Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save iampramodyadav/bfba31115a95bd674007ae60fecfc69d to your computer and use it in GitHub Desktop.
Save iampramodyadav/bfba31115a95bd674007ae60fecfc69d to your computer and use it in GitHub Desktop.
Running python code in colab from github.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Running python code in colab from github.ipynb",
"provenance": [],
"collapsed_sections": [],
"authorship_tag": "ABX9TyP/ZJ60SpZXabDsxlSLOjjI",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/iampramodyadav/bfba31115a95bd674007ae60fecfc69d/running-python-code-in-colab-from-github.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7sHO91F320AI"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"# Running .py file in IPython notebook cell from Git Hub\n",
"\n",
"Pramod Kumar Yadav (@iampramodyadav)\n",
"\n",
"---\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WEjm4diF3bc4"
},
"source": [
"## Clone the containing folder"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ceqfjZlR1v-3",
"outputId": "235b02d5-63bb-49bd-95eb-332e552b2e21"
},
"source": [
" !git clone https://github.com/iampramodyadav/FEA"
],
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'FEA'...\n",
"remote: Enumerating objects: 49, done.\u001b[K\n",
"remote: Counting objects: 100% (49/49), done.\u001b[K\n",
"remote: Compressing objects: 100% (48/48), done.\u001b[K\n",
"remote: Total 49 (delta 12), reused 0 (delta 0), pack-reused 0\u001b[K\n",
"Unpacking objects: 100% (49/49), done.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DBRBINpH_7_K",
"outputId": "9c4750d8-762e-4506-b6e0-d9eeef0c5e49"
},
"source": [
"!ls FEA #list all files in FEA"
],
"execution_count": 31,
"outputs": [
{
"output_type": "stream",
"text": [
"Gauss_Legendre_Quadrature.ipynb README.md\t test2.py\n",
"LICENSE\t\t\t\t Shape_Function.ipynb test.py\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ziERueunBzbk"
},
"source": [
"## RUN .py file"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jxA7O-l-B4_E"
},
"source": [
"### Method-1 ([Magic Function](http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magic-functions))"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Bk5rrVhF18YX"
},
"source": [
"%run FEA/test.py "
],
"execution_count": 18,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XrZfrnNx2YRe",
"outputId": "9bbf3475-3ea0-46be-a6fb-53be662decea"
},
"source": [
"print(Legendre.__doc__)"
],
"execution_count": 19,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" n: Order of polynomial\n",
" x: Variable\n",
" This function print Legendre polynomial of order n\n",
" \n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"id": "eFUWXKgb2kN2",
"outputId": "1f5835a4-034f-418e-bbbf-0baf0692521e"
},
"source": [
"x=symbols('x')\n",
"Legendre(3,x)"
],
"execution_count": 20,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/latex": "$\\displaystyle 1.66666666666667 x \\left(1.5 x^{2} - 0.5\\right) - \\frac{2 x}{3}$",
"text/plain": [
"1.66666666666667*x*(1.5*x**2 - 0.5) - 2*x/3"
]
},
"metadata": {
"tags": []
},
"execution_count": 20
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "TdCkwjePAlFS"
},
"source": [
"%run FEA/test2.py"
],
"execution_count": 23,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jDrpL1thAtf6",
"outputId": "ac5039eb-51f0-48f6-d948-2eed87ecb273"
},
"source": [
"z=symbols('z')\n",
"SHAPE(2,z)"
],
"execution_count": 27,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[-1.0*z*(0.5 - 0.5*z), (1.0 - 1.0*z)*(1.0*z + 1.0), 1.0*z*(0.5*z + 0.5)]"
]
},
"metadata": {
"tags": []
},
"execution_count": 27
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5cIgGqqeB9TK"
},
"source": [
"### Method-2"
]
},
{
"cell_type": "code",
"metadata": {
"id": "mNRNyoFH4hze"
},
"source": [
"!python FEA/test.py"
],
"execution_count": 16,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 38
},
"id": "v--DUK9W5spG",
"outputId": "66463dde-7f1d-4b4b-cb7f-d35d50d8715c"
},
"source": [
"Legendre(2,x)"
],
"execution_count": 17,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/latex": "$\\displaystyle 1.5 x^{2} - 0.5$",
"text/plain": [
"1.5*x**2 - 0.5"
]
},
"metadata": {
"tags": []
},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "eJrcR1ODA48N"
},
"source": [
"!python FEA/test2.py"
],
"execution_count": 29,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "09Nkr67pA40a",
"outputId": "a1d1661c-7444-4b70-abb4-baf984c003e7"
},
"source": [
"z=symbols('z')\n",
"SHAPE(2,z)"
],
"execution_count": 30,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[-1.0*z*(0.5 - 0.5*z), (1.0 - 1.0*z)*(1.0*z + 1.0), 1.0*z*(0.5*z + 0.5)]"
]
},
"metadata": {
"tags": []
},
"execution_count": 30
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment