数列$\{a_n\}$と$\{b_n\}$を、 $$ \left\{ \begin{align*} a_0 &= \dfrac{1}{2\pi} \int_{0}^{2\pi} f(x) \,dx \\ b_0 &= 0 \phantom{\int_{0}^{2\pi}}\\ a_n &= \dfrac{1}{\pi} \int_{0}^{2\pi} f(x)\cos nx \,dx & (n = 1,2,3,\ldots)\\ b_n &= \dfrac{1}{\pi} \int_{0}^{2\pi} f(x)\sin nx \,dx \\ \end{align*} \right. $$ で定めると、 $$ f(x) = \sum_{k = 0}^{\infty} \left(a_k\cos kx + b_k\sin kx\right) $$ が成り立つ。