Skip to content

Instantly share code, notes, and snippets.

View iamaaditya's full-sized avatar
💭
Better Approximations

aaditya prakash iamaaditya

💭
Better Approximations
View GitHub Profile
@iamaaditya
iamaaditya / gpu_memory.py
Created March 25, 2018 16:02
GPU_Memory
# memory footprint support libraries/code
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install psutil
!pip install humanize
import psutil
import humanize
import os
import GPUtil as GPU
GPUs = GPU.getGPUs()
@iamaaditya
iamaaditya / Makefile
Created March 2, 2018 15:41
Makefile for Latex
FILENAME = paper
PS_FILE = $(FILENAME).ps
PDF_FILE = $(FILENAME).pdf
# PAPERSIZE = a4
PAPERSIZE = letter
LATEX_FILES = *.dvi *.log *.toc *.tof *.aux *.blg *.lof *.lot *.bbl
CLEAN_FILES = $(LATEX_FILES) *.bak core $(PS_FILE) $(PDF_FILE)
COMPRESS_FILES = *.tex *.bib *.sty *.eps *.ps *.fig *.m *.txt *.pgm *.bst *.cls
@iamaaditya
iamaaditya / import_inline.py
Last active July 19, 2018 20:04
matplotlib inline in jupyter
%matplotlib inline
import matplotlib
import numpy as np
import pandas as pd
from glob import glob
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import seaborn as sns; sns.set()
@iamaaditya
iamaaditya / randomize_split.py
Created September 19, 2017 15:41
Randomize Split a given file
""" This program takes a file, and splits it into given percentage by line number, but uses
randomization to select the files
USAGE: python randomize_split.py <file_name> <split_percentage>
@author: aaditya prakash"""
from __future__ import division
import sys
import random
def get_variable_with_decay(name, shape, initializer, lambda):
if initializer is None:
initializer = tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)
var = tf.get_variable(name, shape, initializer=initializer, dtype=tf.float32)
if lambda is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), lambda, name=name+'_weight_decay')
tf.add_to_collection('losses', weight_decay)
return var
import os,sys
import numpy as np
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from util.data import get_data_NCHW_normalized as get_data
from model import n_way
from random import shuffle
from time import time
def chunker(seq, size):
import numpy as np
from keras.layers import Dropout
from keras import applications
from keras.layers import Dense, GlobalAveragePooling2D, merge, Input
from keras.models import Model
max_words = 10000
epochs = 50
batch_size = 32
@iamaaditya
iamaaditya / xla-test.py
Created January 29, 2017 16:34 — forked from yaroslavvb/xla-test.py
Simple XLA benchmark
# XLA compilation controlled by "compile_ops" option
# compile_ops=False: 4.39 sec
# compile_ops=True: 0.90 sec
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
import tensorflow as tf
@iamaaditya
iamaaditya / print_ml_metrics.py
Last active January 20, 2017 15:02
Code snippet to print various ML related metrics given the y_labels and probabilities of each label (output of softmax)
# Code snippet to print various ML related metrics given the y_labels and probabilities of each label (output of softmax)
# Aaditya Prakash
from sklearn.metrics import f1_score, roc_auc_score, precision_score, recall_score, accuracy_score, average_precision_score, precision_recall_curve, hamming_loss
def print(y_labels, probs):
threshold = 0.5
macro_auc = roc_auc_score(y_labels, probs, average = 'macro')
micro_auc = roc_auc_score(y_labels, probs, average = 'micro')

Keybase proof

I hereby claim:

  • I am iamaaditya on github.
  • I am iamaaditya (https://keybase.io/iamaaditya) on keybase.
  • I have a public key whose fingerprint is 00B9 886D 6185 B18A 290A 02B8 2C21 2B82 7EC6 0287

To claim this, I am signing this object: