | |
"Country False\n", | |
"Sex False\n", | |
"dtype: bool" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.isnull().any() " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index(['Salary'], dtype='object')" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"null_columns = users.columns[users.isnull().any()] # Which columns have Na values\n", | |
"null_columns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Salary</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>500000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>550000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>200000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>250000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>600000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>100000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>45000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>80000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>50000.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>6000000.0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Salary\n", | |
"0 500000.0\n", | |
"1 550000.0\n", | |
"2 200000.0\n", | |
"3 250000.0\n", | |
"4 600000.0\n", | |
"5 100000.0\n", | |
"6 45000.0\n", | |
"7 80000.0\n", | |
"8 NaN\n", | |
"9 50000.0\n", | |
"10 NaN\n", | |
"11 6000000.0" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users[null_columns]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 500000.0\n", | |
"1 550000.0\n", | |
"2 200000.0\n", | |
"3 250000.0\n", | |
"4 600000.0\n", | |
"5 100000.0\n", | |
"6 45000.0\n", | |
"7 80000.0\n", | |
"8 NaN\n", | |
"9 50000.0\n", | |
"10 NaN\n", | |
"11 6000000.0\n", | |
"Name: Salary, dtype: float64" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"salaries = users[\"Salary\"] # Getting Salary column\n", | |
"salaries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"8375000.0" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users[\"Salary\"].sum() # Adding Non-NA salariesb" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d68af5dd8>" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"salaries.plot() # Plotting Salaries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d6940f940>" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD/CAYAAAA0XTv0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFdhJREFUeJzt3X2wXHd93/H3BwkT82iDZcdINiJFAQwJxmhsNTRMwESWIY2cDp6aZGKVcaspNQ9pM1NE+ocphI6YaUvxDKGjwQI5QzDGCbUKBqHYkJYWjK6x8QOyI8W41q3AFsg4Jm6hNt/+sT8l68uV7r3726tF1vs1s7PnfM/vnO/Za+t+9jzs3lQVkiT1eMqkd0CSdOwzTCRJ3QwTSVI3w0SS1M0wkSR1M0wkSd0ME0lSN8NEktTNMJEkdTNMJEndlk56B46WU045pVauXDnp3ZCkY8ott9zyvapaNte44yZMVq5cydTU1KR3Q5KOKUn+13zGeZpLktTNMJEkdTNMJEndDBNJUrd5hUmSk5Jcl+TuJLuT/P0kz02yM8me9nxyG5skVybZm+T2JOcMbWdDG78nyYah+quS3NHWuTJJWn3BPSRJR998j0w+BHyhql4CvALYDWwCbqyqVcCNbR7gQmBVe2wEPgKDYACuAM4DzgWuOBQObczGofXWtfqCekiSJmPOMEnybOA1wFUAVfXjqvoBsB7Y1oZtAy5q0+uBq2vga8BJSU4HLgB2VtXBqnoI2Amsa8ueXVVfrcHfEL56xrYW0kOSNAHzOTL5BeAA8LEktyb5aJJnAKdV1XcA2vOpbfxyYN/Q+tOtdqT69Cx1RughSZqA+XxocSlwDvD2qro5yYf4u9NNs8kstRqhfiTzWifJRganwTjzzDPn2KQkHdtWbvrcSOvdt/mN3b3nc2QyDUxX1c1t/joG4fLAoVNL7fnBofFnDK2/Atg/R33FLHVG6PEEVbWlqlZX1eply+b8NgBJ0ojmDJOq+i6wL8mLW+l84FvAduDQHVkbgOvb9Hbg0nbH1Rrg4XaKagewNsnJ7cL7WmBHW/ZIkjXtLq5LZ2xrIT0kSRMw3+/mejvwiSQnAPcCb2EQRNcmuQy4H7i4jb0BeAOwF3i0jaWqDiZ5H7CrjXtvVR1s028FPg6cCHy+PQA2L6SHJGky5hUmVXUbsHqWRefPMraAyw+zna3A1lnqU8DLZ6l/f6E9JElHn5+AlyR1M0wkSd0ME0lSN8NEktTNMJEkdTNMJEndDBNJUjfDRJLUzTCRJHUzTCRJ3QwTSVI3w0SS1M0wkSR1M0wkSd0ME0lSN8NEktTNMJEkdTNMJEndDBNJUjfDRJLUzTCRJHUzTCRJ3QwTSVI3w0SS1M0wkSR1M0wkSd3mFSZJ7ktyR5Lbkky12nOT7Eyypz2f3OpJcmWSvUluT3LO0HY2tPF7kmwYqr+qbX9vWzej9pAkHX0LOTJ5bVWdXVWr2/wm4MaqWgXc2OYBLgRWtcdG4CMwCAbgCuA84FzgikPh0MZsHFpv3Sg9JEmT0XOaaz2wrU1vAy4aql9dA18DTkpyOnABsLOqDlbVQ8BOYF1b9uyq+mpVFXD1jG0tpIckaQLmGyYFfDHJLUk2ttppVfUdgPZ8aqsvB/YNrTvdakeqT89SH6XHEyTZmGQqydSBAwfm+VIlSQu1dJ7jXl1V+5OcCuxMcvcRxmaWWo1QP5J5rVNVW4AtAKtXr55rm5KkEc3ryKSq9rfnB4HPMLjm8cChU0vt+cE2fBo4Y2j1FcD+OeorZqkzQg9J0gTMGSZJnpHkWYemgbXAncB24NAdWRuA69v0duDSdsfVGuDhdopqB7A2ycntwvtaYEdb9kiSNe0urktnbGshPSRJEzCf01ynAZ9pd+suBf6kqr6QZBdwbZLLgPuBi9v4G4A3AHuBR4G3AFTVwSTvA3a1ce+tqoNt+q3Ax4ETgc+3B8DmhfSQJE3GnGFSVfcCr5il/n3g/FnqBVx+mG1tBbbOUp8CXj6OHpKko89PwEuSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSepmmEiSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSepmmEiSus07TJIsSXJrks+2+RcmuTnJniSfSnJCqz+tze9ty1cObePdrX5PkguG6utabW+STUP1BfeQJB19CzkyeSewe2j+A8AHq2oV8BBwWatfBjxUVS8CPtjGkeQs4BLgZcA64I9aQC0BPgxcCJwFvLmNXXAPSdJkzCtMkqwA3gh8tM0HeB1wXRuyDbioTa9v87Tl57fx64FrqupHVfVtYC9wbnvsrap7q+rHwDXA+hF7SJImYL5HJv8J+NfAT9r884AfVNVjbX4aWN6mlwP7ANryh9v4v63PWOdw9VF6SJImYM4wSfIbwINVdctweZahNceycdXn6v+3kmxMMpVk6sCBA7OsIkkah/kcmbwa+M0k9zE4BfU6BkcqJyVZ2sasAPa36WngDIC2/DnAweH6jHUOV//eCD2eoKq2VNXqqlq9bNmyebxUSdIo5gyTqnp3Va2oqpUMLqDfVFW/A3wJeFMbtgG4vk1vb/O05TdVVbX6Je1OrBcCq4CvA7uAVe3OrRNaj+1tnYX2kCRNwNK5hxzWu4BrkvwhcCtwVatfBfxxkr0MjhYuAaiqu5JcC3wLeAy4vKoeB0jyNmAHsATYWlV3jdJDkjQZOV7e0K9evbqmpqYmvRuStGhWbvrcSOvdt/mNh12W5JaqWj3XNvwEvCSpm2EiSepmmEiSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSepmmEiSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSeo2Z5gk+bkkX0/yzSR3Jfm3rf7CJDcn2ZPkU0lOaPWntfm9bfnKoW29u9XvSXLBUH1dq+1NsmmovuAekqSjbz5HJj8CXldVrwDOBtYlWQN8APhgVa0CHgIua+MvAx6qqhcBH2zjSHIWcAnwMmAd8EdJliRZAnwYuBA4C3hzG8tCe0iSJmPOMKmBH7bZp7ZHAa8Drmv1bcBFbXp9m6ctPz9JWv2aqvpRVX0b2Auc2x57q+reqvoxcA2wvq2z0B6SpAmY1zWTdgRxG/AgsBP4K+AHVfVYGzINLG/Ty4F9AG35w8Dzhusz1jlc/Xkj9JAkTcC8wqSqHq+qs4EVDI4kXjrbsPY82xFCjbF+pB5PkGRjkqkkUwcOHJhlFUnSOCzobq6q+gHwZWANcFKSpW3RCmB/m54GzgBoy58DHByuz1jncPXvjdBj5v5uqarVVbV62bJlC3mpkqQFmM/dXMuSnNSmTwReD+wGvgS8qQ3bAFzfpre3edrym6qqWv2SdifWC4FVwNeBXcCqdufWCQwu0m9v6yy0hyRpApbOPYTTgW3trqunANdW1WeTfAu4JskfArcCV7XxVwF/nGQvg6OFSwCq6q4k1wLfAh4DLq+qxwGSvA3YASwBtlbVXW1b71pID0nSZMwZJlV1O/DKWer3Mrh+MrP+f4GLD7Ot9wPvn6V+A3DDOHpIko4+PwEvSepmmEiSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSepmmEiSuhkmkqRuhokkqZthIknqZphIkroZJpKkboaJJKmbYSJJ6maYSJK6GSaSpG6GiSSpm2EiSeo2Z5gkOSPJl5LsTnJXkne2+nOT7Eyypz2f3OpJcmWSvUluT3LO0LY2tPF7kmwYqr8qyR1tnSuTZNQekqSjbz5HJo8Bv19VLwXWAJcnOQvYBNxYVauAG9s8wIXAqvbYCHwEBsEAXAGcB5wLXHEoHNqYjUPrrWv1BfWQJE3GnGFSVd+pqm+06UeA3cByYD2wrQ3bBlzUptcDV9fA14CTkpwOXADsrKqDVfUQsBNY15Y9u6q+WlUFXD1jWwvpIUmagAVdM0myEnglcDNwWlV9BwaBA5zahi0H9g2tNt1qR6pPz1JnhB6SpAmYd5gkeSbwp8DvVdVfH2noLLUaoX7E3ZnPOkk2JplKMnXgwIE5NilJGtW8wiTJUxkEySeq6s9a+YFDp5ba84OtPg2cMbT6CmD/HPUVs9RH6fEEVbWlqlZX1eply5bN56VKkkYwn7u5AlwF7K6q/zi0aDtw6I6sDcD1Q/VL2x1Xa4CH2ymqHcDaJCe3C+9rgR1t2SNJ1rRel87Y1kJ6SJImYOk8xrwa+F3gjiS3tdofAJuBa5NcBtwPXNyW3QC8AdgLPAq8BaCqDiZ5H7CrjXtvVR1s028FPg6cCHy+PVhoD0nSZMwZJlX1FWa/RgFw/izjC7j8MNvaCmydpT4FvHyW+vcX2kOSdPT5CXhJUjfDRJLUzTCRJHUzTCRJ3QwTSVI3w0SS1M0wkSR1M0wkSd0ME0lSN8NEktTNMJEkdTNMJEndDBNJUjfDRJLUzTCRJHUzTCRJ3QwTSVI3w0SS1M0wkSR1M0wkSd0ME0lSN8NEktTNMJEkdTNMJEndDBNJUjfDRJLUbc4wSbI1yYNJ7hyqPTfJziR72vPJrZ4kVybZm+T2JOcMrbOhjd+TZMNQ/VVJ7mjrXJkko/aQJE3GfI5MPg6sm1HbBNxYVauAG9s8wIXAqvbYCHwEBsEAXAGcB5wLXHEoHNqYjUPrrRulhyRpcuYMk6r6b8DBGeX1wLY2vQ24aKh+dQ18DTgpyenABcDOqjpYVQ8BO4F1bdmzq+qrVVXA1TO2tZAekqQJGfWayWlV9R2A9nxqqy8H9g2Nm261I9WnZ6mP0kOSNCHjvgCfWWo1Qn2UHj89MNmYZCrJ1IEDB+bYrCRpVKOGyQOHTi215wdbfRo4Y2jcCmD/HPUVs9RH6fFTqmpLVa2uqtXLli1b0AuUJM3fqGGyHTh0R9YG4Pqh+qXtjqs1wMPtFNUOYG2Sk9uF97XAjrbskSRr2l1cl87Y1kJ6SJImZOlcA5J8Evg14JQk0wzuytoMXJvkMuB+4OI2/AbgDcBe4FHgLQBVdTDJ+4Bdbdx7q+rQRf23Mrhj7ETg8+3BQntIkiZnzjCpqjcfZtH5s4wt4PLDbGcrsHWW+hTw8lnq319oD0nSZPgJeElSN8NEktTNMJEkdTNMJEndDBNJUjfDRJLUzTCRJHUzTCRJ3eb80KL0s+7D//ymkda7/D+/bsx7Ih2/PDKRJHXzyGQS3vOcEdd7eLz7IUlj4pGJJKmbRybAyk2fG2m9+za/ccx7IknHJo9MJEndDBNJUjfDRJLUzTCRJHUzTCRJ3QwTSVI3w0SS1M3PmWjsdr/kpSOt99K7d495TyQdLR6ZSJK6eWRyHPilbb800np3bLhjzHsi6cnKIxNJUjfDRJLU7ZgNkyTrktyTZG+STZPeH0k6nh2T10ySLAE+DPw6MA3sSrK9qr412T3T8eA//OPfGGm93//UZ8e8J+P3nve856iupyePYzJMgHOBvVV1L0CSa4D1gGGiJ5XpTf99pPVWbP7VMe/Jk8PPf+m2kdb77mvPHvOePPkcq6e5lgP7huanW02SNAGpqknvw4IluRi4oKr+aZv/XeDcqnr7jHEbgY1t9sXAPSO0OwX4Xsfu2s9+T4Ze9jt++72gqpbNNehYPc01DZwxNL8C2D9zUFVtAbb0NEoyVVWre7ZhP/sd673sZ7+5HKunuXYBq5K8MMkJwCXA9gnvkyQdt47JI5OqeizJ24AdwBJga1XdNeHdkqTj1jEZJgBVdQNww1Fo1XWazH72e5L0sp/9juiYvAAvSfrZcqxeM5Ek/QwxTCRJ3Y7ZayaLJclLGHyafjlQDG453l5V/uWmBUpyLlBVtSvJWcA64O52veto9L+6qi49Gr3UZ+iuzP1V9edJfhv4FWA3sKWq/t9Ed1Bz8prJkCTvAt4MXMPgsyww+AzLJcA1VbV5Uvs2Li0slwM3V9UPh+rrquoLY+xzBXAhgzcsO4HzgC8Drwd2VNX7x9Wr9Zt5a3iA1wI3AVTVb46z3yz9/wGDr/m5s6q+uAjbPw/YXVV/neREYBNwDoOvEPp3VfXwmPu9A/hMVe2bc/B4+n2Cwf8rTwd+ADwT+DPgfAa/pzYsQs+/B/wWg8+sPQbsAT457p/l8cIwGZLkL4GXzXwX1N413VVVq47ivrylqj425m2+A7icwbu9s4F3VtX1bdk3quqcMfa6o/V4GvBdYMXQL8Kbq+qXx9Wr9fsGg1+sH2VwRBngkwzeCFBVfzHmfl+vqnPb9D9j8HP9DLAW+K/jfuOR5C7gFe22+C3Ao8B1DH7ZvqKq/tGY+z0M/A3wVwx+jp+uqgPj7DGj3+1V9ctJlgL/G3h+VT2eJMA3F+H/l3cA/xD4C+ANwG3AQwzC5V9U1ZfH2e+4UFU+2gO4m8FXB8ysvwC45yjvy/2LsM07gGe26ZXAFINAAbh1zL1unW26zd+2CK/tKcC/ZHAUdHar3buI/32GX98uYFmbfgZwxyL02z00/Y2j8PO8tf1M1wJXAQeALwAbgGctQr87gROAk4FHgOe2+s8Nv/Yx9rsDWNKmnw58uU2fOe5/C227zwE2t98x32+P3a120rj7zbEvn1+M7XrN5Il+D7gxyR7+7oskzwReBLxt3M2S3H64RcBp4+7H4B/PDwGq6r4kvwZcl+QFrec4/TjJ06vqUeBVh4pJngP8ZMy9qKqfAB9M8un2/ACLe03wKUlOZvALN9XetVfV3yR5bBH63Tl0tPrNJKurairJLwKLcT2h2s/0i8AXkzyVwWnLNwP/Hpjzu5oW6CoGv2iXAP8G+HSSe4E1DE47L4alwOMMjp6fBVBV97fXOm7XMjjl+mtV9V2AJD/PIJw/zeDPaYxNksOdZQiDMwZj52muGZI8hcG57+UMfvDTwK6qenwRej0AXMDg8PoJi4D/WVXPH3O/m4B/VVW3DdWWAluB36mqJWPs9bSq+tEs9VOA06tqUf/AfJI3Aq+uqj9YpO3fxyAUw+C02q9U1XeTPBP4SlWN9R9sC+EPAb/K4Mv6zmHwhmcf8I6q+uaY+91aVa88zLITq+r/jLNf2+7zAapqf5KTGFxfu7+qvr4Ivd4JXAZ8DXgN8IGq+liSZcCfVtVrxtzvnqp68UKXdfR7nMEpvNneJK6pqhPH2Q8Mk4lKchXwsar6yizL/qSqfnvM/VYAjx16ZzRj2aur6n+Ms9/xKMnTgdOq6tuLtP1nAb/A4F31dFU9sEh9frGq/nIxtv2zIsnLgJcyuGni7kXu9UXgz4Fth/6bJTkN+CfAr1fV68fc707gt6pqzyzL9lXVGbOs1tfTMJGkxdVOiW5i8LGDU1v5AQZfULu5qmaenejt9yYG1+5+6s9uJLmoqv7LOPuBYSJJE7UYd25Oop9hIkkTlOT+qjrzWO/n3VyStMiO9p2bE7hT1DCRpKPgNI5w5+aToJ9hIklHwWcZfGD4tpkLknz5SdDPayaSpH5+Bb0kqZthIknqZphIkroZJpKkboaJJKnb/wcUGSpOEPSBCgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"salaries.plot.bar() # Bar chart for the Salaries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d6949b5f8>" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xlw3Od54Pnvg/toHA2gmweObhKgJOriBV6iJI9kJz7Xlq/YkU3JcjbKH8mOZzI7Sby1tTszm6nKbGXiTE1tZUvjWNZpK3bkOytHkWWblEiAIMBTlASSABoESOJoNO6z+90/upuiKJBoAN39O/B8qlgEmn08IMEHbz+/531eMcaglFLK+XKsDkAppVR6aEJXSimX0ISulFIuoQldKaVcQhO6Ukq5hCZ0pZRyCU3oSinlEprQlVLKJTShK6WUS+Rl88VqampMMBjM5ksqpZTjHT9+fMgY41vqfllN6MFgkLa2tmy+pFJKOZ6I9KRyPy25KKWUS2hCV0opl9CErpRSLqEJXSmlXEITulJKuURKCV1EukXktIicEJG2xG3/QUT6EredEJFPZDZUpZRSt7KctsWHjDFDN9z2LWPMX6czIKWUUiujJZdFvP7OAF1Dk1aHoZRSy5JqQjfAP4vIcRF58rrb/0RETonId0TEu9gDReRJEWkTkbbBwcFVB5xpM/NR/ui54/z31zqtDkUppZYl1YR+wBizE/g48Mci8iDwd0AjsB24DPzXxR5ojHnKGNNsjGn2+ZbcuWq5k70R5hZidA5MWB2KUkotS0oJ3RjTn/h9APgRsMcYc9UYEzXGxID/AezJXJjZ09oVBuDC4ASxmLE4GqWUSt2SCV1ESkWkLPkx8LvAGRHZcN3dPgucyUyI2dXaHU/oU3NRrozNWByNUkqlLpUul3XAj0Qkef8XjTGviMhzIrKdeH29G/ijjEWZJfPRGMd7RrhjfRlvXxnn/MAEGyuLrQ5LKaVSsmRCN8ZcBLYtcvvBjERkoTN9o0zNRXl0bwP/x0/Ocn5gggdvs3/dXymlQNsW3ydZP//43RuoKM7n/KBeGFVKOYcm9Ou0doXZ7CvFV1ZIk9/Dee10UUo5iCb0hGjM0NodZu+mKgCafB4u6gpdKeUgmtAT3r4yxvjMAns3VQPQ6C9laGKOyNScxZEppVRqNKEnJOvne5IrdL8HQMsuSinH0ISe0NoVps5bfK1NsclXBmhCV0o5hyZ0wBhDa1f42uocoNZbTGFeDhe0jq6UcghN6MS3+Q9Pzl27IAqQmyNsqinVFbpSyjE0oQMtifp58oJoUpPfo73oSinH0IROvH7uLyskUF3yvtub/B4ujUwzMx+1KDKllErdmk/oxhhaLsbr54l5Ndc0+T0Yg9bRlVKOsOYTem94mitjM++rnyclWxcvDOrpRUop+1vzCb2laxiAvZurP/BnwepSckRbF5VSzrDmE3prVxhvST5NPs8H/qwoP5f6qhIuaEJXSjmAJvTuMLuDVeTkyKJ/3uTTIV1KKWdY0wn9yugMPcNT79tQdKMmv4euoUmiehydUsrm1nRCT9bP9y1SP09q9HmYi8boDU9lKyyllFqRNZ3QW7vCeArz2Lqh/Kb3adQhXUoph1jzCb056CX3JvVzuG7qovaiK6Vsbs0m9OGJWToHJm5ZPweoKM7HV1aoK3SllO2t2YR+rHvx+S2LafJ5dLeoUsr2UkroItItIqdF5ISItCVuqxKRV0WkM/G7N7OhpldLV5ii/Bzuqa1Y8r6N/vjURWO000UpZV/LWaE/ZIzZboxpTnz+F8BrxpgtwGuJzx2jtSvMzgYvBXlL/xU0+TyMzywwOD6bhciUUmplVlNy+QzwTOLjZ4BHVh9OdoxOz/PW5bEl6+dJTX49vUgpZX+pJnQD/LOIHBeRJxO3rTPGXAZI/O5f7IEi8qSItIlI2+Dg4OojToPjPWGMSa1+DtcP6dKErpSyr7wU73fAGNMvIn7gVRF5O9UXMMY8BTwF0NzcbIsidEtXmPxcYUdDZUr3X1deiKcwT1foSilbS2mFbozpT/w+APwI2ANcFZENAInfBzIVZLq1doXZVldJUX5uSvcXERp9pdqLrpSytSUTuoiUikhZ8mPgd4EzwE+BxxN3exz4SaaCTKepuQVOXxpNuX6e1OjXIV1KKXtLZYW+DjgsIieBVuAXxphXgL8CfkdEOoHfSXxue+09ERZiZtH557fS5PdwdWyW8Zn5DEWmlFKrs2QN3RhzEdi2yO3DwIczEVQmtXYNkyOwK7C8tvnkvPQLg5Nsr0+t9q6UUtm05naKtnSFubu2Ak9hqteD43RIl1LK7tZUQp+Zj9LRG2FPcHn1c4BAVQn5uaIJXSllW2sqoZ+6NMrcQmzZF0QB8nJzCFaXakJXStnWmkrorYkDLVaS0CF+YfSiti4qpWxqTSX0lq4wd6wvo7KkYEWPb/R56AlPMbcQS3NkSim1emsmoS9EYxzvGVnx6hziK/RozNA9PJnGyJRSKj3WTEI/0z/G1Fx01QkdtNNFKWVPayahr7Z+DrDZVwrABU3oSikbWkMJPczmmlL8ZUUrfo6SgjxqK4t1potSypbWREKPxQytXeFVrc6TdKaLUsqu1kRCf/vKOGMzC2lJ6MnzRWMxW0wCVkqpa9ZEQk/Wz5c7kGsxTX4PM/Mx+iLTq34upZRKp7WR0LvD1FYWU1tZvOrn0tOLlFJ25fqEbky8fr43DeUWgMZEp4vW0ZVSduP6hH5hcJKhibm01M8Bqj2FeEvydYWulLId1yf01q4wkJ76eVKTdroopWxoDST0YXxlhQSrS9L2nE1+DxcGdfu/UspeXJ3QjTG0JPrPRSRtz9vo8xCenCM8OZe251RKqdVydUK/NDLN5dGZtF0QTdLTi5RSduTqhN6SrJ9vSl/9HN47X1QTulLKTlJO6CKSKyIdIvLzxOffFZEuETmR+LU9c2GuTGvXMJUl+WxJrKjTpbaymOL8XE3oSilbWc5Jyd8AzgHl1932740xP0xvSOnT2hVmd7CKnJz01c8BcnKEzb5SbV1UStlKSit0EakDPgl8O7PhpM/VsRm6h6fSXj9PavRp66JSyl5SLbn8LfBnwI1nr/1nETklIt8SkcL0hrY6maqfJzX5PfRFppmaW8jI8yul3GFgfIY/fekEb/WPZfy1lkzoIvIpYMAYc/yGP/omcAewG6gC/vwmj39SRNpEpG1wcHC18aastWsYT2EeWzeUZeT5kzNdLmo/ulLqFtp7Irzc0cf0fDTjr5XKCv0A8GkR6Qa+DzwsIs8bYy6buFngaWDPYg82xjxljGk2xjT7fL60Bb6U1q4wuwJe8nIz08ijQ7qUUqno6B2hIDeHu2vLl77zKi2Z7Ywx3zTG1BljgsCXgV8ZY74qIhsAJL5j5xHgTEYjXYbw5BzvXp1I2/yWxQSqS8gRbV1USt1aR0+EOzeWU5iXm/HXWs3y9QUROQ2cBmqAv0xPSKt3bX5LBhN6YV4ugepSTehKqZuaj8Y41RdhR0NlVl5vOW2LGGN+Dfw68fHDGYgnLVq7whTm5XBvXWb/ErXTRSl1K+9cGWdmPsbOBm9WXs+VO0Vbu4fZ2eClIC+zX16T30P38CQL0Rubf1TSPxzrpSM0YnUYSlmiPfG9n60VuusS+tjMPG/1j2W0fp7U5PcwHzWEwlMZfy0nGp+Z55s/Os1//9V5q0NRyhIdoQi+ssK0nJaWCtcl9OPdI8RMZuvnSXp60a0dvRgmGjMc7xnRQ7XVmtQRGmFnQ2Vap73eiusSektXmPxcYUcWalbXpi5q6+KiDnXG9x2MTs9re6dac4YnZukenspKLkpyXUJv7Rrm3rpKigsy3yJUXpTPuvJCXaHfxKHOITbXxN/FtPVoHV2tLSd6IwDsqM9O/RxcltCn56KcujSalfp5kp5etLje8BRdQ5N8ZV+AqtIC2ro1oau1pSMUITdHMt5tdz1XJfT20AgLMZPVhN7o83BhYAJjtEZ8vcPnhwD40G017GzwcrwnbHFESmVXR+8IWzeUZaVakOSqhN7SFSZHoDmQvZpVk9/DxOwCV8dms/aaTnC4c4j15UU0+jzsDnrpHp5icFz/jtTaEI0ZToQi7KjPXi4ClyX01q5h7tpYQVlRftZeU08v+qBozHD4/BAPbKlBRGgOxr+pj2sdXa0RnQPjTM5F2RnIXrkFXJTQZxeidIQiWS23gA7pWsyZvlFGp+e5f0sNAHfXVlCQl0Nbt5Zd1NrQEUpeENUV+oqcujTK7EIs6wndV1ZIWVGertCvk2xXvL8pntAL83K5t7ZCO13UmtHeM4K3JJ9AdUlWX9c1CT05kGtPMLsJXUR0pssNDnUOcdfGcqo97515sivo5Wz/KDNZmAmtlNU6eiPsaPBmbUNRkmsSektXmNvXleEtLcj6azf5Pbq5KGFidoH20AgPbHn/7PvmQBXzUcPJRG+uUm41Oj3P+YEJdmZpfsv1XJHQF6IxjneHs15uSWryexgcn2V0et6S17eTlovDzEcNDyTq50m7Ep1HWnZRbndtQ1EWd4gmuSKhn+0fY3Iual1C9+mF0aRDnUMU5edcS+BJVaUFbPaVaqeLcr2O0AgicG9dRdZf2xUJPRsHWtzKtZkuWkfnUOcgezdVU5T/wc0UuwNVOqhLuV5HKMLt68qy2j6d5IqE3tIVZlNNKf7yIktev95bTEFuDhfWeELvj0xzYXDyA+WWpF1Brw7qUq4Wixk6QiNZm39+I8cn9FjMcKw7nPXuluvl5eawqUaPozvcGd/uf+MF0aTkDt5jOtdFudTFoUnGZhay3n+e5PiE/s7VcUan5y2rnyfFh3St7YR+6PwQ/rJCblvnWfTPN9WUUl1aQJvOdVEulTydK9s7RJMcn9Cv1c83W5vQG/0eQuGpNdtnHYsZDncOcn9iu/9iRISdAa9eGFWu1R6KUFaUx+aaxRc1meaKhF5bWUydN7s7sm7U6CslZqB7eG2O0j3bP8bI1PxN6+dJzQEvPTqoS7lUR2iE7fWV5ORkd0NRUsoJXURyRaRDRH6e+HyTiLSISKeIvCQiWd/RY4yhpcu6/vPrNa3xTpdD5+Pb/Q80LZHQrw3q0rKLcpeJ2QXevTrOTgv6z5OWs0L/BnDuus//C/AtY8wWYAT4g3QGloqLQ5MMTczaIqE3+jyIwIWBtblCP/TuEHesL8NfdutOo/cGdWnZRbnLqd4IMYNlHS6QYkIXkTrgk8C3E58L8DDww8RdngEeyUSAt3JtfosNEnpRfi513uI1OQJgam6B4z0jPHjb4t0t1yvMy2VbnQ7qUu7T0WvNhMXrpbpC/1vgz4BY4vNqIGKMWUh8fgmoTXNsS2rtClPjKbx2bqXV1uqQrpauMHPR2JL186RdgSod1KVcpyM0QqOvlIqS7G8oSloyoYvIp4ABY8zx629e5K6Lbv8TkSdFpE1E2gYHB1cY5uJau8Ls3VSV9YlmN9Pk83BxcILoGtsJebhziIK8HHanuBegOeDVQV3KVYwxdIQilsxvuV4qK/QDwKdFpBv4PvFSy98ClSKSl7hPHdC/2IONMU8ZY5qNMc0+39JvyVPVG56iLzJti3JLUpPfw+xCjL6RaatDyar4dv+qRbf7L0YHdSm3CYWnGJ6cs7R+DikkdGPMN40xdcaYIPBl4FfGmK8ArwNfSNztceAnGYtyEXaqnyetxdOLro7N8O7ViWuHWaTCW1pAo69UTzBSrpE8ocjKDhdYXR/6nwN/KiLnidfU/z49IaWmtStMRXE+t68ry+bL3lLjGjxf9NAS2/1vplkHdSkX6QiNUFKQy20W56NlJXRjzK+NMZ9KfHzRGLPHGNNkjPmiMSarO0Vau8PsDlZZ1sC/GG9pAdWlBWssoQ9S4yngjvXL+0beFfQyNrOwJruClPu0hyJsq6sk1+J85MidogNjM3QNTVo2LvdWGtfQ6UWxmOGN80Pc31Sz7B+syQuo2o+unG56Lsq5y2OW18/BoQm9xYb186Qmf7x10Rj3lxLOXRljaGKO+5dZbgEIVpfooC7lCmf6R1mIGcvr5+DQhN7aFaa0IJe7NpZbHcoHNPk8jE7PMzw5Z3UoGffeuNzUL4gmiQi7dFCXcoH2xPfwdl2hr0xrV5hdwSrycu0X/lo6vehQ5xC3rytj3QoPFmkOxgd1DYzPpDkypbKnIxShoaqEGk+h1aE4L6GPTM7xztVxW9bPYe0M6ZqZj9LaHeb+FazOk3YF4v+Gx7WOrhzKGEN7aISdNlidgwMTemu3fevnABsriigpyHV9Qm/tCjO3kPp2/8XcXVseH9SlZRflUP2jMwyMz1q+QzTJeQm9K0xhXo4lJ2qnQkRo9Ln/9KJDnYMU5Oawd1P1ip9DB3Upp0ueUGSHDhdwaELf0VBJYV5q28yt0OT3uP7A6EOdQzQHvRQXrO7fYVegirN9o0zP6aAu5TwdoQiFeTls3WCPBg1HJfTxmXnO9o+yZxWrwmxo9JXSPzrD5OzC0nd2oIHxGd6+Mr6q+nnS7qCXhZjh5CUd1KWcpz00wr11FeTbpEHDHlGkqK1nhJjBthdEk9w+0+WN8/F2xQdX0H9+o+SgLm1fVE4zuxDlbN+Ybern4LCE3toVJi9HbNHAfytuT+iH3h2iqrSAO9PwNrOypIAmv0cHdSnHeat/jLlozDYdLuDAhH5vXcWq67aZFqguJS9HXNnpYozh0PkhDqxgu//NNCc2GOmgLuUkyQmLukJfgem5KKcuRWxfPwfIz82hobrElQn9navjDI7Prqpd8Ua7AvFBXZ0u/PtS7tUeGmFjRdGKN9ZlgmMSekdohPmosX39PKnJpcfRrWa7/800Jwd16VwX5SAdoQg7AvZZnYODEnpLV5gciY9ddYImv4ee4Snmo7Gl7+wgv+0cosnvYUNFcdqeMzmoS3eMKqcYGJuhLzLNjnr71M/BQQm9tSvMnRvLKS+y7gDW5Wjye1iIGXqGp6wOJW1m5qO0XBxe1ulEqUgO6tINRsop2m1YPweHJPS5hRjtoRH2BO1fP09y40yX4z0jzC7EePC29CZ0iM9HD4V1UJdyho7eEfJzxXYTXx2R0E9dijC7ELPt/JbFbPa5r3Xxt52D5OfKqrb730yylKZlF+UEHaEId22sSPlg9GxxREK384EWN+MpzGNDRZGrVuiHO4fY2eCltDAv7c9998YKCnVQl3KA+WiMU5citpnfcj1HJHSA+xqrqSotsDqMZWnyu2dI19DELGf7x3jwttXvDl1MQV4O2+oqNaEr23vnyjgz8zHb1c/BIQn9jx9q4sU/3Gd1GMvW6IsP6XLDcXTJ7f7pviB6vV1Brw7qUraXnLBopx2iSUsmdBEpEpFWETkpImdF5D8mbv+uiHSJyInEr+2ZD9dZGv0eJueiXB51/oW+Q51DVJbkc3dt5sYWNwfig7pO9OqgLmVf7aEIvrJCaivT17qbLqms0GeBh40x24DtwMdEJLlc/vfGmO2JXycyFqVDNfnc0elijOFQ5yAHGmvITdN2/8W8N6hLNxgp++oIjbCjvhKRzP1fWKklE7qJS2ak/MQv59cQssAtQ7rOD0xwdSy92/0XU1lSwBa/R+voyrbCk3N0D0+x02Y7RJNSqqGLSK6InAAGgFeNMS2JP/rPInJKRL4lItafkGozNZ4CKorzHb9C/21iu3865p8vpTnopd0hg7reOD/Et1591+owVBZdO6HIZjtEk1JK6MaYqDFmO1AH7BGRu4FvAncAu4Eq4M8Xe6yIPCkibSLSNjg4mKawnUFEaPI7f6bL4c5BNteUUuctyfhr7QpUOWJQlzGG//Szt/hvr3Vytn/U6nBUlnSEIuTmCPfY9AjMZXW5GGMiwK+BjxljLifKMbPA08CemzzmKWNMszGm2efLTMubnTX6Sh1dcpldiHL0Yjgrq3OIXxgF+w/qau0K887VcQCeO9JjcTQqWzp6R9i6oYySgvTvxUiHVLpcfCJSmfi4GPgI8LaIbEjcJsAjwJlMBupUTX4PQxNzRKbmrA5lRdp7IkzPR3kgDacTpSJQXUKNx/6Dup490kNFcT6f3VHLj0/0MTo1b3VIKsOiMcPJ3lF21Nuzfg6prdA3AK+LyCngGPEa+s+BF0TkNHAaqAH+MnNhOpfTL4we6hwkL0fYtzk7u3SdMKjryugMvzx7hS/trucPH9jMzHyMHxzvtToslWGdA+NMzC7Ycodo0pLvG4wxp4Adi9z+cEYicpkmXxkQ7xTZFXDO6IKkw+eH2NFQSVkWp1w2B6r45dmrDIzN4LfR4QFJL7aGiBrDV/cGaKguYXfQy7NHevj6gU1pO8VJ2U/yhCI7H4HpiJ2iTlbrLaYgL8eRF0bDk3Oc7hvNWrklKTmoy46r9LmFGN9rDfHQ7X4aquMXiR/bHyQUnuI3766ti/5rTUdoBG9JPoHqzDcHrJQm9AzLzRE215Q6MqG/cX4IY7LTrni9a4O6bFhHf+XsFQbHZzm4P3Dtto/etR5fWSHPHum2LC6Vee2hCDsavLbcUJSkCT0L4kO6Jq0OY9kOdw5RXpTHvRnc7r+YgrwcttVX2nLH6HNHuglUl/Ch6961FOTl8OieBn797iA9w877d1ZLG52e5/zAhG37z5M0oWdBk99D78gUM/POGTqV3O5/X2MNebnZ/zZpDng52z9mq0Fdb/WPcax7hIP7Ah+olT+6t4FcEZ4/qi2MbnQyMV/IrjtEkzShZ0GT34MxcNFBq/SLQ5P0j87wQAZOJ0pFc9B+g7qeO9pNUX4OX9xV/4E/W1dexEfvXs9Lx3pt9UNIpUd7aAQRuNemG4qSNKFnQWNySJeDWhcPJS7wPdBkzWawZCeBXcouo1Pz/Kijj0e211JRsnjHz2P7AozNLPDTk31Zjk5lWkcowm3+sqx2e62EJvQs2FRTSo44a+ri4fNDBKpLrnVyZJvdBnX94HgvM/Ox910MvdGeTVXcsb6MZ97sccUMfBUXS7xT3Bmwd/0cNKFnRVF+LvVVJY7ZXDS3EOPIheGMT1dcSnPQy3EbDOqKxQzPHe2hOeDlro03f8stIhzcH+Cty2O0h+zxg0it3sWhSUan5229QzRJE3qWNCVOL3KCjtAIk3NR7reo3JK0K1DF+MwC7w6MWxrHbzsH6Rme4rH7gkve95HttZQV5fHMm3px1C2uTVi08Q7RJE3oWdLo93BxaJKoA8bCHj4/RG6OsL+x2tI4dic3GFncj/7skR5qPIV87K71S963tDCPL+yq4/87c5mBceefVKWgozdCWVHetWthdqYJPUuafB7mFmL0hqesDmVJv+0cYltdBRXF1l4AaqgqocZTyHEL6+ih4Slef2eAR/c2UJCX2n+Xg/sCzEcN32/V+S5u0N4zwvb6SkeMddCEniWNDhnSFZma4/SlSNa3+y9GRGgOeC0dpft8Sw85Ijy6pyHlx2z2eXhgSw0vtoSYj8YyGJ3KtInZBd69Os4OG89vuZ4m9CxJTl20e6fLmxeGiRksvyCa1Bz00hueZmAs++WL6bkoLx3r5aN3rWN9xfKGhD2+P8iVsRlefetqhqJT2XDqUoSYgZ0OqJ+DJvSsqSjOx1dWaPuEfqhziLLCPLbZZIvzroB1g7p+drKf0el5HtsfXPZjH7rDT21lsc53cbjkhMXtNvn/sBRN6FnU6Cu19eai5Hb/fY3V5Fuw3X8xd1k0qMsYwzNHurltnYe9m5Y/9jg3J97CePRimHeuWNulo1auIzTCZl8plSUFVoeSEnv8r10jkueL2nXTSc/wFJdGpnnQJuUWeG9QV7br6O2hCGf7x3hsf3DF0/V+r7megrwcnjvand7gVFYYY+gIRWw9//xGmtCzqMnnYXxmgcGJWatDWdShzsR2fxtcEL3e7mB8UNfU3ELWXvO5I92UFebx2R21K36OqtICPr1tIy+39zE2o0fUOU1veJrhyTlH9J8naULPoib/e6cX2dFvO4eo8xbbboB/c6CKaBYHdQ2Oz/KL05f5/K46SgtXdxjwY/sDTM1Fefn4pTRFp7IludvXCTtEkzShZ1GjvxTAljtG56Mxjl4Y5oEtPtsN8L82qCtLdfSXjoWYj5pbzm1J1b11lWyvr+TZozrfxWk6QiOUFORy+/oyq0NJmSb0LFpfXoSnMM+WK/STvRHGZxds0654vYqSfG5bl51BXQvRGC+0hHhgS03adgY+tj/AxcFJ3jg/nJbnU9nR0RthW10luQ7YUJSkCT2LRIRGX6ktTy861DlEjsB9Fm/3v5ldgSraQ5kf1PUv565yeXSGg/tWvzpP+sQ9G6guLeCZI91pe06VWTPzUd7qH3NU/RxSSOgiUiQirSJyUkTOish/TNy+SURaRKRTRF4SEWf09VisMdHpYjeHOge5p67Stu1ZzQFvVgZ1PfNmD7WVxXx467q0PWdRfi5f2l3Pa+eucmnE/qMfFJzuG2UhZhyzQzQplRX6LPCwMWYbsB34mIjsA/4L8C1jzBZgBPiDzIXpHk1+D1fGZhi3UdfD6PQ8Jy+N2qpd8UbNWRjU1Xl1nCMXh/nKvoa0v83+SmLF/0JLKK3PqzLDSRMWr7dkQjdxySVlfuKXAR4Gfpi4/RngkYxE6DLJuqydyi5HLgwTjRnub7JvQs/GoK5nj/RQkJfDl5o/eMTcatVWFvORret46Vivo86WXavaeyLXvuecJKUauojkisgJYAB4FbgARIwxycbgS8DKG3bXkORMFzt1uhzqHKS0INfWby9FhN1BL8e6M7PBaHxmnpfbL/GpezdQnaH/xI/fFyQ8OccvTl3OyPOr9DDG0B4acdzqHFJM6MaYqDFmO1AH7AG2Lna3xR4rIk+KSJuItA0ODq48UpcIVJWQnyu2GgFw+PwQ+xurUx4Pa5VdAS+XRqa5moFBXS+39zE5F+XxFcxtSdV9jdU0+kp59qgefmFnl0dnGBifddQO0aRl/Q82xkSAXwP7gEoRSe66qAP6b/KYp4wxzcaYZp/PXjsQrZCXm0OwutQ2F0ZDw1P0DE/ZutyS1ByMz1RJdx3dGMOzR7rZVleR0aFkIsJj+4Oc7I1wMkubpNTytTu0fg6pdbn4RKQy8XEx8BHgHPA68IXE3R4HfpKpIN2m0UaUEbTTAAARlElEQVTH0R06n9juf5v9f9jetbGcovyctM91efPCMBcGJ1c0VXG5PrezltKCXJ49oqt0u+oIRSjMy+GO9eVWh7JsqazQNwCvi8gp4BjwqjHm58CfA38qIueBauDvMxemuzT5PfSEp5hbsP7wg0PvDrGxoojNNaVWh7Kk/NwcttVVpv3C6LNHuqkqLeCT925I6/Mupqwon8/trONnp/oJT85l/PXU8nWERri3rsL2JcjFpNLlcsoYs8MYc68x5m5jzH9K3H7RGLPHGNNkjPmiMcaeE6dsqMnvIRoz9Axb2+myEI3x5oUhW273v5nmNA/q6otM8+pbV/nS7nqK8nPT8pxLObg/wNxCjJeO6RF1djO7EOVM35itGwRuxXk/glzALqcXneobZWxmgftt3H9+o3QP6nqxJV76+Mre1I+YW63b1pWxf3M1zx/tccSh4WvJW/1jzEVj7HDIgRY30oRugc2+eHnD6oR+uHMIETjggAuiSekc1DW7EOX7rb18eOs66rzZnTD52P4AfZFpfvX2QFZfV91a8oSinQFdoasUlRTkUVtZbHnr4qHOQe6praCq1J7b/RdTUZLP7evKOJaGOvo/nb7M8OQcj6VhquJy/c6d69hQUaRH1NlMR2+EjRVFrCtf3hmydqEJ3SKNfg8XLEzo4zPztIcijmhXvNGuoJeOnpFVlyueebOHzb5SDjRm/+8gLzeHR/c0cKhzyNLvA/V+7T0jjq2fgyZ0yzT5PFwYmMz49MCbOXoxTDRmbHc6USqaA17GZxd49+rKB3WduhThRG+Eg/sC5Fg0HvXLexrIzxWe0xZGWxgYm6EvMu3I/vMkTegWafJ7mJ6P0j86bcnrH+ocpDg/l50B533zNgcSG4xWUXZ59kgPJQW5fH5XXbrCWjZfWSGfuGcD/3j8EpOz2TteTy2uI3GhXVfoatkaLb4werhziH2bqyjMy06rXjrVVxXjKyvk+ArnuoxMzvHTk/18dkct5UX5aY5ueR7bH2R8doEfdfRZGoeK7xDNzxXu2ui8DUVJmtAtYmXr4qWRKS4OTXK/A8stEN9C3xzwrniF/lJbL3MLsazsDF3KzoZK7tpYznNH9Ig6q3WEIty5sSJr+xEyQRO6Rao9hXhL8i0Zo3u4cwjA1vPPl7LSQV3RmOH5oz3s3VRli7MiRYTH9wd55+o4LV2ZmSSplrYQjXHqUoSdDq6fgyZ0SzX5rZnpcqhziHXlhdfeJTjR7hUO6nr97QEujUzz+H3BDES1Mv/Tto1UFOfrxVELvX1lnJn5mKPr56AJ3VKNPk/We9GjMcPh887a7r+YOzeWU5yfu+z56M8e7WFdeSG/c2f6jphbreKC+BF1r5y9wpXR9I8GVku7dkKRQ3eIJmlCt1CT30N4ci6rQ5rO9I0yOj3PAw4ut0BiUFd9xbIGdV0cnOC37w7ylb0B8nPt9a3/1b0BYsbwYqseUWeFjlAEX1khdd5iq0NZFXt9V68xjcnTizK8Sp+Zj3K8J8y3D13k//r5W4CztvvfTHOgircuj6Xc8vf80RD5ucKX96T/iLnVaqgu4aHb/bzYErLFFM61pj00wo76Ske/awXIW/ouKlOafO91uiRrwqtljKF7eIoTvSN0hOKbZ97qH2MhsYGptrKYP3pws+POSlzMrqCX6OuGk70R7lviB9TU3AI/ON7Lx+/egL/Mntu6D+4P8MTTx3jl7BU+vW2j1eGsGeHJObqHp/jS7uwNaMsUTegWqq0spig/Z1Wti6NT85y4FKEjNMKJ3ngCj0zNA1BSkMu9dRX84YOb2V5fyY76SvwOnVGxmJ0NXkTiG4yWSug/7uhnfGbBkrktqfrQFh+B6hKefbNbE3oWneiNl+2c3uECmtAtlZMjbK7xpJzQ56Mx3rkyTkdohI5E8r6YaHsUgS1+Dx+9cz3bGyrZ0VDJFn8ZuRZta8+GiuJ8bvOXLdmPnjxi7s4N5eyy8RS9nBzh4L4Af/mLc5ztH+WujRVWh7QmtPdEyM0R7qlz/t+3JnSLNfk9184wvJ4xhsujM5zofW/1fbpvlJn5eH21xlPA9novn99Zx476Su6pq6DM4l2PVtgV9PKzE/1EY+amP7yOdY/w9pVx/upz99i+RvrFXfX89T+/w3NHevirz99rdThrQkfvCHesL6OkwPnp0PlfgcM1+T387FQ/wxOzdA5MJOre8fr3wHj8EKiCvBzu3ljOo3sC7GioZHt9JXXeYtsnp2zYHfTyYkuId6+Os3XD4lu2nznSTXlRHp/ZXpvd4FagoiSfz+6o5UcdfXzz41upKFl7P6SzKRoznOwd5bM77P+9kQpN6BZr8nswBnb95b9cuy1YXcJ9jdXsaPCyvb6SrRvKHXm+YTZcG9TVHV40oV8dm+GXZ67wtfuCFBc4Y0v3wX1Bvtfayw+O9/I/P7DZ6nBc7fzABBOzC46esHg9TegWO9BUw+d21lLnLWFHfSXb6isddeCE1eq8xfjLCmnrGeHgIrNZXmwJETWGr+6z78XQG925sZzdQS/PHe3h6wc2WTbedy1IljudvkM0SRO6xSqK8/mb39tudRiOJSI0B72LjgCYW4jxYmuID93mI1hTakF0K3dwf5B//b0OftM5yEO3+60Ox7U6QiN4S/IJVmf3CMJMWfJ9vIjUi8jrInJORM6KyDcSt/8HEekTkROJX5/IfLhKfdCuQBV9kekPbJv/5dkrDI7P8rgNpiou18fuWo+vrFDnu2RYRyjCjgava65HpVKYXQD+nTFmK7AP+GMRuTPxZ98yxmxP/PqnjEWp1C00J1oR23reP9fluSM9NFSV8KHbnDcmuCAvh9/f08Dr7wwQGp6yOhxXGp2ep3NgwvHzW663ZEI3xlw2xrQnPh4HzgHuuCSsXCE5qOv6ssu5y2O0doctPWJutb6yt4FcEZ5v0VV6Jpx0wQlFN1pW64SIBIEdQEvipj8RkVMi8h0Rcc/finKUxQZ1PXukh8K8HL7YbN0Rc6u1rryIj961npeO9TI9F7U6HNfpCEUQgW31zt9QlJRyQhcRD/CPwL8xxowBfwc0AtuBy8B/vcnjnhSRNhFpGxwcTEPISn3Q7uB7g7pGp+f5cUcfj2yvpbLE2R1Dj+0PMDo9z89O9lsdiuu0h0a4zV/mqg15KSV0EcknnsxfMMa8DGCMuWqMiRpjYsD/APYs9lhjzFPGmGZjTLPP57xapnKGXQFvYpNIhB8ev8T0fJSDNp7bkqo9m6q4fV0Zzxzp1iPq0igWM5zojbim/zwplS4XAf4eOGeM+Zvrbt9w3d0+C5xJf3hKpWZnID6oq7U7zHNHutkV8HJ3rfPfSosIj90X4Gz/GO2hiNXhuEbX8CSj0/PsdFH9HFJboR8ADgIP39Ci+H+LyGkROQU8BPzbTAaq1K2UF+Vz+7oynj3SQ/fwlK2nKi7XI9trKSvM49kj3VaH4hrtPckNRe5aoS+5scgYcxhYrE1A2xSVrewKeHmhJUSNp5CP371h6Qc4RGlhHl9oruP5oz3875+8E1+Z82fZW62jN0JZUR6NPueeq7sY3SmqXKM5GE/ov7+n3nWzbw7uC/D0G9188+VT/K8fvZ071i8+iMyJzg9M8N03uzjek72SUmh4kp0Br2NbWm9GE7pyjQ9vXcfBfQGeOLDJ6lDSbrPPwzc+vIX/9zcX+JdzA9zXWM0TBzbx8B1+R868j8UMv3l3kO+80cWhziEKcnPY31idtR/Edd5iR833SZVk88p5c3OzaWtry9rrKeU2I5NzfO9YiOeO9HB5dIaGqhIe2x/g93bXU+6A9ruJ2QX+8fglnnmzm4tDk/jLCjm4L8Dv721wxbGImSIix40xzUveTxO6Us6zEI3xy7NXefqNLtp6RigtyOULu+p4/L4gm21YFw4NT/HdN7v5QVsv47MLbKuv5OsHgnz87g2uK49lgiZ0pdaI05dGefqNLn52qp/5qOFf3e7jiQObeHBLjaVDp4wxHLkwzHfe6Oa1t6+SK8LH79nAEweCrmsXzDRN6EqtMQPjM7xwNMQLLT0MTczR6Cvlawc28fmdtVk9Xm1mPsqPO/r47pvdvH1lnKrSAh7d08BX9wVYX+GeQ8qzSRO6UmvU7EKUX5y6zNNvdHO6b5Tyojy+vKeBx/YHqPNmbu735dFpnjvSw/daQ4xMzXPH+jK+fmATn96+kaJ8Z5wWZVea0JVa44wxHO8Z4ek3unnl7BWMMfzunev52oEgezdVpaUcY4yhPTTCd97o5pUz8df4yNZ1PHFgE/s2p+c1VOoJXdsWlXKp+GlOVTQHq+iPTPPskR6+fyzEK2evsHVDOU8cCPLpbStbPc8txPjF6X6efqObU5dGKSvK4+sHgjy2P0h9lTtO/3EiXaErtYZMz0X58Yk+nn6ji3evTlBdWsCje+P17XXlS9e3B8dneaGlhxdaQgyOz7LZV8oT9wX53M46Sgt1fZgpWnJRSt2UMYY3Lwzz9BtdvPb2ALkifCLRgbLYgQ9n+kb5zhtd/PzkZeaisWudNA801bhut6UdaclFKXVTIsKBphoONNXQMzzJM2/28A9tvfz0ZD/b6yt54kCQj961ntfODfDdN7s41j1CSUEuX95Tz+P3BV03A8UtdIWulALiuzh/2NbLd9/spnt4irwcYSFmqPMW87X7gnyxuZ6KYvvvRnUjXaErpZbFU5jH1w5s4rH9QX7z7iD/cu4qD97m4yNb1zlyXsxapAldKfU+OTnCQ3f4eegOv9WhqGXSIQpKKeUSmtCVUsolNKErpZRLaEJXSimX0ISulFIuoQldKaVcQhO6Ukq5hCZ0pZRyiaxu/ReRQaBnhQ+vAYbSGI7duPnr06/Nudz89TnpawsYY3xL3SmrCX01RKQtlVkGTuXmr0+/Nudy89fnxq9NSy5KKeUSmtCVUsolnJTQn7I6gAxz89enX5tzufnrc93X5pgaulJKqVtz0gpdKaXULTgioYvIx0TkHRE5LyJ/YXU86SIi9SLyuoicE5GzIvINq2NKNxHJFZEOEfm51bGkm4hUisgPReTtxL/hfqtjShcR+beJ78kzIvI9EVn6BGkbE5HviMiAiJy57rYqEXlVRDoTv3/wMFWHsX1CF5Fc4P8BPg7cCfy+iNxpbVRpswD8O2PMVmAf8Mcu+tqSvgGcszqIDPlvwCvGmDuAbbjk6xSRWuBfA83GmLuBXODL1ka1at8FPnbDbX8BvGaM2QK8lvjc0Wyf0IE9wHljzEVjzBzwfeAzFseUFsaYy8aY9sTH48QTQq21UaWPiNQBnwS+bXUs6SYi5cCDwN8DGGPmjDERa6NKqzygWETygBKg3+J4VsUY81sgfMPNnwGeSXz8DPBIVoPKACck9Fqg97rPL+GipJckIkFgB9BibSRp9bfAnwExqwPJgM3AIPB0oqT0bREptTqodDDG9AF/DYSAy8CoMeafrY0qI9YZYy5DfHEFOP7MPSck9MVOp3VVa46IeIB/BP6NMWbM6njSQUQ+BQwYY45bHUuG5AE7gb8zxuwAJnHBW3aARC35M8AmYCNQKiJftTYqlQonJPRLQP11n9fh8Ld/1xORfOLJ/AVjzMtWx5NGB4BPi0g38TLZwyLyvLUhpdUl4JIxJvmO6ofEE7wbfAToMsYMGmPmgZeB+yyOKROuisgGgMTvAxbHs2pOSOjHgC0isklECohfnPmpxTGlhYgI8RrsOWPM31gdTzoZY75pjKkzxgSJ/5v9yhjjmlWeMeYK0Csitydu+jDwloUhpVMI2CciJYnv0Q/jkgu+N/gp8Hji48eBn1gYS1rkWR3AUowxCyLyJ8AviV9t/44x5qzFYaXLAeAgcFpETiRu+9+MMf9kYUwqdf8L8EJioXEReMLieNLCGNMiIj8E2ol3YnXg8F2VIvI94F8BNSJyCfg/gb8C/kFE/oD4D7EvWhdheuhOUaWUcgknlFyUUkqlQBO6Ukq5hCZ0pZRyCU3oSinlEprQlVLKJTShK6WUS2hCV0opl9CErpRSLvH/A/10bX2bFFqfAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"users[\"Age\"].plot() # Plotting age of users" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d694db358>" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD/CAYAAADhYy38AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAD2FJREFUeJzt3X2QXXV9x/H3l0QUhAqUJWIixtqo6ChodyIj1VEQpWIFO9qKjk07tJlOtWB1pqb2j9KZthNn2tr+4UwnI9p0xgcelELRKhiIrX1AlicDBozSFNJAslrwsaMNfvrHPZmmccO9e/fcTfLL+zWzc88595z7/e5m87m/+7vn3K0kSJIOf0cd7AYkSf0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqRFLF7PYySefnJUrVy5mSUk67N1+++3fTDI1bL9FDfSVK1cyMzOzmCUl6bBXVf8xyn5OuUhSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIasagXFh1SLn/amMd9u98+JKknjtAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiNG+vjcqtoOfBd4HNiTZLqqTgKuBFYC24FfTvLoZNqUJA0znxH6q5OcmWS6W18HbEqyCtjUrUuSDpKFTLlcCGzsljcCFy28HUnSuEYN9AA3VtXtVbW227YsycMA3e0pk2hQkjSaUf8E3dlJdlbVKcBNVXXfqAW6J4C1AKeddtoYLUqSRjHSCD3Jzu52N3AtsBrYVVWnAnS3uw9w7IYk00mmp6am+ulakvQThgZ6VT21qo7fuwy8FrgHuB5Y0+22BrhuUk1KkoYbZcplGXBtVe3d/+NJPldVtwFXVdUlwIPAWybXpiRpmKGBnuQB4Iw5tn8LOHcSTUmS5s8rRSWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI0b9E3SSpBGsXPeZsY7bvv6CBdd2hC5JjTDQJakRTrlowT70WzePddw7//qcnjuRjmyO0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEaMHOhVtaSq7qyqG7r1Z1fVrVW1raqurKqjJ9emJGmY+YzQLwO27rP+AeCDSVYBjwKX9NmYJGl+Rgr0qloBXAB8uFsv4Bzgmm6XjcBFk2hQkjSaUUfofwn8HvDjbv2ngceS7OnWdwDL5zqwqtZW1UxVzczOzi6oWUnSgQ0N9Kp6A7A7ye37bp5j18x1fJINSaaTTE9NTY3ZpiRpmFH+wMXZwBur6vXAU4CfYjBiP6Gqlnaj9BXAzsm1KUkaZugIPcnvJ1mRZCXwVuDmJG8HbgHe3O22BrhuYl1KkoZayHno7wPeU1VfZzCnfkU/LUmSxjGvvymaZDOwuVt+AFjdf0uSpHF4pagkNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRszr0v9JWrnuM2Mdt339BT13IkmHJ0foktQIA12SGnHITLlIh6od6/5prONWrH9Fz51IT8wRuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxNBAr6qnVNWXq+ruqrq3qv6o2/7sqrq1qrZV1ZVVdfTk25UkHcgoI/QfAuckOQM4Ezi/qs4CPgB8MMkq4FHgksm1KUkaZmigZ+B73eqTuq8A5wDXdNs3AhdNpENJ0khGmkOvqiVVdRewG7gJ+AbwWJI93S47gOWTaVGSNIqRAj3J40nOBFYAq4HT59ptrmOram1VzVTVzOzs7PidSpKe0LzOcknyGLAZOAs4oar2/k3SFcDOAxyzIcl0kumpqamF9CpJegKjnOUyVVUndMvHAK8BtgK3AG/udlsDXDepJiVJwy0dvgunAhuragmDJ4CrktxQVV8FPllVfwzcCVwxwT4lSUMMDfQkXwFeMsf2BxjMp0uSDgFeKSpJjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaMcp56DoMbX3+XJ/O8MROv2/rBDqRtFgcoUtSIwx0SWqEgS5JjXAOfZG8aOOLxjpuy5otPXciqVWO0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoTnoeuw8+e/8oaxjnvvlTf03MlkXH755Yt63GJ7+i13jXXcI68+c6zjVq77zFjHbV9/wVjHHUyO0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjPG1ROsJtuvk5Yx137jnf6LkTLZQjdElqhIEuSY0w0CWpEUMDvaqeWVW3VNXWqrq3qi7rtp9UVTdV1bbu9sTJtytJOpBRRuh7gPcmOR04C3hnVb0AWAdsSrIK2NStS5IOkqGBnuThJHd0y98FtgLLgQuBjd1uG4GLJtWkJGm4ec2hV9VK4CXArcCyJA/DIPSBU/puTpI0upEDvaqOAz4FvDvJd+Zx3NqqmqmqmdnZ2XF6lCSNYKRAr6onMQjzjyX5dLd5V1Wd2t1/KrB7rmOTbEgynWR6amqqj54lSXMY5SyXAq4Atib5i33uuh5Y0y2vAa7rvz1J0qhGufT/bOAdwJaq2vunRt4PrAeuqqpLgAeBt0ymRUnSKIYGepIvAXWAu8/ttx1J0ri8UlSSGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNGBroVfWRqtpdVffss+2kqrqpqrZ1tydOtk1J0jCjjND/Bjh/v23rgE1JVgGbunVJ0kE0NNCT/CPwX/ttvhDY2C1vBC7quS9J0jyNO4e+LMnDAN3tKf21JEkax8TfFK2qtVU1U1Uzs7Ozky4nSUescQN9V1WdCtDd7j7Qjkk2JJlOMj01NTVmOUnSMOMG+vXAmm55DXBdP+1IksY1ymmLnwD+FXheVe2oqkuA9cB5VbUNOK9blyQdREuH7ZDk4gPcdW7PvUiSFsArRSWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGrGgQK+q86vq/qr6elWt66spSdL8jR3oVbUE+BDwC8ALgIur6gV9NSZJmp+FjNBXA19P8kCSHwGfBC7spy1J0nwtJNCXAw/ts76j2yZJOggqyXgHVr0FeF2S3+jW3wGsTvI7++23FljbrT4PuH+McicD3xyr0fG0XK/l78161mu13rOSTA3baekYD7zXDuCZ+6yvAHbuv1OSDcCGBdShqmaSTC/kMay3+LWsZz3rLW69hUy53AasqqpnV9XRwFuB6/tpS5I0X2OP0JPsqap3AZ8HlgAfSXJvb51JkuZlIVMuJPks8NmeenkiC5qysd5Bq2U961lvEeuN/aaoJOnQ4qX/ktQIA12SGrGgOfRJqKrnM7jidDkQBqdCXp9k60Ft7DBVVauBJLmt+2iG84H7uvc/FqP+3yb51cWopYXZ52y1nUm+UFVvA14ObAU2JPmfg9qghjqk5tCr6n3AxQw+RmBHt3kFg1+yTyZZf7B660v3hLUcuDXJ9/bZfn6Sz/Vc6w8ZfNbOUuAm4GXAZuA1wOeT/EnP9fY/bbWAVwM3AyR5Y5/15qj/8ww+kuKeJDdO4PFfBmxN8p2qOgZYB7wU+Crwp0m+3XO9S4Frkzw0dOd+6n2Mwe/KscBjwHHAp4FzGWTFmgnUfA7wJgbXtOwBtgGf6PtneaQ41AL9a8AL9x8JdCOHe5OsWuR+fj3JR3t8vEuBdzIY8ZwJXJbkuu6+O5K8tK9a3WNu6eo8GXgEWLFPGN2a5MU917uDQbh9mMGrqwI+weAJmSRf7Lnel5Os7pZ/k8HP9lrgtcDf9z0AqKp7gTO6U3Y3AD8ArmEQeGck+aWe630b+D7wDQY/x6uTzPZZY796X0ny4qpaCvwn8Iwkj1dVAXdP4PflUuAXgS8CrwfuAh5lEPC/nWRzn/WOCEkOmS/gPgaXuO6//VnA/Qehnwd7frwtwHHd8kpghkGoA9w5gf7vnGu5W79rAvWOAn6XwauBM7ttD0zw32ff7+82YKpbfiqwZQL1tu6zfMci/Dzv7H6mrwWuAGaBzwFrgOMnUO8e4GjgROC7wEnd9qfs+733WG8LsKRbPhbY3C2fNqH/D08D1nc5863ua2u37YS+6w3p5R8m8biH2hz6u4FNVbWN//vgr9OAnwXeNYmCVfWVA90FLOu53JJ00yxJtlfVq4BrqupZXb2+/aiqjk3yA+Dn9m6sqqcBP+67WJIfAx+sqqu7211M9n2ao6rqRAahV+lGr0m+X1V7JlDvnn1etd1dVdNJZqrqucAk5pfT/UxvBG6sqicxmEK7GPgzYOhne8zTFQzCbgnwB8DVVfUAcBaDadBJWAo8zuBV5PEASR7svte+XcVg+u9VSR4BqKqnM3iCvBo4r89iVXWgV9zF4JVz7w6pKReAqjqKwTzocgbf+A7gtiSPT6jeLuB1DF7q/b+7gH9J8owea90MvCfJXftsWwp8BHh7kiV91eoe+8lJfjjH9pOBU5Ns6bPeHHUuAM5O8v4JPf52Bk9MxWCK5+VJHqmq44AvJen1P033RPhXwCsYfMDSSxkMPB4CLk1yd8/17kzykgPcd0yS/+6zXve4zwBIsrOqTmDwfsuDSb48gVqXAZcA/wa8EvhAko9W1RTwqSSv7Lne/UmeN9/7FlDvcQbTSXMN1s5Kckyf9eAQDPTFVlVXAB9N8qU57vt4krf1WGsFsGfv6GC/+85O8s991TqSVdWxwLIk/z6hxz8e+BkGo8sdSXZNqM5zk3xtEo99qKiqFwKnM3gj+74J17oR+AKwce+/WVUtA34NOC/Ja3qudw/wpiTb5rjvoSTPnOOwhdU80gNd0pGhm55bx+C06FO6zbsYfKjg+iT7v0pfaL03M3gv5yc+MryqLkryd33WAwNdkno/o+1g1TPQJR3xqurBJKcd7vUOtbNcJGkiFvmMtkWvBwa6pCPHMp7gjLYG6hnoko4YNzC4sO+u/e+oqs0N1HMOXZJa4cfnSlIjDHRJaoSBLkmNMNAlqREGuiQ14n8BC03ZW/rU91MAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"users[\"Age\"].plot.bar() # Bar chart for ages" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d69573ac8>" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XlwnPd5H/DvswApS/JBWwJVRVJDOVJ01FNbGVaVrCaxpShVak+kzsQzztgO29GMplO3dWq7iezOtE2mbRSPZMuWD0UXhdSyzEsSQcriBd6HKCxIgCSIG8SxOBf3scBe79M/9l0KBIG99z1++H5mNMAudvE+C0JfvPu8v0NUFURE5H8BtwsgIqLSYKATERmCgU5EZAgGOhGRIRjoRESGYKATERmCgU5EZAgGOhGRIRjoRESGqHTyYDfeeKNu2LDByUMSEflefX39qKpWZXuco4G+YcMGBINBJw9JROR7ItKTy+PYciEiMgQDnYjIEAx0IiJDMNCJiAzBQCciMgQDnYjIEAx0IiJDMNCJiAzBQF9iZiGOzz9Ti+qT3W6XQkSUFwb6ErsaBzEwuYAf7GlxuxQiorww0JfYUtcLAJiLJTE+G3O5GiKi3DHQF2kdmkFjaAoBSd3ecSbkbkFERHlgoC+ypa4PIoBq6vZ7FwbdLYiIKA8MdFs0kcRbZ0MQAHae4+LgtJslERHlhYFuO3BxBJORONZUfPgjWYhbGJlZcLEqIqLcMdBtW4J9qAwIognrivt31LOPTkT+wEAH0D85j2NtYWi6eb7IexeGXKiIiCh/DHQA24MhKACRq7/WOjTjeD1ERIVY9YFuWYpt9X2oCAiWdFsAANGEhaGpeecLIyLK06oP9JOdYwhNzKMyw09iG/voROQDqz7QtwRTZ+fRxNX987S97KMTkQ+s6kCfjMSw98LQshdDF2sbZh+diLxvVQf6O2f7EUtaqAgsczV0kVhSEZqIOFQVEVFhVm2gqyp+XZcaex5PZj5DB4CtwT4HqiIiKlxOgS4i3SJyXkQaRCRo3/cpEdkvIu32x0+Wt9TSOt8/hZahmWWHKi5nX9NweQsiIipSPmfoX1TVz6nqRvv20wBqVfVOALX2bd/YUteHgCCns3MA6AzPlrkiIqLiFNNyeRxAtf15NYAnii/HGfOxJHY2DOT1nHhS0T3GUCci78o10BXAPhGpF5Gn7PtuUtVBALA/ri9HgeXw3oVBzEYTVyzElYutdRyPTkTelWuiPaSqvwfgTwB8U0T+INcDiMhTIhIUkWA4HC6oyFLbUrf8QlzZHLjIPjoReVdOga6qA/bHEQBvA7gfwLCI3AwA9seRFZ77kqpuVNWNVVVVpam6CN2jczh9abyg53aNzpW4GiKi0ska6CJyvYh8LP05gD8GcAFADYBN9sM2AdhZriJLaWuwDwLAyjKZaDkJS9HBSUZE5FG5nKHfBOC4iDQC+ADAu6q6B8AzAB4VkXYAj9q3PS2RtLCtPoSAAFb+eQ4gtVQAEZEXVWZ7gKp2AfjsMvePAXikHEWVy5G2MMIzUVxTGUAyz/55Wm3LCP77l+4tcWVERMVbVTNFC70YuljPWCTr2i9ERG5YNYEenomitmWk6DBOWoqWIW4eTUTes2oC/a0zISQtRSDLQly52BbkeHQi8p5VEeiqerndkutU/0wOtiw7QpOIyFWrItDreybQNTqHQIlebd84++hE5D2rItC31KV2JYpl2JUoH0kFLgxMleR7ERGVivGBPhtNYPe5wZKfUXNdFyLyGuMDfXfjAObjSVSW4GLoYkfa2EcnIm8xPtDTF0NjJbgYulhoYp59dCLyFKMDvX14Bmf7JsvyvS0FGnrL872JiAphdKBvqbMX4ip04ZYstp1hH52IvMPYQI8lLOw4E4IIUPhE/8yOtLKPTkTeYWyg1zYPYyISz3tXonwMTC2U7eyfiMwwMrOAX53uxfRCvOzHMjbQtwSLX4grG1Ug2FPYZhlEtDrsahzE998+j1MdY2U/lpGBPjg1j6NtYUdGoWznui5ElMHOhn6sCQjCs9GyHyvreuh+tD0YgqVAZQCp7a3L6FjHaHkPQES+1T06h3Mh52aVG3eGblmKrcHUVP8ydlsuG2IffUWqip8f7kDHyKzbpRC5oqZxwNHjGRfo73eNoW9iHpWlnRi6IgVwqqv8vTE/Otk5hh/sacWT1XVul0LkOFXFzoZ+VAhKPlN9JcYF+hb77Dxa4pmhmeyo5z6jy9l8ohtAapenzjA316bV5eLgNDrDc6ioEAZ6IaYicbx3fsjxKfnHHbh67Tc9Y3OobR6G2L/Hz+1rc7cgIofVNAxAAMRLtMprLowK9J2N/YglLVQ49NcwLTwTRSLpQMPeR6pP9gDy4S9YbTMnYdHqYVmKmsYBiJR9XMYVjAr0Uu5KlA8FcLydo13SZqMJbA2mll1I/1NEExYOtgy7WheRU4I9ExicWijrxMblGBPoF/qn0DQwffktvtN2nOV49LQd9SHMRhNYs2SLqBdqO1yqiMhZOxv6ERCUdWLjcowJ9K3BPgQESDh8dp52qpN9dCD1VnPziUupWbpL2lANoUnEE0mXKiNyRjxp4d3zg64c24hAX4gn8c7ZfgDO9qsWG5uNIc4+Oo60h9E9FkHFMu+UVIHqUz3OF0XkoOPto5gs8zpSKzEi0Pc2DWF6IeHKDzBNARzm6ovYfKLbPjtf/k/r5pPdzhZE5LCaxoHU0GmH2y2AIYG+pa4Payrc+QEu9rb9LmG16hiZxdG2cMbH9E/MY3RmwaGKiJw1H0tizwXnh06n+T7Qe8ciONk5Bi/sBvd+1+peebH6ZDcCkn1Dkedr2x2qiMhZtS3DmI8nXesW+D7Qt9mzNL2wv+f4XAwxl98luGVqPo7t9amRPtl+AjvPOru+BZFTdjYMlH3Z7kxyDnQRqRCRsyKy2759u4icFpF2EdkiImvLV+bykpZiWzCEChG4NLjlKgeaV+dY6611fZiPJ1G53NXQJWaiCZwPcT9WMstUJI5DLSOwXDy5zOcM/VsAmhfd/nsAP1LVOwFMAHiylIXl4mh7GEPTCzmFiFPeWYV99KSlqD6Vuhgay3GaM5cCINPsaRpEwlLH1m1ZTk6BLiK3AvgSgFfs2wLgYQDb7YdUA3iiHAVmsrWu/LsS5euD7tXXRz/QPIzQxHxeSy4c7xj1RJuMqFTS7ZaYi+2CXM/QnwfwV/iwPXoDgElVTdi3QwBuWe6JIvKUiARFJBgOZx4BkY+x2Sj2Xxx29e3NciYjcSzEE9kfaJDNJy7lPcooYaWWFiUywcj0Ak51jkFdmwmTkjXQReTLAEZUtX7x3cs8dNlXoqovqepGVd1YVVVVYJlXe/tsPxKWIuDi25uV7GtaPX305sFpvN81XtAoo18c6Sx9QUQu2HVuEAr3R5nkcvyHAPypiHQD+DVSrZbnAawTkfQWdrcCcGzogqpeXojLran+mexsWD2jOF4/kdtQxeW0Dc0iEltd72bITDUN/amFAV3u/mYNdFX9nqreqqobAHwVwEFV/RqAQwD+zH7YJgA7y1blEmf7JtE+MgsPnpwDAII9q6OPPj4Xwzt226SQ32MF8CLP0snnukfn0Biacm1hwMWKeYfw1wC+LSIdSPXUXy1NSdltrUstxOXmxYdMpuYTmF8FZ55vftCLaKK49effPN1bwoqInJfeNzTpgb2F8wp0VT2sql+2P+9S1ftV9Q5V/YqqRstT4pXmognHN14txG/OD7ldQlnFkxb+8VQ3Kopcfz48G0PfeKR0hRE56PK+oQGBB/Lc9R5+3t49P4hILInKgLdL98MfnWLsbRrC8HS0JGNun9vXWoKKiJx3ed9QD7RbAB8GenrseczjS9We6Zlwu4Sy2nyiu2QLou1pMvvdDJmrptHeN9Qj7V9fBXrHyCyCPgnKmWgCc9G422WUxbnQJOp7Jkq2+PxC3MKJjtLNUSBygmVpaiNoh/cNzcRXgb7N3qfSa5OJVrKr0Z1dS8rt9ROp3nmihE3D5w9wBUbyl/re9L6hHum3wEeBHk9a2F4fggg8cfEhF7sM7KOPzCygpnEAqqWdE1ffM4Gkx9toRIt9uG+odwLJN4F+sGUEY3MxV3clylejgSsKvvF+LxKWFjVUcTmWAr/6gEMYyR/iSQu7z3nvHbhv0tGLC3FlMxtNYmbBnD56NJHEG6d7ih6quJJXjl8q+fckKofjHe7tG5qJt6pZwfD0Ag61jvhydb53DFqA6t1zgxidjZVtedCesQgmI7GyfG+iUqppcG/f0Ex8Eejb60OwFJ6YWpuvdw25MKqqBa2qmK+fHOTFUfK2+VgSe5vc2zc0E18EerB7PLUQl7f+GObkXP+U2yWUxJneCZzvny77cXbUm/OOhsxU2zKMSMy9fUMz8V5Fy3jt3/0LeGekZ34isaQRbYTXTqR2JCr3BIqp+ThaB2fKegyiYtS4vG9oJr4IdBGB+LHfYnv7jL/POgcm57Hn/JBj4/+f3dfiyHGI8jUVieNQq7v7hmbii0D3u3cv+LuP/sv3e2CpOrZc8eG2sCf7k0u9dSaEl492uV0GOWhP0yDiSXf3Dc2kMvtDqFhNDvSey2UhnsSvPuhFQODYNYx4UrG3aQiPfeZmZw5YgKaBKfy37eeQtBTXrAngLx7c4HZJ5ICaRvf3Dc2EZ+gOmI8nMTbryOrCJffO2X5MRuKodPgC0AsHOxw9Xj5iCQvf2dp4+R3L3+y66Nt/X8rdyPQCTnaMefrdIwPdITvOhNwuIW+qis0nu125AHRxYBrReNLRY+bqp4c60DI0A7G31k1aiq+/etrlqqjcdqf3DfVmtwUAA90x713w3xKxp7rG0Do048ovsAJ4+Zj3+tMX+qfws0MdqFiyhHPz4AyqT3a7VxiV3U6P7BuaCQPdIRcH/NdH32wPVXSrX/jL9721tkssYeG72+xWyzJvu/9290WMsvViJC/tG5oJA90h0YSF4el5t8vIWd94BAcuDrvaLxyaXsDQ1IJrx1/qpwfbL7dalvsbl7QU33iFrRcT7fLQvqGZMNAd5KdZkNUnuwEB3D4h+aFHtqdLtVo6r2q1LNU8xNaLaVL7hg54Zt/QTBjoDtrjkz76XDSBLXWpzUTcXup593n3x/DHEha+s60RgQCWbbUsxdaLWZoHZ9ARnvXMvqGZMNAd1Drsjyntb50JYSaa8MTkiUgsiWD3uKs1vHCwHa0ZWi1LJS3F19l6McbOxn5P7RuaCQPdQdGEhYHJiNtlZGRZ6vrF0KWe29fm2rHPh6bw8xxaLUu1DM1gM9d39z3LUuzy2L6hmTDQHbYt6O3x6Efbw+ganfPU28sPLo27sj1dNJHEd7c15NxqWep/v9vM1ovP1fdOYMBj+4ZmwkB32L6mYbdLyOj19EQij5ydA0BSFTtcWODshdoOtA7PQiS3VstSSVV87WW2XvzMi/uGZsJAd1jbiHf76J3hWRxuDbtdxrL+4Wino8c7F5rELw7brZYiZsm2Ds/gtePemyBF2cWTFt714L6hmTDQHRZPKvrGvdlHrz7ZjYDAk0uDdobnMOvQ/qypVkvuo1qy+T/vNmNk2jvj6Sk3xztGMeHBfUMz8U+lBtka7HO7hKtML8Qv9/e9OtbWqQW7flLbjrbhWQQKbLUslVRwrRcf2uXRfUMzyRroIvIREflARBpFpElE/sa+/3YROS0i7SKyRUTWlr9cM+z3YB99a10f5uNJVHr44o8TfwjPhSbx4uGukv+P3DY8i1fZevGN+VgSezy6b2gmuZyhRwE8rKqfBfA5AI+JyAMA/h7Aj1T1TgATAJ4sX5lm6RyddbuEKyQtRfUpe6iihy/+TETi6AyX7xrE4lZLOf5HZuvFPw62jHh239BMslarKekEWmP/pwAeBrDdvr8awBNlqdBA8aSiy0OhfrBlBH3j86jwwESibJ7bW74x6T8+kGq1CMozxdtS4GuccOQL6ZUV/dRuAXLsoYtIhYg0ABgBsB9AJ4BJVU3YDwkBuKU8JZppW513xqNvPnEJayr88ctb2zJSlu/b2DeJF4/kP4EoX+0js3jFg8sC04em5r29b2gmOQW6qiZV9XMAbgVwP4B7lnvYcs8VkadEJCgiwXDYm0Pi3LC/2Rt99NahGZzsHCvFYA5HRBMWakv8s1uIp1otFQFxpGf6f3/TjGG2Xjxr74UhT+8bmkleDSJVnQRwGMADANaJSHpP0lsBDKzwnJdUdaOqbqyqqiqmVqN0j865XQIA4PWTl1JDFb06tGUZpR7t8uPadrSPpCYQOfFjsBRc68XDdjb2e2rpi3zkMsqlSkTW2Z9fC+CPADQDOATgz+yHbQKws1xFmihhKdpdXqxrYi6Gt+wZmN5vtnyoMTSJeKI029M19E3iH450okKKm0CUr/aRWbx8lK0XrxmZXsCpTm/vG5pJLmfoNwM4JCLnANQB2K+quwH8NYBvi0gHgBsAvFq+Ms20tc7d8ei/rutDNGH54mLoYqqpJQqKdUWrxYWll/7uPbZevGb3uUFY6u19QzPJZZTLOVW9T1X/uap+RlX/1r6/S1XvV9U7VPUrqspViPJUrgt8uUgkLfzjqW5UBMQXy4IuVYpAf/5AOzpGyjeqJZvUqJf3nT8wraimccDz+4Zm4q9BlobpGY+49tZub9MwBqcWfHnhBwD6JxcwOlP42e3Z3gm8dNRutbiwkmNax8gcXjri7Do1tLyesTk09E26XUZRGOguSlqK5kF3No9+/aR/hiqu5PkD7QU9z+1Wy1LP7GnB4JR/9ps1VU1DalyHH4crpjHQXbbVhfXRL/RPoa57wh8r9mfwTsOyA6uy+tGBNnSG5xwb1ZINR724z0/7hmbCQHfZoVbn++ivnbiEioAg4effXACz0QTO5fkW+UzvBF4+2uX4qJZsOsNzeJGtF9f4ad/QTBjoLutzuI8enoliV+MAVL3QbCjec/tac36s11otS/2ArRfX1DQO+Gbf0EwY6C6zFDgXmirb948nLfSMzeFoWxj/7/0ePL3jHOJJ9d1QxZWcyGPM8A/3t6ErPIeAS6NasrEU3OHIBZalqGno982+oZlUZn8Ildu2+hA+e9u6gp8/G02gZ2wOfeMR9IxF0DMeQe9YBN1jcxiYnL8ivASpMbZ+PxNJS1iKdxr68W/vuzXj4+p77FZLQBB1cVRLNl2jc3jxcAf+wxfucLuUVSO9b+g1leKbreZWwkD3gMNZ+uiqivBMFD12YPeOR9A7NoceO7QnIlfu5JM++VYFKisEa0SQsCwkrdQZiI8v4i/rxcOdGQM93WqprBAkffCH7Ad7W/H4fbfg5k9c63Ypq0JNw4Cv9g3NhIHuAQOT84jGkxiYWkDP2Bx6FwV3z9gcesciWFhyAa9CBJYqRIC1lQEIgFjCguLKHYdSZ+L+/0XNpG14FpFYAtetXf7X+bl9rbg0OodrKgOI++BnkW69HPzuF9wuxXjxpIXd5wobLeVFDHQPsBS4+3/sueLMWQQIQJDU1Kpv11QGYKlebpUk7QerwlOjNdygSJ2lf/uP77rqa/U943jl2CXfbSXWNTqHnx/qwH/8Ilsv5XTC3jf0msqAr34/VsKLoh4QEFwO7fQGKaofhnbCUkQTljF973L41Qe9V92XarWcQ2WFQL14FTSLZ/e1YmCSo17KqcaH+4ZmwkD3AEtTrZFoItXnpvyNzsbQNx654r5n96ZaLQLx1WqSadzhqLwW4v7cNzQTBjoZ49lFY9KD3eN49fglVATg6lotxbo0OoefHSrt+u+UUtvsz31DMzHnldCqt7dpCEBqx/b0qBb1b5Zf9ty+VvRPRLI/kPLi131DM2GgkzEW4hZOdITx7L5WdI9FUmu1uF1UCbD1Unp+3jc0EwY6GeX7b1/Aa+lWi0FnXt1jEfz0YGGrS9LV/LxvaCYctkhG6RmLYI1PJhDl67n9bXj47vW497c+4XYpJWVZiouD0whNODei5826Xt/uG5oJA52MExDxxQSifKkC/+Ynx3HTx6/Bw3evxx/+7no8+Ds34BPXrnG7tLwNTS3gWHsYx9pHcbxjFONzMcdrMGU9o8UY6GQcky5yLSWSGqL55gd9ePODPgiAe27+OB69dz1+/84qfO62daj04KiNSCyB05fGcaxtFMfaw2gfmQUAe/1xdWViT9KHcxOyYaAT+cjiCWdAalJa89A0Lg5O48e1HfjImgAe/PQNePjuVMD/9g3XQcT5M9F0G+VoexjH2kYR7BlHPKmX1xlaW5EK8vSa/Cb/EXYSA53Ix5a2gBNJxaHWMA61hgEA6z92Db5413p84a4qfP53bsQnritfe2Zgch7H20dxrGMUx9vDlxeNqwwIVBVrKwKX5wSY1rv2CgY6kUEW70IlAMbmYtgS7MOWYKo9c9c/+Rgevfcm/P6dVbjvn64ralLNXDSB05fGcLRtFMfbR9ERXr6Nkq4p6eMJXn7BQCcylOLKPnEgALQOz6BlaAYvHOzARyoD+JefvgGP3LMe/+qOG3H7jddnbM8kLUXTwBSOtY/iaFsY9T0TSFhso3gJA51olVh6gpywFEfawjjSlmrP3PjRtXj47pvwh79bhYfuuAHrrluL/sl5HG8P42j7KE60j2Jynm0UL2OgE61SS9szE5EYtgb7sDXYBwCo+uhahGdTwwkrA6mlnNlG8TbvjW8iIsel2jMf3q4ICMYjcaytEFRIKvxV2UbxOp6hE9FV0r33pMt1UH54hk5EZAgGOhGRIbIGuojcJiKHRKRZRJpE5Fv2/Z8Skf0i0m5//GT5yyUiopXkcoaeAPAdVb0HwAMAviki9wJ4GkCtqt4JoNa+TURELska6Ko6qKpn7M9nADQDuAXA4wCq7YdVA3iiXEUSEVF2efXQRWQDgPsAnAZwk6oOAqnQB7B+hec8JSJBEQmGw+HiqiUiohXlHOgi8lEAOwD8papO5/o8VX1JVTeq6saqqqpCaiQiohzkFOgisgapMH9DVd+y7x4WkZvtr98MYKQ8JRIRUS5yGeUiAF4F0KyqP1z0pRoAm+zPNwHYWfryiIgoV7nMFH0IwDcAnBeRBvu+7wN4BsBWEXkSQC+Ar5SnRCIiykXWQFfV40it3bOcR0pbDhERFYozRYmIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkMw0ImIDMFAJyIyBAOdiMgQDHQiIkNkDXQReU1ERkTkwqL7PiUi+0Wk3f74yfKWSURE2eRyhv46gMeW3Pc0gFpVvRNArX2biIhclDXQVfUogPEldz8OoNr+vBrAEyWui4iI8lRoD/0mVR0EAPvj+tKVREREhSj7RVEReUpEgiISDIfD5T4cEdGqVWigD4vIzQBgfxxZ6YGq+pKqblTVjVVVVQUejoiIsik00GsAbLI/3wRgZ2nKISKiQuUybPFNAKcA3CUiIRF5EsAzAB4VkXYAj9q3iYjIRZXZHqCqf77Clx4pcS1ERFQEzhQlIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjIEA52IyBAMdCIiQzDQiYgMwUAnIjJEUYEuIo+JSKuIdIjI06UqioiI8ldwoItIBYCfAfgTAPcC+HMRubdUhRERUX6KOUO/H0CHqnapagzArwE8XpqyiIgoX8UE+i0A+hbdDtn3ERHRIpY6c5zKIp4ry9x3Vdki8hSAp+ybsyLSWsjBAtet+2cV169b7pi+Z83PVASu/VjS7TrKxeTXx9fmX06/vr94bqTnG9HITIFP/+1cHiSqhf3pEJEHAfwvVf3X9u3vAYCq/l1B3zD78YKqurEc39ttJr82wOzXx9fmXya+vmJaLnUA7hSR20VkLYCvAqgpTVlERJSvglsuqpoQkf8EYC+ACgCvqWpTySojIqK8FNNDh6r+BsBvSlRLNi85dBw3mPzaALNfH1+bfxn3+gruoRMRkbdw6j8RkSF8EeimLjEgIreJyCERaRaRJhH5lts1lZqIVIjIWRHZ7XYtpSYi60Rku4i02P+GD7pdU6mIyH+1fycviMibIvIRt2sqhoi8JiIjInJh0X2fEpH9ItJuf/ykmzWWgucD3fAlBhIAvqOq9wB4AMA3DXptad8C0Ox2EWXyYwB7VPVuAJ+FIa9TRG4B8F8AbFTVzyA16OGr7lZVtNcBPLbkvqcB1KrqnQBq7du+5vlAh8FLDKjqoKqesT+fQSoQjJltKyK3AvgSgFfcrqXUROTjAP4AwKsAoKoxVZ10t6qSqgRwrYhUArgOwIDL9RRFVY8CGF9y9+MAqu3PqwE84WhRZeCHQF8VSwyIyAYA9wE47W4lJfU8gL8CYLldSBl8GkAYwGa7pfSKiFzvdlGloKr9AJ4F0AtgEMCUqu5zt6qyuElVB4HUyRWA9S7XUzQ/BHpOSwz4mYh8FMAOAH+pqtNu11MKIvJlACOqWu92LWVSCeD3APxCVe8DMAcD3rIDgN1LfhzA7QB+C8D1IvJ1d6uiXPgh0EMAblt0+1b4/O3fYiKyBqkwf0NV33K7nhJ6CMCfikg3Um2yh0Xkl+6WVFIhACFVTb+j2o5UwJvgjwBcUtWwqsYBvAXg8y7XVA7DInIzANgfR1yup2h+CHRjlxgQEUGqB9usqj90u55SUtXvqeqtqroBqX+zg6pqzFmeqg4B6BORu+y7HgFw0cWSSqkXwAMicp39O/oIDLngu0QNgE3255sA7HSxlpIoaqaoEwxfYuAhAN8AcF5EGuz7vm/PwCXv+88A3rBPNLoA/HuX6ykJVT0tItsBnEFqJNZZ+HxWpYi8CeALAG4UkRCA/wngGQBbReRJpP6IfcW9CkuDM0WJiAzhh5YLERHlgIFORGQIBjoRkSEY6EREhmCgExEZgoFORGQA2J23AAAAEUlEQVQIBjoRkSEY6EREhvj/PpBFhJK5ipcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"users[\"Age\"].plot.area()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x19d69474940>" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFjdJREFUeJzt3X9wXWd95/H3V7Yie2Nno9gi61qwDiRQaMcorDBh3OGHYVN+ZN1QZ9swLU3Z7Jru0hkou8S4melCB3YGtyVsf6UYAqTdsEmImw2TWQqZEJeWmQZk4iimSSAJ7kaxGyvGTuOMrZFzv/vHOTqRXcm+V9bR1ZXfrxmNzn3uOff5PtaxPjrnPPfcyEwkSQLoancBkqT5w1CQJFUMBUlSxVCQJFUMBUlSxVCQJFUMBUlSxVCQJFUMBUlSZXG7C2jGypUrc82aNe0uQ5I6yq5du57JzL5WtumIUFizZg1DQ0PtLkOSOkpE/EOr23j6SJJUMRQkSRVDQZJUMRQkSRVDQZJUqTUUImJvRDwUEbsjYqhs+3hEPFW27Y6Id9VZw1w4eGSMB588zMEjY+0uRZLOyFxMSX1rZj5zUtsNmfn7c9B37e7a/RRbdgzT3dXFeKPBtk1r2Tiwut1lSdKMeProDBw8MsaWHcMcG2/w3Nhxjo03uG7HsEcMkjpW3aGQwDcjYldEbJ7U/psRMRwRX4yI3qk2jIjNETEUEUOjo6M1lzkzI4eO0t114j9hd1cXI4eOtqkiSTozdYfC+sx8HfBO4IMR8SbgRuAVwACwH/iDqTbMzO2ZOZiZg319Lb1Le8709y5lvNE4oW280aC/d2mbKpKkM1NrKGTmvvL7AeBOYF1mPp2ZL2RmA/g8sK7OGuq0YlkP2zatZUl3F8t7FrOku4ttm9ayYllPu0uTpBmp7UJzRJwLdGXmc+Xy5cDvRsSqzNxfrvYeYE9dNcyFjQOrWX/xSkYOHaW/d6mBIKmj1Tn76ELgzoiY6OcrmflXEfEXETFAcb1hL/CBGmuYEyuW9RgGkhaE2kIhM58AXjtF+/vq6lOSdGackipJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqiyu88UjYi/wHPACcDwzByPiAuA2YA2wF/ilzDxUZx2SpObMxZHCWzNzIDMHy8cfA+7NzEuAe8vHkqR5oB2nj34BuLlcvhm4sg01SJKmUHcoJPDNiNgVEZvLtgszcz9A+f0lU20YEZsjYigihkZHR2suU5IENV9TANZn5r6IeAlwT0Q80uyGmbkd2A4wODiYdRUoSXpRrUcKmbmv/H4AuBNYBzwdEasAyu8H6qxBktS82kIhIs6NiOUTy8DlwB7ga8A15WrXAHfVVYMkqTV1nj66ELgzIib6+Upm/lVEfA+4PSKuBf4f8O9rrEGS1ILaQiEznwBeO0X7QeBtdfUrSZo539EsSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkiqEgSaoYCpKkSu2hEBGLIuKBiLi7fPzliPhxROwuvwbqrkGS1JzFc9DHh4CHgfMmtX00M++Yg74lqWMdPDLGyKGj9PcuZcWynjnps9ZQiIh+4N3Ap4CP1NmXJC0kd+1+ii07hunu6mK80WDbprVsHFhde791nz76LHAd0Dip/VMRMRwRN0TE3MSfJHWIg0fG2LJjmGPjDZ4bO86x8QbX7Rjm4JGx2vuuLRQi4grgQGbuOumprcBPA68HLgC2TLP95ogYioih0dHRusqUpHln5NBRurtO/PXc3dXFyKGjtfdd55HCemBjROwFbgU2RMT/ysz9WRgDvgSsm2rjzNyemYOZOdjX11djmZI0v/T3LmW8ceIJlvFGg/7epbX3XVsoZObWzOzPzDXA1cC3MvNXI2IVQEQEcCWwp64aJKkTrVjWw7ZNa1nS3cXynsUs6e5i26a1c3KxeS5mH53slojoAwLYDfxGG2qoTTtmC0haeDYOrGb9xSsX1uyjCZm5E9hZLm+Yiz7boV2zBSQtTCuW9cz5H5e+o3mWtHO2gCTNFkNhlrRztoAkzRZDYZa0c7aAJM0WQ2GWtHO2gCTNlnbMPlqw2jVbQJJmi6Ewy9oxW0CSZounjyRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJldOGQkRcGBE3RcTXy8eviYhrm+0gIhZFxAMRcXf5+KKIuD8ifhQRt0XEOTMvX5I0m5o5Uvgy8A3gp8rHPwQ+3EIfHwIenvT408ANmXkJcAhoOmAkSfVqJhRWZubtQAMgM48DLzTz4hHRD7wb+EL5OIANwB3lKjcDV7ZYsySpJs2EwvMRsQJIgIi4DHi2ydf/LHAdZaAAK4DDZbAAjACrmy9XklSnxU2s8xHga8ArIuI7QB9w1ek2iogrgAOZuSsi3jLRPMWqOc32m4HNAC972cuaKFOSdKZOGwqZ+f2IeDPwKopf6o9m5ngTr70e2BgR7wKWAOdRHDmcHxGLy6OFfmDfNP1uB7YDDA4OThkckqTZddpQiIhfPKnplRHxLPBQZh6YbrvM3ApsLV/jLcB/y8xfiYivUhxp3ApcA9w1w9olSbOsmdNH1wJvBO4rH78F+DuKcPjdzPyLFvvcAtwaEZ8EHgBuanF7SVJNmgmFBvDqzHwaivctADcCbwC+DZw2FDJzJ7CzXH4CWDezciVJdWpm9tGaiUAoHQBemZk/AZq5tiBJ6hDNHCn8Tflu5K+WjzcB346Ic4HDtVUmSZpzzYTCB4FfBH6ufPxdYFVmPg+8ta7CJElz77SnjzIzgccpThW9B3gbJ962QpK0QEx7pBARrwSuBt4LHARuAyIzPTqQpAXqVKePHgH+Bvh3mfkYQET81pxUJUlqi1OdPtoE/CNwX0R8PiLextS3qZAkLRDThkJm3pmZvwz8NMV7DH4LuDAiboyIy+eoPknSHGrmQvPzmXlLZl5Bca+i3cDHaq9MkjTnWvo4zsz8SWZ+LjM31FWQJKl9/IxmSVLFUJAkVQwFSVLFUJAkVQwFSVLFUJAkVQwFSVLFUJihg0fGePDJwxw8MtbuUiRp1jTzeQo6yV27n2LLjmG6u7oYbzTYtmktGwdWt7ssSTpjHim06OCRMbbsGObYeIPnxo5zbLzBdTuGPWKQtCAYCi0aOXSU7q4T/9m6u7oYOXS0TRVJ0uwxFFrU37uU8UbjhLbxRoP+3qVtqkiSZo+h0KIVy3rYtmktS7q7WN6zmCXdXWzbtJYVy3raXZoknbHaLjRHxBLg20BP2c8dmfnfI+LLwJuBZ8tVfz0zd9dVRx02Dqxm/cUrGTl0lP7epQaCpAWjztlHY8CGzDwSEd3A30bE18vnPpqZd9TYN1BcFK7rF/eKZT2GgaQFp7ZQyMwEjpQPu8uvrKu/kzltVJJaV+s1hYhYFBG7gQPAPZl5f/nUpyJiOCJuiIhZ/3PbaaOSNDO1hkJmvpCZAxQf47kuIn4W2Erxuc+vBy4Atky1bURsjoihiBgaHR1tqV+njUrSzMzJ7KPMPAzsBN6RmfuzMAZ8CVg3zTbbM3MwMwf7+vpa6s9po5I0M7WFQkT0RcT55fJS4O3AIxGxqmwL4Epgz2z37bRRSZqZOmcfrQJujohFFOFze2beHRHfiog+IIDdwG/U0bnTRiWpdXXOPhoGLp2ifUNdfZ7MaaOS1Brf0SxJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqhgKkqSKoSBJqtQWChGxJCK+GxEPRsQPIuITZftFEXF/RPwoIm6LiHPqqkGS1Jo6jxTGgA2Z+VpgAHhHRFwGfBq4ITMvAQ4B19ZYgySpBbWFQhaOlA+7y68ENgB3lO03A1fWVYMkqTW1XlOIiEURsRs4ANwDPA4czszj5SojwOo6a5AkNa/WUMjMFzJzAOgH1gGvnmq1qbaNiM0RMRQRQ6Ojo3WWKUkqzcnso8w8DOwELgPOj4jF5VP9wL5pttmemYOZOdjX1zcXZUrSWa/O2Ud9EXF+ubwUeDvwMHAfcFW52jXAXXXVIElqzeLTrzJjq4CbI2IRRfjcnpl3R8TfA7dGxCeBB4CbaqxBktSC2kIhM4eBS6dof4Li+oIkaZ7xHc2SpIqhIEmqGAqSpIqhIEmqGAqSpIqhIEmqGAqSpIqhIEmqGAqSpIqhIEmqGAqSpIqhUDp4ZIwHnzzMwSNj7S5Fktqmzrukdoy7dj/Flh3DdHd1Md5osG3TWjYO+IFwks4+Z/2RwsEjY2zZMcyx8QbPjR3n2HiD63YMe8Qg6ax01ofCyKGjdHed+M/Q3dXFyKGjbapIktrnrA+F/t6ljDcaJ7SNNxr09y5tU0WS1D5nfSisWNbDtk1rWdLdxfKexSzp7mLbprWsWNbT7tIkac6d1ReaDx4ZY+TQUdZfvJLvbNnAyKGj9PcuNRAknbXO2lBwxpEk/XNn5ekjZxxJ0tTOylBwxpEkTe2sDAVnHEnS1M7KUHDGkSRNrbYLzRHxUuDPgX8FNIDtmfk/I+LjwH8CRstVfzsz/29ddUxn48Bq1l+80hlHkjRJnbOPjgP/NTO/HxHLgV0RcU/53A2Z+fs19t2UFct6DANJmqS2UMjM/cD+cvm5iHgYcM6nJM1jc3JNISLWAJcC95dNvxkRwxHxxYjonWabzRExFBFDo6OjU60iSZpltYdCRCwDdgAfzsx/Am4EXgEMUBxJ/MFU22Xm9swczMzBvr6+usuUJFFzKEREN0Ug3JKZfwmQmU9n5guZ2QA+D6yrswZJUvNqC4WICOAm4OHM/Myk9lWTVnsPsKeuGiRJralz9tF64H3AQxGxu2z7beC9ETEAJLAX+EBdBUzc8O7ccxax79mjQPAzP3WeM44kaRp1zj76WyCmeGpO3pMwccM7gGPjL757eXEXfOaXBrz5nSRNYUG+o3nyDe8mBwLA8QZ89I4HvfmdJE1hQYbCVDe8m2xRePM7SZrKggyFqW54N9kL6c3vJGkqCzIUJt/wbkn3iUNc3AW/d9VrvdgsSVNYsJ+8NvmGd84+kqTmLNhQgBNveHfxhcvbXI0kzX8L8vSRJGlmDAVJUsVQkCRVDAVJUsVQkCRVIjPbXcNpRcQo8A8tbrYSeKaGctrBscxPjmV+WkhjgTMbz7/OzJY+kKYjQmEmImIoMwfbXcdscCzzk2OZnxbSWGDux+PpI0lSxVCQJFUWcihsb3cBs8ixzE+OZX5aSGOBOR7Pgr2mIElq3UI+UpAktSozF9QX8A7gUeAx4GNt6P+LwAFgz6S2C4B7gB+V33vL9gD+sKx1GHjdpG2uKdf/EXDNpPZ/AzxUbvOHvHi013IfTYzlpcB9wMPAD4APdep4gCXAd4EHy7F8omy/CLi/7Oc24Jyyvad8/Fj5/JpJr7W1bH8U+PnT7Xsz6aPJMS0CHgDu7uSxUHxW+0PAbmCoU/exctvzgTuARyj+37yx08bStl/edXyV/0keB14OnEPxC+A1c1zDm4DXcWIobJv4jwV8DPh0ufwu4OvlD+4y4P5JP+Anyu+95fLED/m75Y4W5bbvnEkfTY5l1cROBCwHfgi8phPHU66/rFzupvjFdRlwO3B12f5nwH8ul/8L8Gfl8tXAbeXya8r9qofiF+Tj5X437b7Xah8t/Hw+AnyFF0OhI8dCEQorT2rruH2s3PZm4D+Wy+dQhERHjaXtv8hn86v8x/rGpMdbga1tqGMNJ4bCo8CqcnkV8Gi5/DngvSevB7wX+Nyk9s+VbauARya1V+u12scMx3UX8G87fTzAvwC+D7yB4k1Bi0/ef4BvAG8slxeX68XJ+9TEetPte+U2LfXR5Bj6gXuBDcDdM+lnHo1lL/88FDpuHwPOA3588rg7bSwL7ZrCauDJSY9HyrZ2uzAz9wOU319Stk9X76naR6Zon0kfLYmINcClFH9hd+R4ImJRROymOL13D8Vfw4cz8/gUr1X1Uz7/LLBiBmNcMYM+mvFZ4Dpg4nNnZ9LPfBlLAt+MiF0Rsbls68R97OXAKPCliHggIr4QEed22lgWWijEFG0551U0b7p6W22fSR9Ni4hlwA7gw5n5TzPoa16MJzNfyMwBir+y1wGvPsVrzdZYTlXvjMYSEVcABzJz1+TmGfTT9rGU1mfm64B3Ah+MiDedYt35vI8tpjh1fGNmXgo8T3Eqp9V+2jqWhRYKIxQXRyf0A/vaVMtkT0fEKoDy+4Gyfbp6T9XeP0X7TPpoSkR0UwTCLZn5l50+HoDMPAzspDjHen5ETHwC4eTXqvopn/+XwE9mMMZnZtDH6awHNkbEXuBWilNIn+3QsZCZ+8rvB4A7KQK7E/exEWAkM+8vH99BERIdNZaFFgrfAy6JiIsi4hyKC15fa3NNUNRwTbl8DcW5+Yn2X4vCZcCz5aHfN4DLI6I3InqByynO3e4HnouIyyIigF876bVa6eO0yj5uAh7OzM908ngioi8izi+XlwJvp5gdch9w1TT9TPR/FfCtLE7Kfg24OiJ6IuIi4BKKi39T7nvlNq32cUqZuTUz+zNzTdnPtzLzVzpxLBFxbkQsn1im2Df20IH7WGb+I/BkRLyqbHob8PcdN5ZmLgR10hfF1fYfUpwvvr4N/f9vYD8wTpHS11KcW72XYrrYvcAF5boB/ElZ60PA4KTX+Q8U08geA94/qX2Q4j/N48Af8+KUtJb7aGIsP0dxqDlMMV1wd/nv23HjAdZSTN8cLvv7nbL95RS/CB8Dvgr0lO1LysePlc+/fNJrXV/2/yjl7I9T7Xsz6aOFn9FbeHH2UceNpXy9B3lxqvD1M/35t3sfK7cdAIbK/ez/UMwe6qix+I5mSVJloZ0+kiSdAUNBklQxFCRJFUNBklQxFCRJFUNBAiLi+oj4QUQMR8TuiHjDKdb9ckRcNd3zUidbfPpVpIUtIt4IXEFxR9ixiFhJcYfL2Xr9xfni/YKkec0jBam4q+QzmTkGkJnPZOa+iPidiPheROyJiO3lu0hPMN06EbEzIv5HRPw1cH1E/DiKW4YQEedFxN6Jx9J8YihI8E3gpRHxw4j404h4c9n+x5n5+sz8WWApxdHEyU61zvmZ+ebM/ATFvZbeXbZfDezIzPFaRiOdAUNBZ73MPELxiVabKW59fFtE/Drw1oi4PyIeorjp3M9Msfmp1rlt0vIXgPeXy+8HvjS7o5Bmh9cUJIrbalP8Nb+z/AX/AYr7JQ1m5pMR8XGK+/tUImIJ8KenWOf5Sa//nYhYUx6FLMrMPXWOR5opjxR01ouIV0XEJZOaBihuEAfwTBSfJzHVbKMlTawz2Z9T3DDRowTNWx4pSLAM+KPy1trHKe5MuRk4THFnyb0Ut5M+QWYejojPn2qdk9wCfJIiGKR5ybukSnOkfG/DL2Tm+9pdizQdjxSkORARf0TxcZPvanct0ql4pCBJqnihWZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSZX/D/4C00uv0im/AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"users.plot.scatter('Salary', 'Age') # For Dataframes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rahul Yadav</td>\n", | |
" <td>36</td>\n", | |
" <td>500000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>New Delhi (Delhi)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" <td>55</td>\n", | |
" <td>550000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Rishikesh Agrawani</td>\n", | |
" <td>26</td>\n", | |
" <td>200000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Anupam Shukla</td>\n", | |
" <td>27</td>\n", | |
" <td>250000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>Robery Griesemer</td>\n", | |
" <td>44</td>\n", | |
" <td>600000.0</td>\n", | |
" <td>JavaScript developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Gudal Sharma</td>\n", | |
" <td>24</td>\n", | |
" <td>100000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Quinton Clark</td>\n", | |
" <td>35</td>\n", | |
" <td>45000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>New City</td>\n", | |
" <td>UAE</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Niyati Jain</td>\n", | |
" <td>24</td>\n", | |
" <td>80000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Rajim</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Malinikesh Agrawani</td>\n", | |
" <td>22</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Student</td>\n", | |
" <td>Kondagaon</td>\n", | |
" <td>India</td>\n", | |
" <td>Female</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Hira Dewangan</td>\n", | |
" <td>24</td>\n", | |
" <td>50000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>New Raipur</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Hemkesh Agrawani</td>\n", | |
" <td>24</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Student</td>\n", | |
" <td>Kondagaon</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Larry Page</td>\n", | |
" <td>45</td>\n", | |
" <td>6000000.0</td>\n", | |
" <td>Computer Scientist</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession \\\n", | |
"0 Rahul Yadav 36 500000.0 PHP developer \n", | |
"1 James Gosling 55 550000.0 Java developer \n", | |
"2 Rishikesh Agrawani 26 200000.0 Python developer \n", | |
"3 Anupam Shukla 27 250000.0 PHP developer \n", | |
"4 Robery Griesemer 44 600000.0 JavaScript developer \n", | |
"5 Gudal Sharma 24 100000.0 Python developer \n", | |
"6 Quinton Clark 35 45000.0 Java developer \n", | |
"7 Niyati Jain 24 80000.0 Python developer \n", | |
"8 Malinikesh Agrawani 22 NaN Student \n", | |
"9 Hira Dewangan 24 50000.0 Python developer \n", | |
"10 Hemkesh Agrawani 24 NaN Student \n", | |
"11 Larry Page 45 6000000.0 Computer Scientist \n", | |
"\n", | |
" Address Country Sex \n", | |
"0 New Delhi (Delhi) India Male \n", | |
"1 Newyork USA Male \n", | |
"2 Raipur (CG) India Male \n", | |
"3 Raipur (CG) India Male \n", | |
"4 Newyork USA Male \n", | |
"5 Raipur (CG) India Female \n", | |
"6 New City UAE Male \n", | |
"7 Rajim India Female \n", | |
"8 Kondagaon India Female \n", | |
"9 New Raipur India Male \n", | |
"10 Kondagaon India Male \n", | |
"11 Newyork USA Male " | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rahul Yadav</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Rishikesh Agrawani</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Anupam Shukla</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>Robery Griesemer</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Gudal Sharma</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Quinton Clark</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Niyati Jain</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Malinikesh Agrawani</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Hira Dewangan</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Hemkesh Agrawani</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Larry Page</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname\n", | |
"0 Rahul Yadav\n", | |
"1 James Gosling\n", | |
"2 Rishikesh Agrawani\n", | |
"3 Anupam Shukla\n", | |
"4 Robery Griesemer\n", | |
"5 Gudal Sharma\n", | |
"6 Quinton Clark\n", | |
"7 Niyati Jain\n", | |
"8 Malinikesh Agrawani\n", | |
"9 Hira Dewangan\n", | |
"10 Hemkesh Agrawani\n", | |
"11 Larry Page" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.loc[:, [\"Fullname\"]] # Show Fullname of all users" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" <td>55</td>\n", | |
" <td>550000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>Robery Griesemer</td>\n", | |
" <td>44</td>\n", | |
" <td>600000.0</td>\n", | |
" <td>JavaScript developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Larry Page</td>\n", | |
" <td>45</td>\n", | |
" <td>6000000.0</td>\n", | |
" <td>Computer Scientist</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession Address Country \\\n", | |
"1 James Gosling 55 550000.0 Java developer Newyork USA \n", | |
"4 Robery Griesemer 44 600000.0 JavaScript developer Newyork USA \n", | |
"11 Larry Page 45 6000000.0 Computer Scientist Newyork USA \n", | |
"\n", | |
" Sex \n", | |
"1 Male \n", | |
"4 Male \n", | |
"11 Male " | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.loc[users[\"Country\"] == \"USA\"] # Finding users from Dubai" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>Quinton Clark</td>\n", | |
" <td>35</td>\n", | |
" <td>45000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>New City</td>\n", | |
" <td>UAE</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession Address Country Sex\n", | |
"6 Quinton Clark 35 45000.0 Java developer New City UAE Male" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.loc[users[\"Country\"] == \"UAE\"] # Finding users from UAE" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"3" | |
] | |
}, | |
"execution_count": 25, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users.loc[users[\"Country\"] == \"USA\"][\"Country\"].count() # Number of users from USA" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"DatetimeIndex(['2018-05-06', '2018-05-10', '2018-05-07'], dtype='datetime64[ns]', freq=None)" | |
] | |
}, | |
"execution_count": 26, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dates = pd.to_datetime([2, 6, 3], unit=\"D\", origin=pd.Timestamp(\"2018/05/04\"))\n", | |
"dates" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>dob</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2018-05-06</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2018-05-10</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2018-05-07</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" dob\n", | |
"0 2018-05-06\n", | |
"1 2018-05-10\n", | |
"2 2018-05-07" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"d = pd.DataFrame(dates, columns=[\"dob\"])\n", | |
"d" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rahul Yadav</td>\n", | |
" <td>36</td>\n", | |
" <td>500000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>New Delhi (Delhi)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" <td>55</td>\n", | |
" <td>550000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Rishikesh Agrawani</td>\n", | |
" <td>26</td>\n", | |
" <td>200000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession Address \\\n", | |
"0 Rahul Yadav 36 500000.0 PHP developer New Delhi (Delhi) \n", | |
"1 James Gosling 55 550000.0 Java developer Newyork \n", | |
"2 Rishikesh Agrawani 26 200000.0 Python developer Raipur (CG) \n", | |
"\n", | |
" Country Sex \n", | |
"0 India Male \n", | |
"1 USA Male \n", | |
"2 India Male " | |
] | |
}, | |
"execution_count": 28, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"users2 = users.loc[0:2, :]\n", | |
"users2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Fullname</th>\n", | |
" <th>Age</th>\n", | |
" <th>Salary</th>\n", | |
" <th>Profession</th>\n", | |
" <th>Address</th>\n", | |
" <th>Country</th>\n", | |
" <th>Sex</th>\n", | |
" <th>dob</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Rahul Yadav</td>\n", | |
" <td>36</td>\n", | |
" <td>500000.0</td>\n", | |
" <td>PHP developer</td>\n", | |
" <td>New Delhi (Delhi)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" <td>2018-05-06</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>James Gosling</td>\n", | |
" <td>55</td>\n", | |
" <td>550000.0</td>\n", | |
" <td>Java developer</td>\n", | |
" <td>Newyork</td>\n", | |
" <td>USA</td>\n", | |
" <td>Male</td>\n", | |
" <td>2018-05-10</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Rishikesh Agrawani</td>\n", | |
" <td>26</td>\n", | |
" <td>200000.0</td>\n", | |
" <td>Python developer</td>\n", | |
" <td>Raipur (CG)</td>\n", | |
" <td>India</td>\n", | |
" <td>Male</td>\n", | |
" <td>2018-05-07</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Fullname Age Salary Profession Address \\\n", | |
"0 Rahul Yadav 36 500000.0 PHP developer New Delhi (Delhi) \n", | |
"1 James Gosling 55 550000.0 Java developer Newyork \n", | |
"2 Rishikesh Agrawani 26 200000.0 Python developer Raipur (CG) \n", | |
"\n", | |
" Country Sex dob \n", | |
"0 India Male 2018-05-06 \n", | |
"1 USA Male 2018-05-10 \n", | |
"2 India Male 2018-05-07 " | |
] | |
}, | |
"execution_count": 29, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.concat([users2, d], axis=1) # Adding 1 more column" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.5" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Fullname | Age | Salary | Profession | Address | Country | Sex | |
---|---|---|---|---|---|---|---|
Rahul Yadav | 36 | 500000 | PHP developer | New Delhi (Delhi) | India | Male | |
James Gosling | 55 | 550000 | Java developer | Newyork | USA | Male | |
Rishikesh Agrawani | 26 | 200000 | Python developer | Raipur (CG) | India | Male | |
Anupam Shukla | 27 | 250000 | PHP developer | Raipur (CG) | India | Male | |
Robery Griesemer | 44 | 600000 | JavaScript developer | Newyork | USA | Male | |
Gudal Sharma | 24 | 100000 | Python developer | Raipur (CG) | India | Female | |
Quinton Clark | 35 | 45000 | Java developer | New City | UAE | Male | |
Niyati Jain | 24 | 80000 | Python developer | Rajim | India | Female | |
Malinikesh Agrawani | 22 | Student | Kondagaon | India | Female | ||
Hira Dewangan | 24 | 50000 | Python developer | New Raipur | India | Male | |
Hemkesh Agrawani | 24 | Student | Kondagaon | India | Male | ||
Larry Page | 45 | 6000000 | Computer Scientist | Newyork | USA | Male |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment