Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save ibaiGorordo/4e146f65a21ff055bc6f0e576793f367 to your computer and use it in GitHub Desktop.
Save ibaiGorordo/4e146f65a21ff055bc6f0e576793f367 to your computer and use it in GitHub Desktop.
YOLOv4-tiny-Darknet-Mask-Detection.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "YOLOv4-tiny-Darknet-Mask-Detection.ipynb",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/ibaiGorordo/4e146f65a21ff055bc6f0e576793f367/yolov4-tiny-darknet-mask-detection.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "36Bbw5KG9NJN",
"colab_type": "text"
},
"source": [
"[Open In Colab](https://colab.research.google.com/github/ibaiGorordo/Social-Distance-Feedback/blob/master/Part%202%20-%20Mask%20Detection/Face%20Mask%20Detection%20Inference%20Comparison/YOLOv4_tiny_Darknet_Mask_Detection.ipynb)\n",
"\n",
"# DepthAI Tutorial: Training a Tiny YOLOv4 Object Detector with Your Own Data\n",
"\n",
"<img src=\"https://docs.luxonis.com/images/depthai_logo.png\" width=\"500\">\n",
"\n",
"Welcome to DepthAI! \n",
"\n",
"In this tutorial we will train an object detector using the Tiny Yolo v4 model. This model will run on our DepthAI Myriad X modules.\n",
"\n",
"The model is pretrained on the COCO dataset. The framework used for training is Darknet.\n",
"Will run through the following steps:\n",
"\n",
"\n",
"* Install the libraries (Darknet , etc.)\n",
"* Clone the github repo and replace the repo training data with your data (from google drive or from own repo - which is faster)\n",
"* Train the model on the new images\n",
"* Run inference on a few images to see what the model can detect\n",
"* Convert the model to OpenVINO Intermediate Representation\n",
"* To run the model on DepthAI modules, compile the IR obtained above to a .blob file \n",
"\n",
"You can make a copy of this tutorial: File-> Save a copy in Drive\n",
"\n",
"Note: the model training can be run with the repo images of medical masks if you choose to skip the customization part for your own images just to see how the training and the rest of the steps work"
]
},
{
"cell_type": "code",
"metadata": {
"id": "5uloUwmUKF05",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 87
},
"outputId": "85412867-5762-4039-bca2-79cadb9e5dd8"
},
"source": [
"# verify CUDA\n",
"!/usr/local/cuda/bin/nvcc --version"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"nvcc: NVIDIA (R) Cuda compiler driver\n",
"Copyright (c) 2005-2019 NVIDIA Corporation\n",
"Built on Sun_Jul_28_19:07:16_PDT_2019\n",
"Cuda compilation tools, release 10.1, V10.1.243\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ucOr-01xMikW",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 364
},
"outputId": "78b220cc-d577-473e-dbbd-a2b439008e0f"
},
"source": [
"#take a look at the kind of GPU we have\n",
"!nvidia-smi"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Mon Aug 24 06:43:33 2020 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 450.57 Driver Version: 418.67 CUDA Version: 10.1 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|===============================+======================+======================|\n",
"| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |\n",
"| N/A 38C P8 27W / 149W | 0MiB / 11441MiB | 0% Default |\n",
"| | | ERR! |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=============================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------+\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "16pvdFMa1FEe",
"colab_type": "text"
},
"source": [
"# Installing Darknet for YOLOv4 on Colab\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "ifdq_2rCMsUv",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "f619e724-c9ec-4798-cd0c-0e351e66dfa9"
},
"source": [
"%cd /content/\n",
"%rm -rf darknet"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/content\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "68eMertgIxaB",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104
},
"outputId": "264a8ccc-bc86-4571-ad07-35ab49583b1b"
},
"source": [
"# clone darknet repo\n",
"!git clone https://github.com/AlexeyAB/darknet"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'darknet'...\n",
"remote: Enumerating objects: 14263, done.\u001b[K\n",
"remote: Total 14263 (delta 0), reused 0 (delta 0), pack-reused 14263\u001b[K\n",
"Receiving objects: 100% (14263/14263), 12.63 MiB | 6.68 MiB/s, done.\n",
"Resolving deltas: 100% (9774/9774), done.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "xym8_m8CIyXK",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "5c902be2-006a-4c6d-c7cd-8a0047ee6f2d"
},
"source": [
"# change makefile to have GPU and OPENCV enabled\n",
"%cd darknet\n",
"!sed -i 's/OPENCV=0/OPENCV=1/' Makefile\n",
"!sed -i 's/GPU=0/GPU=1/' Makefile\n",
"!sed -i 's/CUDNN=0/CUDNN=1/' Makefile\n",
"!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/darknet\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7FS9Fd4-Yi8-",
"colab_type": "text"
},
"source": [
"**IMPORTANT! If you're not using a K80 GPU, then uncomment the sed command and replace the arch and code with that matching your GPU. A list can be found [here](http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/).**"
]
},
{
"cell_type": "code",
"metadata": {
"id": "QyMBDkaL-Aep",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "011237b0-8a41-41ad-9a21-bf812036ab6d"
},
"source": [
"#install environment from the Makefile\n",
"%cd darknet/\n",
"# compute_30, sm_30 for Tesla K80\n",
"# compute_75, sm_75 for Tesla T4\n",
"# !sed -i 's/ARCH= -gencode arch=compute_60,code=sm_60/ARCH= -gencode arch=compute_30,code=sm_30/g' Makefile\n",
"\n",
"#install environment from the Makefile\n",
"#note if you are on Colab Pro this works on a P100 GPU\n",
"#if you are on Colab free, you may need to change the Makefile for the K80 GPU\n",
"#this goes for any GPU, you need to change the Makefile to inform darknet which GPU you are running on.\n",
"!make"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"[Errno 2] No such file or directory: 'darknet/'\n",
"/content/darknet\n",
"mkdir -p ./obj/\n",
"mkdir -p backup\n",
"chmod +x *.sh\n",
"g++ -std=c++11 -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/image_opencv.cpp -o obj/image_opencv.o\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid draw_detections_cv_v3(void**, detection*, int, float, char**, image**, int, int)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:926:23:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Krgb\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Krgb\u001b[m\u001b[K[3];\n",
" \u001b[01;35m\u001b[K^~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid draw_train_loss(char*, void**, int, float, float, int, int, float, int, char*, float, int, int, double)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1127:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kthis ‘\u001b[01m\u001b[Kif\u001b[m\u001b[K’ clause does not guard... [\u001b[01;35m\u001b[K-Wmisleading-indentation\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kif\u001b[m\u001b[K (iteration_old == 0)\n",
" \u001b[01;35m\u001b[K^~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1130:10:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[K...this statement, but the latter is misleadingly indented as if it were guarded by the ‘\u001b[01m\u001b[Kif\u001b[m\u001b[K’\n",
" \u001b[01;36m\u001b[Kif\u001b[m\u001b[K (iteration_old != 0){\n",
" \u001b[01;36m\u001b[K^~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid cv_draw_object(image, float*, int, int, int*, float*, int*, int, char**)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1424:14:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kbuff\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" char \u001b[01;35m\u001b[Kbuff\u001b[m\u001b[K[100];\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1400:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kit_tb_res\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kit_tb_res\u001b[m\u001b[K = cv::createTrackbar(it_trackbar_name, window_name, &it_trackbar_value, 1000);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1404:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Klr_tb_res\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Klr_tb_res\u001b[m\u001b[K = cv::createTrackbar(lr_trackbar_name, window_name, &lr_trackbar_value, 20);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1408:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kcl_tb_res\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kcl_tb_res\u001b[m\u001b[K = cv::createTrackbar(cl_trackbar_name, window_name, &cl_trackbar_value, classes-1);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/image_opencv.cpp:1411:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kbo_tb_res\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kbo_tb_res\u001b[m\u001b[K = cv::createTrackbar(bo_trackbar_name, window_name, boxonly, 1);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"g++ -std=c++11 -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/http_stream.cpp -o obj/http_stream.o\n",
"In file included from \u001b[01m\u001b[K./src/http_stream.cpp:580:0\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K./src/httplib.h:129:0:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[K\"INVALID_SOCKET\" redefined\n",
" #define INVALID_SOCKET (-1)\n",
" \n",
"\u001b[01m\u001b[K./src/http_stream.cpp:73:0:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kthis is the location of the previous definition\n",
" #define INVALID_SOCKET -1\n",
" \n",
"\u001b[01m\u001b[K./src/http_stream.cpp:\u001b[m\u001b[K In member function ‘\u001b[01m\u001b[Kbool JSON_sender::write(const char*)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:249:21:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kn\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kn\u001b[m\u001b[K = _write(client, outputbuf, outlen);\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:\u001b[m\u001b[K In member function ‘\u001b[01m\u001b[Kbool MJPG_sender::write(const cv::Mat&)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:507:113:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%zu\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Ksize_t\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" sprintf(head, \"--mjpegstream\\r\\nContent-Type: image/jpeg\\r\\nContent-Length: %zu\\r\\n\\r\\n\", outlen\u001b[01;35m\u001b[K)\u001b[m\u001b[K;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid set_track_id(detection*, int, float, float, float, int, int, int)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:845:27:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between signed and unsigned integer expressions [\u001b[01;35m\u001b[K-Wsign-compare\u001b[m\u001b[K]\n",
" for (int i = 0; \u001b[01;35m\u001b[Ki < v.size()\u001b[m\u001b[K; ++i) {\n",
" \u001b[01;35m\u001b[K~~^~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:853:33:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between signed and unsigned integer expressions [\u001b[01;35m\u001b[K-Wsign-compare\u001b[m\u001b[K]\n",
" for (int old_id = 0; \u001b[01;35m\u001b[Kold_id < old_dets.size()\u001b[m\u001b[K; ++old_id) {\n",
" \u001b[01;35m\u001b[K~~~~~~~^~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:873:31:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between signed and unsigned integer expressions [\u001b[01;35m\u001b[K-Wsign-compare\u001b[m\u001b[K]\n",
" for (int index = 0; \u001b[01;35m\u001b[Kindex < new_dets_num*old_dets.size()\u001b[m\u001b[K; ++index) {\n",
" \u001b[01;35m\u001b[K~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/http_stream.cpp:908:28:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between signed and unsigned integer expressions [\u001b[01;35m\u001b[K-Wsign-compare\u001b[m\u001b[K]\n",
" if (\u001b[01;35m\u001b[Kold_dets_dq.size() > deque_size\u001b[m\u001b[K) old_dets_dq.pop_front();\n",
" \u001b[01;35m\u001b[K~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/gemm.c -o obj/gemm.o\n",
"\u001b[01m\u001b[K./src/gemm.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kconvolution_2d\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/gemm.c:2038:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kout_w\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" const int \u001b[01;35m\u001b[Kout_w\u001b[m\u001b[K = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/gemm.c:2037:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kout_h\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" const int \u001b[01;35m\u001b[Kout_h\u001b[m\u001b[K = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/utils.c -o obj/utils.o\n",
"\u001b[01m\u001b[K./src/utils.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kcustom_hash\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/utils.c:1040:12:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Ksuggest parentheses around assignment used as truth value [\u001b[01;35m\u001b[K-Wparentheses\u001b[m\u001b[K]\n",
" while (\u001b[01;35m\u001b[Kc\u001b[m\u001b[K = *str++)\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/dark_cuda.c -o obj/dark_cuda.o\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kcudnn_check_error_extended\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:224:20:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between ‘\u001b[01m\u001b[KcudaError_t {aka enum cudaError}\u001b[m\u001b[K’ and ‘\u001b[01m\u001b[Kenum <anonymous>\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wenum-compare\u001b[m\u001b[K]\n",
" if (status \u001b[01;35m\u001b[K!=\u001b[m\u001b[K CUDNN_STATUS_SUCCESS)\n",
" \u001b[01;35m\u001b[K^~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kpre_allocate_pinned_memory\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:276:40:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%u\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kunsigned int\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Klong unsigned int\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"pre_allocate: size = \u001b[01;35m\u001b[K%Iu\u001b[m\u001b[K MB, num_of_blocks = %Iu, block_size = %Iu MB \\n\",\n",
" \u001b[01;35m\u001b[K~~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%Ilu\u001b[m\u001b[K\n",
" \u001b[32m\u001b[Ksize / (1024*1024)\u001b[m\u001b[K, num_of_blocks, pinned_block_size / (1024 * 1024));\n",
" \u001b[32m\u001b[K~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K \n",
"\u001b[01m\u001b[K./src/dark_cuda.c:276:64:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%u\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kunsigned int\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Ksize_t {aka const long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"pre_allocate: size = %Iu MB, num_of_blocks = \u001b[01;35m\u001b[K%Iu\u001b[m\u001b[K, block_size = %Iu MB \\n\",\n",
" \u001b[01;35m\u001b[K~~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%Ilu\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:276:82:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%u\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kunsigned int\u001b[m\u001b[K’, but argument 4 has type ‘\u001b[01m\u001b[Klong unsigned int\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"pre_allocate: size = %Iu MB, num_of_blocks = %Iu, block_size = \u001b[01;35m\u001b[K%Iu\u001b[m\u001b[K MB \\n\",\n",
" \u001b[01;35m\u001b[K~~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%Ilu\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:286:37:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Ksize_t {aka const long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Allocated \u001b[01;35m\u001b[K%d\u001b[m\u001b[K pinned block \\n\", pinned_block_size);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kcuda_make_array_pinned_preallocated\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:307:43:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"\\n Pinned block_id = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, filled = %f %% \\n\", pinned_block_id, filled);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:322:64:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Klong unsigned int\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"Try to allocate new pinned memory, size = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K MB \\n\", \u001b[32m\u001b[Ksize / (1024 * 1024)\u001b[m\u001b[K);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K \u001b[32m\u001b[K~~~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/dark_cuda.c:328:63:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Klong unsigned int\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\"Try to allocate new pinned BLOCK, size = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K MB \\n\", \u001b[32m\u001b[Ksize / (1024 * 1024)\u001b[m\u001b[K);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K \u001b[32m\u001b[K~~~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/convolutional_layer.c -o obj/convolutional_layer.o\n",
"\u001b[01m\u001b[K./src/convolutional_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kforward_convolutional_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/convolutional_layer.c:1337:32:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kt_intput_size\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" size_t \u001b[01;35m\u001b[Kt_intput_size\u001b[m\u001b[K = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/list.c -o obj/list.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/image.c -o obj/image.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/activations.c -o obj/activations.o\n",
"\u001b[01m\u001b[K./src/activations.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kactivate\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KRELU6\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kswitch\u001b[m\u001b[K(a){\n",
" \u001b[01;35m\u001b[K^~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KSWISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KMISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KHARD_MISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KNORM_CHAN\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KNORM_CHAN_SOFTMAX\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:79:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KNORM_CHAN_SOFTMAX_MAXVAL\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kgradient\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/activations.c:310:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KSWISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kswitch\u001b[m\u001b[K(a){\n",
" \u001b[01;35m\u001b[K^~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/activations.c:310:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KMISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"\u001b[01m\u001b[K./src/activations.c:310:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KHARD_MISH\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/im2col.c -o obj/im2col.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/col2im.c -o obj/col2im.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/blas.c -o obj/blas.o\n",
"\u001b[01m\u001b[K./src/blas.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kbackward_shortcut_multilayer_cpu\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas.c:207:21:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kout_index\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kout_index\u001b[m\u001b[K = id;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kfind_sim\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas.c:597:59:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_sim(): sim isn't found: i = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, j = %d, z = %d \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:597:67:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_sim(): sim isn't found: i = %d, j = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, z = %d \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:597:75:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 4 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_sim(): sim isn't found: i = %d, j = %d, z = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kfind_P_constrastive\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas.c:611:68:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_P_constrastive(): P isn't found: i = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, j = %d, z = %d \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:611:76:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_P_constrastive(): P isn't found: i = %d, j = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, z = %d \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:611:84:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 4 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: find_P_constrastive(): P isn't found: i = %d, j = %d, z = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K \\n\", i, j, z);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[KP_constrastive_f\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas.c:651:79:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" fprintf(stderr, \" Error: in P_constrastive must be i != l, while i = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, l = %d \\n\", i, l);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:651:87:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 4 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" fprintf(stderr, \" Error: in P_constrastive must be i != l, while i = %d, l = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K \\n\", i, l);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[KP_constrastive\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas.c:780:79:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 3 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" fprintf(stderr, \" Error: in P_constrastive must be i != l, while i = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K, l = %d \\n\", i, l);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/blas.c:780:87:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 4 has type ‘\u001b[01m\u001b[Ksize_t {aka long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" fprintf(stderr, \" Error: in P_constrastive must be i != l, while i = %d, l = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K \\n\", i, l);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/crop_layer.c -o obj/crop_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/dropout_layer.c -o obj/dropout_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/maxpool_layer.c -o obj/maxpool_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/softmax_layer.c -o obj/softmax_layer.o\n",
"\u001b[01m\u001b[K./src/softmax_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kmake_contrastive_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/softmax_layer.c:202:101:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 9 has type ‘\u001b[01m\u001b[Ksize_t {aka const long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" fprintf(stderr, \"contrastive %4d x%4d x%4d x emb_size %4d x batch: %4d classes = %4d, step = \u001b[01;35m\u001b[K%4d\u001b[m\u001b[K \\n\", w, h, l.n, l.embedding_size, batch, l.classes, step);\n",
" \u001b[01;35m\u001b[K~~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%4ld\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/softmax_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kforward_contrastive_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/softmax_layer.c:243:27:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Kmax_truth\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kmax_truth\u001b[m\u001b[K = 0;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/softmax_layer.c:420:71:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat ‘\u001b[01m\u001b[K%d\u001b[m\u001b[K’ expects argument of type ‘\u001b[01m\u001b[Kint\u001b[m\u001b[K’, but argument 2 has type ‘\u001b[01m\u001b[Ksize_t {aka const long unsigned int}\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wformat=\u001b[m\u001b[K]\n",
" printf(\" Error: too large number of bboxes: contr_size = \u001b[01;35m\u001b[K%d\u001b[m\u001b[K > max_contr_size = %d \\n\", contr_size, max_contr_size);\n",
" \u001b[01;35m\u001b[K~^\u001b[m\u001b[K\n",
" \u001b[32m\u001b[K%ld\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/data.c -o obj/data.o\n",
"\u001b[01m\u001b[K./src/data.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kload_data_detection\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/data.c:1294:24:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kx\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int k, \u001b[01;35m\u001b[Kx\u001b[m\u001b[K, y;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/data.c:1090:43:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Kr_scale\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" float r1 = 0, r2 = 0, r3 = 0, r4 = 0, \u001b[01;35m\u001b[Kr_scale\u001b[m\u001b[K = 0;\n",
" \u001b[01;35m\u001b[K^~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/matrix.c -o obj/matrix.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/network.c -o obj/network.o\n",
"\u001b[01m\u001b[K./src/network.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kresize_network\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/network.c:615:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Knet->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped))\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/network.c:1\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/connected_layer.c -o obj/connected_layer.o\n",
"\u001b[01m\u001b[K./src/connected_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kforward_connected_layer_gpu\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/connected_layer.c:346:11:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kone\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kone\u001b[m\u001b[K = 1; // alpha[0], beta[0]\n",
" \u001b[01;35m\u001b[K^~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:344:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kc\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float * \u001b[01;35m\u001b[Kc\u001b[m\u001b[K = l.output_gpu;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:343:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kb\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float * \u001b[01;35m\u001b[Kb\u001b[m\u001b[K = l.weights_gpu;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:342:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Ka\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float * \u001b[01;35m\u001b[Ka\u001b[m\u001b[K = state.input;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:341:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kn\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kn\u001b[m\u001b[K = l.outputs;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:340:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kk\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kk\u001b[m\u001b[K = l.inputs;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/connected_layer.c:339:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Km\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Km\u001b[m\u001b[K = l.batch;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/cost_layer.c -o obj/cost_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/parser.c -o obj/parser.o\n",
"\u001b[01m\u001b[K./src/parser.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kparse_network_cfg_custom\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/parser.c:1663:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Knet.input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) net.input_pinned_cpu_flag = 1;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activations.h:3\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activation_layer.h:4\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/parser.c:6\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/parser.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kget_classes_multipliers\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/parser.c:427:29:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kargument 1 range [18446744071562067968, 18446744073709551615] exceeds maximum object size 9223372036854775807 [\u001b[01;35m\u001b[K-Walloc-size-larger-than=\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kclasses_multipliers = (float *)calloc(classes_counters, sizeof(float))\u001b[m\u001b[K;\n",
" \u001b[01;35m\u001b[K~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K./src/parser.c:3:0\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/include/stdlib.h:541:14:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kin a call to allocation function ‘\u001b[01m\u001b[Kcalloc\u001b[m\u001b[K’ declared here\n",
" extern void *\u001b[01;36m\u001b[Kcalloc\u001b[m\u001b[K (size_t __nmemb, size_t __size)\n",
" \u001b[01;36m\u001b[K^~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/option_list.c -o obj/option_list.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/darknet.c -o obj/darknet.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/detection_layer.c -o obj/detection_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/captcha.c -o obj/captcha.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/route_layer.c -o obj/route_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/writing.c -o obj/writing.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/box.c -o obj/box.o\n",
"\u001b[01m\u001b[K./src/box.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kbox_iou_kind\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/box.c:154:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kenumeration value ‘\u001b[01m\u001b[KMSE\u001b[m\u001b[K’ not handled in switch [\u001b[01;35m\u001b[K-Wswitch\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kswitch\u001b[m\u001b[K(iou_kind) {\n",
" \u001b[01;35m\u001b[K^~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/box.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kdiounms_sort\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/box.c:898:27:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kbeta_prob\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kbeta_prob\u001b[m\u001b[K = pow(dets[j].prob[k], 2) / sum_prob;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/box.c:897:27:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kalpha_prob\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kalpha_prob\u001b[m\u001b[K = pow(dets[i].prob[k], 2) / sum_prob;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/nightmare.c -o obj/nightmare.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/normalization_layer.c -o obj/normalization_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/avgpool_layer.c -o obj/avgpool_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/coco.c -o obj/coco.o\n",
"\u001b[01m\u001b[K./src/coco.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvalidate_coco_recall\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/coco.c:248:11:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kbase\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" char *\u001b[01;35m\u001b[Kbase\u001b[m\u001b[K = \"results/comp4_det_test_\";\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/dice.c -o obj/dice.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/yolo.c -o obj/yolo.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/detector.c -o obj/detector.o\n",
"\u001b[01m\u001b[K./src/detector.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kprint_cocos\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/detector.c:477:29:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kformat not a string literal and no format arguments [\u001b[01;35m\u001b[K-Wformat-security\u001b[m\u001b[K]\n",
" fprintf(fp, \u001b[01;35m\u001b[Kbuff\u001b[m\u001b[K);\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Keliminate_bdd\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/detector.c:570:21:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kstatement with no effect [\u001b[01;35m\u001b[K-Wunused-value\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kfor\u001b[m\u001b[K (k; buf[k + n] != '\\0'; k++)\n",
" \u001b[01;35m\u001b[K^~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvalidate_detector\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/detector.c:691:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kmkd2\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kmkd2\u001b[m\u001b[K = make_directory(buff2, 0777);\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:689:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kmkd\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kmkd\u001b[m\u001b[K = make_directory(buff, 0777);\n",
" \u001b[01;35m\u001b[K^~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvalidate_detector_map\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/detector.c:1322:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kclass_recall\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kclass_recall\u001b[m\u001b[K = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i]));\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:1321:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kclass_precision\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kclass_precision\u001b[m\u001b[K = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/detector.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kdraw_object\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/detector.c:1856:19:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kinv_loss\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kinv_loss\u001b[m\u001b[K = 1.0 / max_val_cmp(0.01, avg_loss);\n",
" \u001b[01;35m\u001b[K^~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/layer.c -o obj/layer.o\n",
"\u001b[01m\u001b[K./src/layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kfree_layer_custom\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/layer.c:204:68:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Ksuggest parentheses around ‘\u001b[01m\u001b[K&&\u001b[m\u001b[K’ within ‘\u001b[01m\u001b[K||\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wparentheses\u001b[m\u001b[K]\n",
" if (l.delta_gpu && (l.optimized_memory < 1 || \u001b[01;35m\u001b[Kl.keep_delta_gpu && l.optimized_memory < 3\u001b[m\u001b[K)) cuda_free(l.delta_gpu), l.delta_gpu = NULL;\n",
" \u001b[01;35m\u001b[K~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/compare.c -o obj/compare.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/classifier.c -o obj/classifier.o\n",
"\u001b[01m\u001b[K./src/classifier.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Ktrain_classifier\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/classifier.c:146:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kcount\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kcount\u001b[m\u001b[K = 0;\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/classifier.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kpredict_classifier\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/classifier.c:855:13:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Ktime\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" clock_t \u001b[01;35m\u001b[Ktime\u001b[m\u001b[K;\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/classifier.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kdemo_classifier\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/classifier.c:1287:49:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Ktval_result\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" struct timeval tval_before, tval_after, \u001b[01;35m\u001b[Ktval_result\u001b[m\u001b[K;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/classifier.c:1287:37:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Ktval_after\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" struct timeval tval_before, \u001b[01;35m\u001b[Ktval_after\u001b[m\u001b[K, tval_result;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/local_layer.c -o obj/local_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/swag.c -o obj/swag.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/shortcut_layer.c -o obj/shortcut_layer.o\n",
"\u001b[01m\u001b[K./src/shortcut_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kmake_shortcut_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/shortcut_layer.c:55:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kscale\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float \u001b[01;35m\u001b[Kscale\u001b[m\u001b[K = sqrt(2. / l.nweights);\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/activation_layer.c -o obj/activation_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/rnn_layer.c -o obj/rnn_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/gru_layer.c -o obj/gru_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/rnn.c -o obj/rnn.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/rnn_vid.c -o obj/rnn_vid.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/crnn_layer.c -o obj/crnn_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/demo.c -o obj/demo.o\n",
"\u001b[01m\u001b[K./src/demo.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kdetect_in_thread\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/demo.c:100:16:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kprediction\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" float *\u001b[01;35m\u001b[Kprediction\u001b[m\u001b[K = network_predict(net, X);\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/demo.c:98:15:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kl\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" layer \u001b[01;35m\u001b[Kl\u001b[m\u001b[K = net.layers[net.n - 1];\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/tag.c -o obj/tag.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/cifar.c -o obj/cifar.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/go.c -o obj/go.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/batchnorm_layer.c -o obj/batchnorm_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/art.c -o obj/art.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/region_layer.c -o obj/region_layer.o\n",
"\u001b[01m\u001b[K./src/region_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kresize_region_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/region_layer.c:59:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kold_h\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kold_h\u001b[m\u001b[K = l->h;\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/region_layer.c:58:9:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kunused variable ‘\u001b[01m\u001b[Kold_w\u001b[m\u001b[K’ [\u001b[01;35m\u001b[K-Wunused-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kold_w\u001b[m\u001b[K = l->w;\n",
" \u001b[01;35m\u001b[K^~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/reorg_layer.c -o obj/reorg_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/reorg_old_layer.c -o obj/reorg_old_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/super.c -o obj/super.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/voxel.c -o obj/voxel.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/tree.c -o obj/tree.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/yolo_layer.c -o obj/yolo_layer.o\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kmake_yolo_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:66:38:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activations.h:3\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/layer.h:4\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.c:1\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:73:38:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activations.h:3\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/layer.h:4\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.c:1\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kresize_yolo_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:103:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess != cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activations.h:3\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/layer.h:4\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.c:1\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:112:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess != cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/activations.h:3\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/layer.h:4\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/yolo_layer.c:1\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kforward_yolo_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/yolo_layer.c:390:25:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Kbest_match_t\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" int \u001b[01;35m\u001b[Kbest_match_t\u001b[m\u001b[K = 0;\n",
" \u001b[01;35m\u001b[K^~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/gaussian_yolo_layer.c -o obj/gaussian_yolo_layer.o\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kmake_gaussian_yolo_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:71:38:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl.output, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.c:7\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:78:38:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess == cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl.delta, batch*l.outputs * sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.c:7\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kresize_gaussian_yolo_layer\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:110:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess != cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.c:7\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"\u001b[01m\u001b[K./src/gaussian_yolo_layer.c:119:42:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kpassing argument 1 of ‘\u001b[01m\u001b[KcudaHostAlloc\u001b[m\u001b[K’ from incompatible pointer type [\u001b[01;35m\u001b[K-Wincompatible-pointer-types\u001b[m\u001b[K]\n",
" if (cudaSuccess != cudaHostAlloc(\u001b[01;35m\u001b[K&\u001b[m\u001b[Kl->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"In file included from \u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime.h:96:0\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[Kinclude/darknet.h:41\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.h:5\u001b[m\u001b[K,\n",
" from \u001b[01m\u001b[K./src/gaussian_yolo_layer.c:7\u001b[m\u001b[K:\n",
"\u001b[01m\u001b[K/usr/local/cuda/include/cuda_runtime_api.h:4391:39:\u001b[m\u001b[K \u001b[01;36m\u001b[Knote: \u001b[m\u001b[Kexpected ‘\u001b[01m\u001b[Kvoid **\u001b[m\u001b[K’ but argument is of type ‘\u001b[01m\u001b[Kfloat **\u001b[m\u001b[K’\n",
" extern __host__ cudaError_t CUDARTAPI \u001b[01;36m\u001b[KcudaHostAlloc\u001b[m\u001b[K(void **pHost, size_t size, unsigned int flags);\n",
" \u001b[01;36m\u001b[K^~~~~~~~~~~~~\u001b[m\u001b[K\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/upsample_layer.c -o obj/upsample_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/lstm_layer.c -o obj/lstm_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/conv_lstm_layer.c -o obj/conv_lstm_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/scale_channels_layer.c -o obj/scale_channels_layer.o\n",
"gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF -c ./src/sam_layer.c -o obj/sam_layer.o\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/convolutional_kernels.cu -o obj/convolutional_kernels.o\n",
"\u001b[01m\u001b[K./src/convolutional_kernels.cu:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid backward_convolutional_layer_gpu(convolutional_layer, network_state)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/convolutional_kernels.cu:853:40:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kcomparison between signed and unsigned integer expressions [\u001b[01;35m\u001b[K-Wsign-compare\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[K if (*state.net.max_output16_size < l.\u001b[m\u001b[Knweights) {\n",
" \u001b[01;35m\u001b[K~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~\u001b[m\u001b[K\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/activation_kernels.cu -o obj/activation_kernels.o\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"./src/activation_kernels.cu(263): warning: variable \"MISH_THRESHOLD\" was declared but never referenced\n",
"\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/im2col_kernels.cu -o obj/im2col_kernels.o\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/col2im_kernels.cu -o obj/col2im_kernels.o\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/blas_kernels.cu -o obj/blas_kernels.o\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1086): warning: variable \"out_index\" was declared but never referenced\n",
"\n",
"./src/blas_kernels.cu(1130): warning: variable \"step\" was set but never used\n",
"\n",
"./src/blas_kernels.cu(1736): warning: variable \"stage_id\" was declared but never referenced\n",
"\n",
"\u001b[01m\u001b[K./src/blas_kernels.cu:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kvoid backward_shortcut_multilayer_gpu(int, int, int, int*, float**, float*, float*, float*, float*, int, float*, float**, WEIGHTS_NORMALIZATION_T)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/blas_kernels.cu:1130:5:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Kstep\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[Kint \u001b[m\u001b[Kstep = 0;\n",
" \u001b[01;35m\u001b[K^~~~\u001b[m\u001b[K\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/crop_layer_kernels.cu -o obj/crop_layer_kernels.o\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/dropout_layer_kernels.cu -o obj/dropout_layer_kernels.o\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(140): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(245): warning: variable \"cur_scale\" was declared but never referenced\n",
"\n",
"./src/dropout_layer_kernels.cu(262): warning: variable \"block_prob\" was declared but never referenced\n",
"\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/maxpool_layer_kernels.cu -o obj/maxpool_layer_kernels.o\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/network_kernels.cu -o obj/network_kernels.o\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"./src/network_kernels.cu(364): warning: variable \"l\" was declared but never referenced\n",
"\n",
"\u001b[01m\u001b[K./src/network_kernels.cu:\u001b[m\u001b[K In function ‘\u001b[01m\u001b[Kfloat train_network_datum_gpu(network, float*, float*)\u001b[m\u001b[K’:\n",
"\u001b[01m\u001b[K./src/network_kernels.cu:364:7:\u001b[m\u001b[K \u001b[01;35m\u001b[Kwarning: \u001b[m\u001b[Kvariable ‘\u001b[01m\u001b[Kl\u001b[m\u001b[K’ set but not used [\u001b[01;35m\u001b[K-Wunused-but-set-variable\u001b[m\u001b[K]\n",
" \u001b[01;35m\u001b[K \u001b[m\u001b[K layer l = net.layers[net.n - 1];\n",
" \u001b[01;35m\u001b[K^\u001b[m\u001b[K\n",
"nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -gencode arch=compute_70,code=[sm_70,compute_70] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF --compiler-options \"-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF\" -c ./src/avgpool_layer_kernels.cu -o obj/avgpool_layer_kernels.o\n",
"g++ -std=c++11 -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv4 2> /dev/null || pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -DCUDNN_HALF -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -DCUDNN_HALF obj/image_opencv.o obj/http_stream.o obj/gemm.o obj/utils.o obj/dark_cuda.o obj/convolutional_layer.o obj/list.o obj/image.o obj/activations.o obj/im2col.o obj/col2im.o obj/blas.o obj/crop_layer.o obj/dropout_layer.o obj/maxpool_layer.o obj/softmax_layer.o obj/data.o obj/matrix.o obj/network.o obj/connected_layer.o obj/cost_layer.o obj/parser.o obj/option_list.o obj/darknet.o obj/detection_layer.o obj/captcha.o obj/route_layer.o obj/writing.o obj/box.o obj/nightmare.o obj/normalization_layer.o obj/avgpool_layer.o obj/coco.o obj/dice.o obj/yolo.o obj/detector.o obj/layer.o obj/compare.o obj/classifier.o obj/local_layer.o obj/swag.o obj/shortcut_layer.o obj/activation_layer.o obj/rnn_layer.o obj/gru_layer.o obj/rnn.o obj/rnn_vid.o obj/crnn_layer.o obj/demo.o obj/tag.o obj/cifar.o obj/go.o obj/batchnorm_layer.o obj/art.o obj/region_layer.o obj/reorg_layer.o obj/reorg_old_layer.o obj/super.o obj/voxel.o obj/tree.o obj/yolo_layer.o obj/gaussian_yolo_layer.o obj/upsample_layer.o obj/lstm_layer.o obj/conv_lstm_layer.o obj/scale_channels_layer.o obj/sam_layer.o obj/convolutional_kernels.o obj/activation_kernels.o obj/im2col_kernels.o obj/col2im_kernels.o obj/blas_kernels.o obj/crop_layer_kernels.o obj/dropout_layer_kernels.o obj/maxpool_layer_kernels.o obj/network_kernels.o obj/avgpool_layer_kernels.o -o darknet -lm -pthread `pkg-config --libs opencv4 2> /dev/null || pkg-config --libs opencv` -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand -L/usr/local/cudnn/lib64 -lcudnn -lstdc++\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "a7_yikWWhqCi",
"colab_type": "text"
},
"source": [
"## Clone a helper repo\n",
"It makes training the medical mask detecting model easy.\n",
"In order to train on your own data, this repo can be used as a blueprint. \n",
"Changes to some files need to be made according to own data, but it is nothing complicated."
]
},
{
"cell_type": "code",
"metadata": {
"id": "Qs8vZ5uK7Ry9",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 191
},
"outputId": "6240ace4-9d3e-488f-c129-3b0e4610c31d"
},
"source": [
"repo_url = 'https://github.com/GotG/yolotinyv3_medmask_demo'\n",
"import os\n",
"%cd /content\n",
"repo_dir_path = os.path.abspath(os.path.join('.', os.path.basename(repo_url)))\n",
"!git clone {repo_url}\n",
"%cd {repo_dir_path}\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/content\n",
"Cloning into 'yolotinyv3_medmask_demo'...\n",
"remote: Enumerating objects: 363, done.\u001b[K\n",
"remote: Counting objects: 100% (363/363), done.\u001b[K\n",
"remote: Compressing objects: 100% (241/241), done.\u001b[K\n",
"remote: Total 1726 (delta 33), reused 286 (delta 18), pack-reused 1363\u001b[K\n",
"Receiving objects: 100% (1726/1726), 208.92 MiB | 14.12 MiB/s, done.\n",
"Resolving deltas: 100% (35/35), done.\n",
"Checking out files: 100% (1536/1536), done.\n",
"/content/yolotinyv3_medmask_demo\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "FzoJQQw8Zdco",
"colab_type": "code",
"colab": {}
},
"source": [
"#define utility function\n",
"def imShow(path):\n",
" import cv2\n",
" import matplotlib.pyplot as plt\n",
" %matplotlib inline\n",
"\n",
" image = cv2.imread(path)\n",
" height, width = image.shape[:2]\n",
" resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC)\n",
"\n",
" fig = plt.gcf()\n",
" fig.set_size_inches(18, 10)\n",
" plt.axis(\"off\")\n",
" #plt.rcParams['figure.figsize'] = [10, 5]\n",
" plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))\n",
" plt.show()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "94rKAaMmrHvm",
"colab_type": "text"
},
"source": [
"## Change the labels in obj.names to our current labels"
]
},
{
"cell_type": "code",
"metadata": {
"id": "dHz-T_uqO417",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 52
},
"outputId": "7241e98b-298c-4511-a020-8ea63d82e375"
},
"source": [
"labels_path = '/content/yolotinyv3_medmask_demo/obj.names'\n",
"#make a list of your labels\n",
"labels = ['mask','no mask']\n",
"# labels = ['good','bad']\n",
"\n",
"with open(labels_path, 'w') as f:\n",
"\n",
" f.write('\\n'.join(labels))\n",
"\n",
"#check that the labels file is correct\n",
"!cat /content/yolotinyv3_medmask_demo/obj.names"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"mask\n",
"no mask"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QmsQt5L5uETj",
"colab_type": "text"
},
"source": [
"## Change the number of classes in obj.data.\n",
"The paths are relative so no change there as long as the folder/file structure/names are not changed."
]
},
{
"cell_type": "code",
"metadata": {
"id": "71FvOdrKO1QO",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104
},
"outputId": "257bf34d-1709-4c31-88f5-8653b0911c6b"
},
"source": [
"import re\n",
"objdata = '/content/yolotinyv3_medmask_demo/obj.data'\n",
"with open(objdata) as f:\n",
" s = f.read()\n",
"\n",
"#the number of classes is equal to the number of labels\n",
"num_classes = len(labels) \n",
"s = re.sub('classes = \\d*','classes = ' + str(num_classes),s)\n",
"\n",
"with open(objdata, 'w') as f:\n",
" f.write(s)\n",
"!cat /content/yolotinyv3_medmask_demo/obj.data"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"classes= 2\n",
"train = /content/yolotinyv3_medmask_demo/train.txt\n",
"valid = /content/yolotinyv3_medmask_demo/test.txt\n",
"names = /content/yolotinyv3_medmask_demo/obj.names\n",
"backup = backup/"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zq6MLtxbOkML",
"colab_type": "text"
},
"source": [
"### Now that we see which parameters are of importance, let's modify them according to our dataset."
]
},
{
"cell_type": "code",
"metadata": {
"id": "MKS78ExHOp71",
"colab_type": "code",
"colab": {}
},
"source": [
"# set the number of max_batches - min 2000 per class:\n",
"max_batch=4000\n",
"# calculate the 2 steps values:\n",
"step1 = 0.8 * max_batch\n",
"step2 = 0.9 * max_batch\n",
"\n",
"# we also need to adjust the number of classes and a parameter called filter size \n",
"# that are both is inside the model structure\n",
"\n",
"# num_classes = len(labels)\n",
"num_filters = (num_classes + 5) * 3\n",
"\n",
"\n",
"#cfg_file = '/content/yolotinyv3_medmask_demo/yolov3-tiny_obj.cfg'\n",
"cfg_file = '/content/yolotinyv3_medmask_demo/yolov4-tiny.cfg'\n",
"\n",
"with open(cfg_file) as f:\n",
" s = f.read()\n",
"# (re.sub('[a-z]*@', 'ABC@', s))\n",
"s = re.sub('max_batches = \\d*','max_batches = '+str(max_batch),s)\n",
"s = re.sub('steps=\\d*,\\d*','steps='+\"{:.0f}\".format(step1)+','+\"{:.0f}\".format(step2),s)\n",
"s = re.sub('classes=\\d*','classes='+str(num_classes),s)\n",
"s = re.sub('pad=1\\nfilters=\\d*','pad=1\\nfilters='+\"{:.0f}\".format(num_filters),s)\n",
"# pad=1\\nfilters=\\d\\d\n",
"# s = re.sub('CUDNN=0','CUDNN=1',s)\n",
"# s = re.sub('OPENCV=0','OPENCV=1',s)\n",
"\n",
"with open(cfg_file, 'w') as f:\n",
" # s = re.sub('GPU=0','GPU=1',s)\n",
" f.write(s)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "CUaW_i1UL0Pp",
"colab_type": "text"
},
"source": [
"## Start the model training"
]
},
{
"cell_type": "code",
"metadata": {
"id": "tdt4WtP9kpm8",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "34c51d5d-56ff-4df5-dc27-efe97adc2771"
},
"source": [
"%cd ../darknet/\n",
"!./darknet detector train /content/yolotinyv3_medmask_demo/obj.data /content/yolotinyv3_medmask_demo/yolov4-tiny.cfg /content/yolotinyv3_medmask_demo/yolov4-tiny.conv.29 -dont_show -ext_output -map"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"\u001b[1;30;43mSe han truncado las últimas 5000 líneas del flujo de salida.\u001b[0m\n",
" (next mAP calculation at 3400 iterations) \n",
" Last accuracy [email protected] = 58.80 %, best = 58.96 % \n",
" 3396: 0.241519, 0.221987 avg loss, 0.000261 rate, 1.219427 seconds, 217344 images, 0.253506 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843273, GIOU: 0.840619), Class: 0.998250, Obj: 0.889783, No Obj: 0.001953, .5R: 0.972222, .75R: 0.916667, count: 36, class_loss = 0.055447, iou_loss = 0.321179, total_loss = 0.376626 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840290, GIOU: 0.835633), Class: 0.995069, Obj: 0.910049, No Obj: 0.002538, .5R: 0.994872, .75R: 0.917949, count: 195, class_loss = 0.238837, iou_loss = 16.890762, total_loss = 17.129599 \n",
" total_bbox = 804812, rewritten_bbox = 0.037897 % \n",
"\n",
" (next mAP calculation at 3400 iterations) \n",
" Last accuracy [email protected] = 58.80 %, best = 58.96 % \n",
" 3397: 0.147315, 0.214520 avg loss, 0.000261 rate, 1.259469 seconds, 217408 images, 0.253017 hours left\n",
"Loaded: 0.000097 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848579, GIOU: 0.845122), Class: 0.998285, Obj: 0.874292, No Obj: 0.002004, .5R: 1.000000, .75R: 0.875000, count: 40, class_loss = 0.067127, iou_loss = 0.336327, total_loss = 0.403455 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837938, GIOU: 0.831249), Class: 0.987177, Obj: 0.840682, No Obj: 0.002340, .5R: 0.988372, .75R: 0.866279, count: 172, class_loss = 0.431320, iou_loss = 14.536260, total_loss = 14.967580 \n",
" total_bbox = 805024, rewritten_bbox = 0.037887 % \n",
"\n",
" (next mAP calculation at 3400 iterations) \n",
" Last accuracy [email protected] = 58.80 %, best = 58.96 % \n",
" 3398: 0.249395, 0.218008 avg loss, 0.000261 rate, 1.154266 seconds, 217472 images, 0.252597 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838698, GIOU: 0.833408), Class: 0.998645, Obj: 0.890880, No Obj: 0.002697, .5R: 0.962264, .75R: 0.867925, count: 53, class_loss = 0.107231, iou_loss = 0.485304, total_loss = 0.592535 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835518, GIOU: 0.830889), Class: 0.996031, Obj: 0.841762, No Obj: 0.002256, .5R: 0.983517, .75R: 0.873626, count: 182, class_loss = 0.460907, iou_loss = 15.519017, total_loss = 15.979924 \n",
" total_bbox = 805259, rewritten_bbox = 0.037876 % \n",
"\n",
" (next mAP calculation at 3400 iterations) \n",
" Last accuracy [email protected] = 58.80 %, best = 58.96 % \n",
" 3399: 0.284247, 0.224631 avg loss, 0.000261 rate, 1.241785 seconds, 217536 images, 0.252001 hours left\n",
"Loaded: 0.019910 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858014, GIOU: 0.856080), Class: 0.997354, Obj: 0.842259, No Obj: 0.001698, .5R: 1.000000, .75R: 0.941176, count: 34, class_loss = 0.075014, iou_loss = 0.298530, total_loss = 0.373544 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828478, GIOU: 0.823182), Class: 0.992052, Obj: 0.884129, No Obj: 0.002593, .5R: 0.980861, .75R: 0.870813, count: 209, class_loss = 0.380721, iou_loss = 18.962769, total_loss = 19.343489 \n",
" total_bbox = 805502, rewritten_bbox = 0.037989 % \n",
"\n",
" (next mAP calculation at 3400 iterations) \n",
" Last accuracy [email protected] = 58.80 %, best = 58.96 % \n",
" 3400: 0.228039, 0.224972 avg loss, 0.000261 rate, 1.289746 seconds, 217600 images, 0.251555 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 372, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.61% \t (TP = 163, FP = 9) \n",
"class_id = 1, name = no mask, ap = 47.69% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.94, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 181, FP = 12, FN = 119, average IoU = 77.09 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.581483, or 58.15 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.581483 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000069 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.887290, GIOU: 0.885232), Class: 0.996926, Obj: 0.928512, No Obj: 0.002030, .5R: 1.000000, .75R: 1.000000, count: 40, class_loss = 0.020061, iou_loss = 0.363486, total_loss = 0.383547 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833311, GIOU: 0.828338), Class: 0.988427, Obj: 0.910800, No Obj: 0.002609, .5R: 0.989899, .75R: 0.873737, count: 198, class_loss = 0.322730, iou_loss = 17.597958, total_loss = 17.920689 \n",
" total_bbox = 805740, rewritten_bbox = 0.037978 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3401: 0.171548, 0.219630 avg loss, 0.000261 rate, 1.018687 seconds, 217664 images, 0.254613 hours left\n",
"Loaded: 0.465002 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838738, GIOU: 0.834975), Class: 0.996120, Obj: 0.866288, No Obj: 0.001785, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.063867, iou_loss = 0.250447, total_loss = 0.314314 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830729, GIOU: 0.825442), Class: 0.981139, Obj: 0.846362, No Obj: 0.002376, .5R: 0.994565, .75R: 0.875000, count: 184, class_loss = 0.472062, iou_loss = 17.744114, total_loss = 18.216175 \n",
" total_bbox = 805958, rewritten_bbox = 0.037967 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3402: 0.268145, 0.224481 avg loss, 0.000261 rate, 1.242531 seconds, 217728 images, 0.253762 hours left\n",
"Loaded: 0.066700 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848308, GIOU: 0.844230), Class: 0.997655, Obj: 0.941012, No Obj: 0.002030, .5R: 1.000000, .75R: 0.897436, count: 39, class_loss = 0.028594, iou_loss = 0.398118, total_loss = 0.426712 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829251, GIOU: 0.825188), Class: 0.990195, Obj: 0.883946, No Obj: 0.002971, .5R: 0.983264, .75R: 0.874477, count: 239, class_loss = 0.431901, iou_loss = 22.436489, total_loss = 22.868391 \n",
" total_bbox = 806236, rewritten_bbox = 0.038078 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3403: 0.230424, 0.225076 avg loss, 0.000261 rate, 1.245950 seconds, 217792 images, 0.254061 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854518, GIOU: 0.852482), Class: 0.998864, Obj: 0.892501, No Obj: 0.002199, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.060448, iou_loss = 0.382849, total_loss = 0.443297 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826670, GIOU: 0.821373), Class: 0.998262, Obj: 0.848916, No Obj: 0.002198, .5R: 0.988764, .75R: 0.859551, count: 178, class_loss = 0.362402, iou_loss = 15.214670, total_loss = 15.577072 \n",
" total_bbox = 806457, rewritten_bbox = 0.038192 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3404: 0.211600, 0.223728 avg loss, 0.000261 rate, 1.289187 seconds, 217856 images, 0.253697 hours left\n",
"Loaded: 0.000079 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848168, GIOU: 0.843739), Class: 0.990753, Obj: 0.896930, No Obj: 0.002170, .5R: 1.000000, .75R: 0.902439, count: 41, class_loss = 0.038633, iou_loss = 0.297677, total_loss = 0.336310 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827691, GIOU: 0.820240), Class: 0.990272, Obj: 0.829756, No Obj: 0.002143, .5R: 0.988889, .75R: 0.822222, count: 180, class_loss = 0.441882, iou_loss = 16.392021, total_loss = 16.833902 \n",
" total_bbox = 806678, rewritten_bbox = 0.038181 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3405: 0.240435, 0.225399 avg loss, 0.000261 rate, 1.201083 seconds, 217920 images, 0.253295 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846738, GIOU: 0.844033), Class: 0.994143, Obj: 0.871748, No Obj: 0.001915, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.069077, iou_loss = 0.312547, total_loss = 0.381623 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825327, GIOU: 0.819852), Class: 0.989707, Obj: 0.822373, No Obj: 0.002274, .5R: 0.973545, .75R: 0.846561, count: 189, class_loss = 0.479130, iou_loss = 15.667341, total_loss = 16.146471 \n",
" total_bbox = 806906, rewritten_bbox = 0.038170 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3406: 0.274283, 0.230287 avg loss, 0.000261 rate, 1.173981 seconds, 217984 images, 0.252748 hours left\n",
"Loaded: 0.028176 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860177, GIOU: 0.856718), Class: 0.993567, Obj: 0.946918, No Obj: 0.002298, .5R: 1.000000, .75R: 0.918919, count: 37, class_loss = 0.031463, iou_loss = 0.393968, total_loss = 0.425431 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838375, GIOU: 0.833238), Class: 0.998141, Obj: 0.891798, No Obj: 0.002391, .5R: 0.983240, .75R: 0.893855, count: 179, class_loss = 0.309124, iou_loss = 15.022916, total_loss = 15.332040 \n",
" total_bbox = 807122, rewritten_bbox = 0.038160 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3407: 0.170459, 0.224304 avg loss, 0.000261 rate, 1.306288 seconds, 218048 images, 0.252157 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844969, GIOU: 0.841883), Class: 0.970384, Obj: 0.843031, No Obj: 0.002046, .5R: 1.000000, .75R: 0.941176, count: 34, class_loss = 0.120228, iou_loss = 0.285087, total_loss = 0.405315 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839195, GIOU: 0.834620), Class: 0.994891, Obj: 0.897330, No Obj: 0.002874, .5R: 0.986175, .75R: 0.894009, count: 217, class_loss = 0.306652, iou_loss = 18.916582, total_loss = 19.223234 \n",
" total_bbox = 807373, rewritten_bbox = 0.038148 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3408: 0.213613, 0.223235 avg loss, 0.000261 rate, 1.304618 seconds, 218112 images, 0.251834 hours left\n",
"Loaded: 0.068866 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847817, GIOU: 0.844697), Class: 0.998405, Obj: 0.854212, No Obj: 0.001671, .5R: 0.969697, .75R: 0.848485, count: 33, class_loss = 0.053814, iou_loss = 0.258756, total_loss = 0.312569 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840914, GIOU: 0.837270), Class: 0.991750, Obj: 0.868296, No Obj: 0.002635, .5R: 0.995261, .75R: 0.881517, count: 211, class_loss = 0.387319, iou_loss = 20.306812, total_loss = 20.694132 \n",
" total_bbox = 807617, rewritten_bbox = 0.038137 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3409: 0.220737, 0.222985 avg loss, 0.000261 rate, 1.260508 seconds, 218176 images, 0.251461 hours left\n",
"Loaded: 0.024896 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850523, GIOU: 0.846852), Class: 0.998629, Obj: 0.906985, No Obj: 0.002714, .5R: 1.000000, .75R: 0.959184, count: 49, class_loss = 0.066214, iou_loss = 0.429272, total_loss = 0.495486 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835274, GIOU: 0.827246), Class: 0.985979, Obj: 0.878822, No Obj: 0.002550, .5R: 0.985000, .75R: 0.880000, count: 200, class_loss = 0.385103, iou_loss = 18.932896, total_loss = 19.317999 \n",
" total_bbox = 807866, rewritten_bbox = 0.038125 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3410: 0.225831, 0.223270 avg loss, 0.000261 rate, 1.300566 seconds, 218240 images, 0.251129 hours left\n",
"Loaded: 0.267626 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852335, GIOU: 0.847484), Class: 0.996594, Obj: 0.839945, No Obj: 0.001833, .5R: 1.000000, .75R: 0.878788, count: 33, class_loss = 0.087138, iou_loss = 0.301927, total_loss = 0.389065 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839429, GIOU: 0.835180), Class: 0.989016, Obj: 0.888960, No Obj: 0.002146, .5R: 0.983051, .75R: 0.881356, count: 177, class_loss = 0.304528, iou_loss = 16.653839, total_loss = 16.958368 \n",
" total_bbox = 808076, rewritten_bbox = 0.038115 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3411: 0.196002, 0.220543 avg loss, 0.000261 rate, 1.215915 seconds, 218304 images, 0.250790 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856832, GIOU: 0.854091), Class: 0.999644, Obj: 0.956147, No Obj: 0.002654, .5R: 1.000000, .75R: 0.931818, count: 44, class_loss = 0.054567, iou_loss = 0.479275, total_loss = 0.533842 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837434, GIOU: 0.832512), Class: 0.987915, Obj: 0.888921, No Obj: 0.002495, .5R: 0.984043, .75R: 0.893617, count: 188, class_loss = 0.304773, iou_loss = 14.126619, total_loss = 14.431393 \n",
" total_bbox = 808308, rewritten_bbox = 0.038104 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3412: 0.179837, 0.216472 avg loss, 0.000261 rate, 1.264283 seconds, 218368 images, 0.250709 hours left\n",
"Loaded: 0.000049 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834739, GIOU: 0.831326), Class: 0.985345, Obj: 0.823614, No Obj: 0.001966, .5R: 1.000000, .75R: 0.861111, count: 36, class_loss = 0.091289, iou_loss = 0.311219, total_loss = 0.402507 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827328, GIOU: 0.820500), Class: 0.985846, Obj: 0.863978, No Obj: 0.002074, .5R: 0.979866, .75R: 0.859060, count: 149, class_loss = 0.385622, iou_loss = 12.480744, total_loss = 12.866366 \n",
" total_bbox = 808493, rewritten_bbox = 0.038096 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3413: 0.238640, 0.218689 avg loss, 0.000261 rate, 1.347630 seconds, 218432 images, 0.250267 hours left\n",
"Loaded: 0.040462 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865985, GIOU: 0.862751), Class: 0.998473, Obj: 0.884795, No Obj: 0.002677, .5R: 1.000000, .75R: 0.945455, count: 55, class_loss = 0.074696, iou_loss = 0.535272, total_loss = 0.609968 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839137, GIOU: 0.833553), Class: 0.992638, Obj: 0.864181, No Obj: 0.002609, .5R: 0.995074, .75R: 0.881773, count: 203, class_loss = 0.423395, iou_loss = 16.529385, total_loss = 16.952780 \n",
" total_bbox = 808751, rewritten_bbox = 0.038083 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3414: 0.249207, 0.221741 avg loss, 0.000261 rate, 1.229756 seconds, 218496 images, 0.249962 hours left\n",
"Loaded: 0.019982 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836145, GIOU: 0.831140), Class: 0.991595, Obj: 0.877501, No Obj: 0.002119, .5R: 0.972222, .75R: 0.805556, count: 36, class_loss = 0.103139, iou_loss = 0.309318, total_loss = 0.412457 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844392, GIOU: 0.840387), Class: 0.996950, Obj: 0.915451, No Obj: 0.002438, .5R: 0.994318, .75R: 0.926136, count: 176, class_loss = 0.215966, iou_loss = 14.160584, total_loss = 14.376551 \n",
" total_bbox = 808963, rewritten_bbox = 0.038073 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3415: 0.159727, 0.215540 avg loss, 0.000261 rate, 1.209682 seconds, 218560 images, 0.249530 hours left\n",
"Loaded: 0.000079 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856549, GIOU: 0.853346), Class: 0.997665, Obj: 0.898927, No Obj: 0.002342, .5R: 1.000000, .75R: 0.893617, count: 47, class_loss = 0.055517, iou_loss = 0.430110, total_loss = 0.485626 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847100, GIOU: 0.843331), Class: 0.997247, Obj: 0.886116, No Obj: 0.002397, .5R: 0.994652, .75R: 0.909091, count: 187, class_loss = 0.292455, iou_loss = 17.006649, total_loss = 17.299105 \n",
" total_bbox = 809197, rewritten_bbox = 0.038062 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3416: 0.174148, 0.211400 avg loss, 0.000261 rate, 1.223149 seconds, 218624 images, 0.249033 hours left\n",
"Loaded: 0.000055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868687, GIOU: 0.865326), Class: 0.986616, Obj: 0.914763, No Obj: 0.002579, .5R: 1.000000, .75R: 0.893617, count: 47, class_loss = 0.076061, iou_loss = 0.470415, total_loss = 0.546475 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836395, GIOU: 0.831239), Class: 0.985880, Obj: 0.873484, No Obj: 0.002411, .5R: 0.977143, .75R: 0.874286, count: 175, class_loss = 0.413846, iou_loss = 15.008335, total_loss = 15.422181 \n",
" total_bbox = 809419, rewritten_bbox = 0.038052 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3417: 0.245114, 0.214772 avg loss, 0.000261 rate, 1.207557 seconds, 218688 images, 0.248527 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864514, GIOU: 0.862068), Class: 0.997270, Obj: 0.866460, No Obj: 0.002643, .5R: 1.000000, .75R: 0.918367, count: 49, class_loss = 0.088895, iou_loss = 0.478486, total_loss = 0.567381 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847732, GIOU: 0.843637), Class: 0.993019, Obj: 0.901213, No Obj: 0.002902, .5R: 1.000000, .75R: 0.901869, count: 214, class_loss = 0.348578, iou_loss = 14.556696, total_loss = 14.905274 \n",
" total_bbox = 809682, rewritten_bbox = 0.038040 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3418: 0.218894, 0.215184 avg loss, 0.000261 rate, 1.380208 seconds, 218752 images, 0.247998 hours left\n",
"Loaded: 0.098710 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857999, GIOU: 0.854784), Class: 0.998973, Obj: 0.904388, No Obj: 0.002034, .5R: 1.000000, .75R: 0.878049, count: 41, class_loss = 0.066067, iou_loss = 0.406756, total_loss = 0.472823 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843662, GIOU: 0.840047), Class: 0.995482, Obj: 0.883770, No Obj: 0.002394, .5R: 0.994083, .75R: 0.869823, count: 169, class_loss = 0.432239, iou_loss = 14.299703, total_loss = 14.731941 \n",
" total_bbox = 809892, rewritten_bbox = 0.038030 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3419: 0.249316, 0.218597 avg loss, 0.000261 rate, 1.259609 seconds, 218816 images, 0.247749 hours left\n",
"Loaded: 0.038368 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834000, GIOU: 0.830271), Class: 0.998950, Obj: 0.878775, No Obj: 0.002209, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.073976, iou_loss = 0.347775, total_loss = 0.421751 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839489, GIOU: 0.835418), Class: 0.998279, Obj: 0.887674, No Obj: 0.002555, .5R: 0.994681, .75R: 0.898936, count: 188, class_loss = 0.319829, iou_loss = 16.145119, total_loss = 16.464947 \n",
" total_bbox = 810123, rewritten_bbox = 0.038019 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3420: 0.197081, 0.216446 avg loss, 0.000261 rate, 1.226850 seconds, 218880 images, 0.247464 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864925, GIOU: 0.861760), Class: 0.999463, Obj: 0.939883, No Obj: 0.002308, .5R: 1.000000, .75R: 0.976191, count: 42, class_loss = 0.039249, iou_loss = 0.360263, total_loss = 0.399513 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844006, GIOU: 0.836864), Class: 0.984754, Obj: 0.862329, No Obj: 0.002686, .5R: 0.985714, .75R: 0.890476, count: 210, class_loss = 0.444303, iou_loss = 17.949385, total_loss = 18.393688 \n",
" total_bbox = 810375, rewritten_bbox = 0.038007 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3421: 0.241936, 0.218995 avg loss, 0.000261 rate, 1.407069 seconds, 218944 images, 0.247027 hours left\n",
"Loaded: 0.200138 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846079, GIOU: 0.843575), Class: 0.998648, Obj: 0.947383, No Obj: 0.001870, .5R: 1.000000, .75R: 0.866667, count: 30, class_loss = 0.028926, iou_loss = 0.235275, total_loss = 0.264201 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830535, GIOU: 0.825416), Class: 0.994936, Obj: 0.868095, No Obj: 0.002639, .5R: 0.980676, .75R: 0.859903, count: 207, class_loss = 0.459448, iou_loss = 17.359673, total_loss = 17.819120 \n",
" total_bbox = 810612, rewritten_bbox = 0.037996 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3422: 0.244364, 0.221531 avg loss, 0.000261 rate, 1.178285 seconds, 219008 images, 0.246820 hours left\n",
"Loaded: 0.314914 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858385, GIOU: 0.856053), Class: 0.999662, Obj: 0.955742, No Obj: 0.001670, .5R: 1.000000, .75R: 0.968750, count: 32, class_loss = 0.016432, iou_loss = 0.276905, total_loss = 0.293336 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836185, GIOU: 0.831728), Class: 0.994621, Obj: 0.900560, No Obj: 0.002515, .5R: 0.984456, .75R: 0.896373, count: 193, class_loss = 0.277528, iou_loss = 18.275728, total_loss = 18.553257 \n",
" total_bbox = 810837, rewritten_bbox = 0.038109 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3423: 0.147147, 0.214093 avg loss, 0.000261 rate, 1.291692 seconds, 219072 images, 0.246565 hours left\n",
"Loaded: 0.218164 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865353, GIOU: 0.863264), Class: 0.999680, Obj: 0.943354, No Obj: 0.002080, .5R: 1.000000, .75R: 0.972222, count: 36, class_loss = 0.039656, iou_loss = 0.403579, total_loss = 0.443235 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840898, GIOU: 0.836708), Class: 0.989951, Obj: 0.878154, No Obj: 0.002568, .5R: 1.000000, .75R: 0.881081, count: 185, class_loss = 0.454275, iou_loss = 14.455905, total_loss = 14.910179 \n",
" total_bbox = 811058, rewritten_bbox = 0.038098 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3424: 0.247126, 0.217396 avg loss, 0.000261 rate, 1.177910 seconds, 219136 images, 0.246675 hours left\n",
"Loaded: 0.000061 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857079, GIOU: 0.851924), Class: 0.994095, Obj: 0.878801, No Obj: 0.002690, .5R: 1.000000, .75R: 0.849057, count: 53, class_loss = 0.105165, iou_loss = 0.574228, total_loss = 0.679393 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839696, GIOU: 0.831236), Class: 0.981523, Obj: 0.874039, No Obj: 0.002444, .5R: 0.970588, .75R: 0.894118, count: 170, class_loss = 0.409646, iou_loss = 8.790717, total_loss = 9.200363 \n",
" total_bbox = 811281, rewritten_bbox = 0.038088 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3425: 0.257571, 0.221414 avg loss, 0.000261 rate, 1.194401 seconds, 219200 images, 0.246442 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857186, GIOU: 0.854013), Class: 0.998842, Obj: 0.866587, No Obj: 0.001943, .5R: 0.973684, .75R: 0.921053, count: 38, class_loss = 0.077778, iou_loss = 0.338989, total_loss = 0.416767 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827371, GIOU: 0.821327), Class: 0.993038, Obj: 0.867146, No Obj: 0.002549, .5R: 0.967213, .75R: 0.863388, count: 183, class_loss = 0.409867, iou_loss = 15.987281, total_loss = 16.397148 \n",
" total_bbox = 811502, rewritten_bbox = 0.038078 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3426: 0.243995, 0.223672 avg loss, 0.000261 rate, 1.201588 seconds, 219264 images, 0.245885 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837544, GIOU: 0.830364), Class: 0.996383, Obj: 0.903221, No Obj: 0.001954, .5R: 0.973684, .75R: 0.868421, count: 38, class_loss = 0.079499, iou_loss = 0.372104, total_loss = 0.451603 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846413, GIOU: 0.842898), Class: 0.995778, Obj: 0.870459, No Obj: 0.003191, .5R: 1.000000, .75R: 0.897233, count: 253, class_loss = 0.437599, iou_loss = 24.266489, total_loss = 24.704088 \n",
" total_bbox = 811793, rewritten_bbox = 0.038064 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3427: 0.258722, 0.227177 avg loss, 0.000261 rate, 1.232001 seconds, 219328 images, 0.245342 hours left\n",
"Loaded: 0.070613 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852286, GIOU: 0.849768), Class: 0.998296, Obj: 0.896020, No Obj: 0.001908, .5R: 1.000000, .75R: 0.875000, count: 32, class_loss = 0.077576, iou_loss = 0.257229, total_loss = 0.334805 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840285, GIOU: 0.834622), Class: 0.984801, Obj: 0.868065, No Obj: 0.002467, .5R: 0.984615, .75R: 0.861538, count: 195, class_loss = 0.393343, iou_loss = 15.865074, total_loss = 16.258417 \n",
" total_bbox = 812020, rewritten_bbox = 0.038053 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3428: 0.235628, 0.228022 avg loss, 0.000261 rate, 1.153771 seconds, 219392 images, 0.244850 hours left\n",
"Loaded: 0.006933 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856549, GIOU: 0.851890), Class: 0.998650, Obj: 0.864367, No Obj: 0.002397, .5R: 1.000000, .75R: 0.957447, count: 47, class_loss = 0.061091, iou_loss = 0.425109, total_loss = 0.486200 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834739, GIOU: 0.827956), Class: 0.990664, Obj: 0.875258, No Obj: 0.001947, .5R: 0.986667, .75R: 0.853333, count: 150, class_loss = 0.347927, iou_loss = 13.239100, total_loss = 13.587028 \n",
" total_bbox = 812217, rewritten_bbox = 0.038044 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3429: 0.204678, 0.225688 avg loss, 0.000261 rate, 1.283194 seconds, 219456 images, 0.244347 hours left\n",
"Loaded: 0.114939 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856150, GIOU: 0.852888), Class: 0.999511, Obj: 0.905388, No Obj: 0.002175, .5R: 1.000000, .75R: 0.928571, count: 42, class_loss = 0.045681, iou_loss = 0.393295, total_loss = 0.438976 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847880, GIOU: 0.844070), Class: 0.997877, Obj: 0.892289, No Obj: 0.002581, .5R: 1.000000, .75R: 0.902439, count: 205, class_loss = 0.293971, iou_loss = 17.493217, total_loss = 17.787188 \n",
" total_bbox = 812464, rewritten_bbox = 0.038032 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3430: 0.169988, 0.220118 avg loss, 0.000261 rate, 1.185786 seconds, 219520 images, 0.243950 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844662, GIOU: 0.839276), Class: 0.998174, Obj: 0.912072, No Obj: 0.002286, .5R: 1.000000, .75R: 0.837209, count: 43, class_loss = 0.039668, iou_loss = 0.430151, total_loss = 0.469818 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845571, GIOU: 0.841075), Class: 0.993021, Obj: 0.857192, No Obj: 0.003054, .5R: 0.995536, .75R: 0.883929, count: 224, class_loss = 0.436649, iou_loss = 18.699770, total_loss = 19.136419 \n",
" total_bbox = 812731, rewritten_bbox = 0.038020 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3431: 0.238328, 0.221939 avg loss, 0.000261 rate, 1.278691 seconds, 219584 images, 0.243570 hours left\n",
"Loaded: 0.018217 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835772, GIOU: 0.832055), Class: 0.993721, Obj: 0.835749, No Obj: 0.002282, .5R: 0.978723, .75R: 0.893617, count: 47, class_loss = 0.103542, iou_loss = 0.437733, total_loss = 0.541275 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828573, GIOU: 0.822504), Class: 0.990657, Obj: 0.876741, No Obj: 0.002559, .5R: 0.989418, .75R: 0.851852, count: 189, class_loss = 0.402852, iou_loss = 16.369278, total_loss = 16.772129 \n",
" total_bbox = 812967, rewritten_bbox = 0.038009 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3432: 0.253380, 0.225083 avg loss, 0.000261 rate, 1.258724 seconds, 219648 images, 0.243155 hours left\n",
"Loaded: 0.000049 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.875630, GIOU: 0.874497), Class: 0.999395, Obj: 0.912533, No Obj: 0.002573, .5R: 1.000000, .75R: 0.957447, count: 47, class_loss = 0.078831, iou_loss = 0.413313, total_loss = 0.492143 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.858246, GIOU: 0.854609), Class: 0.998218, Obj: 0.935748, No Obj: 0.001960, .5R: 0.992647, .75R: 0.941176, count: 136, class_loss = 0.126510, iou_loss = 9.364552, total_loss = 9.491061 \n",
" total_bbox = 813150, rewritten_bbox = 0.038000 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3433: 0.102816, 0.212856 avg loss, 0.000261 rate, 1.325472 seconds, 219712 images, 0.242738 hours left\n",
"Loaded: 0.062520 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845619, GIOU: 0.840079), Class: 0.995560, Obj: 0.882463, No Obj: 0.002193, .5R: 1.000000, .75R: 0.853658, count: 41, class_loss = 0.066022, iou_loss = 0.420670, total_loss = 0.486693 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827425, GIOU: 0.822171), Class: 0.996570, Obj: 0.859518, No Obj: 0.002733, .5R: 0.986956, .75R: 0.843478, count: 230, class_loss = 0.447295, iou_loss = 21.746115, total_loss = 22.193409 \n",
" total_bbox = 813421, rewritten_bbox = 0.037988 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3434: 0.256837, 0.217254 avg loss, 0.000261 rate, 1.265854 seconds, 219776 images, 0.242399 hours left\n",
"Loaded: 0.004217 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868114, GIOU: 0.865537), Class: 0.998585, Obj: 0.904184, No Obj: 0.001978, .5R: 1.000000, .75R: 0.918919, count: 37, class_loss = 0.037144, iou_loss = 0.313099, total_loss = 0.350243 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836656, GIOU: 0.831602), Class: 0.993111, Obj: 0.873926, No Obj: 0.002511, .5R: 0.989637, .75R: 0.917098, count: 193, class_loss = 0.376545, iou_loss = 17.359430, total_loss = 17.735975 \n",
" total_bbox = 813651, rewritten_bbox = 0.037977 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3435: 0.207006, 0.216229 avg loss, 0.000261 rate, 1.202766 seconds, 219840 images, 0.242063 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845394, GIOU: 0.841796), Class: 0.997708, Obj: 0.905461, No Obj: 0.001991, .5R: 1.000000, .75R: 0.894737, count: 38, class_loss = 0.051387, iou_loss = 0.278740, total_loss = 0.330127 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825186, GIOU: 0.820227), Class: 0.994446, Obj: 0.865618, No Obj: 0.002657, .5R: 0.991071, .75R: 0.852679, count: 224, class_loss = 0.415191, iou_loss = 22.331045, total_loss = 22.746237 \n",
" total_bbox = 813913, rewritten_bbox = 0.037965 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3436: 0.233469, 0.217953 avg loss, 0.000261 rate, 1.231650 seconds, 219904 images, 0.241537 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.815159, GIOU: 0.808024), Class: 0.997290, Obj: 0.840011, No Obj: 0.002166, .5R: 0.977273, .75R: 0.772727, count: 44, class_loss = 0.079458, iou_loss = 0.372388, total_loss = 0.451846 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836189, GIOU: 0.831298), Class: 0.990588, Obj: 0.832398, No Obj: 0.002504, .5R: 0.984375, .75R: 0.895833, count: 192, class_loss = 0.442782, iou_loss = 16.321404, total_loss = 16.764185 \n",
" total_bbox = 814149, rewritten_bbox = 0.038077 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3437: 0.261311, 0.222289 avg loss, 0.000261 rate, 1.245647 seconds, 219968 images, 0.241051 hours left\n",
"Loaded: 0.000082 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855927, GIOU: 0.852405), Class: 0.993644, Obj: 0.901027, No Obj: 0.002512, .5R: 1.000000, .75R: 0.959184, count: 49, class_loss = 0.047270, iou_loss = 0.491525, total_loss = 0.538795 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845860, GIOU: 0.841483), Class: 0.997468, Obj: 0.884159, No Obj: 0.002494, .5R: 1.000000, .75R: 0.897297, count: 185, class_loss = 0.286184, iou_loss = 13.650524, total_loss = 13.936708 \n",
" total_bbox = 814383, rewritten_bbox = 0.038066 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3438: 0.166890, 0.216749 avg loss, 0.000261 rate, 1.296720 seconds, 220032 images, 0.240589 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843154, GIOU: 0.838053), Class: 0.996302, Obj: 0.853623, No Obj: 0.001799, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.070229, iou_loss = 0.255643, total_loss = 0.325872 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845823, GIOU: 0.842348), Class: 0.996818, Obj: 0.865740, No Obj: 0.002726, .5R: 1.000000, .75R: 0.903226, count: 217, class_loss = 0.362224, iou_loss = 21.084259, total_loss = 21.446484 \n",
" total_bbox = 814634, rewritten_bbox = 0.038054 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3439: 0.216397, 0.216714 avg loss, 0.000261 rate, 1.256190 seconds, 220096 images, 0.240207 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870435, GIOU: 0.866384), Class: 0.992947, Obj: 0.934411, No Obj: 0.002458, .5R: 1.000000, .75R: 0.909091, count: 44, class_loss = 0.034583, iou_loss = 0.388253, total_loss = 0.422836 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836024, GIOU: 0.831090), Class: 0.987344, Obj: 0.856006, No Obj: 0.002983, .5R: 0.995595, .75R: 0.841410, count: 227, class_loss = 0.492698, iou_loss = 18.225832, total_loss = 18.718531 \n",
" total_bbox = 814905, rewritten_bbox = 0.038041 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3440: 0.263801, 0.221423 avg loss, 0.000261 rate, 1.191957 seconds, 220160 images, 0.239763 hours left\n",
"Loaded: 0.000062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.832969, GIOU: 0.827371), Class: 0.991666, Obj: 0.857949, No Obj: 0.002294, .5R: 1.000000, .75R: 0.857143, count: 49, class_loss = 0.100661, iou_loss = 0.326205, total_loss = 0.426866 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834431, GIOU: 0.828777), Class: 0.986563, Obj: 0.884076, No Obj: 0.002115, .5R: 1.000000, .75R: 0.890323, count: 155, class_loss = 0.276217, iou_loss = 10.246182, total_loss = 10.522400 \n",
" total_bbox = 815109, rewritten_bbox = 0.038032 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3441: 0.188621, 0.218143 avg loss, 0.000261 rate, 1.283123 seconds, 220224 images, 0.239220 hours left\n",
"Loaded: 0.135478 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857386, GIOU: 0.853898), Class: 0.999382, Obj: 0.926414, No Obj: 0.002320, .5R: 1.000000, .75R: 0.956522, count: 46, class_loss = 0.050390, iou_loss = 0.418444, total_loss = 0.468834 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838237, GIOU: 0.830791), Class: 0.995617, Obj: 0.835856, No Obj: 0.002129, .5R: 0.993289, .75R: 0.899329, count: 149, class_loss = 0.385085, iou_loss = 11.227571, total_loss = 11.612656 \n",
" total_bbox = 815304, rewritten_bbox = 0.038023 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3442: 0.217904, 0.218119 avg loss, 0.000261 rate, 1.228714 seconds, 220288 images, 0.238820 hours left\n",
"Loaded: 0.369052 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845281, GIOU: 0.840293), Class: 0.996251, Obj: 0.858562, No Obj: 0.002596, .5R: 1.000000, .75R: 0.901961, count: 51, class_loss = 0.079192, iou_loss = 0.407145, total_loss = 0.486337 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838608, GIOU: 0.834486), Class: 0.995892, Obj: 0.870195, No Obj: 0.002429, .5R: 0.983425, .75R: 0.867403, count: 181, class_loss = 0.294262, iou_loss = 14.429770, total_loss = 14.724031 \n",
" total_bbox = 815536, rewritten_bbox = 0.038012 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3443: 0.186900, 0.214997 avg loss, 0.000261 rate, 1.144704 seconds, 220352 images, 0.238546 hours left\n",
"Loaded: 0.097146 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860173, GIOU: 0.856520), Class: 0.994892, Obj: 0.907810, No Obj: 0.002697, .5R: 1.000000, .75R: 0.958333, count: 48, class_loss = 0.050461, iou_loss = 0.433604, total_loss = 0.484065 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840674, GIOU: 0.835842), Class: 0.994108, Obj: 0.871372, No Obj: 0.002600, .5R: 0.989362, .75R: 0.888298, count: 188, class_loss = 0.343183, iou_loss = 15.602119, total_loss = 15.945302 \n",
" total_bbox = 815772, rewritten_bbox = 0.038001 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3444: 0.196985, 0.213196 avg loss, 0.000261 rate, 1.273488 seconds, 220416 images, 0.238503 hours left\n",
"Loaded: 0.238524 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842567, GIOU: 0.838715), Class: 0.994887, Obj: 0.842462, No Obj: 0.002617, .5R: 1.000000, .75R: 0.862745, count: 51, class_loss = 0.114264, iou_loss = 0.411548, total_loss = 0.525812 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839174, GIOU: 0.832489), Class: 0.995066, Obj: 0.876507, No Obj: 0.002089, .5R: 0.985915, .75R: 0.887324, count: 142, class_loss = 0.249810, iou_loss = 9.825654, total_loss = 10.075464 \n",
" total_bbox = 815965, rewritten_bbox = 0.037992 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3445: 0.182211, 0.210097 avg loss, 0.000261 rate, 1.215258 seconds, 220480 images, 0.238235 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865047, GIOU: 0.863455), Class: 0.996174, Obj: 0.930793, No Obj: 0.001673, .5R: 1.000000, .75R: 0.937500, count: 32, class_loss = 0.025132, iou_loss = 0.277818, total_loss = 0.302950 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847636, GIOU: 0.844358), Class: 0.991976, Obj: 0.911732, No Obj: 0.002461, .5R: 1.000000, .75R: 0.918919, count: 185, class_loss = 0.334807, iou_loss = 16.137388, total_loss = 16.472195 \n",
" total_bbox = 816182, rewritten_bbox = 0.037982 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3446: 0.180127, 0.207100 avg loss, 0.000261 rate, 1.228425 seconds, 220544 images, 0.238094 hours left\n",
"Loaded: 0.396525 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864695, GIOU: 0.861089), Class: 0.998677, Obj: 0.934035, No Obj: 0.001816, .5R: 1.000000, .75R: 0.972222, count: 36, class_loss = 0.029130, iou_loss = 0.345926, total_loss = 0.375056 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820677, GIOU: 0.813738), Class: 0.992660, Obj: 0.873961, No Obj: 0.002881, .5R: 0.981221, .75R: 0.816901, count: 213, class_loss = 0.592949, iou_loss = 16.136620, total_loss = 16.729568 \n",
" total_bbox = 816431, rewritten_bbox = 0.037970 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3447: 0.311212, 0.217511 avg loss, 0.000261 rate, 1.254593 seconds, 220608 images, 0.237603 hours left\n",
"Loaded: 0.155753 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839833, GIOU: 0.836024), Class: 0.999462, Obj: 0.921853, No Obj: 0.001902, .5R: 1.000000, .75R: 0.944444, count: 36, class_loss = 0.027827, iou_loss = 0.343756, total_loss = 0.371583 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830628, GIOU: 0.825743), Class: 0.994268, Obj: 0.862179, No Obj: 0.003039, .5R: 0.983471, .75R: 0.876033, count: 242, class_loss = 0.486067, iou_loss = 19.906319, total_loss = 20.392385 \n",
" total_bbox = 816709, rewritten_bbox = 0.037957 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3448: 0.257127, 0.221473 avg loss, 0.000261 rate, 1.194566 seconds, 220672 images, 0.237764 hours left\n",
"Loaded: 0.000071 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828657, GIOU: 0.823714), Class: 0.998069, Obj: 0.829411, No Obj: 0.002136, .5R: 0.973684, .75R: 0.894737, count: 38, class_loss = 0.106003, iou_loss = 0.293521, total_loss = 0.399525 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838711, GIOU: 0.834590), Class: 0.997703, Obj: 0.897115, No Obj: 0.002517, .5R: 0.994536, .75R: 0.874317, count: 183, class_loss = 0.363602, iou_loss = 14.559072, total_loss = 14.922674 \n",
" total_bbox = 816930, rewritten_bbox = 0.037947 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3449: 0.234984, 0.222824 avg loss, 0.000261 rate, 1.308353 seconds, 220736 images, 0.237457 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837187, GIOU: 0.832603), Class: 0.997492, Obj: 0.905370, No Obj: 0.001969, .5R: 1.000000, .75R: 0.833333, count: 36, class_loss = 0.086193, iou_loss = 0.358553, total_loss = 0.444746 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837708, GIOU: 0.832819), Class: 0.994628, Obj: 0.874568, No Obj: 0.002715, .5R: 0.990431, .75R: 0.894737, count: 209, class_loss = 0.399582, iou_loss = 19.386194, total_loss = 19.785776 \n",
" total_bbox = 817175, rewritten_bbox = 0.037936 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3450: 0.243065, 0.224848 avg loss, 0.000261 rate, 1.325223 seconds, 220800 images, 0.237085 hours left\n",
"Loaded: 0.028573 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831871, GIOU: 0.827216), Class: 0.999362, Obj: 0.885220, No Obj: 0.002127, .5R: 1.000000, .75R: 0.842105, count: 38, class_loss = 0.071984, iou_loss = 0.302353, total_loss = 0.374337 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.823855, GIOU: 0.817334), Class: 0.988087, Obj: 0.853479, No Obj: 0.002530, .5R: 0.984615, .75R: 0.841026, count: 195, class_loss = 0.480678, iou_loss = 15.715251, total_loss = 16.195929 \n",
" total_bbox = 817408, rewritten_bbox = 0.038047 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3451: 0.276519, 0.230015 avg loss, 0.000261 rate, 1.223806 seconds, 220864 images, 0.236739 hours left\n",
"Loaded: 0.121573 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852594, GIOU: 0.848703), Class: 0.995750, Obj: 0.909018, No Obj: 0.002009, .5R: 1.000000, .75R: 0.864865, count: 37, class_loss = 0.040346, iou_loss = 0.293782, total_loss = 0.334128 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825159, GIOU: 0.820158), Class: 0.986559, Obj: 0.830331, No Obj: 0.002941, .5R: 0.991903, .75R: 0.817814, count: 247, class_loss = 0.618675, iou_loss = 22.081104, total_loss = 22.699780 \n",
" total_bbox = 817692, rewritten_bbox = 0.038034 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3452: 0.329687, 0.239982 avg loss, 0.000261 rate, 1.123994 seconds, 220928 images, 0.236281 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863967, GIOU: 0.861949), Class: 0.999315, Obj: 0.928739, No Obj: 0.002240, .5R: 1.000000, .75R: 1.000000, count: 39, class_loss = 0.030204, iou_loss = 0.372698, total_loss = 0.402902 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844971, GIOU: 0.840480), Class: 0.998643, Obj: 0.892830, No Obj: 0.002647, .5R: 1.000000, .75R: 0.898396, count: 187, class_loss = 0.342179, iou_loss = 14.186638, total_loss = 14.528816 \n",
" total_bbox = 817918, rewritten_bbox = 0.038023 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3453: 0.186351, 0.234619 avg loss, 0.000261 rate, 1.248315 seconds, 220992 images, 0.235814 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836602, GIOU: 0.832154), Class: 0.999032, Obj: 0.878080, No Obj: 0.001818, .5R: 1.000000, .75R: 0.827586, count: 29, class_loss = 0.040812, iou_loss = 0.226739, total_loss = 0.267551 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843734, GIOU: 0.839602), Class: 0.991515, Obj: 0.893442, No Obj: 0.002317, .5R: 1.000000, .75R: 0.909091, count: 176, class_loss = 0.295886, iou_loss = 16.781660, total_loss = 17.077545 \n",
" total_bbox = 818123, rewritten_bbox = 0.038014 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3454: 0.168524, 0.228010 avg loss, 0.000261 rate, 1.322516 seconds, 221056 images, 0.235353 hours left\n",
"Loaded: 0.000050 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841821, GIOU: 0.839920), Class: 0.988587, Obj: 0.821888, No Obj: 0.002181, .5R: 0.974359, .75R: 0.897436, count: 39, class_loss = 0.122366, iou_loss = 0.384318, total_loss = 0.506684 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842705, GIOU: 0.838463), Class: 0.995647, Obj: 0.890410, No Obj: 0.003063, .5R: 0.995614, .75R: 0.877193, count: 228, class_loss = 0.313706, iou_loss = 21.453291, total_loss = 21.766998 \n",
" total_bbox = 818390, rewritten_bbox = 0.038001 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3455: 0.218209, 0.227030 avg loss, 0.000261 rate, 1.350734 seconds, 221120 images, 0.235005 hours left\n",
"Loaded: 0.007303 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.883825, GIOU: 0.881581), Class: 0.999097, Obj: 0.922719, No Obj: 0.002258, .5R: 1.000000, .75R: 1.000000, count: 42, class_loss = 0.045339, iou_loss = 0.435087, total_loss = 0.480426 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.855072, GIOU: 0.850992), Class: 0.997003, Obj: 0.897093, No Obj: 0.002559, .5R: 1.000000, .75R: 0.927778, count: 180, class_loss = 0.326482, iou_loss = 15.788470, total_loss = 16.114952 \n",
" total_bbox = 818612, rewritten_bbox = 0.037991 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3456: 0.186053, 0.222932 avg loss, 0.000261 rate, 1.286919 seconds, 221184 images, 0.234700 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856164, GIOU: 0.852952), Class: 0.976537, Obj: 0.899726, No Obj: 0.001873, .5R: 1.000000, .75R: 0.878788, count: 33, class_loss = 0.065902, iou_loss = 0.305752, total_loss = 0.371654 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837277, GIOU: 0.833058), Class: 0.988288, Obj: 0.887049, No Obj: 0.002256, .5R: 0.994118, .75R: 0.900000, count: 170, class_loss = 0.272464, iou_loss = 14.213615, total_loss = 14.486079 \n",
" total_bbox = 818815, rewritten_bbox = 0.037982 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3457: 0.169351, 0.217574 avg loss, 0.000261 rate, 1.343882 seconds, 221248 images, 0.234309 hours left\n",
"Loaded: 0.070002 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848951, GIOU: 0.846275), Class: 0.997377, Obj: 0.879603, No Obj: 0.002027, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.065708, iou_loss = 0.400098, total_loss = 0.465806 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843761, GIOU: 0.839843), Class: 0.977971, Obj: 0.876824, No Obj: 0.002514, .5R: 1.000000, .75R: 0.882353, count: 187, class_loss = 0.389609, iou_loss = 16.229378, total_loss = 16.618986 \n",
" total_bbox = 819039, rewritten_bbox = 0.037971 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3458: 0.227827, 0.218599 avg loss, 0.000261 rate, 1.190333 seconds, 221312 images, 0.233993 hours left\n",
"Loaded: 0.129939 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839800, GIOU: 0.832341), Class: 0.996011, Obj: 0.818140, No Obj: 0.002119, .5R: 1.000000, .75R: 0.902439, count: 41, class_loss = 0.111429, iou_loss = 0.306134, total_loss = 0.417563 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848032, GIOU: 0.844072), Class: 0.997384, Obj: 0.898186, No Obj: 0.002066, .5R: 1.000000, .75R: 0.928571, count: 154, class_loss = 0.220892, iou_loss = 15.348845, total_loss = 15.569737 \n",
" total_bbox = 819234, rewritten_bbox = 0.037962 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3459: 0.166331, 0.213372 avg loss, 0.000261 rate, 1.081580 seconds, 221376 images, 0.233551 hours left\n",
"Loaded: 0.000034 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864366, GIOU: 0.861423), Class: 0.996116, Obj: 0.875749, No Obj: 0.002441, .5R: 1.000000, .75R: 0.936170, count: 47, class_loss = 0.059949, iou_loss = 0.418495, total_loss = 0.478443 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829244, GIOU: 0.822531), Class: 0.986658, Obj: 0.832360, No Obj: 0.002100, .5R: 0.975460, .75R: 0.871166, count: 163, class_loss = 0.488285, iou_loss = 12.968543, total_loss = 13.456828 \n",
" total_bbox = 819444, rewritten_bbox = 0.037953 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3460: 0.274285, 0.219464 avg loss, 0.000261 rate, 1.202038 seconds, 221440 images, 0.233036 hours left\n",
"Loaded: 0.053308 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.820613, GIOU: 0.809912), Class: 0.997043, Obj: 0.863329, No Obj: 0.002013, .5R: 0.970588, .75R: 0.823529, count: 34, class_loss = 0.051109, iou_loss = 0.262613, total_loss = 0.313722 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836088, GIOU: 0.831366), Class: 0.990632, Obj: 0.882222, No Obj: 0.002654, .5R: 0.995215, .75R: 0.880383, count: 209, class_loss = 0.366244, iou_loss = 17.004032, total_loss = 17.370277 \n",
" total_bbox = 819687, rewritten_bbox = 0.037941 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3461: 0.208865, 0.218404 avg loss, 0.000261 rate, 1.222205 seconds, 221504 images, 0.232509 hours left\n",
"Loaded: 0.212921 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843444, GIOU: 0.839692), Class: 0.994599, Obj: 0.877526, No Obj: 0.001832, .5R: 1.000000, .75R: 0.827586, count: 29, class_loss = 0.046450, iou_loss = 0.237142, total_loss = 0.283592 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.853403, GIOU: 0.849779), Class: 0.991576, Obj: 0.895125, No Obj: 0.002446, .5R: 1.000000, .75R: 0.920904, count: 177, class_loss = 0.356152, iou_loss = 15.818962, total_loss = 16.175114 \n",
" total_bbox = 819893, rewritten_bbox = 0.037932 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3462: 0.201467, 0.216710 avg loss, 0.000261 rate, 1.260466 seconds, 221568 images, 0.232093 hours left\n",
"Loaded: 0.000060 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838499, GIOU: 0.834429), Class: 0.998765, Obj: 0.918564, No Obj: 0.002080, .5R: 1.000000, .75R: 0.947368, count: 38, class_loss = 0.051168, iou_loss = 0.374598, total_loss = 0.425766 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827783, GIOU: 0.823021), Class: 0.996371, Obj: 0.860820, No Obj: 0.002478, .5R: 0.994924, .75R: 0.812183, count: 197, class_loss = 0.412192, iou_loss = 17.565880, total_loss = 17.978071 \n",
" total_bbox = 820128, rewritten_bbox = 0.037921 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3463: 0.231862, 0.218225 avg loss, 0.000261 rate, 1.177397 seconds, 221632 images, 0.231974 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854231, GIOU: 0.850681), Class: 0.999456, Obj: 0.928828, No Obj: 0.002407, .5R: 1.000000, .75R: 0.913043, count: 46, class_loss = 0.046583, iou_loss = 0.466519, total_loss = 0.513102 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846110, GIOU: 0.842842), Class: 0.998579, Obj: 0.909793, No Obj: 0.002521, .5R: 1.000000, .75R: 0.894444, count: 180, class_loss = 0.284651, iou_loss = 14.570388, total_loss = 14.855039 \n",
" total_bbox = 820354, rewritten_bbox = 0.037910 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3464: 0.165781, 0.212981 avg loss, 0.000261 rate, 1.407592 seconds, 221696 images, 0.231411 hours left\n",
"Loaded: 0.021531 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849342, GIOU: 0.845706), Class: 0.999166, Obj: 0.926011, No Obj: 0.001787, .5R: 1.000000, .75R: 0.838710, count: 31, class_loss = 0.028742, iou_loss = 0.356883, total_loss = 0.385625 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837970, GIOU: 0.832962), Class: 0.995262, Obj: 0.877371, No Obj: 0.002618, .5R: 0.995074, .75R: 0.881773, count: 203, class_loss = 0.376546, iou_loss = 17.388779, total_loss = 17.765326 \n",
" total_bbox = 820588, rewritten_bbox = 0.037900 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3465: 0.202815, 0.211964 avg loss, 0.000261 rate, 1.203128 seconds, 221760 images, 0.231193 hours left\n",
"Loaded: 0.000082 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851100, GIOU: 0.846289), Class: 0.998967, Obj: 0.941093, No Obj: 0.002507, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.017188, iou_loss = 0.396908, total_loss = 0.414096 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840371, GIOU: 0.836152), Class: 0.994280, Obj: 0.890098, No Obj: 0.002234, .5R: 1.000000, .75R: 0.868571, count: 175, class_loss = 0.271946, iou_loss = 15.777973, total_loss = 16.049919 \n",
" total_bbox = 820809, rewritten_bbox = 0.037889 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3466: 0.144736, 0.205241 avg loss, 0.000261 rate, 1.179045 seconds, 221824 images, 0.230701 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831858, GIOU: 0.826208), Class: 0.998940, Obj: 0.892336, No Obj: 0.001884, .5R: 1.000000, .75R: 0.848485, count: 33, class_loss = 0.045337, iou_loss = 0.304149, total_loss = 0.349485 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839852, GIOU: 0.834412), Class: 0.995632, Obj: 0.890914, No Obj: 0.002601, .5R: 0.985437, .75R: 0.888350, count: 206, class_loss = 0.349090, iou_loss = 18.954969, total_loss = 19.304060 \n",
" total_bbox = 821048, rewritten_bbox = 0.037878 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3467: 0.197393, 0.204457 avg loss, 0.000261 rate, 1.240854 seconds, 221888 images, 0.230143 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849917, GIOU: 0.845855), Class: 0.999563, Obj: 0.904694, No Obj: 0.002337, .5R: 1.000000, .75R: 0.871795, count: 39, class_loss = 0.074848, iou_loss = 0.319132, total_loss = 0.393980 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826321, GIOU: 0.821597), Class: 0.991796, Obj: 0.840517, No Obj: 0.002730, .5R: 0.986667, .75R: 0.831111, count: 225, class_loss = 0.513324, iou_loss = 18.616821, total_loss = 19.130146 \n",
" total_bbox = 821312, rewritten_bbox = 0.037866 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3468: 0.294263, 0.213437 avg loss, 0.000261 rate, 1.349250 seconds, 221952 images, 0.229678 hours left\n",
"Loaded: 0.026185 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863740, GIOU: 0.860763), Class: 0.998118, Obj: 0.882975, No Obj: 0.001848, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.078757, iou_loss = 0.262319, total_loss = 0.341076 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840025, GIOU: 0.835479), Class: 0.993835, Obj: 0.880390, No Obj: 0.002456, .5R: 1.000000, .75R: 0.905263, count: 190, class_loss = 0.350833, iou_loss = 16.930141, total_loss = 17.280975 \n",
" total_bbox = 821536, rewritten_bbox = 0.037856 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3469: 0.214957, 0.213589 avg loss, 0.000261 rate, 1.252211 seconds, 222016 images, 0.229376 hours left\n",
"Loaded: 0.000070 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838146, GIOU: 0.834772), Class: 0.997744, Obj: 0.805073, No Obj: 0.002343, .5R: 1.000000, .75R: 0.795455, count: 44, class_loss = 0.126407, iou_loss = 0.314407, total_loss = 0.440814 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834318, GIOU: 0.828804), Class: 0.995805, Obj: 0.848488, No Obj: 0.002702, .5R: 0.990385, .75R: 0.894231, count: 208, class_loss = 0.549213, iou_loss = 16.987078, total_loss = 17.536291 \n",
" total_bbox = 821788, rewritten_bbox = 0.037844 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3470: 0.337989, 0.226029 avg loss, 0.000261 rate, 1.220954 seconds, 222080 images, 0.228968 hours left\n",
"Loaded: 0.068768 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857044, GIOU: 0.854494), Class: 0.997856, Obj: 0.883737, No Obj: 0.001992, .5R: 1.000000, .75R: 0.972973, count: 37, class_loss = 0.067123, iou_loss = 0.325651, total_loss = 0.392774 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.824527, GIOU: 0.818161), Class: 0.989852, Obj: 0.866730, No Obj: 0.002584, .5R: 0.973958, .75R: 0.843750, count: 192, class_loss = 0.408520, iou_loss = 18.553652, total_loss = 18.962172 \n",
" total_bbox = 822017, rewritten_bbox = 0.037834 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3471: 0.237996, 0.227226 avg loss, 0.000261 rate, 1.223908 seconds, 222144 images, 0.228476 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869466, GIOU: 0.866328), Class: 0.999197, Obj: 0.937488, No Obj: 0.001722, .5R: 1.000000, .75R: 0.966667, count: 30, class_loss = 0.029128, iou_loss = 0.262236, total_loss = 0.291364 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843078, GIOU: 0.839071), Class: 0.994176, Obj: 0.875157, No Obj: 0.002817, .5R: 0.986726, .75R: 0.902655, count: 226, class_loss = 0.389353, iou_loss = 20.132370, total_loss = 20.521723 \n",
" total_bbox = 822273, rewritten_bbox = 0.037822 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3472: 0.209398, 0.225443 avg loss, 0.000261 rate, 1.165625 seconds, 222208 images, 0.228090 hours left\n",
"Loaded: 0.000051 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844733, GIOU: 0.840703), Class: 0.995760, Obj: 0.850610, No Obj: 0.002130, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.089491, iou_loss = 0.375892, total_loss = 0.465383 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843949, GIOU: 0.838966), Class: 0.995329, Obj: 0.913899, No Obj: 0.002370, .5R: 0.988571, .75R: 0.920000, count: 175, class_loss = 0.207228, iou_loss = 14.633122, total_loss = 14.840351 \n",
" total_bbox = 822488, rewritten_bbox = 0.037812 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3473: 0.148530, 0.217752 avg loss, 0.000261 rate, 1.313183 seconds, 222272 images, 0.227519 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862409, GIOU: 0.859118), Class: 0.998484, Obj: 0.899622, No Obj: 0.002215, .5R: 1.000000, .75R: 0.894737, count: 38, class_loss = 0.071210, iou_loss = 0.378690, total_loss = 0.449899 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846276, GIOU: 0.842423), Class: 0.996448, Obj: 0.877200, No Obj: 0.002750, .5R: 1.000000, .75R: 0.905213, count: 211, class_loss = 0.422205, iou_loss = 17.591812, total_loss = 18.014017 \n",
" total_bbox = 822737, rewritten_bbox = 0.037801 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3474: 0.246866, 0.220663 avg loss, 0.000261 rate, 1.337098 seconds, 222336 images, 0.227166 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840872, GIOU: 0.833283), Class: 0.990413, Obj: 0.837257, No Obj: 0.002398, .5R: 0.954545, .75R: 0.954545, count: 44, class_loss = 0.119073, iou_loss = 0.443433, total_loss = 0.562506 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833391, GIOU: 0.825253), Class: 0.985143, Obj: 0.827215, No Obj: 0.002315, .5R: 0.970760, .75R: 0.865497, count: 171, class_loss = 0.461257, iou_loss = 11.069713, total_loss = 11.530970 \n",
" total_bbox = 822952, rewritten_bbox = 0.037791 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3475: 0.290343, 0.227631 avg loss, 0.000261 rate, 1.180916 seconds, 222400 images, 0.226848 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840488, GIOU: 0.835034), Class: 0.990249, Obj: 0.843534, No Obj: 0.002276, .5R: 1.000000, .75R: 0.820513, count: 39, class_loss = 0.090811, iou_loss = 0.332338, total_loss = 0.423148 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820916, GIOU: 0.813856), Class: 0.993421, Obj: 0.825230, No Obj: 0.002910, .5R: 0.979167, .75R: 0.841667, count: 240, class_loss = 0.630918, iou_loss = 19.512766, total_loss = 20.143684 \n",
" total_bbox = 823231, rewritten_bbox = 0.037778 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3476: 0.361049, 0.240973 avg loss, 0.000261 rate, 1.246297 seconds, 222464 images, 0.226302 hours left\n",
"Loaded: 0.000089 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860896, GIOU: 0.857917), Class: 0.998612, Obj: 0.870616, No Obj: 0.002467, .5R: 1.000000, .75R: 0.954545, count: 44, class_loss = 0.074951, iou_loss = 0.442587, total_loss = 0.517539 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838382, GIOU: 0.833779), Class: 0.992076, Obj: 0.822038, No Obj: 0.002227, .5R: 0.993939, .75R: 0.884848, count: 165, class_loss = 0.459992, iou_loss = 11.939848, total_loss = 12.399839 \n",
" total_bbox = 823440, rewritten_bbox = 0.037768 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3477: 0.267636, 0.243639 avg loss, 0.000261 rate, 1.274350 seconds, 222528 images, 0.225853 hours left\n",
"Loaded: 0.065756 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873877, GIOU: 0.871873), Class: 0.999554, Obj: 0.923724, No Obj: 0.001862, .5R: 1.000000, .75R: 0.967742, count: 31, class_loss = 0.065613, iou_loss = 0.253913, total_loss = 0.319525 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852880, GIOU: 0.849972), Class: 0.996003, Obj: 0.846203, No Obj: 0.002617, .5R: 1.000000, .75R: 0.924324, count: 185, class_loss = 0.326764, iou_loss = 14.341812, total_loss = 14.668576 \n",
" total_bbox = 823656, rewritten_bbox = 0.037758 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3478: 0.196338, 0.238909 avg loss, 0.000261 rate, 1.198838 seconds, 222592 images, 0.225446 hours left\n",
"Loaded: 0.025623 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854276, GIOU: 0.850611), Class: 0.998193, Obj: 0.904099, No Obj: 0.002580, .5R: 1.000000, .75R: 0.940000, count: 50, class_loss = 0.077109, iou_loss = 0.455136, total_loss = 0.532244 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843077, GIOU: 0.837811), Class: 0.993877, Obj: 0.879407, No Obj: 0.003118, .5R: 0.995833, .75R: 0.891667, count: 240, class_loss = 0.409236, iou_loss = 19.686182, total_loss = 20.095419 \n",
" total_bbox = 823946, rewritten_bbox = 0.037745 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3479: 0.243338, 0.239352 avg loss, 0.000261 rate, 1.186008 seconds, 222656 images, 0.225026 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842496, GIOU: 0.840232), Class: 0.995271, Obj: 0.904050, No Obj: 0.001991, .5R: 1.000000, .75R: 0.842105, count: 38, class_loss = 0.063860, iou_loss = 0.348389, total_loss = 0.412248 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830375, GIOU: 0.824487), Class: 0.992915, Obj: 0.871207, No Obj: 0.002295, .5R: 0.988950, .75R: 0.856354, count: 181, class_loss = 0.388774, iou_loss = 15.055628, total_loss = 15.444402 \n",
" total_bbox = 824165, rewritten_bbox = 0.037735 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3480: 0.226496, 0.238066 avg loss, 0.000261 rate, 1.303050 seconds, 222720 images, 0.224529 hours left\n",
"Loaded: 0.114028 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847983, GIOU: 0.843719), Class: 0.998001, Obj: 0.885810, No Obj: 0.002158, .5R: 0.977273, .75R: 0.840909, count: 44, class_loss = 0.060605, iou_loss = 0.386853, total_loss = 0.447458 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845446, GIOU: 0.841782), Class: 0.997704, Obj: 0.891271, No Obj: 0.002218, .5R: 1.000000, .75R: 0.875000, count: 168, class_loss = 0.194860, iou_loss = 12.079482, total_loss = 12.274342 \n",
" total_bbox = 824377, rewritten_bbox = 0.037725 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3481: 0.127900, 0.227050 avg loss, 0.000261 rate, 1.189086 seconds, 222784 images, 0.224166 hours left\n",
"Loaded: 0.016444 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847484, GIOU: 0.844500), Class: 0.998503, Obj: 0.818572, No Obj: 0.002186, .5R: 1.000000, .75R: 0.878049, count: 41, class_loss = 0.087211, iou_loss = 0.339003, total_loss = 0.426214 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840412, GIOU: 0.836233), Class: 0.990275, Obj: 0.909224, No Obj: 0.002587, .5R: 0.990148, .75R: 0.876847, count: 203, class_loss = 0.269445, iou_loss = 18.081579, total_loss = 18.351025 \n",
" total_bbox = 824621, rewritten_bbox = 0.037714 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3482: 0.178499, 0.222195 avg loss, 0.000261 rate, 1.264940 seconds, 222848 images, 0.223803 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866273, GIOU: 0.863601), Class: 0.996151, Obj: 0.926553, No Obj: 0.002789, .5R: 1.000000, .75R: 0.945455, count: 55, class_loss = 0.050380, iou_loss = 0.548899, total_loss = 0.599278 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846369, GIOU: 0.842498), Class: 0.993101, Obj: 0.889023, No Obj: 0.002599, .5R: 0.994872, .75R: 0.917949, count: 195, class_loss = 0.321739, iou_loss = 15.637560, total_loss = 15.959298 \n",
" total_bbox = 824871, rewritten_bbox = 0.037703 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3483: 0.186216, 0.218597 avg loss, 0.000261 rate, 1.148321 seconds, 222912 images, 0.223409 hours left\n",
"Loaded: 0.000063 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840931, GIOU: 0.836202), Class: 0.994874, Obj: 0.913217, No Obj: 0.001836, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.053982, iou_loss = 0.278785, total_loss = 0.332767 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829639, GIOU: 0.822265), Class: 0.991804, Obj: 0.883190, No Obj: 0.002487, .5R: 0.989583, .75R: 0.880208, count: 192, class_loss = 0.333694, iou_loss = 16.316748, total_loss = 16.650442 \n",
" total_bbox = 825099, rewritten_bbox = 0.037692 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3484: 0.194018, 0.216139 avg loss, 0.000261 rate, 1.367776 seconds, 222976 images, 0.222824 hours left\n",
"Loaded: 0.173362 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853617, GIOU: 0.849878), Class: 0.992038, Obj: 0.866828, No Obj: 0.002181, .5R: 0.976744, .75R: 0.930233, count: 43, class_loss = 0.070219, iou_loss = 0.435050, total_loss = 0.505269 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.855327, GIOU: 0.852466), Class: 0.992447, Obj: 0.898200, No Obj: 0.002418, .5R: 0.994253, .75R: 0.925287, count: 174, class_loss = 0.289905, iou_loss = 12.731591, total_loss = 13.021496 \n",
" total_bbox = 825316, rewritten_bbox = 0.037683 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3485: 0.180221, 0.212547 avg loss, 0.000261 rate, 1.191039 seconds, 223040 images, 0.222556 hours left\n",
"Loaded: 0.015921 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870005, GIOU: 0.868368), Class: 0.999338, Obj: 0.901509, No Obj: 0.002145, .5R: 1.000000, .75R: 1.000000, count: 40, class_loss = 0.089601, iou_loss = 0.340558, total_loss = 0.430160 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847284, GIOU: 0.843278), Class: 0.988379, Obj: 0.871769, No Obj: 0.002924, .5R: 0.995349, .75R: 0.925581, count: 215, class_loss = 0.424176, iou_loss = 17.388391, total_loss = 17.812569 \n",
" total_bbox = 825571, rewritten_bbox = 0.037671 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3486: 0.257043, 0.216997 avg loss, 0.000261 rate, 1.241483 seconds, 223104 images, 0.222282 hours left\n",
"Loaded: 0.081447 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857511, GIOU: 0.855060), Class: 0.999486, Obj: 0.849865, No Obj: 0.002406, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.083439, iou_loss = 0.396093, total_loss = 0.479532 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838341, GIOU: 0.834092), Class: 0.990826, Obj: 0.871027, No Obj: 0.002805, .5R: 0.990244, .75R: 0.878049, count: 205, class_loss = 0.401067, iou_loss = 16.148891, total_loss = 16.549957 \n",
" total_bbox = 825819, rewritten_bbox = 0.037660 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3487: 0.242419, 0.219539 avg loss, 0.000261 rate, 1.260906 seconds, 223168 images, 0.221855 hours left\n",
"Loaded: 0.004974 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843465, GIOU: 0.837053), Class: 0.998951, Obj: 0.909061, No Obj: 0.001962, .5R: 0.971429, .75R: 0.828571, count: 35, class_loss = 0.035352, iou_loss = 0.302725, total_loss = 0.338078 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844499, GIOU: 0.840168), Class: 0.996376, Obj: 0.921487, No Obj: 0.002678, .5R: 0.995238, .75R: 0.919048, count: 210, class_loss = 0.212611, iou_loss = 18.102983, total_loss = 18.315594 \n",
" total_bbox = 826064, rewritten_bbox = 0.037648 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3488: 0.124152, 0.210000 avg loss, 0.000261 rate, 1.206081 seconds, 223232 images, 0.221549 hours left\n",
"Loaded: 0.019898 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850511, GIOU: 0.845970), Class: 0.988805, Obj: 0.876574, No Obj: 0.002001, .5R: 0.976744, .75R: 0.930233, count: 43, class_loss = 0.070053, iou_loss = 0.410898, total_loss = 0.480950 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832589, GIOU: 0.827289), Class: 0.993996, Obj: 0.865231, No Obj: 0.002761, .5R: 0.990385, .75R: 0.865385, count: 208, class_loss = 0.480932, iou_loss = 16.147150, total_loss = 16.628082 \n",
" total_bbox = 826315, rewritten_bbox = 0.037637 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3489: 0.275666, 0.216567 avg loss, 0.000261 rate, 1.379728 seconds, 223296 images, 0.221056 hours left\n",
"Loaded: 0.040559 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836116, GIOU: 0.832854), Class: 0.999363, Obj: 0.884396, No Obj: 0.002152, .5R: 1.000000, .75R: 0.875000, count: 40, class_loss = 0.047053, iou_loss = 0.413803, total_loss = 0.460856 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832756, GIOU: 0.827916), Class: 0.991210, Obj: 0.869225, No Obj: 0.003113, .5R: 0.977974, .75R: 0.889868, count: 227, class_loss = 0.529952, iou_loss = 17.695526, total_loss = 18.225477 \n",
" total_bbox = 826582, rewritten_bbox = 0.037625 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3490: 0.288684, 0.223779 avg loss, 0.000261 rate, 1.253461 seconds, 223360 images, 0.220832 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860319, GIOU: 0.856890), Class: 0.998663, Obj: 0.882357, No Obj: 0.002252, .5R: 1.000000, .75R: 0.950000, count: 40, class_loss = 0.062095, iou_loss = 0.358035, total_loss = 0.420130 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835409, GIOU: 0.830983), Class: 0.988265, Obj: 0.865408, No Obj: 0.002946, .5R: 0.990991, .75R: 0.882883, count: 222, class_loss = 0.553422, iou_loss = 19.688591, total_loss = 20.242014 \n",
" total_bbox = 826844, rewritten_bbox = 0.037613 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3491: 0.307925, 0.232193 avg loss, 0.000261 rate, 1.215721 seconds, 223424 images, 0.220457 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864542, GIOU: 0.861448), Class: 0.999370, Obj: 0.917846, No Obj: 0.002256, .5R: 1.000000, .75R: 0.904762, count: 42, class_loss = 0.057659, iou_loss = 0.386300, total_loss = 0.443959 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846747, GIOU: 0.842617), Class: 0.992173, Obj: 0.868472, No Obj: 0.002628, .5R: 1.000000, .75R: 0.902564, count: 195, class_loss = 0.432803, iou_loss = 14.658103, total_loss = 15.090906 \n",
" total_bbox = 827081, rewritten_bbox = 0.037602 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3492: 0.245389, 0.233513 avg loss, 0.000261 rate, 1.278344 seconds, 223488 images, 0.219972 hours left\n",
"Loaded: 0.129223 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831615, GIOU: 0.826238), Class: 0.968679, Obj: 0.774091, No Obj: 0.002325, .5R: 1.000000, .75R: 0.836735, count: 49, class_loss = 0.161271, iou_loss = 0.333049, total_loss = 0.494320 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842219, GIOU: 0.837349), Class: 0.986539, Obj: 0.870321, No Obj: 0.002064, .5R: 0.982558, .75R: 0.901163, count: 172, class_loss = 0.332266, iou_loss = 16.875298, total_loss = 17.207563 \n",
" total_bbox = 827302, rewritten_bbox = 0.037592 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3493: 0.246947, 0.234856 avg loss, 0.000261 rate, 1.103272 seconds, 223552 images, 0.219576 hours left\n",
"Loaded: 0.000072 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857776, GIOU: 0.854489), Class: 0.999170, Obj: 0.869466, No Obj: 0.002206, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.071302, iou_loss = 0.402967, total_loss = 0.474269 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826378, GIOU: 0.821759), Class: 0.984821, Obj: 0.865468, No Obj: 0.002412, .5R: 1.000000, .75R: 0.846939, count: 196, class_loss = 0.460656, iou_loss = 18.390778, total_loss = 18.851433 \n",
" total_bbox = 827541, rewritten_bbox = 0.037581 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3494: 0.266152, 0.237986 avg loss, 0.000261 rate, 1.222715 seconds, 223616 images, 0.219116 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.827254, GIOU: 0.823126), Class: 0.998952, Obj: 0.850021, No Obj: 0.001916, .5R: 0.971429, .75R: 0.828571, count: 35, class_loss = 0.062150, iou_loss = 0.257470, total_loss = 0.319620 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839645, GIOU: 0.833167), Class: 0.994929, Obj: 0.899884, No Obj: 0.002580, .5R: 0.994681, .75R: 0.898936, count: 188, class_loss = 0.304473, iou_loss = 18.042597, total_loss = 18.347071 \n",
" total_bbox = 827764, rewritten_bbox = 0.037571 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3495: 0.183494, 0.232537 avg loss, 0.000261 rate, 1.196391 seconds, 223680 images, 0.218643 hours left\n",
"Loaded: 0.048733 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849252, GIOU: 0.846669), Class: 0.998000, Obj: 0.879902, No Obj: 0.002405, .5R: 1.000000, .75R: 0.877551, count: 49, class_loss = 0.106280, iou_loss = 0.456507, total_loss = 0.562787 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835980, GIOU: 0.830524), Class: 0.994128, Obj: 0.883941, No Obj: 0.002222, .5R: 0.993976, .75R: 0.837349, count: 166, class_loss = 0.325860, iou_loss = 14.497195, total_loss = 14.823055 \n",
" total_bbox = 827979, rewritten_bbox = 0.037682 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3496: 0.216242, 0.230907 avg loss, 0.000261 rate, 1.182618 seconds, 223744 images, 0.218135 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831744, GIOU: 0.827213), Class: 0.996410, Obj: 0.842790, No Obj: 0.001736, .5R: 0.968750, .75R: 0.906250, count: 32, class_loss = 0.063763, iou_loss = 0.323171, total_loss = 0.386934 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838743, GIOU: 0.834230), Class: 0.990745, Obj: 0.870881, No Obj: 0.002674, .5R: 0.995169, .75R: 0.893720, count: 207, class_loss = 0.415708, iou_loss = 19.171780, total_loss = 19.587488 \n",
" total_bbox = 828218, rewritten_bbox = 0.037671 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3497: 0.239916, 0.231808 avg loss, 0.000261 rate, 1.182924 seconds, 223808 images, 0.217678 hours left\n",
"Loaded: 0.000035 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862013, GIOU: 0.860709), Class: 0.999022, Obj: 0.907282, No Obj: 0.001816, .5R: 1.000000, .75R: 0.939394, count: 33, class_loss = 0.050220, iou_loss = 0.255020, total_loss = 0.305240 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826250, GIOU: 0.820114), Class: 0.997970, Obj: 0.855373, No Obj: 0.002434, .5R: 0.984848, .75R: 0.853535, count: 198, class_loss = 0.444922, iou_loss = 18.244890, total_loss = 18.689814 \n",
" total_bbox = 828449, rewritten_bbox = 0.037661 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3498: 0.247742, 0.233401 avg loss, 0.000261 rate, 1.299000 seconds, 223872 images, 0.217154 hours left\n",
"Loaded: 0.144238 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830241, GIOU: 0.824997), Class: 0.988229, Obj: 0.833810, No Obj: 0.002474, .5R: 1.000000, .75R: 0.813953, count: 43, class_loss = 0.153629, iou_loss = 0.333991, total_loss = 0.487619 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827852, GIOU: 0.823160), Class: 0.994846, Obj: 0.866225, No Obj: 0.002609, .5R: 0.995000, .75R: 0.850000, count: 200, class_loss = 0.478344, iou_loss = 18.441351, total_loss = 18.919695 \n",
" total_bbox = 828692, rewritten_bbox = 0.037650 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3499: 0.316173, 0.241679 avg loss, 0.000261 rate, 1.228120 seconds, 223936 images, 0.216794 hours left\n",
"Loaded: 0.063519 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863498, GIOU: 0.860773), Class: 0.994196, Obj: 0.910104, No Obj: 0.002625, .5R: 1.000000, .75R: 0.941177, count: 51, class_loss = 0.065361, iou_loss = 0.504954, total_loss = 0.570315 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839765, GIOU: 0.834681), Class: 0.994003, Obj: 0.869409, No Obj: 0.002959, .5R: 0.995798, .75R: 0.907563, count: 238, class_loss = 0.467125, iou_loss = 22.519285, total_loss = 22.986410 \n",
" total_bbox = 828981, rewritten_bbox = 0.037637 % \n",
"\n",
" (next mAP calculation at 3500 iterations) \n",
" Last accuracy [email protected] = 58.15 %, best = 58.96 % \n",
" 3500: 0.266405, 0.244151 avg loss, 0.000261 rate, 1.229823 seconds, 224000 images, 0.216536 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 349, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 67.90% \t (TP = 162, FP = 7) \n",
"class_id = 1, name = no mask, ap = 45.84% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.95, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 10, FN = 120, average IoU = 78.01 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.568710, or 56.87 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.568710 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000067 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848138, GIOU: 0.843150), Class: 0.995119, Obj: 0.892289, No Obj: 0.002423, .5R: 1.000000, .75R: 0.900000, count: 50, class_loss = 0.068094, iou_loss = 0.524157, total_loss = 0.592252 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841191, GIOU: 0.836618), Class: 0.991674, Obj: 0.870685, No Obj: 0.002552, .5R: 0.994792, .75R: 0.911458, count: 192, class_loss = 0.400045, iou_loss = 15.968698, total_loss = 16.368742 \n",
" total_bbox = 829223, rewritten_bbox = 0.037626 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3501: 0.234239, 0.243160 avg loss, 0.000261 rate, 1.165431 seconds, 224064 images, 0.219010 hours left\n",
"Loaded: 0.013108 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856001, GIOU: 0.851759), Class: 0.992577, Obj: 0.886178, No Obj: 0.002577, .5R: 1.000000, .75R: 0.872340, count: 47, class_loss = 0.056047, iou_loss = 0.511137, total_loss = 0.567184 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831163, GIOU: 0.826162), Class: 0.995126, Obj: 0.851045, No Obj: 0.003143, .5R: 0.983740, .75R: 0.857724, count: 246, class_loss = 0.549231, iou_loss = 18.410313, total_loss = 18.959543 \n",
" total_bbox = 829516, rewritten_bbox = 0.037612 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3502: 0.302810, 0.249125 avg loss, 0.000261 rate, 1.123188 seconds, 224128 images, 0.218435 hours left\n",
"Loaded: 0.000038 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862582, GIOU: 0.859433), Class: 0.999134, Obj: 0.921271, No Obj: 0.002406, .5R: 1.000000, .75R: 0.976744, count: 43, class_loss = 0.040143, iou_loss = 0.345527, total_loss = 0.385670 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833506, GIOU: 0.828977), Class: 0.994928, Obj: 0.886303, No Obj: 0.002611, .5R: 0.994975, .75R: 0.894472, count: 199, class_loss = 0.310279, iou_loss = 15.384886, total_loss = 15.695165 \n",
" total_bbox = 829758, rewritten_bbox = 0.037601 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3503: 0.175377, 0.241750 avg loss, 0.000261 rate, 1.306651 seconds, 224192 images, 0.217823 hours left\n",
"Loaded: 0.066655 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865507, GIOU: 0.862549), Class: 0.998643, Obj: 0.900080, No Obj: 0.002694, .5R: 1.000000, .75R: 0.960784, count: 51, class_loss = 0.062834, iou_loss = 0.524693, total_loss = 0.587528 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842792, GIOU: 0.838276), Class: 0.994863, Obj: 0.870292, No Obj: 0.002823, .5R: 0.995025, .75R: 0.885572, count: 201, class_loss = 0.391981, iou_loss = 13.865913, total_loss = 14.257894 \n",
" total_bbox = 830010, rewritten_bbox = 0.037590 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3504: 0.227567, 0.240332 avg loss, 0.000261 rate, 1.297327 seconds, 224256 images, 0.217448 hours left\n",
"Loaded: 0.000067 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838171, GIOU: 0.835351), Class: 0.998362, Obj: 0.886882, No Obj: 0.002034, .5R: 1.000000, .75R: 0.861111, count: 36, class_loss = 0.058622, iou_loss = 0.314242, total_loss = 0.372864 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839103, GIOU: 0.834130), Class: 0.990548, Obj: 0.908735, No Obj: 0.002051, .5R: 0.993421, .75R: 0.894737, count: 152, class_loss = 0.240206, iou_loss = 11.628603, total_loss = 11.868810 \n",
" total_bbox = 830198, rewritten_bbox = 0.037581 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3505: 0.149591, 0.231258 avg loss, 0.000261 rate, 1.258063 seconds, 224320 images, 0.217153 hours left\n",
"Loaded: 0.216332 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855482, GIOU: 0.848370), Class: 0.996715, Obj: 0.916852, No Obj: 0.002408, .5R: 0.977273, .75R: 0.931818, count: 44, class_loss = 0.051321, iou_loss = 0.378829, total_loss = 0.430150 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849803, GIOU: 0.844863), Class: 0.995342, Obj: 0.898999, No Obj: 0.002244, .5R: 0.993333, .75R: 0.926667, count: 150, class_loss = 0.237501, iou_loss = 9.594470, total_loss = 9.831970 \n",
" total_bbox = 830392, rewritten_bbox = 0.037573 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3506: 0.144572, 0.222589 avg loss, 0.000261 rate, 1.179280 seconds, 224384 images, 0.216712 hours left\n",
"Loaded: 0.070514 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833875, GIOU: 0.825377), Class: 0.998581, Obj: 0.813428, No Obj: 0.001984, .5R: 0.975000, .75R: 0.800000, count: 40, class_loss = 0.137455, iou_loss = 0.324939, total_loss = 0.462394 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838543, GIOU: 0.834277), Class: 0.995956, Obj: 0.874560, No Obj: 0.002675, .5R: 0.995169, .75R: 0.903382, count: 207, class_loss = 0.375779, iou_loss = 18.623247, total_loss = 18.999025 \n",
" total_bbox = 830639, rewritten_bbox = 0.037561 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3507: 0.256796, 0.226010 avg loss, 0.000261 rate, 1.294958 seconds, 224448 images, 0.216460 hours left\n",
"Loaded: 0.320605 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848639, GIOU: 0.844295), Class: 0.971853, Obj: 0.820867, No Obj: 0.002520, .5R: 0.978261, .75R: 0.913043, count: 46, class_loss = 0.167761, iou_loss = 0.478295, total_loss = 0.646056 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840700, GIOU: 0.836379), Class: 0.993461, Obj: 0.864393, No Obj: 0.003064, .5R: 0.995745, .75R: 0.876596, count: 235, class_loss = 0.432246, iou_loss = 20.740753, total_loss = 21.173000 \n",
" total_bbox = 830920, rewritten_bbox = 0.037549 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3508: 0.300173, 0.233426 avg loss, 0.000261 rate, 1.216559 seconds, 224512 images, 0.216165 hours left\n",
"Loaded: 0.039875 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838992, GIOU: 0.836201), Class: 0.997631, Obj: 0.786557, No Obj: 0.001670, .5R: 0.965517, .75R: 0.931035, count: 29, class_loss = 0.089877, iou_loss = 0.207597, total_loss = 0.297474 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828789, GIOU: 0.824005), Class: 0.991473, Obj: 0.873082, No Obj: 0.002789, .5R: 0.968468, .75R: 0.873874, count: 222, class_loss = 0.422127, iou_loss = 20.200459, total_loss = 20.622585 \n",
" total_bbox = 831171, rewritten_bbox = 0.037778 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3509: 0.256183, 0.235702 avg loss, 0.000261 rate, 1.194645 seconds, 224576 images, 0.216104 hours left\n",
"Loaded: 0.003487 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852868, GIOU: 0.849596), Class: 0.995540, Obj: 0.930675, No Obj: 0.002556, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.045312, iou_loss = 0.496669, total_loss = 0.541981 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845876, GIOU: 0.841958), Class: 0.987716, Obj: 0.897160, No Obj: 0.002513, .5R: 0.994709, .75R: 0.894180, count: 189, class_loss = 0.367983, iou_loss = 14.552937, total_loss = 14.920919 \n",
" total_bbox = 831409, rewritten_bbox = 0.037767 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3510: 0.206813, 0.232813 avg loss, 0.000261 rate, 1.197801 seconds, 224640 images, 0.215627 hours left\n",
"Loaded: 0.127028 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830577, GIOU: 0.827006), Class: 0.993936, Obj: 0.884803, No Obj: 0.002443, .5R: 0.978261, .75R: 0.891304, count: 46, class_loss = 0.087378, iou_loss = 0.406336, total_loss = 0.493714 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844147, GIOU: 0.840289), Class: 0.997779, Obj: 0.867558, No Obj: 0.002427, .5R: 1.000000, .75R: 0.888889, count: 171, class_loss = 0.363231, iou_loss = 14.023199, total_loss = 14.386431 \n",
" total_bbox = 831626, rewritten_bbox = 0.037757 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3511: 0.225483, 0.232080 avg loss, 0.000261 rate, 1.169798 seconds, 224704 images, 0.215106 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829630, GIOU: 0.822667), Class: 0.998279, Obj: 0.798610, No Obj: 0.002004, .5R: 0.974359, .75R: 0.794872, count: 39, class_loss = 0.098223, iou_loss = 0.393935, total_loss = 0.492158 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.857055, GIOU: 0.854075), Class: 0.993938, Obj: 0.898489, No Obj: 0.002433, .5R: 1.000000, .75R: 0.910112, count: 178, class_loss = 0.298383, iou_loss = 14.135870, total_loss = 14.434253 \n",
" total_bbox = 831843, rewritten_bbox = 0.037748 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3512: 0.198474, 0.228719 avg loss, 0.000261 rate, 1.174534 seconds, 224768 images, 0.214716 hours left\n",
"Loaded: 0.000074 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859834, GIOU: 0.856771), Class: 0.997922, Obj: 0.879971, No Obj: 0.002325, .5R: 1.000000, .75R: 0.933333, count: 45, class_loss = 0.084978, iou_loss = 0.437843, total_loss = 0.522822 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842510, GIOU: 0.838202), Class: 0.997780, Obj: 0.892108, No Obj: 0.002207, .5R: 0.981250, .75R: 0.900000, count: 160, class_loss = 0.275947, iou_loss = 12.397747, total_loss = 12.673695 \n",
" total_bbox = 832048, rewritten_bbox = 0.037738 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3513: 0.180626, 0.223910 avg loss, 0.000261 rate, 1.221589 seconds, 224832 images, 0.214161 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846013, GIOU: 0.841695), Class: 0.996063, Obj: 0.871781, No Obj: 0.002730, .5R: 0.981132, .75R: 0.924528, count: 53, class_loss = 0.102935, iou_loss = 0.476848, total_loss = 0.579784 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847109, GIOU: 0.843864), Class: 0.994336, Obj: 0.877192, No Obj: 0.002513, .5R: 1.000000, .75R: 0.892473, count: 186, class_loss = 0.306006, iou_loss = 14.325471, total_loss = 14.631477 \n",
" total_bbox = 832287, rewritten_bbox = 0.037727 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3514: 0.204639, 0.221983 avg loss, 0.000261 rate, 1.235018 seconds, 224896 images, 0.213672 hours left\n",
"Loaded: 0.091050 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847146, GIOU: 0.844101), Class: 0.998145, Obj: 0.906978, No Obj: 0.002630, .5R: 0.978261, .75R: 0.891304, count: 46, class_loss = 0.054586, iou_loss = 0.461845, total_loss = 0.516430 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.817235, GIOU: 0.808532), Class: 0.992184, Obj: 0.827814, No Obj: 0.003238, .5R: 0.973282, .75R: 0.790076, count: 262, class_loss = 0.722488, iou_loss = 20.583612, total_loss = 21.306101 \n",
" total_bbox = 832595, rewritten_bbox = 0.037834 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3515: 0.388720, 0.238657 avg loss, 0.000261 rate, 1.281235 seconds, 224960 images, 0.213203 hours left\n",
"Loaded: 0.011068 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848405, GIOU: 0.845894), Class: 0.998491, Obj: 0.887818, No Obj: 0.002130, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.068614, iou_loss = 0.384724, total_loss = 0.453338 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841380, GIOU: 0.835431), Class: 0.994818, Obj: 0.885885, No Obj: 0.002456, .5R: 0.983696, .75R: 0.913043, count: 184, class_loss = 0.304350, iou_loss = 14.846201, total_loss = 15.150552 \n",
" total_bbox = 832822, rewritten_bbox = 0.037823 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3516: 0.186652, 0.233456 avg loss, 0.000261 rate, 1.222621 seconds, 225024 images, 0.212920 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853419, GIOU: 0.849319), Class: 0.998119, Obj: 0.910026, No Obj: 0.001827, .5R: 1.000000, .75R: 0.909091, count: 33, class_loss = 0.043106, iou_loss = 0.296071, total_loss = 0.339178 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.821829, GIOU: 0.816570), Class: 0.995380, Obj: 0.869471, No Obj: 0.002062, .5R: 0.977012, .75R: 0.833333, count: 174, class_loss = 0.312994, iou_loss = 18.026365, total_loss = 18.339359 \n",
" total_bbox = 833029, rewritten_bbox = 0.037934 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3517: 0.178228, 0.227933 avg loss, 0.000261 rate, 1.255113 seconds, 225088 images, 0.212449 hours left\n",
"Loaded: 0.004393 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868794, GIOU: 0.865980), Class: 0.998545, Obj: 0.919515, No Obj: 0.002673, .5R: 1.000000, .75R: 0.962264, count: 53, class_loss = 0.047555, iou_loss = 0.523793, total_loss = 0.571348 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849219, GIOU: 0.845190), Class: 0.997213, Obj: 0.864396, No Obj: 0.002918, .5R: 1.000000, .75R: 0.891509, count: 212, class_loss = 0.403336, iou_loss = 17.894880, total_loss = 18.298216 \n",
" total_bbox = 833294, rewritten_bbox = 0.037922 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3518: 0.225599, 0.227700 avg loss, 0.000261 rate, 1.216860 seconds, 225152 images, 0.212009 hours left\n",
"Loaded: 0.067513 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860847, GIOU: 0.857975), Class: 0.999236, Obj: 0.918698, No Obj: 0.002625, .5R: 1.000000, .75R: 0.923077, count: 52, class_loss = 0.050729, iou_loss = 0.467219, total_loss = 0.517948 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.812557, GIOU: 0.801027), Class: 0.988871, Obj: 0.867594, No Obj: 0.002196, .5R: 0.959538, .75R: 0.832370, count: 173, class_loss = 0.332621, iou_loss = 14.877210, total_loss = 15.209831 \n",
" total_bbox = 833519, rewritten_bbox = 0.038032 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3519: 0.191854, 0.224115 avg loss, 0.000261 rate, 1.150255 seconds, 225216 images, 0.211524 hours left\n",
"Loaded: 0.000058 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830491, GIOU: 0.826892), Class: 0.994437, Obj: 0.825101, No Obj: 0.002428, .5R: 1.000000, .75R: 0.829787, count: 47, class_loss = 0.103748, iou_loss = 0.395867, total_loss = 0.499615 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838338, GIOU: 0.834154), Class: 0.994463, Obj: 0.851214, No Obj: 0.002632, .5R: 0.995122, .75R: 0.882927, count: 205, class_loss = 0.416257, iou_loss = 18.152109, total_loss = 18.568365 \n",
" total_bbox = 833771, rewritten_bbox = 0.038020 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3520: 0.260183, 0.227722 avg loss, 0.000261 rate, 1.267532 seconds, 225280 images, 0.211036 hours left\n",
"Loaded: 0.117662 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858105, GIOU: 0.855897), Class: 0.999443, Obj: 0.849027, No Obj: 0.002017, .5R: 0.971429, .75R: 0.942857, count: 35, class_loss = 0.082015, iou_loss = 0.358819, total_loss = 0.440834 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845438, GIOU: 0.841713), Class: 0.998068, Obj: 0.888297, No Obj: 0.002898, .5R: 1.000000, .75R: 0.894009, count: 217, class_loss = 0.286850, iou_loss = 21.141804, total_loss = 21.428654 \n",
" total_bbox = 834023, rewritten_bbox = 0.038009 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3521: 0.184595, 0.223409 avg loss, 0.000261 rate, 1.072977 seconds, 225344 images, 0.210615 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857959, GIOU: 0.854343), Class: 0.995326, Obj: 0.842730, No Obj: 0.002396, .5R: 1.000000, .75R: 0.911111, count: 45, class_loss = 0.110075, iou_loss = 0.389804, total_loss = 0.499879 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832181, GIOU: 0.826882), Class: 0.986678, Obj: 0.876619, No Obj: 0.002887, .5R: 0.981901, .75R: 0.873303, count: 221, class_loss = 0.505905, iou_loss = 19.824150, total_loss = 20.330055 \n",
" total_bbox = 834289, rewritten_bbox = 0.038116 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3522: 0.308159, 0.231884 avg loss, 0.000261 rate, 1.188120 seconds, 225408 images, 0.210093 hours left\n",
"Loaded: 0.000050 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854965, GIOU: 0.849513), Class: 0.999094, Obj: 0.860362, No Obj: 0.002393, .5R: 1.000000, .75R: 0.904762, count: 42, class_loss = 0.077964, iou_loss = 0.369019, total_loss = 0.446983 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835107, GIOU: 0.830202), Class: 0.992358, Obj: 0.847165, No Obj: 0.002887, .5R: 0.986547, .75R: 0.865471, count: 223, class_loss = 0.573575, iou_loss = 20.312750, total_loss = 20.886326 \n",
" total_bbox = 834554, rewritten_bbox = 0.038104 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3523: 0.325939, 0.241290 avg loss, 0.000261 rate, 1.215862 seconds, 225472 images, 0.209570 hours left\n",
"Loaded: 0.000053 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858819, GIOU: 0.856129), Class: 0.974552, Obj: 0.881105, No Obj: 0.002049, .5R: 1.000000, .75R: 0.921053, count: 38, class_loss = 0.077292, iou_loss = 0.388080, total_loss = 0.465371 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847218, GIOU: 0.843895), Class: 0.995850, Obj: 0.890485, No Obj: 0.002735, .5R: 1.000000, .75R: 0.913876, count: 209, class_loss = 0.314669, iou_loss = 16.935204, total_loss = 17.249872 \n",
" total_bbox = 834801, rewritten_bbox = 0.038093 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3524: 0.196141, 0.236775 avg loss, 0.000261 rate, 1.271342 seconds, 225536 images, 0.209086 hours left\n",
"Loaded: 0.000067 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856838, GIOU: 0.853819), Class: 0.998849, Obj: 0.868514, No Obj: 0.002421, .5R: 1.000000, .75R: 0.904762, count: 42, class_loss = 0.079518, iou_loss = 0.390074, total_loss = 0.469591 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847866, GIOU: 0.844787), Class: 0.995343, Obj: 0.865351, No Obj: 0.002566, .5R: 0.994681, .75R: 0.936170, count: 188, class_loss = 0.399860, iou_loss = 13.762860, total_loss = 14.162721 \n",
" total_bbox = 835031, rewritten_bbox = 0.038082 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3525: 0.239850, 0.237083 avg loss, 0.000261 rate, 1.230155 seconds, 225600 images, 0.208676 hours left\n",
"Loaded: 0.149347 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857390, GIOU: 0.856255), Class: 0.999380, Obj: 0.949255, No Obj: 0.001642, .5R: 1.000000, .75R: 0.857143, count: 28, class_loss = 0.041081, iou_loss = 0.267629, total_loss = 0.308710 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841961, GIOU: 0.837703), Class: 0.992032, Obj: 0.892939, No Obj: 0.002610, .5R: 0.984615, .75R: 0.907692, count: 195, class_loss = 0.344556, iou_loss = 17.648476, total_loss = 17.993032 \n",
" total_bbox = 835254, rewritten_bbox = 0.038072 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3526: 0.192983, 0.232673 avg loss, 0.000261 rate, 1.209633 seconds, 225664 images, 0.208212 hours left\n",
"Loaded: 0.020428 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836816, GIOU: 0.833005), Class: 0.999202, Obj: 0.907169, No Obj: 0.002076, .5R: 1.000000, .75R: 0.857143, count: 35, class_loss = 0.043039, iou_loss = 0.315671, total_loss = 0.358710 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836255, GIOU: 0.830987), Class: 0.994761, Obj: 0.867533, No Obj: 0.002777, .5R: 0.995146, .75R: 0.868932, count: 206, class_loss = 0.379491, iou_loss = 16.401274, total_loss = 16.780766 \n",
" total_bbox = 835495, rewritten_bbox = 0.038061 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3527: 0.211444, 0.230550 avg loss, 0.000261 rate, 1.166435 seconds, 225728 images, 0.207919 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865819, GIOU: 0.862202), Class: 0.999561, Obj: 0.883925, No Obj: 0.002337, .5R: 1.000000, .75R: 0.948718, count: 39, class_loss = 0.060060, iou_loss = 0.399661, total_loss = 0.459721 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831852, GIOU: 0.825767), Class: 0.991100, Obj: 0.867929, No Obj: 0.002803, .5R: 0.995146, .75R: 0.834951, count: 206, class_loss = 0.512115, iou_loss = 15.663469, total_loss = 16.175585 \n",
" total_bbox = 835740, rewritten_bbox = 0.038050 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3528: 0.286253, 0.236120 avg loss, 0.000261 rate, 1.187250 seconds, 225792 images, 0.207400 hours left\n",
"Loaded: 0.000058 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.819612, GIOU: 0.813825), Class: 0.974805, Obj: 0.842713, No Obj: 0.001729, .5R: 1.000000, .75R: 0.774194, count: 31, class_loss = 0.102005, iou_loss = 0.206450, total_loss = 0.308455 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827717, GIOU: 0.822216), Class: 0.991746, Obj: 0.857254, No Obj: 0.002869, .5R: 0.991342, .75R: 0.831169, count: 231, class_loss = 0.560249, iou_loss = 20.992605, total_loss = 21.552855 \n",
" total_bbox = 836002, rewritten_bbox = 0.038158 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3529: 0.331320, 0.245640 avg loss, 0.000261 rate, 1.322174 seconds, 225856 images, 0.206882 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.871800, GIOU: 0.869477), Class: 0.996271, Obj: 0.911931, No Obj: 0.002584, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.050479, iou_loss = 0.572293, total_loss = 0.622773 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848912, GIOU: 0.845517), Class: 0.992345, Obj: 0.895623, No Obj: 0.002822, .5R: 1.000000, .75R: 0.923469, count: 196, class_loss = 0.359592, iou_loss = 17.057169, total_loss = 17.416761 \n",
" total_bbox = 836247, rewritten_bbox = 0.038147 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3530: 0.205188, 0.241595 avg loss, 0.000261 rate, 1.322448 seconds, 225920 images, 0.206543 hours left\n",
"Loaded: 0.059033 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845522, GIOU: 0.842711), Class: 0.999089, Obj: 0.888905, No Obj: 0.002236, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.043170, iou_loss = 0.276102, total_loss = 0.319272 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.819909, GIOU: 0.814867), Class: 0.990911, Obj: 0.825124, No Obj: 0.002901, .5R: 0.974576, .75R: 0.796610, count: 236, class_loss = 0.749135, iou_loss = 24.074568, total_loss = 24.823702 \n",
" total_bbox = 836520, rewritten_bbox = 0.038134 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3531: 0.396335, 0.257069 avg loss, 0.000261 rate, 1.311415 seconds, 225984 images, 0.206205 hours left\n",
"Loaded: 0.115047 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862531, GIOU: 0.860430), Class: 0.998921, Obj: 0.930527, No Obj: 0.002189, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.035324, iou_loss = 0.259459, total_loss = 0.294784 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.814115, GIOU: 0.805266), Class: 0.989077, Obj: 0.873977, No Obj: 0.002453, .5R: 0.973262, .75R: 0.828877, count: 187, class_loss = 0.397451, iou_loss = 15.390461, total_loss = 15.787912 \n",
" total_bbox = 836744, rewritten_bbox = 0.038124 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3532: 0.216565, 0.253018 avg loss, 0.000261 rate, 1.179031 seconds, 226048 images, 0.205928 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845085, GIOU: 0.843035), Class: 0.994997, Obj: 0.914589, No Obj: 0.002329, .5R: 1.000000, .75R: 0.871795, count: 39, class_loss = 0.100195, iou_loss = 0.328419, total_loss = 0.428614 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843337, GIOU: 0.837087), Class: 0.996726, Obj: 0.904091, No Obj: 0.002467, .5R: 0.984615, .75R: 0.912821, count: 195, class_loss = 0.252539, iou_loss = 15.665216, total_loss = 15.917756 \n",
" total_bbox = 836978, rewritten_bbox = 0.038113 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3533: 0.176537, 0.245370 avg loss, 0.000261 rate, 1.274387 seconds, 226112 images, 0.205551 hours left\n",
"Loaded: 0.000038 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838837, GIOU: 0.832159), Class: 0.998598, Obj: 0.849750, No Obj: 0.001995, .5R: 0.970588, .75R: 0.911765, count: 34, class_loss = 0.110253, iou_loss = 0.306701, total_loss = 0.416954 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829071, GIOU: 0.824227), Class: 0.993327, Obj: 0.866769, No Obj: 0.003425, .5R: 0.988971, .75R: 0.863971, count: 272, class_loss = 0.520891, iou_loss = 26.467531, total_loss = 26.988422 \n",
" total_bbox = 837284, rewritten_bbox = 0.038099 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3534: 0.315754, 0.252409 avg loss, 0.000261 rate, 1.230181 seconds, 226176 images, 0.205149 hours left\n",
"Loaded: 0.000060 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861286, GIOU: 0.857219), Class: 0.998878, Obj: 0.898860, No Obj: 0.002508, .5R: 1.000000, .75R: 0.918367, count: 49, class_loss = 0.085949, iou_loss = 0.432361, total_loss = 0.518310 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830094, GIOU: 0.825446), Class: 0.983225, Obj: 0.899907, No Obj: 0.002213, .5R: 0.993789, .75R: 0.857143, count: 161, class_loss = 0.338477, iou_loss = 14.130757, total_loss = 14.469234 \n",
" total_bbox = 837494, rewritten_bbox = 0.038209 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3535: 0.212382, 0.248406 avg loss, 0.000261 rate, 1.238983 seconds, 226240 images, 0.204690 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835069, GIOU: 0.828042), Class: 0.998774, Obj: 0.924156, No Obj: 0.002084, .5R: 0.972973, .75R: 0.810811, count: 37, class_loss = 0.022329, iou_loss = 0.299890, total_loss = 0.322219 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848499, GIOU: 0.844889), Class: 0.987019, Obj: 0.897514, No Obj: 0.002596, .5R: 0.994819, .75R: 0.911917, count: 193, class_loss = 0.320266, iou_loss = 16.670837, total_loss = 16.991102 \n",
" total_bbox = 837724, rewritten_bbox = 0.038199 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3536: 0.171470, 0.240712 avg loss, 0.000261 rate, 1.190948 seconds, 226304 images, 0.204243 hours left\n",
"Loaded: 0.018826 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858286, GIOU: 0.855061), Class: 0.999465, Obj: 0.895223, No Obj: 0.002455, .5R: 1.000000, .75R: 0.978723, count: 47, class_loss = 0.075697, iou_loss = 0.413024, total_loss = 0.488722 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839641, GIOU: 0.835250), Class: 0.995901, Obj: 0.888276, No Obj: 0.002472, .5R: 0.971429, .75R: 0.880000, count: 175, class_loss = 0.316281, iou_loss = 13.321555, total_loss = 13.637836 \n",
" total_bbox = 837946, rewritten_bbox = 0.038189 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3537: 0.196154, 0.236257 avg loss, 0.000261 rate, 1.198814 seconds, 226368 images, 0.203736 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863638, GIOU: 0.860030), Class: 0.999673, Obj: 0.931630, No Obj: 0.002632, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.053417, iou_loss = 0.454386, total_loss = 0.507803 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842414, GIOU: 0.838716), Class: 0.998833, Obj: 0.918592, No Obj: 0.002701, .5R: 0.988636, .75R: 0.897727, count: 176, class_loss = 0.238602, iou_loss = 12.460348, total_loss = 12.698950 \n",
" total_bbox = 838171, rewritten_bbox = 0.038178 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3538: 0.146170, 0.227248 avg loss, 0.000261 rate, 1.144654 seconds, 226432 images, 0.203265 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852148, GIOU: 0.849373), Class: 0.997560, Obj: 0.862077, No Obj: 0.002309, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.102199, iou_loss = 0.325202, total_loss = 0.427400 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830147, GIOU: 0.823722), Class: 0.992066, Obj: 0.862738, No Obj: 0.002503, .5R: 0.977901, .75R: 0.861879, count: 181, class_loss = 0.485762, iou_loss = 13.129470, total_loss = 13.615232 \n",
" total_bbox = 838391, rewritten_bbox = 0.038168 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3539: 0.294154, 0.233939 avg loss, 0.000261 rate, 1.227219 seconds, 226496 images, 0.202701 hours left\n",
"Loaded: 0.168957 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856650, GIOU: 0.854834), Class: 0.998810, Obj: 0.899354, No Obj: 0.001864, .5R: 1.000000, .75R: 0.971429, count: 35, class_loss = 0.035615, iou_loss = 0.371261, total_loss = 0.406875 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838611, GIOU: 0.833567), Class: 0.989140, Obj: 0.858479, No Obj: 0.002371, .5R: 0.989247, .75R: 0.870968, count: 186, class_loss = 0.379132, iou_loss = 17.074606, total_loss = 17.453739 \n",
" total_bbox = 838612, rewritten_bbox = 0.038158 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3540: 0.207540, 0.231299 avg loss, 0.000261 rate, 1.203214 seconds, 226560 images, 0.202246 hours left\n",
"Loaded: 0.083729 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838122, GIOU: 0.833181), Class: 0.998658, Obj: 0.876241, No Obj: 0.002246, .5R: 1.000000, .75R: 0.809524, count: 42, class_loss = 0.056392, iou_loss = 0.350162, total_loss = 0.406554 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.859930, GIOU: 0.856484), Class: 0.997362, Obj: 0.900649, No Obj: 0.002427, .5R: 1.000000, .75R: 0.942857, count: 175, class_loss = 0.273087, iou_loss = 15.654404, total_loss = 15.927490 \n",
" total_bbox = 838829, rewritten_bbox = 0.038148 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3541: 0.164905, 0.224659 avg loss, 0.000261 rate, 1.183444 seconds, 226624 images, 0.201977 hours left\n",
"Loaded: 0.081847 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848447, GIOU: 0.844232), Class: 0.983414, Obj: 0.835627, No Obj: 0.002560, .5R: 1.000000, .75R: 0.775000, count: 40, class_loss = 0.089440, iou_loss = 0.297705, total_loss = 0.387145 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834425, GIOU: 0.829676), Class: 0.992641, Obj: 0.867157, No Obj: 0.002780, .5R: 0.985981, .75R: 0.878505, count: 214, class_loss = 0.369551, iou_loss = 17.281456, total_loss = 17.651007 \n",
" total_bbox = 839083, rewritten_bbox = 0.038137 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3542: 0.229669, 0.225160 avg loss, 0.000261 rate, 1.189294 seconds, 226688 images, 0.201572 hours left\n",
"Loaded: 0.000034 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.824097, GIOU: 0.816949), Class: 0.996297, Obj: 0.788578, No Obj: 0.001591, .5R: 1.000000, .75R: 0.827586, count: 29, class_loss = 0.089537, iou_loss = 0.198726, total_loss = 0.288263 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829472, GIOU: 0.824048), Class: 0.995835, Obj: 0.858364, No Obj: 0.002292, .5R: 0.994186, .75R: 0.872093, count: 172, class_loss = 0.383525, iou_loss = 13.669178, total_loss = 14.052703 \n",
" total_bbox = 839284, rewritten_bbox = 0.038128 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3543: 0.236720, 0.226316 avg loss, 0.000261 rate, 1.241377 seconds, 226752 images, 0.201174 hours left\n",
"Loaded: 0.171954 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833864, GIOU: 0.830091), Class: 0.998554, Obj: 0.899339, No Obj: 0.002256, .5R: 0.974359, .75R: 0.846154, count: 39, class_loss = 0.055445, iou_loss = 0.361157, total_loss = 0.416601 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837881, GIOU: 0.832436), Class: 0.991789, Obj: 0.880067, No Obj: 0.002854, .5R: 0.990196, .75R: 0.897059, count: 204, class_loss = 0.482366, iou_loss = 15.670974, total_loss = 16.153339 \n",
" total_bbox = 839527, rewritten_bbox = 0.038117 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3544: 0.269085, 0.230593 avg loss, 0.000261 rate, 1.061011 seconds, 226816 images, 0.200738 hours left\n",
"Loaded: 0.000078 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840252, GIOU: 0.836014), Class: 0.998917, Obj: 0.906105, No Obj: 0.002574, .5R: 1.000000, .75R: 0.872340, count: 47, class_loss = 0.083016, iou_loss = 0.361243, total_loss = 0.444259 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831843, GIOU: 0.826643), Class: 0.990550, Obj: 0.896543, No Obj: 0.002177, .5R: 0.982036, .75R: 0.844311, count: 167, class_loss = 0.256129, iou_loss = 14.181310, total_loss = 14.437439 \n",
" total_bbox = 839741, rewritten_bbox = 0.038107 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3545: 0.169752, 0.224509 avg loss, 0.000261 rate, 1.195334 seconds, 226880 images, 0.200293 hours left\n",
"Loaded: 0.000082 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.885441, GIOU: 0.883657), Class: 0.999638, Obj: 0.975442, No Obj: 0.001880, .5R: 1.000000, .75R: 1.000000, count: 36, class_loss = 0.020495, iou_loss = 0.361168, total_loss = 0.381663 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839470, GIOU: 0.835242), Class: 0.996044, Obj: 0.861667, No Obj: 0.002903, .5R: 0.987395, .75R: 0.886555, count: 238, class_loss = 0.455891, iou_loss = 21.606524, total_loss = 22.062414 \n",
" total_bbox = 840015, rewritten_bbox = 0.038095 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3546: 0.238343, 0.225892 avg loss, 0.000261 rate, 1.246760 seconds, 226944 images, 0.199800 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858099, GIOU: 0.855866), Class: 0.999464, Obj: 0.919407, No Obj: 0.002241, .5R: 0.973684, .75R: 0.947368, count: 38, class_loss = 0.035241, iou_loss = 0.384989, total_loss = 0.420231 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844861, GIOU: 0.840865), Class: 0.989104, Obj: 0.868026, No Obj: 0.002752, .5R: 0.990291, .75R: 0.878641, count: 206, class_loss = 0.431855, iou_loss = 16.570221, total_loss = 17.002075 \n",
" total_bbox = 840259, rewritten_bbox = 0.038083 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3547: 0.233710, 0.226674 avg loss, 0.000261 rate, 1.246144 seconds, 227008 images, 0.199375 hours left\n",
"Loaded: 0.000067 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828806, GIOU: 0.821001), Class: 0.999134, Obj: 0.889816, No Obj: 0.002231, .5R: 0.975000, .75R: 0.800000, count: 40, class_loss = 0.073656, iou_loss = 0.367003, total_loss = 0.440659 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846403, GIOU: 0.842283), Class: 0.997319, Obj: 0.895810, No Obj: 0.002333, .5R: 0.994048, .75R: 0.880952, count: 168, class_loss = 0.236275, iou_loss = 14.070730, total_loss = 14.307005 \n",
" total_bbox = 840467, rewritten_bbox = 0.038074 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3548: 0.155143, 0.219521 avg loss, 0.000261 rate, 1.188165 seconds, 227072 images, 0.198949 hours left\n",
"Loaded: 0.000063 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830406, GIOU: 0.826951), Class: 0.999124, Obj: 0.876740, No Obj: 0.002130, .5R: 1.000000, .75R: 0.842105, count: 38, class_loss = 0.065125, iou_loss = 0.295154, total_loss = 0.360279 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838106, GIOU: 0.833992), Class: 0.992834, Obj: 0.874266, No Obj: 0.002678, .5R: 0.990099, .75R: 0.896040, count: 202, class_loss = 0.423397, iou_loss = 17.609386, total_loss = 18.032784 \n",
" total_bbox = 840707, rewritten_bbox = 0.038063 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3549: 0.244442, 0.222013 avg loss, 0.000261 rate, 1.314328 seconds, 227136 images, 0.198452 hours left\n",
"Loaded: 0.033531 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849711, GIOU: 0.844659), Class: 0.999310, Obj: 0.863443, No Obj: 0.002115, .5R: 1.000000, .75R: 0.904762, count: 42, class_loss = 0.074707, iou_loss = 0.343255, total_loss = 0.417963 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851387, GIOU: 0.847849), Class: 0.998450, Obj: 0.872871, No Obj: 0.002320, .5R: 1.000000, .75R: 0.885714, count: 175, class_loss = 0.356315, iou_loss = 16.745409, total_loss = 17.101725 \n",
" total_bbox = 840924, rewritten_bbox = 0.038053 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3550: 0.215675, 0.221379 avg loss, 0.000261 rate, 1.227180 seconds, 227200 images, 0.198114 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844375, GIOU: 0.839544), Class: 0.998414, Obj: 0.904973, No Obj: 0.002155, .5R: 1.000000, .75R: 0.972973, count: 37, class_loss = 0.035628, iou_loss = 0.279113, total_loss = 0.314740 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836624, GIOU: 0.832589), Class: 0.994753, Obj: 0.897877, No Obj: 0.002358, .5R: 1.000000, .75R: 0.861111, count: 180, class_loss = 0.239942, iou_loss = 17.166267, total_loss = 17.406208 \n",
" total_bbox = 841141, rewritten_bbox = 0.038044 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3551: 0.137959, 0.213037 avg loss, 0.000261 rate, 1.294880 seconds, 227264 images, 0.197709 hours left\n",
"Loaded: 0.192687 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869532, GIOU: 0.866027), Class: 0.999438, Obj: 0.916681, No Obj: 0.002749, .5R: 1.000000, .75R: 0.920000, count: 50, class_loss = 0.037585, iou_loss = 0.459624, total_loss = 0.497209 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851413, GIOU: 0.847177), Class: 0.993654, Obj: 0.896178, No Obj: 0.002482, .5R: 0.994413, .75R: 0.888268, count: 179, class_loss = 0.292452, iou_loss = 13.724937, total_loss = 14.017389 \n",
" total_bbox = 841370, rewritten_bbox = 0.038033 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3552: 0.165171, 0.208251 avg loss, 0.000261 rate, 1.157383 seconds, 227328 images, 0.197347 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846221, GIOU: 0.843629), Class: 0.998614, Obj: 0.886868, No Obj: 0.002502, .5R: 0.978261, .75R: 0.869565, count: 46, class_loss = 0.092913, iou_loss = 0.449699, total_loss = 0.542612 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831551, GIOU: 0.825563), Class: 0.994754, Obj: 0.838812, No Obj: 0.002398, .5R: 0.988439, .75R: 0.861272, count: 173, class_loss = 0.464991, iou_loss = 12.437234, total_loss = 12.902225 \n",
" total_bbox = 841589, rewritten_bbox = 0.038023 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3553: 0.279128, 0.215338 avg loss, 0.000261 rate, 1.324738 seconds, 227392 images, 0.197053 hours left\n",
"Loaded: 0.037898 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872943, GIOU: 0.870668), Class: 0.999223, Obj: 0.924096, No Obj: 0.002113, .5R: 1.000000, .75R: 1.000000, count: 37, class_loss = 0.045076, iou_loss = 0.334965, total_loss = 0.380041 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831896, GIOU: 0.826560), Class: 0.979030, Obj: 0.864847, No Obj: 0.002611, .5R: 0.972603, .75R: 0.881279, count: 219, class_loss = 0.528256, iou_loss = 19.793592, total_loss = 20.321848 \n",
" total_bbox = 841845, rewritten_bbox = 0.038131 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3554: 0.286827, 0.222487 avg loss, 0.000261 rate, 1.387169 seconds, 227456 images, 0.196728 hours left\n",
"Loaded: 0.209216 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855532, GIOU: 0.853091), Class: 0.998665, Obj: 0.900978, No Obj: 0.002373, .5R: 1.000000, .75R: 0.891892, count: 37, class_loss = 0.061792, iou_loss = 0.314703, total_loss = 0.376495 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846583, GIOU: 0.840617), Class: 0.996076, Obj: 0.912897, No Obj: 0.002653, .5R: 0.995025, .75R: 0.925373, count: 201, class_loss = 0.309120, iou_loss = 17.436869, total_loss = 17.745989 \n",
" total_bbox = 842083, rewritten_bbox = 0.038120 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3555: 0.185619, 0.218800 avg loss, 0.000261 rate, 1.222898 seconds, 227520 images, 0.196526 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858456, GIOU: 0.855898), Class: 0.997191, Obj: 0.920152, No Obj: 0.002233, .5R: 1.000000, .75R: 0.976191, count: 42, class_loss = 0.035160, iou_loss = 0.426340, total_loss = 0.461500 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829809, GIOU: 0.822552), Class: 0.991966, Obj: 0.833310, No Obj: 0.002445, .5R: 0.983871, .75R: 0.870968, count: 186, class_loss = 0.446726, iou_loss = 15.650631, total_loss = 16.097357 \n",
" total_bbox = 842311, rewritten_bbox = 0.038109 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3556: 0.241113, 0.221032 avg loss, 0.000261 rate, 1.259356 seconds, 227584 images, 0.196331 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845163, GIOU: 0.841550), Class: 0.998471, Obj: 0.853384, No Obj: 0.002348, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.097931, iou_loss = 0.388804, total_loss = 0.486735 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.819048, GIOU: 0.812096), Class: 0.988602, Obj: 0.851665, No Obj: 0.002527, .5R: 0.979899, .75R: 0.809045, count: 199, class_loss = 0.483093, iou_loss = 17.122259, total_loss = 17.605352 \n",
" total_bbox = 842553, rewritten_bbox = 0.038098 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3557: 0.290696, 0.227998 avg loss, 0.000261 rate, 1.330391 seconds, 227648 images, 0.195921 hours left\n",
"Loaded: 0.033614 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834493, GIOU: 0.829961), Class: 0.992543, Obj: 0.829562, No Obj: 0.002103, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.075659, iou_loss = 0.309963, total_loss = 0.385623 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.817526, GIOU: 0.810773), Class: 0.989372, Obj: 0.825324, No Obj: 0.002446, .5R: 0.989848, .75R: 0.827411, count: 197, class_loss = 0.460430, iou_loss = 17.517014, total_loss = 17.977444 \n",
" total_bbox = 842787, rewritten_bbox = 0.038088 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3558: 0.268235, 0.232022 avg loss, 0.000261 rate, 1.165523 seconds, 227712 images, 0.195599 hours left\n",
"Loaded: 0.000036 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868455, GIOU: 0.865939), Class: 0.998366, Obj: 0.902466, No Obj: 0.002297, .5R: 1.000000, .75R: 0.955556, count: 45, class_loss = 0.052450, iou_loss = 0.441198, total_loss = 0.493649 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847778, GIOU: 0.843677), Class: 0.994559, Obj: 0.887095, No Obj: 0.002611, .5R: 0.989950, .75R: 0.879397, count: 199, class_loss = 0.318690, iou_loss = 17.621597, total_loss = 17.940287 \n",
" total_bbox = 843031, rewritten_bbox = 0.038077 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3559: 0.185725, 0.227392 avg loss, 0.000261 rate, 1.348172 seconds, 227776 images, 0.195115 hours left\n",
"Loaded: 0.042021 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851449, GIOU: 0.848153), Class: 0.996673, Obj: 0.854333, No Obj: 0.002217, .5R: 1.000000, .75R: 0.937500, count: 48, class_loss = 0.130664, iou_loss = 0.464296, total_loss = 0.594961 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846518, GIOU: 0.842711), Class: 0.996305, Obj: 0.857046, No Obj: 0.002355, .5R: 1.000000, .75R: 0.891429, count: 175, class_loss = 0.438286, iou_loss = 12.884603, total_loss = 13.322888 \n",
" total_bbox = 843254, rewritten_bbox = 0.038067 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3560: 0.284640, 0.233117 avg loss, 0.000261 rate, 1.194879 seconds, 227840 images, 0.194816 hours left\n",
"Loaded: 0.000055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833796, GIOU: 0.828741), Class: 0.973538, Obj: 0.820213, No Obj: 0.002318, .5R: 1.000000, .75R: 0.860465, count: 43, class_loss = 0.113343, iou_loss = 0.319590, total_loss = 0.432933 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844766, GIOU: 0.841377), Class: 0.990874, Obj: 0.906804, No Obj: 0.001789, .5R: 1.000000, .75R: 0.876033, count: 121, class_loss = 0.215858, iou_loss = 7.999797, total_loss = 8.215655 \n",
" total_bbox = 843418, rewritten_bbox = 0.038059 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3561: 0.164776, 0.226283 avg loss, 0.000261 rate, 1.223078 seconds, 227904 images, 0.194379 hours left\n",
"Loaded: 0.095206 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846738, GIOU: 0.843474), Class: 0.997575, Obj: 0.890879, No Obj: 0.002155, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.068312, iou_loss = 0.322234, total_loss = 0.390545 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849999, GIOU: 0.845933), Class: 0.993756, Obj: 0.886300, No Obj: 0.002776, .5R: 0.994737, .75R: 0.915789, count: 190, class_loss = 0.394811, iou_loss = 13.120720, total_loss = 13.515531 \n",
" total_bbox = 843644, rewritten_bbox = 0.038049 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3562: 0.231727, 0.226827 avg loss, 0.000261 rate, 1.202849 seconds, 227968 images, 0.193927 hours left\n",
"Loaded: 0.000944 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.821890, GIOU: 0.818879), Class: 0.998419, Obj: 0.875851, No Obj: 0.001651, .5R: 1.000000, .75R: 0.800000, count: 30, class_loss = 0.047532, iou_loss = 0.237505, total_loss = 0.285038 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833469, GIOU: 0.828724), Class: 0.994666, Obj: 0.866196, No Obj: 0.002265, .5R: 0.994536, .75R: 0.868852, count: 183, class_loss = 0.319724, iou_loss = 15.691295, total_loss = 16.011019 \n",
" total_bbox = 843857, rewritten_bbox = 0.038040 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3563: 0.183817, 0.222526 avg loss, 0.000261 rate, 1.237193 seconds, 228032 images, 0.193567 hours left\n",
"Loaded: 0.000072 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845331, GIOU: 0.843153), Class: 0.997957, Obj: 0.908920, No Obj: 0.002916, .5R: 1.000000, .75R: 0.875000, count: 56, class_loss = 0.090378, iou_loss = 0.616919, total_loss = 0.707297 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825207, GIOU: 0.819018), Class: 0.984471, Obj: 0.840109, No Obj: 0.002635, .5R: 0.979167, .75R: 0.859375, count: 192, class_loss = 0.464848, iou_loss = 13.980362, total_loss = 14.445210 \n",
" total_bbox = 844105, rewritten_bbox = 0.038147 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3564: 0.277793, 0.228053 avg loss, 0.000261 rate, 1.240679 seconds, 228096 images, 0.193134 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850194, GIOU: 0.844689), Class: 0.999051, Obj: 0.775260, No Obj: 0.002164, .5R: 1.000000, .75R: 0.857143, count: 42, class_loss = 0.108300, iou_loss = 0.345773, total_loss = 0.454073 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.813761, GIOU: 0.808184), Class: 0.986998, Obj: 0.794519, No Obj: 0.002464, .5R: 0.980296, .75R: 0.793103, count: 203, class_loss = 0.632222, iou_loss = 19.234159, total_loss = 19.866381 \n",
" total_bbox = 844350, rewritten_bbox = 0.038254 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3565: 0.370445, 0.242292 avg loss, 0.000261 rate, 1.240584 seconds, 228160 images, 0.192706 hours left\n",
"Loaded: 0.007632 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870662, GIOU: 0.867170), Class: 0.999352, Obj: 0.898285, No Obj: 0.002267, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.071950, iou_loss = 0.323719, total_loss = 0.395669 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831366, GIOU: 0.823606), Class: 0.986446, Obj: 0.867458, No Obj: 0.002106, .5R: 0.993902, .75R: 0.829268, count: 164, class_loss = 0.337362, iou_loss = 13.738695, total_loss = 14.076057 \n",
" total_bbox = 844553, rewritten_bbox = 0.038245 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3566: 0.204819, 0.238545 avg loss, 0.000261 rate, 1.162211 seconds, 228224 images, 0.192278 hours left\n",
"Loaded: 0.000036 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842755, GIOU: 0.838473), Class: 0.997604, Obj: 0.861003, No Obj: 0.002978, .5R: 1.000000, .75R: 0.890909, count: 55, class_loss = 0.120074, iou_loss = 0.485982, total_loss = 0.606055 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838757, GIOU: 0.830309), Class: 0.983428, Obj: 0.841218, No Obj: 0.002954, .5R: 0.982301, .75R: 0.902655, count: 226, class_loss = 0.565720, iou_loss = 17.412561, total_loss = 17.978281 \n",
" total_bbox = 844834, rewritten_bbox = 0.038232 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3567: 0.343071, 0.248997 avg loss, 0.000261 rate, 1.360918 seconds, 228288 images, 0.191765 hours left\n",
"Loaded: 0.030912 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855115, GIOU: 0.851137), Class: 0.998612, Obj: 0.903532, No Obj: 0.001963, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.046385, iou_loss = 0.278940, total_loss = 0.325325 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827103, GIOU: 0.822327), Class: 0.997542, Obj: 0.861516, No Obj: 0.002917, .5R: 1.000000, .75R: 0.841463, count: 246, class_loss = 0.506566, iou_loss = 23.086555, total_loss = 23.593121 \n",
" total_bbox = 845114, rewritten_bbox = 0.038220 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3568: 0.276649, 0.251763 avg loss, 0.000261 rate, 1.281801 seconds, 228352 images, 0.191485 hours left\n",
"Loaded: 0.198307 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855249, GIOU: 0.851844), Class: 0.998867, Obj: 0.911870, No Obj: 0.002345, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.047231, iou_loss = 0.352876, total_loss = 0.400107 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840905, GIOU: 0.836589), Class: 0.997208, Obj: 0.862074, No Obj: 0.002996, .5R: 0.991416, .75R: 0.901288, count: 233, class_loss = 0.395215, iou_loss = 20.715544, total_loss = 21.110758 \n",
" total_bbox = 845387, rewritten_bbox = 0.038207 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3569: 0.221389, 0.248725 avg loss, 0.000261 rate, 1.182281 seconds, 228416 images, 0.191145 hours left\n",
"Loaded: 0.011118 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859109, GIOU: 0.855135), Class: 0.997105, Obj: 0.913300, No Obj: 0.003095, .5R: 1.000000, .75R: 0.931035, count: 58, class_loss = 0.072014, iou_loss = 0.601291, total_loss = 0.673304 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830071, GIOU: 0.823915), Class: 0.994699, Obj: 0.844054, No Obj: 0.002948, .5R: 0.986547, .75R: 0.856502, count: 223, class_loss = 0.541773, iou_loss = 17.591946, total_loss = 18.133718 \n",
" total_bbox = 845668, rewritten_bbox = 0.038195 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3570: 0.307063, 0.254559 avg loss, 0.000261 rate, 1.290946 seconds, 228480 images, 0.190886 hours left\n",
"Loaded: 0.130667 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865612, GIOU: 0.862872), Class: 0.999183, Obj: 0.906153, No Obj: 0.001791, .5R: 1.000000, .75R: 0.941176, count: 34, class_loss = 0.041295, iou_loss = 0.331154, total_loss = 0.372448 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830502, GIOU: 0.826506), Class: 0.982594, Obj: 0.885462, No Obj: 0.002140, .5R: 0.987805, .75R: 0.841463, count: 164, class_loss = 0.328045, iou_loss = 14.110308, total_loss = 14.438353 \n",
" total_bbox = 845866, rewritten_bbox = 0.038304 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3571: 0.184836, 0.247587 avg loss, 0.000261 rate, 1.088120 seconds, 228544 images, 0.190533 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852523, GIOU: 0.849160), Class: 0.996742, Obj: 0.801472, No Obj: 0.001976, .5R: 1.000000, .75R: 0.948718, count: 39, class_loss = 0.115350, iou_loss = 0.282300, total_loss = 0.397650 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.823143, GIOU: 0.814019), Class: 0.993497, Obj: 0.821431, No Obj: 0.002305, .5R: 0.973118, .75R: 0.838710, count: 186, class_loss = 0.552875, iou_loss = 15.401949, total_loss = 15.954823 \n",
" total_bbox = 846091, rewritten_bbox = 0.038412 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3572: 0.334290, 0.256257 avg loss, 0.000261 rate, 1.188373 seconds, 228608 images, 0.190080 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861552, GIOU: 0.858996), Class: 0.981617, Obj: 0.882956, No Obj: 0.002065, .5R: 1.000000, .75R: 0.971429, count: 35, class_loss = 0.097891, iou_loss = 0.357863, total_loss = 0.455754 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837986, GIOU: 0.833260), Class: 0.986626, Obj: 0.883748, No Obj: 0.002713, .5R: 0.989796, .75R: 0.877551, count: 196, class_loss = 0.439905, iou_loss = 14.769322, total_loss = 15.209228 \n",
" total_bbox = 846322, rewritten_bbox = 0.038401 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3573: 0.269063, 0.257538 avg loss, 0.000261 rate, 1.384457 seconds, 228672 images, 0.189592 hours left\n",
"Loaded: 0.221371 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856100, GIOU: 0.853023), Class: 0.997169, Obj: 0.901000, No Obj: 0.002150, .5R: 1.000000, .75R: 0.921053, count: 38, class_loss = 0.054411, iou_loss = 0.337200, total_loss = 0.391611 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836016, GIOU: 0.830475), Class: 0.984136, Obj: 0.876575, No Obj: 0.002475, .5R: 0.994792, .75R: 0.895833, count: 192, class_loss = 0.374085, iou_loss = 16.357231, total_loss = 16.731316 \n",
" total_bbox = 846552, rewritten_bbox = 0.038391 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3574: 0.214417, 0.253226 avg loss, 0.000261 rate, 1.211601 seconds, 228736 images, 0.189338 hours left\n",
"Loaded: 0.090026 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855294, GIOU: 0.852314), Class: 0.994475, Obj: 0.856080, No Obj: 0.001826, .5R: 1.000000, .75R: 0.923077, count: 26, class_loss = 0.064898, iou_loss = 0.187734, total_loss = 0.252633 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846469, GIOU: 0.843102), Class: 0.995000, Obj: 0.866603, No Obj: 0.002695, .5R: 1.000000, .75R: 0.915842, count: 202, class_loss = 0.463480, iou_loss = 17.005938, total_loss = 17.469418 \n",
" total_bbox = 846780, rewritten_bbox = 0.038381 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3575: 0.264353, 0.254338 avg loss, 0.000261 rate, 1.166112 seconds, 228800 images, 0.189141 hours left\n",
"Loaded: 0.059652 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861847, GIOU: 0.858841), Class: 0.998872, Obj: 0.881526, No Obj: 0.002017, .5R: 1.000000, .75R: 0.894737, count: 38, class_loss = 0.051720, iou_loss = 0.373053, total_loss = 0.424772 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846627, GIOU: 0.842940), Class: 0.998530, Obj: 0.888607, No Obj: 0.002522, .5R: 0.994681, .75R: 0.882979, count: 188, class_loss = 0.336529, iou_loss = 17.400345, total_loss = 17.736874 \n",
" total_bbox = 847006, rewritten_bbox = 0.038370 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3576: 0.194284, 0.248333 avg loss, 0.000261 rate, 1.393375 seconds, 228864 images, 0.188732 hours left\n",
"Loaded: 0.102342 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836842, GIOU: 0.832159), Class: 0.998700, Obj: 0.898045, No Obj: 0.003263, .5R: 1.000000, .75R: 0.836364, count: 55, class_loss = 0.066486, iou_loss = 0.420359, total_loss = 0.486845 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.812385, GIOU: 0.805815), Class: 0.989696, Obj: 0.822328, No Obj: 0.002281, .5R: 0.978378, .75R: 0.805405, count: 185, class_loss = 0.514856, iou_loss = 16.194944, total_loss = 16.709801 \n",
" total_bbox = 847246, rewritten_bbox = 0.038360 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3577: 0.290863, 0.252586 avg loss, 0.000261 rate, 1.281672 seconds, 228928 images, 0.188556 hours left\n",
"Loaded: 0.266228 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853640, GIOU: 0.850040), Class: 0.993404, Obj: 0.886889, No Obj: 0.001839, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.038989, iou_loss = 0.279044, total_loss = 0.318033 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834340, GIOU: 0.830256), Class: 0.994887, Obj: 0.850107, No Obj: 0.002314, .5R: 0.994253, .75R: 0.850575, count: 174, class_loss = 0.392683, iou_loss = 15.666105, total_loss = 16.058788 \n",
" total_bbox = 847454, rewritten_bbox = 0.038350 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3578: 0.216007, 0.248928 avg loss, 0.000261 rate, 1.176805 seconds, 228992 images, 0.188297 hours left\n",
"Loaded: 0.138742 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836446, GIOU: 0.832021), Class: 0.999191, Obj: 0.901593, No Obj: 0.002223, .5R: 0.973684, .75R: 0.842105, count: 38, class_loss = 0.066516, iou_loss = 0.397009, total_loss = 0.463525 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841517, GIOU: 0.836242), Class: 0.996671, Obj: 0.900237, No Obj: 0.002823, .5R: 0.980198, .75R: 0.891089, count: 202, class_loss = 0.329918, iou_loss = 18.395588, total_loss = 18.725506 \n",
" total_bbox = 847694, rewritten_bbox = 0.038339 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3579: 0.198393, 0.243874 avg loss, 0.000261 rate, 1.253088 seconds, 229056 images, 0.188106 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836586, GIOU: 0.832277), Class: 0.998383, Obj: 0.843014, No Obj: 0.002536, .5R: 0.977778, .75R: 0.866667, count: 45, class_loss = 0.099813, iou_loss = 0.367121, total_loss = 0.466934 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827969, GIOU: 0.817901), Class: 0.979398, Obj: 0.862916, No Obj: 0.002279, .5R: 0.982353, .75R: 0.847059, count: 170, class_loss = 0.438229, iou_loss = 14.972822, total_loss = 15.411051 \n",
" total_bbox = 847909, rewritten_bbox = 0.038330 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3580: 0.269205, 0.246407 avg loss, 0.000261 rate, 1.244531 seconds, 229120 images, 0.187852 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.817249, GIOU: 0.809203), Class: 0.996430, Obj: 0.866019, No Obj: 0.002096, .5R: 0.977273, .75R: 0.795455, count: 44, class_loss = 0.060726, iou_loss = 0.342614, total_loss = 0.403340 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830177, GIOU: 0.823566), Class: 0.995323, Obj: 0.861904, No Obj: 0.002147, .5R: 0.993939, .75R: 0.842424, count: 165, class_loss = 0.379181, iou_loss = 13.572155, total_loss = 13.951336 \n",
" total_bbox = 848118, rewritten_bbox = 0.038320 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3581: 0.220146, 0.243781 avg loss, 0.000261 rate, 1.212703 seconds, 229184 images, 0.187426 hours left\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838089, GIOU: 0.831526), Class: 0.998015, Obj: 0.888042, No Obj: 0.002022, .5R: 0.972222, .75R: 0.861111, count: 36, class_loss = 0.042897, iou_loss = 0.307079, total_loss = 0.349976 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838041, GIOU: 0.833184), Class: 0.991461, Obj: 0.864226, No Obj: 0.002586, .5R: 0.990000, .75R: 0.880000, count: 200, class_loss = 0.488156, iou_loss = 18.837175, total_loss = 19.325331 \n",
" total_bbox = 848354, rewritten_bbox = 0.038309 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3582: 0.265704, 0.245974 avg loss, 0.000261 rate, 1.239311 seconds, 229248 images, 0.186963 hours left\n",
"Loaded: 0.041111 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833773, GIOU: 0.827959), Class: 0.996229, Obj: 0.849607, No Obj: 0.002273, .5R: 1.000000, .75R: 0.860465, count: 43, class_loss = 0.092776, iou_loss = 0.369387, total_loss = 0.462163 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827685, GIOU: 0.822172), Class: 0.992158, Obj: 0.860233, No Obj: 0.003445, .5R: 0.988848, .75R: 0.836431, count: 269, class_loss = 0.537968, iou_loss = 25.420988, total_loss = 25.958956 \n",
" total_bbox = 848666, rewritten_bbox = 0.038413 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3583: 0.315557, 0.252932 avg loss, 0.000261 rate, 1.238419 seconds, 229312 images, 0.186532 hours left\n",
"Loaded: 0.019675 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861168, GIOU: 0.858648), Class: 0.999297, Obj: 0.970092, No Obj: 0.001998, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.015315, iou_loss = 0.360098, total_loss = 0.375413 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831880, GIOU: 0.826820), Class: 0.995618, Obj: 0.883326, No Obj: 0.002742, .5R: 0.985849, .75R: 0.882075, count: 212, class_loss = 0.369628, iou_loss = 17.875458, total_loss = 18.245087 \n",
" total_bbox = 848915, rewritten_bbox = 0.038520 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3584: 0.192639, 0.246903 avg loss, 0.000261 rate, 1.261717 seconds, 229376 images, 0.186149 hours left\n",
"Loaded: 0.032869 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865671, GIOU: 0.863174), Class: 0.999718, Obj: 0.917691, No Obj: 0.002105, .5R: 1.000000, .75R: 0.969697, count: 33, class_loss = 0.056554, iou_loss = 0.252558, total_loss = 0.309112 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833715, GIOU: 0.829311), Class: 0.996645, Obj: 0.901325, No Obj: 0.002855, .5R: 0.991228, .75R: 0.868421, count: 228, class_loss = 0.261195, iou_loss = 21.959169, total_loss = 22.220364 \n",
" total_bbox = 849176, rewritten_bbox = 0.038508 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3585: 0.159039, 0.238116 avg loss, 0.000261 rate, 1.382033 seconds, 229440 images, 0.185768 hours left\n",
"Loaded: 0.092710 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.820359, GIOU: 0.814729), Class: 0.993187, Obj: 0.821526, No Obj: 0.001615, .5R: 0.970588, .75R: 0.882353, count: 34, class_loss = 0.110712, iou_loss = 0.305200, total_loss = 0.415911 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842662, GIOU: 0.839084), Class: 0.991564, Obj: 0.867813, No Obj: 0.002963, .5R: 0.995727, .75R: 0.863248, count: 234, class_loss = 0.444615, iou_loss = 23.617762, total_loss = 24.062376 \n",
" total_bbox = 849444, rewritten_bbox = 0.038496 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3586: 0.277847, 0.242089 avg loss, 0.000261 rate, 1.240879 seconds, 229504 images, 0.185542 hours left\n",
"Loaded: 0.000078 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863953, GIOU: 0.861655), Class: 0.999317, Obj: 0.912303, No Obj: 0.001899, .5R: 1.000000, .75R: 0.939394, count: 33, class_loss = 0.050744, iou_loss = 0.240466, total_loss = 0.291211 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831093, GIOU: 0.824786), Class: 0.985828, Obj: 0.866872, No Obj: 0.002576, .5R: 0.975845, .75R: 0.908213, count: 207, class_loss = 0.436066, iou_loss = 19.052137, total_loss = 19.488203 \n",
" total_bbox = 849684, rewritten_bbox = 0.038485 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3587: 0.243572, 0.242238 avg loss, 0.000261 rate, 1.370878 seconds, 229568 images, 0.185220 hours left\n",
"Loaded: 0.058526 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857720, GIOU: 0.854854), Class: 0.999103, Obj: 0.843599, No Obj: 0.001978, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.121158, iou_loss = 0.291425, total_loss = 0.412583 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835970, GIOU: 0.830082), Class: 0.991144, Obj: 0.885918, No Obj: 0.002312, .5R: 0.983240, .75R: 0.899441, count: 179, class_loss = 0.362387, iou_loss = 15.704536, total_loss = 16.066923 \n",
" total_bbox = 849897, rewritten_bbox = 0.038475 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3588: 0.241940, 0.242208 avg loss, 0.000261 rate, 1.248448 seconds, 229632 images, 0.184941 hours left\n",
"Loaded: 0.000068 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835092, GIOU: 0.830422), Class: 0.996699, Obj: 0.905587, No Obj: 0.002184, .5R: 1.000000, .75R: 0.833333, count: 42, class_loss = 0.051846, iou_loss = 0.338921, total_loss = 0.390767 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831564, GIOU: 0.825198), Class: 0.993681, Obj: 0.874551, No Obj: 0.001937, .5R: 0.986486, .75R: 0.851351, count: 148, class_loss = 0.343744, iou_loss = 13.093206, total_loss = 13.436951 \n",
" total_bbox = 850087, rewritten_bbox = 0.038467 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3589: 0.197977, 0.237785 avg loss, 0.000261 rate, 1.425479 seconds, 229696 images, 0.184587 hours left\n",
"Loaded: 0.017842 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860676, GIOU: 0.857628), Class: 0.999302, Obj: 0.924353, No Obj: 0.002511, .5R: 1.000000, .75R: 0.958333, count: 48, class_loss = 0.046413, iou_loss = 0.464074, total_loss = 0.510487 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842682, GIOU: 0.837859), Class: 0.994536, Obj: 0.883235, No Obj: 0.002741, .5R: 0.990698, .75R: 0.934884, count: 215, class_loss = 0.413764, iou_loss = 18.285330, total_loss = 18.699095 \n",
" total_bbox = 850350, rewritten_bbox = 0.038455 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3590: 0.230251, 0.237031 avg loss, 0.000261 rate, 1.264373 seconds, 229760 images, 0.184369 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846850, GIOU: 0.842639), Class: 0.999550, Obj: 0.941030, No Obj: 0.002269, .5R: 1.000000, .75R: 0.837838, count: 37, class_loss = 0.053709, iou_loss = 0.359404, total_loss = 0.413113 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830957, GIOU: 0.825566), Class: 0.982914, Obj: 0.869171, No Obj: 0.002399, .5R: 0.977654, .75R: 0.865922, count: 179, class_loss = 0.515197, iou_loss = 12.946329, total_loss = 13.461527 \n",
" total_bbox = 850566, rewritten_bbox = 0.038445 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3591: 0.284629, 0.241791 avg loss, 0.000261 rate, 1.161788 seconds, 229824 images, 0.183985 hours left\n",
"Loaded: 0.000063 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849438, GIOU: 0.844985), Class: 0.997091, Obj: 0.892439, No Obj: 0.002706, .5R: 1.000000, .75R: 0.888889, count: 54, class_loss = 0.068637, iou_loss = 0.411359, total_loss = 0.479996 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843307, GIOU: 0.839607), Class: 0.987536, Obj: 0.884734, No Obj: 0.002092, .5R: 0.993103, .75R: 0.896552, count: 145, class_loss = 0.358350, iou_loss = 11.394427, total_loss = 11.752778 \n",
" total_bbox = 850765, rewritten_bbox = 0.038436 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3592: 0.213662, 0.238978 avg loss, 0.000261 rate, 1.214402 seconds, 229888 images, 0.183465 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852472, GIOU: 0.849408), Class: 0.998505, Obj: 0.857692, No Obj: 0.002499, .5R: 1.000000, .75R: 0.875000, count: 48, class_loss = 0.130203, iou_loss = 0.439002, total_loss = 0.569205 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827272, GIOU: 0.822982), Class: 0.994693, Obj: 0.853352, No Obj: 0.002538, .5R: 0.994845, .75R: 0.829897, count: 194, class_loss = 0.469858, iou_loss = 14.027172, total_loss = 14.497030 \n",
" total_bbox = 851007, rewritten_bbox = 0.038425 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3593: 0.300206, 0.245101 avg loss, 0.000261 rate, 1.226733 seconds, 229952 images, 0.183007 hours left\n",
"Loaded: 0.013515 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863864, GIOU: 0.861945), Class: 0.996597, Obj: 0.896423, No Obj: 0.002257, .5R: 1.000000, .75R: 0.973684, count: 38, class_loss = 0.069285, iou_loss = 0.309980, total_loss = 0.379265 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840409, GIOU: 0.835268), Class: 0.992468, Obj: 0.863810, No Obj: 0.002567, .5R: 0.994819, .75R: 0.896373, count: 193, class_loss = 0.377887, iou_loss = 17.470528, total_loss = 17.848415 \n",
" total_bbox = 851238, rewritten_bbox = 0.038415 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3594: 0.223747, 0.242966 avg loss, 0.000261 rate, 1.194392 seconds, 230016 images, 0.182564 hours left\n",
"Loaded: 0.074671 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858096, GIOU: 0.854961), Class: 0.999430, Obj: 0.874088, No Obj: 0.002076, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.052493, iou_loss = 0.308164, total_loss = 0.360657 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845240, GIOU: 0.840273), Class: 0.994358, Obj: 0.872362, No Obj: 0.002085, .5R: 0.994083, .75R: 0.887574, count: 169, class_loss = 0.330829, iou_loss = 16.220688, total_loss = 16.551517 \n",
" total_bbox = 851446, rewritten_bbox = 0.038405 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3595: 0.191823, 0.237851 avg loss, 0.000261 rate, 1.302956 seconds, 230080 images, 0.182101 hours left\n",
"Loaded: 0.027243 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837718, GIOU: 0.834134), Class: 0.968240, Obj: 0.853794, No Obj: 0.001815, .5R: 1.000000, .75R: 0.837838, count: 37, class_loss = 0.096670, iou_loss = 0.310638, total_loss = 0.407308 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827822, GIOU: 0.820424), Class: 0.986931, Obj: 0.885543, No Obj: 0.002052, .5R: 0.987578, .75R: 0.838509, count: 161, class_loss = 0.261806, iou_loss = 14.231077, total_loss = 14.492884 \n",
" total_bbox = 851644, rewritten_bbox = 0.038396 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3596: 0.179421, 0.232008 avg loss, 0.000261 rate, 1.288848 seconds, 230144 images, 0.181830 hours left\n",
"Loaded: 0.042329 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853277, GIOU: 0.850266), Class: 0.998463, Obj: 0.882439, No Obj: 0.002469, .5R: 1.000000, .75R: 0.900000, count: 40, class_loss = 0.072294, iou_loss = 0.446547, total_loss = 0.518841 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831808, GIOU: 0.827173), Class: 0.995184, Obj: 0.866662, No Obj: 0.002955, .5R: 0.991266, .75R: 0.860262, count: 229, class_loss = 0.396776, iou_loss = 20.839321, total_loss = 21.236097 \n",
" total_bbox = 851913, rewritten_bbox = 0.038384 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3597: 0.234708, 0.232278 avg loss, 0.000261 rate, 1.210935 seconds, 230208 images, 0.181488 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857312, GIOU: 0.851050), Class: 0.996575, Obj: 0.917721, No Obj: 0.002276, .5R: 0.978261, .75R: 0.869565, count: 46, class_loss = 0.047890, iou_loss = 0.512541, total_loss = 0.560431 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837431, GIOU: 0.832799), Class: 0.989905, Obj: 0.856821, No Obj: 0.002611, .5R: 0.984694, .75R: 0.877551, count: 196, class_loss = 0.474977, iou_loss = 16.136137, total_loss = 16.611115 \n",
" total_bbox = 852155, rewritten_bbox = 0.038491 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3598: 0.261600, 0.235211 avg loss, 0.000261 rate, 1.273961 seconds, 230272 images, 0.181076 hours left\n",
"Loaded: 0.198055 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841050, GIOU: 0.837067), Class: 0.998407, Obj: 0.908651, No Obj: 0.001883, .5R: 1.000000, .75R: 0.878788, count: 33, class_loss = 0.066289, iou_loss = 0.261039, total_loss = 0.327328 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827386, GIOU: 0.823536), Class: 0.992799, Obj: 0.866819, No Obj: 0.002580, .5R: 1.000000, .75R: 0.813953, count: 215, class_loss = 0.433786, iou_loss = 19.690769, total_loss = 20.124556 \n",
" total_bbox = 852403, rewritten_bbox = 0.038479 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3599: 0.250219, 0.236711 avg loss, 0.000261 rate, 1.235679 seconds, 230336 images, 0.180688 hours left\n",
"Loaded: 0.000068 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848014, GIOU: 0.845526), Class: 0.998818, Obj: 0.838802, No Obj: 0.001703, .5R: 1.000000, .75R: 0.909091, count: 33, class_loss = 0.086572, iou_loss = 0.307931, total_loss = 0.394503 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838525, GIOU: 0.834651), Class: 0.994451, Obj: 0.863722, No Obj: 0.002273, .5R: 0.994536, .75R: 0.874317, count: 183, class_loss = 0.419932, iou_loss = 18.004467, total_loss = 18.424398 \n",
" total_bbox = 852619, rewritten_bbox = 0.038470 % \n",
"\n",
" (next mAP calculation at 3600 iterations) \n",
" Last accuracy [email protected] = 56.87 %, best = 58.96 % \n",
" 3600: 0.253423, 0.238383 avg loss, 0.000026 rate, 1.279230 seconds, 230400 images, 0.180478 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 353, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.16% \t (TP = 162, FP = 7) \n",
"class_id = 1, name = no mask, ap = 47.69% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.95, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 10, FN = 120, average IoU = 78.20 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.579263, or 57.93 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.579263 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000109 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854413, GIOU: 0.850807), Class: 0.999504, Obj: 0.860839, No Obj: 0.001903, .5R: 1.000000, .75R: 0.833333, count: 36, class_loss = 0.104982, iou_loss = 0.311904, total_loss = 0.416886 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.824733, GIOU: 0.820558), Class: 0.993977, Obj: 0.871717, No Obj: 0.002245, .5R: 0.987654, .75R: 0.827160, count: 162, class_loss = 0.399362, iou_loss = 14.315937, total_loss = 14.715300 \n",
" total_bbox = 852817, rewritten_bbox = 0.038461 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3601: 0.252348, 0.239779 avg loss, 0.000026 rate, 1.160788 seconds, 230464 images, 0.182365 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843577, GIOU: 0.840045), Class: 0.990189, Obj: 0.902780, No Obj: 0.002086, .5R: 0.950000, .75R: 0.900000, count: 40, class_loss = 0.060725, iou_loss = 0.366683, total_loss = 0.427408 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845401, GIOU: 0.841764), Class: 0.993593, Obj: 0.881702, No Obj: 0.002259, .5R: 0.993939, .75R: 0.890909, count: 165, class_loss = 0.312349, iou_loss = 13.841064, total_loss = 14.153413 \n",
" total_bbox = 853022, rewritten_bbox = 0.038452 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3602: 0.186707, 0.234472 avg loss, 0.000026 rate, 1.367599 seconds, 230528 images, 0.181828 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847773, GIOU: 0.842564), Class: 0.997343, Obj: 0.849315, No Obj: 0.002684, .5R: 1.000000, .75R: 0.877551, count: 49, class_loss = 0.081565, iou_loss = 0.449869, total_loss = 0.531434 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834917, GIOU: 0.830476), Class: 0.989467, Obj: 0.868953, No Obj: 0.002988, .5R: 0.995652, .75R: 0.886956, count: 230, class_loss = 0.423720, iou_loss = 19.910791, total_loss = 20.334511 \n",
" total_bbox = 853301, rewritten_bbox = 0.038439 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3603: 0.252816, 0.236306 avg loss, 0.000026 rate, 1.290404 seconds, 230592 images, 0.181522 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850990, GIOU: 0.848735), Class: 0.998475, Obj: 0.938680, No Obj: 0.002465, .5R: 0.976744, .75R: 0.953488, count: 43, class_loss = 0.036509, iou_loss = 0.389975, total_loss = 0.426485 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848318, GIOU: 0.843820), Class: 0.997766, Obj: 0.894794, No Obj: 0.002699, .5R: 0.989474, .75R: 0.905263, count: 190, class_loss = 0.292651, iou_loss = 13.991029, total_loss = 14.283680 \n",
" total_bbox = 853534, rewritten_bbox = 0.038428 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3604: 0.164745, 0.229150 avg loss, 0.000026 rate, 1.131769 seconds, 230656 images, 0.181130 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847104, GIOU: 0.843040), Class: 0.995862, Obj: 0.877554, No Obj: 0.003155, .5R: 0.982759, .75R: 0.896552, count: 58, class_loss = 0.120692, iou_loss = 0.550317, total_loss = 0.671009 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838905, GIOU: 0.834926), Class: 0.983092, Obj: 0.857360, No Obj: 0.002797, .5R: 0.995169, .75R: 0.879227, count: 207, class_loss = 0.458313, iou_loss = 15.483148, total_loss = 15.941462 \n",
" total_bbox = 853799, rewritten_bbox = 0.038417 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3605: 0.289674, 0.235202 avg loss, 0.000026 rate, 1.188876 seconds, 230720 images, 0.180564 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845479, GIOU: 0.841505), Class: 0.998591, Obj: 0.884343, No Obj: 0.002521, .5R: 1.000000, .75R: 0.950000, count: 40, class_loss = 0.072097, iou_loss = 0.351120, total_loss = 0.423216 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828247, GIOU: 0.819157), Class: 0.990106, Obj: 0.833626, No Obj: 0.002352, .5R: 0.982353, .75R: 0.852941, count: 170, class_loss = 0.509729, iou_loss = 13.330219, total_loss = 13.839949 \n",
" total_bbox = 854009, rewritten_bbox = 0.038407 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3606: 0.291091, 0.240791 avg loss, 0.000026 rate, 1.201384 seconds, 230784 images, 0.180062 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.879349, GIOU: 0.877441), Class: 0.997821, Obj: 0.901437, No Obj: 0.002128, .5R: 1.000000, .75R: 0.973684, count: 38, class_loss = 0.044831, iou_loss = 0.373719, total_loss = 0.418550 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844977, GIOU: 0.841505), Class: 0.991773, Obj: 0.892323, No Obj: 0.003188, .5R: 0.995868, .75R: 0.909091, count: 242, class_loss = 0.422554, iou_loss = 21.552109, total_loss = 21.974663 \n",
" total_bbox = 854289, rewritten_bbox = 0.038394 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3607: 0.233843, 0.240097 avg loss, 0.000026 rate, 1.235351 seconds, 230848 images, 0.179577 hours left\n",
"Loaded: 0.000065 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854445, GIOU: 0.849628), Class: 0.998028, Obj: 0.887544, No Obj: 0.002408, .5R: 0.976744, .75R: 0.883721, count: 43, class_loss = 0.065978, iou_loss = 0.357915, total_loss = 0.423893 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826022, GIOU: 0.819603), Class: 0.988699, Obj: 0.856703, No Obj: 0.002475, .5R: 0.990476, .75R: 0.847619, count: 210, class_loss = 0.504128, iou_loss = 17.119785, total_loss = 17.623913 \n",
" total_bbox = 854542, rewritten_bbox = 0.038383 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3608: 0.285228, 0.244610 avg loss, 0.000026 rate, 1.314347 seconds, 230912 images, 0.179130 hours left\n",
"Loaded: 0.093719 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870131, GIOU: 0.867162), Class: 0.999589, Obj: 0.950645, No Obj: 0.001697, .5R: 1.000000, .75R: 1.000000, count: 33, class_loss = 0.015433, iou_loss = 0.385448, total_loss = 0.400880 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836560, GIOU: 0.831051), Class: 0.989544, Obj: 0.837523, No Obj: 0.002980, .5R: 0.978261, .75R: 0.882609, count: 230, class_loss = 0.566669, iou_loss = 19.299589, total_loss = 19.866259 \n",
" total_bbox = 854805, rewritten_bbox = 0.038371 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3609: 0.291211, 0.249270 avg loss, 0.000026 rate, 1.250620 seconds, 230976 images, 0.178770 hours left\n",
"Loaded: 0.000086 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849580, GIOU: 0.845450), Class: 0.998170, Obj: 0.871438, No Obj: 0.002233, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.061393, iou_loss = 0.301866, total_loss = 0.363259 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.821648, GIOU: 0.816710), Class: 0.990402, Obj: 0.866235, No Obj: 0.002640, .5R: 0.985577, .75R: 0.850962, count: 208, class_loss = 0.467275, iou_loss = 20.929375, total_loss = 21.396650 \n",
" total_bbox = 855052, rewritten_bbox = 0.038360 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3610: 0.264514, 0.250794 avg loss, 0.000026 rate, 1.325928 seconds, 231040 images, 0.178442 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851903, GIOU: 0.848347), Class: 0.999304, Obj: 0.879972, No Obj: 0.002607, .5R: 1.000000, .75R: 0.916667, count: 48, class_loss = 0.074768, iou_loss = 0.408056, total_loss = 0.482824 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833759, GIOU: 0.828620), Class: 0.995833, Obj: 0.851359, No Obj: 0.002439, .5R: 0.988701, .75R: 0.853107, count: 177, class_loss = 0.352665, iou_loss = 14.308845, total_loss = 14.661510 \n",
" total_bbox = 855277, rewritten_bbox = 0.038350 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3611: 0.213888, 0.247104 avg loss, 0.000026 rate, 1.328161 seconds, 231104 images, 0.178094 hours left\n",
"Loaded: 0.128120 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854668, GIOU: 0.851187), Class: 0.998650, Obj: 0.852854, No Obj: 0.002106, .5R: 1.000000, .75R: 0.902439, count: 41, class_loss = 0.082105, iou_loss = 0.326746, total_loss = 0.408851 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838402, GIOU: 0.833100), Class: 0.996953, Obj: 0.886852, No Obj: 0.002704, .5R: 0.995215, .75R: 0.889952, count: 209, class_loss = 0.353971, iou_loss = 20.335268, total_loss = 20.689240 \n",
" total_bbox = 855527, rewritten_bbox = 0.038339 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3612: 0.218206, 0.244214 avg loss, 0.000026 rate, 1.164368 seconds, 231168 images, 0.177748 hours left\n",
"Loaded: 0.000111 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864524, GIOU: 0.862228), Class: 0.997527, Obj: 0.934763, No Obj: 0.002057, .5R: 1.000000, .75R: 0.948718, count: 39, class_loss = 0.036428, iou_loss = 0.351744, total_loss = 0.388172 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836288, GIOU: 0.830864), Class: 0.996648, Obj: 0.883486, No Obj: 0.002232, .5R: 0.981366, .75R: 0.888199, count: 161, class_loss = 0.302798, iou_loss = 12.735584, total_loss = 13.038382 \n",
" total_bbox = 855727, rewritten_bbox = 0.038330 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3613: 0.169776, 0.236770 avg loss, 0.000026 rate, 1.168071 seconds, 231232 images, 0.177364 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847471, GIOU: 0.843669), Class: 0.999095, Obj: 0.906443, No Obj: 0.002399, .5R: 1.000000, .75R: 0.888889, count: 45, class_loss = 0.108137, iou_loss = 0.393221, total_loss = 0.501358 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829771, GIOU: 0.824331), Class: 0.995019, Obj: 0.838576, No Obj: 0.003198, .5R: 0.987805, .75R: 0.849593, count: 246, class_loss = 0.582529, iou_loss = 22.618198, total_loss = 23.200727 \n",
" total_bbox = 856018, rewritten_bbox = 0.038434 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3614: 0.345510, 0.247644 avg loss, 0.000026 rate, 1.229987 seconds, 231296 images, 0.176846 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848953, GIOU: 0.844657), Class: 0.998245, Obj: 0.866836, No Obj: 0.002652, .5R: 1.000000, .75R: 0.918367, count: 49, class_loss = 0.102610, iou_loss = 0.427504, total_loss = 0.530114 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829464, GIOU: 0.824444), Class: 0.993628, Obj: 0.858557, No Obj: 0.002609, .5R: 0.984536, .75R: 0.855670, count: 194, class_loss = 0.424674, iou_loss = 16.707556, total_loss = 17.132229 \n",
" total_bbox = 856261, rewritten_bbox = 0.038423 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3615: 0.263818, 0.249261 avg loss, 0.000026 rate, 1.242358 seconds, 231360 images, 0.176397 hours left\n",
"Loaded: 0.000038 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846249, GIOU: 0.843581), Class: 0.998958, Obj: 0.906981, No Obj: 0.002002, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.044363, iou_loss = 0.344590, total_loss = 0.388953 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826447, GIOU: 0.819134), Class: 0.987629, Obj: 0.866570, No Obj: 0.002538, .5R: 0.980099, .75R: 0.845771, count: 201, class_loss = 0.428483, iou_loss = 18.450039, total_loss = 18.878521 \n",
" total_bbox = 856498, rewritten_bbox = 0.038412 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3616: 0.236602, 0.247995 avg loss, 0.000026 rate, 1.240525 seconds, 231424 images, 0.175961 hours left\n",
"Loaded: 0.031655 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846194, GIOU: 0.843103), Class: 0.998989, Obj: 0.911497, No Obj: 0.002286, .5R: 1.000000, .75R: 0.953488, count: 43, class_loss = 0.043058, iou_loss = 0.390999, total_loss = 0.434058 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.859912, GIOU: 0.856787), Class: 0.998254, Obj: 0.894177, No Obj: 0.002804, .5R: 1.000000, .75R: 0.950980, count: 204, class_loss = 0.324602, iou_loss = 16.913971, total_loss = 17.238573 \n",
" total_bbox = 856745, rewritten_bbox = 0.038401 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3617: 0.183991, 0.241595 avg loss, 0.000026 rate, 1.244600 seconds, 231488 images, 0.175525 hours left\n",
"Loaded: 0.000054 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.827786, GIOU: 0.823061), Class: 0.990746, Obj: 0.874576, No Obj: 0.002388, .5R: 1.000000, .75R: 0.775000, count: 40, class_loss = 0.110934, iou_loss = 0.318340, total_loss = 0.429275 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851216, GIOU: 0.847310), Class: 0.994357, Obj: 0.859877, No Obj: 0.002175, .5R: 1.000000, .75R: 0.920732, count: 164, class_loss = 0.343286, iou_loss = 15.048850, total_loss = 15.392136 \n",
" total_bbox = 856949, rewritten_bbox = 0.038392 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3618: 0.227286, 0.240164 avg loss, 0.000026 rate, 1.250774 seconds, 231552 images, 0.175127 hours left\n",
"Loaded: 0.000076 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.827869, GIOU: 0.824757), Class: 0.997983, Obj: 0.838589, No Obj: 0.002138, .5R: 1.000000, .75R: 0.846154, count: 39, class_loss = 0.102256, iou_loss = 0.296400, total_loss = 0.398656 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841779, GIOU: 0.837146), Class: 0.997074, Obj: 0.859891, No Obj: 0.002458, .5R: 1.000000, .75R: 0.860215, count: 186, class_loss = 0.439183, iou_loss = 16.746849, total_loss = 17.186033 \n",
" total_bbox = 857174, rewritten_bbox = 0.038382 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3619: 0.270900, 0.243238 avg loss, 0.000026 rate, 1.194502 seconds, 231616 images, 0.174704 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863425, GIOU: 0.861370), Class: 0.997921, Obj: 0.906367, No Obj: 0.002711, .5R: 1.000000, .75R: 0.914894, count: 47, class_loss = 0.063024, iou_loss = 0.499181, total_loss = 0.562206 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843856, GIOU: 0.839736), Class: 0.995074, Obj: 0.904557, No Obj: 0.003532, .5R: 0.984733, .75R: 0.908397, count: 262, class_loss = 0.294702, iou_loss = 22.796185, total_loss = 23.090887 \n",
" total_bbox = 857483, rewritten_bbox = 0.038485 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3620: 0.179023, 0.236816 avg loss, 0.000026 rate, 1.238258 seconds, 231680 images, 0.174221 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859034, GIOU: 0.855039), Class: 0.993850, Obj: 0.863080, No Obj: 0.002610, .5R: 1.000000, .75R: 0.956522, count: 46, class_loss = 0.101690, iou_loss = 0.487103, total_loss = 0.588793 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835085, GIOU: 0.830166), Class: 0.996769, Obj: 0.849349, No Obj: 0.002370, .5R: 0.994152, .75R: 0.830409, count: 171, class_loss = 0.452788, iou_loss = 12.439057, total_loss = 12.891845 \n",
" total_bbox = 857700, rewritten_bbox = 0.038475 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3621: 0.277406, 0.240875 avg loss, 0.000026 rate, 1.263738 seconds, 231744 images, 0.173786 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850992, GIOU: 0.847940), Class: 0.999569, Obj: 0.913109, No Obj: 0.001899, .5R: 1.000000, .75R: 1.000000, count: 36, class_loss = 0.027843, iou_loss = 0.304372, total_loss = 0.332214 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844774, GIOU: 0.841137), Class: 0.998695, Obj: 0.894515, No Obj: 0.002592, .5R: 0.994792, .75R: 0.911458, count: 192, class_loss = 0.276740, iou_loss = 16.838570, total_loss = 17.115311 \n",
" total_bbox = 857928, rewritten_bbox = 0.038465 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3622: 0.152458, 0.232034 avg loss, 0.000026 rate, 1.170095 seconds, 231808 images, 0.173378 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851382, GIOU: 0.848221), Class: 0.996294, Obj: 0.871960, No Obj: 0.002635, .5R: 0.979592, .75R: 0.918367, count: 49, class_loss = 0.082438, iou_loss = 0.449924, total_loss = 0.532361 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830917, GIOU: 0.824886), Class: 0.994853, Obj: 0.869639, No Obj: 0.002167, .5R: 0.987952, .75R: 0.861446, count: 166, class_loss = 0.308667, iou_loss = 12.060891, total_loss = 12.369558 \n",
" total_bbox = 858143, rewritten_bbox = 0.038455 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3623: 0.195726, 0.228403 avg loss, 0.000026 rate, 1.268283 seconds, 231872 images, 0.172873 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841841, GIOU: 0.834954), Class: 0.998268, Obj: 0.832384, No Obj: 0.002422, .5R: 1.000000, .75R: 0.840909, count: 44, class_loss = 0.133211, iou_loss = 0.389153, total_loss = 0.522364 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845167, GIOU: 0.841328), Class: 0.996290, Obj: 0.865233, No Obj: 0.002886, .5R: 1.000000, .75R: 0.924779, count: 226, class_loss = 0.451290, iou_loss = 21.665758, total_loss = 22.117048 \n",
" total_bbox = 858413, rewritten_bbox = 0.038443 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3624: 0.292422, 0.234805 avg loss, 0.000026 rate, 1.333551 seconds, 231936 images, 0.172473 hours left\n",
"Loaded: 0.126959 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840381, GIOU: 0.836372), Class: 0.997198, Obj: 0.802457, No Obj: 0.001529, .5R: 1.000000, .75R: 0.833333, count: 24, class_loss = 0.088500, iou_loss = 0.178054, total_loss = 0.266554 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844038, GIOU: 0.840018), Class: 0.991909, Obj: 0.876406, No Obj: 0.002607, .5R: 0.990338, .75R: 0.908213, count: 207, class_loss = 0.383247, iou_loss = 17.887188, total_loss = 18.270435 \n",
" total_bbox = 858644, rewritten_bbox = 0.038433 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3625: 0.236046, 0.234929 avg loss, 0.000026 rate, 1.196444 seconds, 232000 images, 0.172141 hours left\n",
"Loaded: 0.000070 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840965, GIOU: 0.836439), Class: 0.994179, Obj: 0.901220, No Obj: 0.002205, .5R: 1.000000, .75R: 0.857143, count: 42, class_loss = 0.033006, iou_loss = 0.456917, total_loss = 0.489923 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845892, GIOU: 0.842095), Class: 0.996292, Obj: 0.883463, No Obj: 0.002403, .5R: 0.994286, .75R: 0.868571, count: 175, class_loss = 0.305803, iou_loss = 15.810496, total_loss = 16.116299 \n",
" total_bbox = 858861, rewritten_bbox = 0.038423 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3626: 0.169576, 0.228394 avg loss, 0.000026 rate, 1.340041 seconds, 232064 images, 0.171798 hours left\n",
"Loaded: 0.016027 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861778, GIOU: 0.858918), Class: 0.998647, Obj: 0.907727, No Obj: 0.001517, .5R: 1.000000, .75R: 0.903226, count: 31, class_loss = 0.035441, iou_loss = 0.268948, total_loss = 0.304389 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830793, GIOU: 0.825735), Class: 0.990510, Obj: 0.846202, No Obj: 0.002398, .5R: 0.975248, .75R: 0.891089, count: 202, class_loss = 0.453092, iou_loss = 18.082197, total_loss = 18.535290 \n",
" total_bbox = 859094, rewritten_bbox = 0.038413 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3627: 0.244434, 0.229998 avg loss, 0.000026 rate, 1.200864 seconds, 232128 images, 0.171472 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864096, GIOU: 0.860795), Class: 0.998227, Obj: 0.897781, No Obj: 0.002495, .5R: 1.000000, .75R: 0.954545, count: 44, class_loss = 0.050447, iou_loss = 0.438744, total_loss = 0.489192 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828306, GIOU: 0.822960), Class: 0.994218, Obj: 0.861394, No Obj: 0.002650, .5R: 0.990385, .75R: 0.836538, count: 208, class_loss = 0.370377, iou_loss = 18.083883, total_loss = 18.454260 \n",
" total_bbox = 859346, rewritten_bbox = 0.038401 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3628: 0.210581, 0.228056 avg loss, 0.000026 rate, 1.272062 seconds, 232192 images, 0.171018 hours left\n",
"Loaded: 0.000050 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837366, GIOU: 0.828353), Class: 0.997891, Obj: 0.859713, No Obj: 0.001925, .5R: 0.942857, .75R: 0.885714, count: 35, class_loss = 0.071500, iou_loss = 0.221776, total_loss = 0.293276 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841578, GIOU: 0.837633), Class: 0.997822, Obj: 0.913514, No Obj: 0.002483, .5R: 0.983784, .75R: 0.886487, count: 185, class_loss = 0.220750, iou_loss = 17.772005, total_loss = 17.992756 \n",
" total_bbox = 859566, rewritten_bbox = 0.038508 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3629: 0.146300, 0.219880 avg loss, 0.000026 rate, 1.260906 seconds, 232256 images, 0.170623 hours left\n",
"Loaded: 0.000071 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828892, GIOU: 0.825588), Class: 0.997111, Obj: 0.856123, No Obj: 0.003002, .5R: 1.000000, .75R: 0.769231, count: 52, class_loss = 0.074966, iou_loss = 0.454595, total_loss = 0.529561 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840895, GIOU: 0.836436), Class: 0.991317, Obj: 0.861795, No Obj: 0.002260, .5R: 0.993590, .75R: 0.852564, count: 156, class_loss = 0.399419, iou_loss = 10.992719, total_loss = 11.392138 \n",
" total_bbox = 859774, rewritten_bbox = 0.038498 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3630: 0.237373, 0.221630 avg loss, 0.000026 rate, 1.308264 seconds, 232320 images, 0.170216 hours left\n",
"Loaded: 0.123596 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863310, GIOU: 0.860761), Class: 0.998483, Obj: 0.883101, No Obj: 0.001896, .5R: 1.000000, .75R: 0.944444, count: 36, class_loss = 0.056746, iou_loss = 0.310074, total_loss = 0.366820 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833370, GIOU: 0.828305), Class: 0.984582, Obj: 0.860320, No Obj: 0.002695, .5R: 0.995074, .75R: 0.852217, count: 203, class_loss = 0.505255, iou_loss = 17.277246, total_loss = 17.782501 \n",
" total_bbox = 860013, rewritten_bbox = 0.038488 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3631: 0.281167, 0.227583 avg loss, 0.000026 rate, 1.217346 seconds, 232384 images, 0.169858 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838095, GIOU: 0.832174), Class: 0.998517, Obj: 0.845712, No Obj: 0.002202, .5R: 0.972222, .75R: 0.916667, count: 36, class_loss = 0.071409, iou_loss = 0.251580, total_loss = 0.322988 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834904, GIOU: 0.829200), Class: 0.992119, Obj: 0.881950, No Obj: 0.002512, .5R: 0.984375, .75R: 0.880208, count: 192, class_loss = 0.398694, iou_loss = 18.119873, total_loss = 18.518566 \n",
" total_bbox = 860241, rewritten_bbox = 0.038478 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3632: 0.235230, 0.228348 avg loss, 0.000026 rate, 1.271325 seconds, 232448 images, 0.169534 hours left\n",
"Loaded: 0.006475 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861080, GIOU: 0.856617), Class: 0.996433, Obj: 0.920666, No Obj: 0.001773, .5R: 1.000000, .75R: 0.900000, count: 30, class_loss = 0.053984, iou_loss = 0.312408, total_loss = 0.366392 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830396, GIOU: 0.824899), Class: 0.986113, Obj: 0.866594, No Obj: 0.003076, .5R: 0.991266, .75R: 0.899563, count: 229, class_loss = 0.534311, iou_loss = 19.684681, total_loss = 20.218992 \n",
" total_bbox = 860500, rewritten_bbox = 0.038466 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3633: 0.294316, 0.234945 avg loss, 0.000026 rate, 1.172170 seconds, 232512 images, 0.169139 hours left\n",
"Loaded: 0.001801 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844615, GIOU: 0.840813), Class: 0.999427, Obj: 0.843648, No Obj: 0.002293, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.090757, iou_loss = 0.332569, total_loss = 0.423326 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836189, GIOU: 0.830980), Class: 0.995579, Obj: 0.872219, No Obj: 0.002409, .5R: 0.983607, .75R: 0.874317, count: 183, class_loss = 0.346835, iou_loss = 16.398911, total_loss = 16.745745 \n",
" total_bbox = 860726, rewritten_bbox = 0.038456 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3634: 0.218970, 0.233347 avg loss, 0.000026 rate, 1.242421 seconds, 232576 images, 0.168649 hours left\n",
"Loaded: 0.068188 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835365, GIOU: 0.829902), Class: 0.997595, Obj: 0.888307, No Obj: 0.001872, .5R: 1.000000, .75R: 0.861111, count: 36, class_loss = 0.062366, iou_loss = 0.288311, total_loss = 0.350676 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830463, GIOU: 0.825306), Class: 0.986683, Obj: 0.904997, No Obj: 0.002287, .5R: 0.987421, .75R: 0.880503, count: 159, class_loss = 0.313805, iou_loss = 14.939428, total_loss = 15.253233 \n",
" total_bbox = 860921, rewritten_bbox = 0.038447 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3635: 0.188268, 0.228839 avg loss, 0.000026 rate, 1.218647 seconds, 232640 images, 0.168227 hours left\n",
"Loaded: 0.191640 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853859, GIOU: 0.851581), Class: 0.999135, Obj: 0.896292, No Obj: 0.002131, .5R: 1.000000, .75R: 0.952381, count: 42, class_loss = 0.060616, iou_loss = 0.380177, total_loss = 0.440793 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840570, GIOU: 0.836307), Class: 0.992583, Obj: 0.906227, No Obj: 0.002299, .5R: 0.993939, .75R: 0.890909, count: 165, class_loss = 0.258849, iou_loss = 11.886302, total_loss = 12.145151 \n",
" total_bbox = 861128, rewritten_bbox = 0.038438 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3636: 0.159900, 0.221945 avg loss, 0.000026 rate, 1.157015 seconds, 232704 images, 0.167850 hours left\n",
"Loaded: 0.000036 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857156, GIOU: 0.852688), Class: 0.993782, Obj: 0.881641, No Obj: 0.002465, .5R: 1.000000, .75R: 0.854167, count: 48, class_loss = 0.089929, iou_loss = 0.484591, total_loss = 0.574520 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832127, GIOU: 0.826298), Class: 0.991187, Obj: 0.878062, No Obj: 0.003079, .5R: 0.986667, .75R: 0.862222, count: 225, class_loss = 0.437359, iou_loss = 18.627293, total_loss = 19.064651 \n",
" total_bbox = 861401, rewritten_bbox = 0.038426 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3637: 0.263814, 0.226132 avg loss, 0.000026 rate, 1.315214 seconds, 232768 images, 0.167535 hours left\n",
"Loaded: 0.153281 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843357, GIOU: 0.836062), Class: 0.994416, Obj: 0.892579, No Obj: 0.002348, .5R: 1.000000, .75R: 0.895833, count: 48, class_loss = 0.091278, iou_loss = 0.467692, total_loss = 0.558970 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846897, GIOU: 0.843212), Class: 0.996622, Obj: 0.896191, No Obj: 0.002707, .5R: 0.995098, .75R: 0.916667, count: 204, class_loss = 0.359883, iou_loss = 16.691154, total_loss = 17.051037 \n",
" total_bbox = 861653, rewritten_bbox = 0.038415 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3638: 0.225750, 0.226094 avg loss, 0.000026 rate, 1.190319 seconds, 232832 images, 0.167186 hours left\n",
"Loaded: 0.315002 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845611, GIOU: 0.839892), Class: 0.998741, Obj: 0.803901, No Obj: 0.001841, .5R: 1.000000, .75R: 0.852941, count: 34, class_loss = 0.115953, iou_loss = 0.212861, total_loss = 0.328814 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844491, GIOU: 0.841166), Class: 0.998939, Obj: 0.923577, No Obj: 0.001887, .5R: 0.993007, .75R: 0.895105, count: 143, class_loss = 0.176491, iou_loss = 13.612642, total_loss = 13.789133 \n",
" total_bbox = 861830, rewritten_bbox = 0.038407 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3639: 0.146391, 0.218124 avg loss, 0.000026 rate, 1.204606 seconds, 232896 images, 0.166865 hours left\n",
"Loaded: 0.151925 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864080, GIOU: 0.861799), Class: 0.995793, Obj: 0.861871, No Obj: 0.002725, .5R: 0.979167, .75R: 0.958333, count: 48, class_loss = 0.073687, iou_loss = 0.444475, total_loss = 0.518162 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841896, GIOU: 0.838049), Class: 0.996351, Obj: 0.873408, No Obj: 0.002738, .5R: 0.995146, .75R: 0.868932, count: 206, class_loss = 0.345289, iou_loss = 17.466541, total_loss = 17.811831 \n",
" total_bbox = 862084, rewritten_bbox = 0.038395 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3640: 0.209649, 0.217276 avg loss, 0.000026 rate, 1.236103 seconds, 232960 images, 0.166720 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.871006, GIOU: 0.868120), Class: 0.999160, Obj: 0.948949, No Obj: 0.002544, .5R: 1.000000, .75R: 0.958333, count: 48, class_loss = 0.042813, iou_loss = 0.523040, total_loss = 0.565853 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848044, GIOU: 0.844520), Class: 0.991781, Obj: 0.897801, No Obj: 0.003109, .5R: 0.995556, .75R: 0.924444, count: 225, class_loss = 0.379793, iou_loss = 18.477369, total_loss = 18.857162 \n",
" total_bbox = 862357, rewritten_bbox = 0.038383 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3641: 0.211457, 0.216694 avg loss, 0.000026 rate, 1.385386 seconds, 233024 images, 0.166441 hours left\n",
"Loaded: 0.022763 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841893, GIOU: 0.837687), Class: 0.998590, Obj: 0.898951, No Obj: 0.002480, .5R: 1.000000, .75R: 0.900000, count: 50, class_loss = 0.063565, iou_loss = 0.410620, total_loss = 0.474185 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840241, GIOU: 0.834552), Class: 0.993463, Obj: 0.851712, No Obj: 0.002859, .5R: 0.990050, .75R: 0.895522, count: 201, class_loss = 0.429552, iou_loss = 15.796268, total_loss = 16.225821 \n",
" total_bbox = 862608, rewritten_bbox = 0.038372 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3642: 0.246732, 0.219698 avg loss, 0.000026 rate, 1.283940 seconds, 233088 images, 0.166158 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859182, GIOU: 0.856588), Class: 0.999023, Obj: 0.893904, No Obj: 0.002473, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.068222, iou_loss = 0.386211, total_loss = 0.454433 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848932, GIOU: 0.845423), Class: 0.997040, Obj: 0.903234, No Obj: 0.002456, .5R: 1.000000, .75R: 0.895349, count: 172, class_loss = 0.252601, iou_loss = 14.733466, total_loss = 14.986067 \n",
" total_bbox = 862826, rewritten_bbox = 0.038362 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3643: 0.160571, 0.213785 avg loss, 0.000026 rate, 1.205287 seconds, 233152 images, 0.165796 hours left\n",
"Loaded: 0.000053 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857304, GIOU: 0.854359), Class: 0.999025, Obj: 0.913351, No Obj: 0.001885, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.035063, iou_loss = 0.303786, total_loss = 0.338849 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841020, GIOU: 0.836287), Class: 0.996170, Obj: 0.904779, No Obj: 0.002790, .5R: 0.990476, .75R: 0.890476, count: 210, class_loss = 0.345761, iou_loss = 19.446436, total_loss = 19.792196 \n",
" total_bbox = 863070, rewritten_bbox = 0.038351 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3644: 0.190577, 0.211465 avg loss, 0.000026 rate, 1.237208 seconds, 233216 images, 0.165333 hours left\n",
"Loaded: 0.065513 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841424, GIOU: 0.835860), Class: 0.995814, Obj: 0.894722, No Obj: 0.002540, .5R: 0.980000, .75R: 0.960000, count: 50, class_loss = 0.074932, iou_loss = 0.453342, total_loss = 0.528274 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.818811, GIOU: 0.813253), Class: 0.994677, Obj: 0.844118, No Obj: 0.002973, .5R: 0.979079, .75R: 0.845188, count: 239, class_loss = 0.506122, iou_loss = 20.429567, total_loss = 20.935690 \n",
" total_bbox = 863359, rewritten_bbox = 0.038454 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3645: 0.290713, 0.219389 avg loss, 0.000026 rate, 1.226334 seconds, 233280 images, 0.164904 hours left\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837265, GIOU: 0.831284), Class: 0.991900, Obj: 0.835281, No Obj: 0.002569, .5R: 1.000000, .75R: 0.846154, count: 39, class_loss = 0.100753, iou_loss = 0.259930, total_loss = 0.360683 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833122, GIOU: 0.828341), Class: 0.991236, Obj: 0.848311, No Obj: 0.002146, .5R: 1.000000, .75R: 0.848837, count: 172, class_loss = 0.411030, iou_loss = 15.430932, total_loss = 15.841962 \n",
" total_bbox = 863570, rewritten_bbox = 0.038445 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3646: 0.256072, 0.223058 avg loss, 0.000026 rate, 1.243789 seconds, 233344 images, 0.164529 hours left\n",
"Loaded: 0.245460 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841762, GIOU: 0.838708), Class: 0.995936, Obj: 0.888687, No Obj: 0.002248, .5R: 0.975610, .75R: 0.951219, count: 41, class_loss = 0.096843, iou_loss = 0.299741, total_loss = 0.396584 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830978, GIOU: 0.826239), Class: 0.991882, Obj: 0.854344, No Obj: 0.002413, .5R: 0.994595, .75R: 0.875676, count: 185, class_loss = 0.440047, iou_loss = 17.407177, total_loss = 17.847223 \n",
" total_bbox = 863796, rewritten_bbox = 0.038435 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3647: 0.268624, 0.227614 avg loss, 0.000026 rate, 1.068863 seconds, 233408 images, 0.164106 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835141, GIOU: 0.830711), Class: 0.998620, Obj: 0.908619, No Obj: 0.002414, .5R: 1.000000, .75R: 0.869565, count: 46, class_loss = 0.053972, iou_loss = 0.381548, total_loss = 0.435520 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828549, GIOU: 0.821744), Class: 0.998086, Obj: 0.890153, No Obj: 0.002406, .5R: 0.994764, .75R: 0.858639, count: 191, class_loss = 0.310830, iou_loss = 16.481533, total_loss = 16.792362 \n",
" total_bbox = 864033, rewritten_bbox = 0.038424 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3648: 0.182585, 0.223111 avg loss, 0.000026 rate, 1.324364 seconds, 233472 images, 0.163754 hours left\n",
"Loaded: 0.104135 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849490, GIOU: 0.846735), Class: 0.999578, Obj: 0.887195, No Obj: 0.002065, .5R: 0.971429, .75R: 0.885714, count: 35, class_loss = 0.068265, iou_loss = 0.213843, total_loss = 0.282109 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842194, GIOU: 0.837580), Class: 0.998494, Obj: 0.912103, No Obj: 0.002543, .5R: 0.990148, .75R: 0.926108, count: 203, class_loss = 0.329395, iou_loss = 21.399485, total_loss = 21.728880 \n",
" total_bbox = 864271, rewritten_bbox = 0.038414 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3649: 0.198999, 0.220700 avg loss, 0.000026 rate, 1.147665 seconds, 233536 images, 0.163412 hours left\n",
"Loaded: 0.040571 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857064, GIOU: 0.853824), Class: 0.998127, Obj: 0.893194, No Obj: 0.002425, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.077619, iou_loss = 0.415515, total_loss = 0.493133 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838069, GIOU: 0.833523), Class: 0.983833, Obj: 0.867496, No Obj: 0.002341, .5R: 0.994318, .75R: 0.857955, count: 176, class_loss = 0.401189, iou_loss = 13.085823, total_loss = 13.487012 \n",
" total_bbox = 864496, rewritten_bbox = 0.038404 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3650: 0.239571, 0.222587 avg loss, 0.000026 rate, 1.223228 seconds, 233600 images, 0.162998 hours left\n",
"Loaded: 0.107835 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.874608, GIOU: 0.872871), Class: 0.998728, Obj: 0.901130, No Obj: 0.002504, .5R: 1.000000, .75R: 0.960000, count: 50, class_loss = 0.071891, iou_loss = 0.543206, total_loss = 0.615097 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.860494, GIOU: 0.857656), Class: 0.995344, Obj: 0.911663, No Obj: 0.002548, .5R: 0.994737, .75R: 0.931579, count: 190, class_loss = 0.238726, iou_loss = 16.031528, total_loss = 16.270254 \n",
" total_bbox = 864736, rewritten_bbox = 0.038393 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3651: 0.155453, 0.215874 avg loss, 0.000026 rate, 1.218670 seconds, 233664 images, 0.162597 hours left\n",
"Loaded: 0.143851 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842088, GIOU: 0.836441), Class: 0.999609, Obj: 0.945983, No Obj: 0.002128, .5R: 1.000000, .75R: 0.818182, count: 33, class_loss = 0.063372, iou_loss = 0.274557, total_loss = 0.337929 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831627, GIOU: 0.825725), Class: 0.995257, Obj: 0.889262, No Obj: 0.002706, .5R: 0.985714, .75R: 0.866667, count: 210, class_loss = 0.303309, iou_loss = 17.478477, total_loss = 17.781786 \n",
" total_bbox = 864979, rewritten_bbox = 0.038498 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3652: 0.183519, 0.212638 avg loss, 0.000026 rate, 1.252015 seconds, 233728 images, 0.162257 hours left\n",
"Loaded: 0.093283 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862736, GIOU: 0.859760), Class: 0.998694, Obj: 0.943234, No Obj: 0.003147, .5R: 1.000000, .75R: 0.915254, count: 59, class_loss = 0.032495, iou_loss = 0.632710, total_loss = 0.665205 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840194, GIOU: 0.835542), Class: 0.995631, Obj: 0.870090, No Obj: 0.003444, .5R: 0.985075, .75R: 0.891791, count: 268, class_loss = 0.441852, iou_loss = 21.391743, total_loss = 21.833595 \n",
" total_bbox = 865306, rewritten_bbox = 0.038483 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3653: 0.237336, 0.215108 avg loss, 0.000026 rate, 1.176456 seconds, 233792 images, 0.161984 hours left\n",
"Loaded: 0.000069 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855088, GIOU: 0.851970), Class: 0.998638, Obj: 0.879513, No Obj: 0.001671, .5R: 1.000000, .75R: 0.906250, count: 32, class_loss = 0.055752, iou_loss = 0.300197, total_loss = 0.355948 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843193, GIOU: 0.839650), Class: 0.992903, Obj: 0.861783, No Obj: 0.002766, .5R: 0.990521, .75R: 0.909953, count: 211, class_loss = 0.407321, iou_loss = 19.615242, total_loss = 20.022564 \n",
" total_bbox = 865549, rewritten_bbox = 0.038473 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3654: 0.231702, 0.216767 avg loss, 0.000026 rate, 1.183105 seconds, 233856 images, 0.161588 hours left\n",
"Loaded: 0.000050 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857581, GIOU: 0.853763), Class: 0.998861, Obj: 0.891927, No Obj: 0.002099, .5R: 1.000000, .75R: 0.918919, count: 37, class_loss = 0.086864, iou_loss = 0.378177, total_loss = 0.465042 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835117, GIOU: 0.828980), Class: 0.992818, Obj: 0.868502, No Obj: 0.002575, .5R: 0.989899, .75R: 0.904040, count: 198, class_loss = 0.393049, iou_loss = 16.682526, total_loss = 17.075575 \n",
" total_bbox = 865784, rewritten_bbox = 0.038462 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3655: 0.240124, 0.219103 avg loss, 0.000026 rate, 1.181488 seconds, 233920 images, 0.161109 hours left\n",
"Loaded: 0.000058 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.826768, GIOU: 0.822733), Class: 0.998006, Obj: 0.866915, No Obj: 0.002262, .5R: 1.000000, .75R: 0.800000, count: 45, class_loss = 0.087630, iou_loss = 0.391428, total_loss = 0.479058 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837372, GIOU: 0.832909), Class: 0.991568, Obj: 0.880914, No Obj: 0.002532, .5R: 0.989848, .75R: 0.868020, count: 197, class_loss = 0.376044, iou_loss = 19.047300, total_loss = 19.423344 \n",
" total_bbox = 866026, rewritten_bbox = 0.038452 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3656: 0.232021, 0.220395 avg loss, 0.000026 rate, 1.215175 seconds, 233984 images, 0.160630 hours left\n",
"Loaded: 0.040321 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836449, GIOU: 0.832712), Class: 0.996301, Obj: 0.829718, No Obj: 0.002318, .5R: 1.000000, .75R: 0.840909, count: 44, class_loss = 0.116459, iou_loss = 0.378734, total_loss = 0.495193 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827328, GIOU: 0.820435), Class: 0.989835, Obj: 0.851676, No Obj: 0.002750, .5R: 0.975845, .75R: 0.859903, count: 207, class_loss = 0.510884, iou_loss = 16.751907, total_loss = 17.262791 \n",
" total_bbox = 866277, rewritten_bbox = 0.038440 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3657: 0.313855, 0.229741 avg loss, 0.000026 rate, 1.242573 seconds, 234048 images, 0.160185 hours left\n",
"Loaded: 0.023605 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852717, GIOU: 0.849715), Class: 0.999209, Obj: 0.856956, No Obj: 0.002191, .5R: 0.975000, .75R: 0.925000, count: 40, class_loss = 0.092066, iou_loss = 0.383088, total_loss = 0.475154 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840253, GIOU: 0.835243), Class: 0.993492, Obj: 0.901350, No Obj: 0.002087, .5R: 0.981595, .75R: 0.877301, count: 163, class_loss = 0.257055, iou_loss = 13.706711, total_loss = 13.963766 \n",
" total_bbox = 866480, rewritten_bbox = 0.038431 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3658: 0.174728, 0.224240 avg loss, 0.000026 rate, 1.307766 seconds, 234112 images, 0.159806 hours left\n",
"Loaded: 0.120814 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833771, GIOU: 0.829336), Class: 0.988146, Obj: 0.822438, No Obj: 0.002694, .5R: 0.979592, .75R: 0.816326, count: 49, class_loss = 0.135517, iou_loss = 0.300404, total_loss = 0.435921 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844553, GIOU: 0.838840), Class: 0.987833, Obj: 0.829433, No Obj: 0.002223, .5R: 0.980519, .75R: 0.909091, count: 154, class_loss = 0.432430, iou_loss = 12.305147, total_loss = 12.737577 \n",
" total_bbox = 866683, rewritten_bbox = 0.038422 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3659: 0.284150, 0.230231 avg loss, 0.000026 rate, 1.140287 seconds, 234176 images, 0.159472 hours left\n",
"Loaded: 0.029986 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.875855, GIOU: 0.873181), Class: 0.999463, Obj: 0.962187, No Obj: 0.002544, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.031104, iou_loss = 0.419213, total_loss = 0.450318 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847818, GIOU: 0.844038), Class: 0.997231, Obj: 0.909481, No Obj: 0.002731, .5R: 1.000000, .75R: 0.905000, count: 200, class_loss = 0.240920, iou_loss = 15.749838, total_loss = 15.990758 \n",
" total_bbox = 866922, rewritten_bbox = 0.038412 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3660: 0.136163, 0.220824 avg loss, 0.000026 rate, 1.204386 seconds, 234240 images, 0.159072 hours left\n",
"Loaded: 0.000049 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856929, GIOU: 0.853837), Class: 0.997949, Obj: 0.852275, No Obj: 0.002773, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.116612, iou_loss = 0.536018, total_loss = 0.652630 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838098, GIOU: 0.832450), Class: 0.992797, Obj: 0.854534, No Obj: 0.002627, .5R: 0.985000, .75R: 0.845000, count: 200, class_loss = 0.379017, iou_loss = 16.227280, total_loss = 16.606297 \n",
" total_bbox = 867171, rewritten_bbox = 0.038401 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3661: 0.247981, 0.223540 avg loss, 0.000026 rate, 1.330384 seconds, 234304 images, 0.158647 hours left\n",
"Loaded: 0.149380 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860993, GIOU: 0.859668), Class: 0.998958, Obj: 0.887463, No Obj: 0.001940, .5R: 1.000000, .75R: 0.875000, count: 32, class_loss = 0.096792, iou_loss = 0.270009, total_loss = 0.366801 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845005, GIOU: 0.841160), Class: 0.997841, Obj: 0.905280, No Obj: 0.002361, .5R: 1.000000, .75R: 0.897849, count: 186, class_loss = 0.262741, iou_loss = 18.657021, total_loss = 18.919762 \n",
" total_bbox = 867389, rewritten_bbox = 0.038391 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3662: 0.179927, 0.219178 avg loss, 0.000026 rate, 1.236184 seconds, 234368 images, 0.158314 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868558, GIOU: 0.865851), Class: 0.999167, Obj: 0.900856, No Obj: 0.002564, .5R: 1.000000, .75R: 0.980392, count: 51, class_loss = 0.044085, iou_loss = 0.492424, total_loss = 0.536509 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850718, GIOU: 0.847630), Class: 0.997525, Obj: 0.886884, No Obj: 0.002206, .5R: 1.000000, .75R: 0.890909, count: 165, class_loss = 0.280242, iou_loss = 14.699075, total_loss = 14.979317 \n",
" total_bbox = 867605, rewritten_bbox = 0.038382 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3663: 0.162317, 0.213492 avg loss, 0.000026 rate, 1.201069 seconds, 234432 images, 0.158031 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848929, GIOU: 0.838958), Class: 0.994267, Obj: 0.891880, No Obj: 0.002531, .5R: 0.978261, .75R: 0.934783, count: 46, class_loss = 0.090816, iou_loss = 0.422168, total_loss = 0.512985 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839077, GIOU: 0.833604), Class: 0.992918, Obj: 0.870919, No Obj: 0.002647, .5R: 0.990244, .75R: 0.878049, count: 205, class_loss = 0.380165, iou_loss = 16.507727, total_loss = 16.887892 \n",
" total_bbox = 867856, rewritten_bbox = 0.038370 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3664: 0.235661, 0.215709 avg loss, 0.000026 rate, 1.267092 seconds, 234496 images, 0.157575 hours left\n",
"Loaded: 0.171273 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852002, GIOU: 0.847890), Class: 0.999135, Obj: 0.895389, No Obj: 0.002947, .5R: 1.000000, .75R: 0.900000, count: 50, class_loss = 0.079958, iou_loss = 0.457674, total_loss = 0.537632 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846581, GIOU: 0.842704), Class: 0.997563, Obj: 0.913458, No Obj: 0.002452, .5R: 0.988506, .75R: 0.908046, count: 174, class_loss = 0.219643, iou_loss = 15.913504, total_loss = 16.133146 \n",
" total_bbox = 868080, rewritten_bbox = 0.038361 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3665: 0.149965, 0.209135 avg loss, 0.000026 rate, 1.184837 seconds, 234560 images, 0.157182 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857715, GIOU: 0.854077), Class: 0.999723, Obj: 0.964643, No Obj: 0.002198, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.025592, iou_loss = 0.369718, total_loss = 0.395310 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843327, GIOU: 0.839106), Class: 0.991039, Obj: 0.898463, No Obj: 0.002902, .5R: 1.000000, .75R: 0.861751, count: 217, class_loss = 0.341366, iou_loss = 17.867073, total_loss = 18.208439 \n",
" total_bbox = 868337, rewritten_bbox = 0.038349 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3666: 0.183643, 0.206586 avg loss, 0.000026 rate, 1.219159 seconds, 234624 images, 0.156872 hours left\n",
"Loaded: 0.227315 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830877, GIOU: 0.826328), Class: 0.997792, Obj: 0.846267, No Obj: 0.001825, .5R: 1.000000, .75R: 0.800000, count: 35, class_loss = 0.062477, iou_loss = 0.282437, total_loss = 0.344914 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826049, GIOU: 0.819469), Class: 0.993440, Obj: 0.842685, No Obj: 0.002833, .5R: 0.991561, .75R: 0.831224, count: 237, class_loss = 0.648244, iou_loss = 21.581305, total_loss = 22.229549 \n",
" total_bbox = 868609, rewritten_bbox = 0.038337 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3667: 0.355549, 0.221482 avg loss, 0.000026 rate, 1.258866 seconds, 234688 images, 0.156435 hours left\n",
"Loaded: 0.065061 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860357, GIOU: 0.856950), Class: 0.985430, Obj: 0.902709, No Obj: 0.002202, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.056511, iou_loss = 0.397136, total_loss = 0.453647 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833478, GIOU: 0.826949), Class: 0.985943, Obj: 0.861285, No Obj: 0.002747, .5R: 0.990566, .75R: 0.853774, count: 212, class_loss = 0.451752, iou_loss = 16.094276, total_loss = 16.546028 \n",
" total_bbox = 868861, rewritten_bbox = 0.038326 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3668: 0.254299, 0.224764 avg loss, 0.000026 rate, 1.150853 seconds, 234752 images, 0.156245 hours left\n",
"Loaded: 0.023615 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.826595, GIOU: 0.821791), Class: 0.998376, Obj: 0.877885, No Obj: 0.001904, .5R: 1.000000, .75R: 0.823529, count: 34, class_loss = 0.097590, iou_loss = 0.296853, total_loss = 0.394444 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852605, GIOU: 0.849395), Class: 0.996335, Obj: 0.904593, No Obj: 0.002590, .5R: 0.995025, .75R: 0.925373, count: 201, class_loss = 0.249593, iou_loss = 17.597191, total_loss = 17.846785 \n",
" total_bbox = 869096, rewritten_bbox = 0.038316 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3669: 0.173767, 0.219664 avg loss, 0.000026 rate, 1.238243 seconds, 234816 images, 0.155804 hours left\n",
"Loaded: 0.000061 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855952, GIOU: 0.853877), Class: 0.998671, Obj: 0.836256, No Obj: 0.002241, .5R: 0.976191, .75R: 0.904762, count: 42, class_loss = 0.116857, iou_loss = 0.379686, total_loss = 0.496543 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845428, GIOU: 0.840658), Class: 0.992419, Obj: 0.872353, No Obj: 0.002330, .5R: 0.988235, .75R: 0.923529, count: 170, class_loss = 0.331513, iou_loss = 13.380442, total_loss = 13.711955 \n",
" total_bbox = 869308, rewritten_bbox = 0.038306 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3670: 0.224348, 0.220132 avg loss, 0.000026 rate, 1.314252 seconds, 234880 images, 0.155406 hours left\n",
"Loaded: 0.064062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.804459, GIOU: 0.799591), Class: 0.998507, Obj: 0.830341, No Obj: 0.001339, .5R: 1.000000, .75R: 0.740741, count: 27, class_loss = 0.058518, iou_loss = 0.184184, total_loss = 0.242701 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839122, GIOU: 0.836126), Class: 0.997844, Obj: 0.879730, No Obj: 0.002410, .5R: 0.994819, .75R: 0.906736, count: 193, class_loss = 0.368393, iou_loss = 17.292892, total_loss = 17.661285 \n",
" total_bbox = 869528, rewritten_bbox = 0.038297 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3671: 0.213650, 0.219484 avg loss, 0.000026 rate, 1.232543 seconds, 234944 images, 0.155057 hours left\n",
"Loaded: 0.120686 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864687, GIOU: 0.859543), Class: 0.997086, Obj: 0.861193, No Obj: 0.002202, .5R: 0.977273, .75R: 0.931818, count: 44, class_loss = 0.111668, iou_loss = 0.439995, total_loss = 0.551663 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829753, GIOU: 0.823907), Class: 0.993252, Obj: 0.879849, No Obj: 0.002694, .5R: 0.980392, .75R: 0.852941, count: 204, class_loss = 0.421735, iou_loss = 17.405699, total_loss = 17.827435 \n",
" total_bbox = 869776, rewritten_bbox = 0.038286 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3672: 0.266869, 0.224223 avg loss, 0.000026 rate, 1.185009 seconds, 235008 images, 0.154692 hours left\n",
"Loaded: 0.002370 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853314, GIOU: 0.850160), Class: 0.994704, Obj: 0.885221, No Obj: 0.001950, .5R: 1.000000, .75R: 0.891892, count: 37, class_loss = 0.073970, iou_loss = 0.296147, total_loss = 0.370118 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.860083, GIOU: 0.857539), Class: 0.997875, Obj: 0.918480, No Obj: 0.002083, .5R: 1.000000, .75R: 0.939597, count: 149, class_loss = 0.218853, iou_loss = 11.576612, total_loss = 11.795465 \n",
" total_bbox = 869962, rewritten_bbox = 0.038278 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3673: 0.146568, 0.216457 avg loss, 0.000026 rate, 1.296826 seconds, 235072 images, 0.154334 hours left\n",
"Loaded: 0.061620 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834907, GIOU: 0.829988), Class: 0.996663, Obj: 0.848290, No Obj: 0.001859, .5R: 0.970588, .75R: 0.911765, count: 34, class_loss = 0.101436, iou_loss = 0.256783, total_loss = 0.358220 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837313, GIOU: 0.833504), Class: 0.993908, Obj: 0.841060, No Obj: 0.002878, .5R: 0.986900, .75R: 0.895196, count: 229, class_loss = 0.490471, iou_loss = 19.148470, total_loss = 19.638941 \n",
" total_bbox = 870225, rewritten_bbox = 0.038266 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3674: 0.296133, 0.224425 avg loss, 0.000026 rate, 1.225817 seconds, 235136 images, 0.153971 hours left\n",
"Loaded: 0.082021 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844408, GIOU: 0.839614), Class: 0.999146, Obj: 0.881255, No Obj: 0.002195, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.071748, iou_loss = 0.330008, total_loss = 0.401756 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845353, GIOU: 0.839837), Class: 0.992187, Obj: 0.902299, No Obj: 0.001907, .5R: 0.992537, .75R: 0.895522, count: 134, class_loss = 0.295304, iou_loss = 9.753289, total_loss = 10.048594 \n",
" total_bbox = 870399, rewritten_bbox = 0.038258 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3675: 0.183696, 0.220352 avg loss, 0.000026 rate, 1.160089 seconds, 235200 images, 0.153597 hours left\n",
"Loaded: 0.001391 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859275, GIOU: 0.855823), Class: 0.999558, Obj: 0.898456, No Obj: 0.002157, .5R: 1.000000, .75R: 0.972222, count: 36, class_loss = 0.047658, iou_loss = 0.283899, total_loss = 0.331557 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848291, GIOU: 0.844185), Class: 0.998749, Obj: 0.917638, No Obj: 0.002464, .5R: 0.994624, .75R: 0.887097, count: 186, class_loss = 0.202483, iou_loss = 16.896448, total_loss = 17.098932 \n",
" total_bbox = 870621, rewritten_bbox = 0.038249 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3676: 0.125230, 0.210840 avg loss, 0.000026 rate, 1.226872 seconds, 235264 images, 0.153183 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850595, GIOU: 0.847675), Class: 0.994824, Obj: 0.808412, No Obj: 0.002164, .5R: 1.000000, .75R: 0.921053, count: 38, class_loss = 0.108843, iou_loss = 0.303593, total_loss = 0.412436 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820116, GIOU: 0.812899), Class: 0.993377, Obj: 0.881460, No Obj: 0.002448, .5R: 0.979275, .75R: 0.813471, count: 193, class_loss = 0.358485, iou_loss = 16.062986, total_loss = 16.421471 \n",
" total_bbox = 870852, rewritten_bbox = 0.038238 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3677: 0.233844, 0.213140 avg loss, 0.000026 rate, 1.153536 seconds, 235328 images, 0.152756 hours left\n",
"Loaded: 0.000070 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839805, GIOU: 0.835826), Class: 0.995590, Obj: 0.829794, No Obj: 0.002127, .5R: 1.000000, .75R: 0.872340, count: 47, class_loss = 0.088592, iou_loss = 0.319817, total_loss = 0.408409 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840919, GIOU: 0.836278), Class: 0.997908, Obj: 0.880565, No Obj: 0.001725, .5R: 1.000000, .75R: 0.877698, count: 139, class_loss = 0.243875, iou_loss = 13.190981, total_loss = 13.434855 \n",
" total_bbox = 871038, rewritten_bbox = 0.038230 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3678: 0.166408, 0.208467 avg loss, 0.000026 rate, 1.220736 seconds, 235392 images, 0.152264 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837596, GIOU: 0.830956), Class: 0.987415, Obj: 0.889274, No Obj: 0.002144, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.058851, iou_loss = 0.305538, total_loss = 0.364389 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843782, GIOU: 0.839721), Class: 0.991316, Obj: 0.895832, No Obj: 0.002908, .5R: 0.990610, .75R: 0.873239, count: 213, class_loss = 0.322627, iou_loss = 17.556257, total_loss = 17.878885 \n",
" total_bbox = 871287, rewritten_bbox = 0.038219 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3679: 0.190913, 0.206712 avg loss, 0.000026 rate, 1.286251 seconds, 235456 images, 0.151833 hours left\n",
"Loaded: 0.050549 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.867834, GIOU: 0.864524), Class: 0.998922, Obj: 0.875609, No Obj: 0.002038, .5R: 1.000000, .75R: 0.970588, count: 34, class_loss = 0.055039, iou_loss = 0.297274, total_loss = 0.352313 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831948, GIOU: 0.827207), Class: 0.986684, Obj: 0.892950, No Obj: 0.002680, .5R: 0.990868, .75R: 0.858447, count: 219, class_loss = 0.343504, iou_loss = 20.024939, total_loss = 20.368443 \n",
" total_bbox = 871540, rewritten_bbox = 0.038208 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3680: 0.199435, 0.205984 avg loss, 0.000026 rate, 1.291457 seconds, 235520 images, 0.151462 hours left\n",
"Loaded: 0.092786 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834143, GIOU: 0.829704), Class: 0.990581, Obj: 0.863197, No Obj: 0.002034, .5R: 1.000000, .75R: 0.846154, count: 39, class_loss = 0.071879, iou_loss = 0.356598, total_loss = 0.428477 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847711, GIOU: 0.843796), Class: 0.996020, Obj: 0.889721, No Obj: 0.002678, .5R: 0.985075, .75R: 0.925373, count: 201, class_loss = 0.311588, iou_loss = 18.432760, total_loss = 18.744349 \n",
" total_bbox = 871780, rewritten_bbox = 0.038198 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3681: 0.191908, 0.204576 avg loss, 0.000026 rate, 1.205706 seconds, 235584 images, 0.151140 hours left\n",
"Loaded: 0.124510 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866338, GIOU: 0.862429), Class: 0.998416, Obj: 0.872368, No Obj: 0.002104, .5R: 0.974359, .75R: 0.948718, count: 39, class_loss = 0.076368, iou_loss = 0.368848, total_loss = 0.445217 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850205, GIOU: 0.846276), Class: 0.994388, Obj: 0.920556, No Obj: 0.002262, .5R: 1.000000, .75R: 0.913580, count: 162, class_loss = 0.229270, iou_loss = 15.165709, total_loss = 15.394979 \n",
" total_bbox = 871981, rewritten_bbox = 0.038189 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3682: 0.152974, 0.199416 avg loss, 0.000026 rate, 1.195987 seconds, 235648 images, 0.150779 hours left\n",
"Loaded: 0.000053 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840538, GIOU: 0.834664), Class: 0.998832, Obj: 0.911390, No Obj: 0.002203, .5R: 1.000000, .75R: 0.906977, count: 43, class_loss = 0.060545, iou_loss = 0.426729, total_loss = 0.487274 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848593, GIOU: 0.845166), Class: 0.997927, Obj: 0.905468, No Obj: 0.002890, .5R: 1.000000, .75R: 0.898058, count: 206, class_loss = 0.309678, iou_loss = 15.160288, total_loss = 15.469966 \n",
" total_bbox = 872230, rewritten_bbox = 0.038178 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3683: 0.185281, 0.198003 avg loss, 0.000026 rate, 1.211903 seconds, 235712 images, 0.150438 hours left\n",
"Loaded: 0.129455 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853731, GIOU: 0.849213), Class: 0.998093, Obj: 0.865874, No Obj: 0.001902, .5R: 1.000000, .75R: 0.885714, count: 35, class_loss = 0.074041, iou_loss = 0.263856, total_loss = 0.337897 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820095, GIOU: 0.813873), Class: 0.988743, Obj: 0.830421, No Obj: 0.002340, .5R: 0.983957, .75R: 0.834225, count: 187, class_loss = 0.533540, iou_loss = 15.265176, total_loss = 15.798716 \n",
" total_bbox = 872452, rewritten_bbox = 0.038168 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3684: 0.303969, 0.208599 avg loss, 0.000026 rate, 1.220413 seconds, 235776 images, 0.150001 hours left\n",
"Loaded: 0.101300 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831781, GIOU: 0.827494), Class: 0.998651, Obj: 0.812257, No Obj: 0.002231, .5R: 0.945946, .75R: 0.864865, count: 37, class_loss = 0.110506, iou_loss = 0.319072, total_loss = 0.429579 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839599, GIOU: 0.834612), Class: 0.995548, Obj: 0.899788, No Obj: 0.002543, .5R: 0.984536, .75R: 0.907216, count: 194, class_loss = 0.280342, iou_loss = 15.171922, total_loss = 15.452264 \n",
" total_bbox = 872683, rewritten_bbox = 0.038158 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3685: 0.195604, 0.207300 avg loss, 0.000026 rate, 1.198483 seconds, 235840 images, 0.149686 hours left\n",
"Loaded: 0.011180 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841713, GIOU: 0.835015), Class: 0.998883, Obj: 0.900690, No Obj: 0.002464, .5R: 1.000000, .75R: 0.833333, count: 42, class_loss = 0.081360, iou_loss = 0.394498, total_loss = 0.475858 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839529, GIOU: 0.833867), Class: 0.996000, Obj: 0.900489, No Obj: 0.002593, .5R: 0.988701, .75R: 0.881356, count: 177, class_loss = 0.300141, iou_loss = 14.228724, total_loss = 14.528865 \n",
" total_bbox = 872902, rewritten_bbox = 0.038149 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3686: 0.190925, 0.205662 avg loss, 0.000026 rate, 1.183502 seconds, 235904 images, 0.149326 hours left\n",
"Loaded: 0.096193 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849836, GIOU: 0.846714), Class: 0.997023, Obj: 0.919863, No Obj: 0.002424, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.057075, iou_loss = 0.483422, total_loss = 0.540498 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833146, GIOU: 0.827698), Class: 0.994807, Obj: 0.855851, No Obj: 0.002536, .5R: 0.989848, .75R: 0.883249, count: 197, class_loss = 0.413493, iou_loss = 15.887609, total_loss = 16.301102 \n",
" total_bbox = 873145, rewritten_bbox = 0.038253 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3687: 0.235457, 0.208642 avg loss, 0.000026 rate, 1.171638 seconds, 235968 images, 0.148875 hours left\n",
"Loaded: 0.000054 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828231, GIOU: 0.822842), Class: 0.998209, Obj: 0.822757, No Obj: 0.002508, .5R: 1.000000, .75R: 0.833333, count: 48, class_loss = 0.125118, iou_loss = 0.355045, total_loss = 0.480163 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.817584, GIOU: 0.811536), Class: 0.985908, Obj: 0.794426, No Obj: 0.002301, .5R: 0.977401, .75R: 0.841808, count: 177, class_loss = 0.652778, iou_loss = 13.633460, total_loss = 14.286239 \n",
" total_bbox = 873370, rewritten_bbox = 0.038243 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3688: 0.389142, 0.226692 avg loss, 0.000026 rate, 1.354629 seconds, 236032 images, 0.148488 hours left\n",
"Loaded: 0.064851 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838769, GIOU: 0.835164), Class: 0.998320, Obj: 0.844654, No Obj: 0.002715, .5R: 0.981132, .75R: 0.867925, count: 53, class_loss = 0.143374, iou_loss = 0.465545, total_loss = 0.608918 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833086, GIOU: 0.828577), Class: 0.997941, Obj: 0.868288, No Obj: 0.002650, .5R: 0.985981, .75R: 0.864486, count: 214, class_loss = 0.406380, iou_loss = 18.843943, total_loss = 19.250322 \n",
" total_bbox = 873637, rewritten_bbox = 0.038231 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3689: 0.275057, 0.231528 avg loss, 0.000026 rate, 1.207749 seconds, 236096 images, 0.148178 hours left\n",
"Loaded: 0.022517 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854671, GIOU: 0.851708), Class: 0.999491, Obj: 0.936416, No Obj: 0.001686, .5R: 1.000000, .75R: 0.966667, count: 30, class_loss = 0.036546, iou_loss = 0.349575, total_loss = 0.386121 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832669, GIOU: 0.828043), Class: 0.996555, Obj: 0.886207, No Obj: 0.002584, .5R: 0.986175, .75R: 0.870968, count: 217, class_loss = 0.363903, iou_loss = 21.231289, total_loss = 21.595192 \n",
" total_bbox = 873884, rewritten_bbox = 0.038220 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3690: 0.200396, 0.228415 avg loss, 0.000026 rate, 1.182039 seconds, 236160 images, 0.147795 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.867188, GIOU: 0.864422), Class: 0.998852, Obj: 0.893250, No Obj: 0.002622, .5R: 1.000000, .75R: 0.978261, count: 46, class_loss = 0.073922, iou_loss = 0.399252, total_loss = 0.473174 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841090, GIOU: 0.836371), Class: 0.998351, Obj: 0.882950, No Obj: 0.002293, .5R: 1.000000, .75R: 0.878613, count: 173, class_loss = 0.356312, iou_loss = 15.012326, total_loss = 15.368638 \n",
" total_bbox = 874103, rewritten_bbox = 0.038211 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3691: 0.215276, 0.227101 avg loss, 0.000026 rate, 1.168375 seconds, 236224 images, 0.147355 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858469, GIOU: 0.854473), Class: 0.998498, Obj: 0.937199, No Obj: 0.002363, .5R: 1.000000, .75R: 0.936170, count: 47, class_loss = 0.072126, iou_loss = 0.455475, total_loss = 0.527600 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844936, GIOU: 0.840458), Class: 0.997277, Obj: 0.900482, No Obj: 0.002742, .5R: 0.995049, .75R: 0.915842, count: 202, class_loss = 0.294109, iou_loss = 15.521754, total_loss = 15.815864 \n",
" total_bbox = 874352, rewritten_bbox = 0.038200 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3692: 0.183280, 0.222719 avg loss, 0.000026 rate, 1.190225 seconds, 236288 images, 0.146884 hours left\n",
"Loaded: 0.000081 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858109, GIOU: 0.855454), Class: 0.997819, Obj: 0.891957, No Obj: 0.001672, .5R: 1.000000, .75R: 0.857143, count: 35, class_loss = 0.047216, iou_loss = 0.302607, total_loss = 0.349823 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851789, GIOU: 0.848180), Class: 0.990355, Obj: 0.900851, No Obj: 0.002493, .5R: 0.994845, .75R: 0.917526, count: 194, class_loss = 0.288094, iou_loss = 17.404837, total_loss = 17.692930 \n",
" total_bbox = 874581, rewritten_bbox = 0.038190 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3693: 0.167814, 0.217228 avg loss, 0.000026 rate, 1.233537 seconds, 236352 images, 0.146433 hours left\n",
"Loaded: 0.199899 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836497, GIOU: 0.831226), Class: 0.999024, Obj: 0.877848, No Obj: 0.002428, .5R: 0.980392, .75R: 0.882353, count: 51, class_loss = 0.083212, iou_loss = 0.403382, total_loss = 0.486594 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825156, GIOU: 0.820141), Class: 0.988859, Obj: 0.857337, No Obj: 0.001767, .5R: 0.976562, .75R: 0.875000, count: 128, class_loss = 0.371707, iou_loss = 10.274282, total_loss = 10.645989 \n",
" total_bbox = 874760, rewritten_bbox = 0.038182 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3694: 0.227645, 0.218270 avg loss, 0.000026 rate, 1.150960 seconds, 236416 images, 0.146021 hours left\n",
"Loaded: 0.148535 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857113, GIOU: 0.852782), Class: 0.998231, Obj: 0.918116, No Obj: 0.002327, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.038976, iou_loss = 0.352527, total_loss = 0.391504 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833574, GIOU: 0.828270), Class: 0.992760, Obj: 0.878517, No Obj: 0.002571, .5R: 0.989418, .75R: 0.867725, count: 189, class_loss = 0.334056, iou_loss = 13.782924, total_loss = 14.116980 \n",
" total_bbox = 874990, rewritten_bbox = 0.038172 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3695: 0.186685, 0.215112 avg loss, 0.000026 rate, 1.176357 seconds, 236480 images, 0.145709 hours left\n",
"Loaded: 0.000336 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847940, GIOU: 0.843280), Class: 0.997809, Obj: 0.849136, No Obj: 0.002362, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.117215, iou_loss = 0.397463, total_loss = 0.514678 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835869, GIOU: 0.831127), Class: 0.990786, Obj: 0.841206, No Obj: 0.002231, .5R: 1.000000, .75R: 0.886228, count: 167, class_loss = 0.450336, iou_loss = 11.028821, total_loss = 11.479156 \n",
" total_bbox = 875203, rewritten_bbox = 0.038163 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3696: 0.283948, 0.221995 avg loss, 0.000026 rate, 1.250120 seconds, 236544 images, 0.145375 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862985, GIOU: 0.860543), Class: 0.998998, Obj: 0.894542, No Obj: 0.002478, .5R: 1.000000, .75R: 0.909091, count: 44, class_loss = 0.053862, iou_loss = 0.451964, total_loss = 0.505826 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849897, GIOU: 0.846172), Class: 0.997427, Obj: 0.892695, No Obj: 0.002587, .5R: 0.994845, .75R: 0.886598, count: 194, class_loss = 0.308282, iou_loss = 16.196688, total_loss = 16.504969 \n",
" total_bbox = 875441, rewritten_bbox = 0.038152 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3697: 0.181229, 0.217919 avg loss, 0.000026 rate, 1.232218 seconds, 236608 images, 0.144977 hours left\n",
"Loaded: 0.062616 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861077, GIOU: 0.859118), Class: 0.999282, Obj: 0.847254, No Obj: 0.002190, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.085766, iou_loss = 0.430641, total_loss = 0.516407 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834836, GIOU: 0.830266), Class: 0.990105, Obj: 0.866105, No Obj: 0.003042, .5R: 0.987903, .75R: 0.887097, count: 248, class_loss = 0.468446, iou_loss = 21.400818, total_loss = 21.869263 \n",
" total_bbox = 875730, rewritten_bbox = 0.038140 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3698: 0.277272, 0.223854 avg loss, 0.000026 rate, 1.242847 seconds, 236672 images, 0.144564 hours left\n",
"Loaded: 0.190839 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854134, GIOU: 0.850568), Class: 0.985205, Obj: 0.881410, No Obj: 0.002673, .5R: 1.000000, .75R: 0.895833, count: 48, class_loss = 0.099914, iou_loss = 0.477926, total_loss = 0.577840 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833982, GIOU: 0.829735), Class: 0.991027, Obj: 0.854669, No Obj: 0.003106, .5R: 0.987500, .75R: 0.879167, count: 240, class_loss = 0.522603, iou_loss = 18.846769, total_loss = 19.369371 \n",
" total_bbox = 876018, rewritten_bbox = 0.038127 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3699: 0.311429, 0.232611 avg loss, 0.000026 rate, 1.249713 seconds, 236736 images, 0.144214 hours left\n",
"Loaded: 0.000059 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851802, GIOU: 0.846944), Class: 0.996377, Obj: 0.847807, No Obj: 0.001961, .5R: 0.970588, .75R: 0.941176, count: 34, class_loss = 0.085429, iou_loss = 0.282603, total_loss = 0.368032 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843260, GIOU: 0.839118), Class: 0.992187, Obj: 0.865511, No Obj: 0.002579, .5R: 0.994975, .75R: 0.904523, count: 199, class_loss = 0.386660, iou_loss = 17.181179, total_loss = 17.567839 \n",
" total_bbox = 876251, rewritten_bbox = 0.038117 % \n",
"\n",
" (next mAP calculation at 3700 iterations) \n",
" Last accuracy [email protected] = 57.93 %, best = 58.96 % \n",
" 3700: 0.236211, 0.232971 avg loss, 0.000026 rate, 1.283826 seconds, 236800 images, 0.143976 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 353, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.19% \t (TP = 162, FP = 8) \n",
"class_id = 1, name = no mask, ap = 47.77% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.94, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 11, FN = 120, average IoU = 77.84 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.579791, or 57.98 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.579791 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000064 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848351, GIOU: 0.842459), Class: 0.995466, Obj: 0.852477, No Obj: 0.001907, .5R: 0.975000, .75R: 0.900000, count: 40, class_loss = 0.091460, iou_loss = 0.337445, total_loss = 0.428905 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842455, GIOU: 0.838184), Class: 0.994951, Obj: 0.871480, No Obj: 0.002817, .5R: 1.000000, .75R: 0.880734, count: 218, class_loss = 0.451769, iou_loss = 18.990976, total_loss = 19.442745 \n",
" total_bbox = 876509, rewritten_bbox = 0.038106 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3701: 0.271784, 0.236853 avg loss, 0.000026 rate, 1.151088 seconds, 236864 images, 0.145300 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854244, GIOU: 0.850674), Class: 0.998772, Obj: 0.916482, No Obj: 0.002445, .5R: 1.000000, .75R: 0.906977, count: 43, class_loss = 0.064973, iou_loss = 0.383357, total_loss = 0.448330 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842430, GIOU: 0.837958), Class: 0.992874, Obj: 0.875122, No Obj: 0.002528, .5R: 0.989637, .75R: 0.880829, count: 193, class_loss = 0.332142, iou_loss = 14.461547, total_loss = 14.793689 \n",
" total_bbox = 876745, rewritten_bbox = 0.038095 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3702: 0.198723, 0.233040 avg loss, 0.000026 rate, 1.215685 seconds, 236928 images, 0.144803 hours left\n",
"Loaded: 0.079484 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844980, GIOU: 0.837568), Class: 0.998954, Obj: 0.852309, No Obj: 0.001658, .5R: 1.000000, .75R: 0.900000, count: 30, class_loss = 0.047490, iou_loss = 0.211059, total_loss = 0.258549 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832197, GIOU: 0.827716), Class: 0.990392, Obj: 0.858149, No Obj: 0.002436, .5R: 0.989848, .75R: 0.847716, count: 197, class_loss = 0.376749, iou_loss = 18.735422, total_loss = 19.112171 \n",
" total_bbox = 876972, rewritten_bbox = 0.038200 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3703: 0.212296, 0.230965 avg loss, 0.000026 rate, 1.221360 seconds, 236992 images, 0.144362 hours left\n",
"Loaded: 0.036618 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838329, GIOU: 0.833928), Class: 0.990929, Obj: 0.879224, No Obj: 0.002237, .5R: 1.000000, .75R: 0.822222, count: 45, class_loss = 0.067359, iou_loss = 0.488163, total_loss = 0.555522 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850276, GIOU: 0.846116), Class: 0.992079, Obj: 0.907109, No Obj: 0.002590, .5R: 0.994792, .75R: 0.911458, count: 192, class_loss = 0.297340, iou_loss = 16.185860, total_loss = 16.483200 \n",
" total_bbox = 877209, rewritten_bbox = 0.038303 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3704: 0.182520, 0.226121 avg loss, 0.000026 rate, 1.293655 seconds, 237056 images, 0.143991 hours left\n",
"Loaded: 0.232748 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865447, GIOU: 0.863858), Class: 0.998858, Obj: 0.915572, No Obj: 0.001550, .5R: 1.000000, .75R: 0.884615, count: 26, class_loss = 0.013555, iou_loss = 0.232185, total_loss = 0.245739 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837926, GIOU: 0.833119), Class: 0.989618, Obj: 0.869430, No Obj: 0.003222, .5R: 0.992032, .75R: 0.880478, count: 251, class_loss = 0.519638, iou_loss = 22.734112, total_loss = 23.253750 \n",
" total_bbox = 877486, rewritten_bbox = 0.038291 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3705: 0.266759, 0.230185 avg loss, 0.000026 rate, 1.309315 seconds, 237120 images, 0.143645 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864529, GIOU: 0.862256), Class: 0.999334, Obj: 0.949052, No Obj: 0.001997, .5R: 1.000000, .75R: 0.968750, count: 32, class_loss = 0.058963, iou_loss = 0.318178, total_loss = 0.377141 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846114, GIOU: 0.841867), Class: 0.996088, Obj: 0.871213, No Obj: 0.003111, .5R: 0.986364, .75R: 0.909091, count: 220, class_loss = 0.382562, iou_loss = 15.983272, total_loss = 16.365833 \n",
" total_bbox = 877738, rewritten_bbox = 0.038280 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3706: 0.220921, 0.229258 avg loss, 0.000026 rate, 1.249351 seconds, 237184 images, 0.143472 hours left\n",
"Loaded: 0.116761 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854802, GIOU: 0.852000), Class: 0.998191, Obj: 0.858799, No Obj: 0.002311, .5R: 1.000000, .75R: 0.952381, count: 42, class_loss = 0.076562, iou_loss = 0.382309, total_loss = 0.458870 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848645, GIOU: 0.844405), Class: 0.989120, Obj: 0.863468, No Obj: 0.002858, .5R: 0.995122, .75R: 0.902439, count: 205, class_loss = 0.482166, iou_loss = 16.473221, total_loss = 16.955387 \n",
" total_bbox = 877985, rewritten_bbox = 0.038269 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3707: 0.279526, 0.234285 avg loss, 0.000026 rate, 1.203673 seconds, 237248 images, 0.143058 hours left\n",
"Loaded: 0.072477 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829916, GIOU: 0.824329), Class: 0.998156, Obj: 0.834661, No Obj: 0.002401, .5R: 1.000000, .75R: 0.829787, count: 47, class_loss = 0.142010, iou_loss = 0.433422, total_loss = 0.575432 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.823706, GIOU: 0.817893), Class: 0.994461, Obj: 0.852079, No Obj: 0.002797, .5R: 0.990566, .75R: 0.820755, count: 212, class_loss = 0.482226, iou_loss = 16.384953, total_loss = 16.867178 \n",
" total_bbox = 878244, rewritten_bbox = 0.038258 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3708: 0.312307, 0.242087 avg loss, 0.000026 rate, 1.276513 seconds, 237312 images, 0.142702 hours left\n",
"Loaded: 0.100652 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865241, GIOU: 0.863300), Class: 0.999238, Obj: 0.847743, No Obj: 0.001876, .5R: 1.000000, .75R: 0.937500, count: 32, class_loss = 0.060600, iou_loss = 0.305644, total_loss = 0.366245 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836914, GIOU: 0.832556), Class: 0.996718, Obj: 0.882507, No Obj: 0.002676, .5R: 0.984615, .75R: 0.887179, count: 195, class_loss = 0.370597, iou_loss = 18.298643, total_loss = 18.669241 \n",
" total_bbox = 878471, rewritten_bbox = 0.038248 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3709: 0.215761, 0.239455 avg loss, 0.000026 rate, 1.233039 seconds, 237376 images, 0.142369 hours left\n",
"Loaded: 0.025909 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831614, GIOU: 0.827179), Class: 0.998945, Obj: 0.834965, No Obj: 0.001775, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.073158, iou_loss = 0.227377, total_loss = 0.300535 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838317, GIOU: 0.833171), Class: 0.991629, Obj: 0.887051, No Obj: 0.002563, .5R: 0.994924, .75R: 0.903553, count: 197, class_loss = 0.402564, iou_loss = 17.878799, total_loss = 18.281363 \n",
" total_bbox = 878702, rewritten_bbox = 0.038238 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3710: 0.238041, 0.239313 avg loss, 0.000026 rate, 1.392539 seconds, 237440 images, 0.142024 hours left\n",
"Loaded: 0.356636 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872165, GIOU: 0.870756), Class: 0.998895, Obj: 0.942886, No Obj: 0.002345, .5R: 1.000000, .75R: 0.977778, count: 45, class_loss = 0.015527, iou_loss = 0.418066, total_loss = 0.433593 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839425, GIOU: 0.835605), Class: 0.995269, Obj: 0.868950, No Obj: 0.002513, .5R: 1.000000, .75R: 0.874346, count: 191, class_loss = 0.386893, iou_loss = 15.673425, total_loss = 16.060318 \n",
" total_bbox = 878938, rewritten_bbox = 0.038228 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3711: 0.201368, 0.235519 avg loss, 0.000026 rate, 1.175974 seconds, 237504 images, 0.141746 hours left\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866045, GIOU: 0.863342), Class: 0.999369, Obj: 0.869241, No Obj: 0.002168, .5R: 1.000000, .75R: 0.973684, count: 38, class_loss = 0.067162, iou_loss = 0.321446, total_loss = 0.388608 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846907, GIOU: 0.842759), Class: 0.993682, Obj: 0.886786, No Obj: 0.002254, .5R: 0.993865, .75R: 0.871166, count: 163, class_loss = 0.338587, iou_loss = 13.505144, total_loss = 13.843731 \n",
" total_bbox = 879139, rewritten_bbox = 0.038219 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3712: 0.203032, 0.232270 avg loss, 0.000026 rate, 1.179280 seconds, 237568 images, 0.141559 hours left\n",
"Loaded: 0.000069 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846721, GIOU: 0.843547), Class: 0.999146, Obj: 0.884042, No Obj: 0.002427, .5R: 1.000000, .75R: 0.936170, count: 47, class_loss = 0.070703, iou_loss = 0.412708, total_loss = 0.483411 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844012, GIOU: 0.840019), Class: 0.995972, Obj: 0.881078, No Obj: 0.002426, .5R: 0.994624, .75R: 0.908602, count: 186, class_loss = 0.334105, iou_loss = 14.927107, total_loss = 15.261212 \n",
" total_bbox = 879372, rewritten_bbox = 0.038209 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3713: 0.202573, 0.229300 avg loss, 0.000026 rate, 1.301751 seconds, 237632 images, 0.141087 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834019, GIOU: 0.830628), Class: 0.998629, Obj: 0.874362, No Obj: 0.001873, .5R: 1.000000, .75R: 0.848485, count: 33, class_loss = 0.048944, iou_loss = 0.251308, total_loss = 0.300252 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820762, GIOU: 0.815029), Class: 0.982651, Obj: 0.823419, No Obj: 0.003139, .5R: 0.984375, .75R: 0.812500, count: 256, class_loss = 0.745947, iou_loss = 24.155064, total_loss = 24.901011 \n",
" total_bbox = 879661, rewritten_bbox = 0.038197 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3714: 0.397635, 0.246134 avg loss, 0.000026 rate, 1.225563 seconds, 237696 images, 0.140714 hours left\n",
"Loaded: 0.000051 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863182, GIOU: 0.859551), Class: 0.992060, Obj: 0.882679, No Obj: 0.002226, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.059276, iou_loss = 0.350056, total_loss = 0.409332 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836993, GIOU: 0.831121), Class: 0.992531, Obj: 0.876044, No Obj: 0.002493, .5R: 0.988764, .75R: 0.876405, count: 178, class_loss = 0.375458, iou_loss = 11.942420, total_loss = 12.317878 \n",
" total_bbox = 879880, rewritten_bbox = 0.038187 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3715: 0.217531, 0.243273 avg loss, 0.000026 rate, 1.168837 seconds, 237760 images, 0.140281 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856622, GIOU: 0.853506), Class: 0.999527, Obj: 0.823308, No Obj: 0.002634, .5R: 1.000000, .75R: 0.914894, count: 47, class_loss = 0.159603, iou_loss = 0.422251, total_loss = 0.581854 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834709, GIOU: 0.827907), Class: 0.985857, Obj: 0.833486, No Obj: 0.002485, .5R: 0.977401, .75R: 0.864407, count: 177, class_loss = 0.478381, iou_loss = 11.765100, total_loss = 12.243481 \n",
" total_bbox = 880104, rewritten_bbox = 0.038177 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3716: 0.319161, 0.250862 avg loss, 0.000026 rate, 1.273110 seconds, 237824 images, 0.139803 hours left\n",
"Loaded: 0.000061 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849700, GIOU: 0.847113), Class: 0.999381, Obj: 0.879018, No Obj: 0.002020, .5R: 1.000000, .75R: 0.864865, count: 37, class_loss = 0.050944, iou_loss = 0.254656, total_loss = 0.305600 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837225, GIOU: 0.830055), Class: 0.989814, Obj: 0.883438, No Obj: 0.002564, .5R: 0.989744, .75R: 0.866667, count: 195, class_loss = 0.403299, iou_loss = 17.467703, total_loss = 17.871002 \n",
" total_bbox = 880336, rewritten_bbox = 0.038167 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3717: 0.227293, 0.248505 avg loss, 0.000026 rate, 1.333138 seconds, 237888 images, 0.139409 hours left\n",
"Loaded: 0.000057 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844163, GIOU: 0.840865), Class: 0.996783, Obj: 0.908861, No Obj: 0.002170, .5R: 1.000000, .75R: 0.909091, count: 44, class_loss = 0.042004, iou_loss = 0.432355, total_loss = 0.474358 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843898, GIOU: 0.838831), Class: 0.996353, Obj: 0.909428, No Obj: 0.002884, .5R: 0.995536, .75R: 0.901786, count: 224, class_loss = 0.217973, iou_loss = 19.078703, total_loss = 19.296675 \n",
" total_bbox = 880604, rewritten_bbox = 0.038156 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3718: 0.130159, 0.236671 avg loss, 0.000026 rate, 1.256352 seconds, 237952 images, 0.139063 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849456, GIOU: 0.846477), Class: 0.998261, Obj: 0.884608, No Obj: 0.002586, .5R: 0.978261, .75R: 0.913043, count: 46, class_loss = 0.067608, iou_loss = 0.484747, total_loss = 0.552355 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852682, GIOU: 0.849158), Class: 0.997086, Obj: 0.897331, No Obj: 0.003306, .5R: 0.995454, .75R: 0.931818, count: 220, class_loss = 0.398371, iou_loss = 16.505514, total_loss = 16.903885 \n",
" total_bbox = 880870, rewritten_bbox = 0.038144 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3719: 0.233153, 0.236319 avg loss, 0.000026 rate, 1.300117 seconds, 238016 images, 0.138657 hours left\n",
"Loaded: 0.199201 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848049, GIOU: 0.844722), Class: 0.998958, Obj: 0.861839, No Obj: 0.002075, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.068378, iou_loss = 0.367222, total_loss = 0.435600 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833760, GIOU: 0.828333), Class: 0.997171, Obj: 0.855280, No Obj: 0.002642, .5R: 0.985981, .75R: 0.859813, count: 214, class_loss = 0.472659, iou_loss = 19.947639, total_loss = 20.420298 \n",
" total_bbox = 881123, rewritten_bbox = 0.038133 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3720: 0.270692, 0.239756 avg loss, 0.000026 rate, 1.216917 seconds, 238080 images, 0.138285 hours left\n",
"Loaded: 0.054708 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844412, GIOU: 0.840654), Class: 0.996098, Obj: 0.864259, No Obj: 0.002400, .5R: 0.978261, .75R: 0.869565, count: 46, class_loss = 0.083570, iou_loss = 0.481684, total_loss = 0.565254 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840142, GIOU: 0.836019), Class: 0.991305, Obj: 0.865123, No Obj: 0.003108, .5R: 0.991304, .75R: 0.891304, count: 230, class_loss = 0.484699, iou_loss = 20.282595, total_loss = 20.767294 \n",
" total_bbox = 881399, rewritten_bbox = 0.038121 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3721: 0.284307, 0.244211 avg loss, 0.000026 rate, 1.286263 seconds, 238144 images, 0.138004 hours left\n",
"Loaded: 0.132675 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857837, GIOU: 0.855417), Class: 0.977852, Obj: 0.904814, No Obj: 0.002114, .5R: 1.000000, .75R: 0.975000, count: 40, class_loss = 0.054102, iou_loss = 0.364005, total_loss = 0.418106 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831331, GIOU: 0.826647), Class: 0.977759, Obj: 0.859577, No Obj: 0.002488, .5R: 0.994595, .75R: 0.837838, count: 185, class_loss = 0.469368, iou_loss = 15.743347, total_loss = 16.212715 \n",
" total_bbox = 881624, rewritten_bbox = 0.038111 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3722: 0.261905, 0.245981 avg loss, 0.000026 rate, 1.143214 seconds, 238208 images, 0.137663 hours left\n",
"Loaded: 0.046247 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.879421, GIOU: 0.876905), Class: 0.999669, Obj: 0.954288, No Obj: 0.002039, .5R: 1.000000, .75R: 1.000000, count: 36, class_loss = 0.033054, iou_loss = 0.379816, total_loss = 0.412870 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831266, GIOU: 0.823992), Class: 0.993408, Obj: 0.860266, No Obj: 0.002952, .5R: 0.974138, .75R: 0.853448, count: 232, class_loss = 0.459718, iou_loss = 18.380287, total_loss = 18.840006 \n",
" total_bbox = 881892, rewritten_bbox = 0.038100 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3723: 0.246544, 0.246037 avg loss, 0.000026 rate, 1.331295 seconds, 238272 images, 0.137272 hours left\n",
"Loaded: 0.000057 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846766, GIOU: 0.841776), Class: 0.998549, Obj: 0.858842, No Obj: 0.002803, .5R: 1.000000, .75R: 0.901961, count: 51, class_loss = 0.091946, iou_loss = 0.413402, total_loss = 0.505348 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844326, GIOU: 0.839923), Class: 0.989399, Obj: 0.880889, No Obj: 0.002262, .5R: 0.983517, .75R: 0.884615, count: 182, class_loss = 0.357559, iou_loss = 14.137843, total_loss = 14.495401 \n",
" total_bbox = 882125, rewritten_bbox = 0.038203 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3724: 0.224921, 0.243925 avg loss, 0.000026 rate, 1.344748 seconds, 238336 images, 0.136959 hours left\n",
"Loaded: 0.030256 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842850, GIOU: 0.838653), Class: 0.993768, Obj: 0.909396, No Obj: 0.002233, .5R: 0.978723, .75R: 0.893617, count: 47, class_loss = 0.051998, iou_loss = 0.438831, total_loss = 0.490829 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844435, GIOU: 0.841160), Class: 0.996960, Obj: 0.882935, No Obj: 0.002479, .5R: 1.000000, .75R: 0.925373, count: 201, class_loss = 0.323290, iou_loss = 19.260920, total_loss = 19.584209 \n",
" total_bbox = 882373, rewritten_bbox = 0.038192 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3725: 0.187815, 0.238314 avg loss, 0.000026 rate, 1.293599 seconds, 238400 images, 0.136620 hours left\n",
"Loaded: 0.135212 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859832, GIOU: 0.857667), Class: 0.990274, Obj: 0.936215, No Obj: 0.002340, .5R: 1.000000, .75R: 0.920000, count: 50, class_loss = 0.035661, iou_loss = 0.489106, total_loss = 0.524768 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847991, GIOU: 0.844426), Class: 0.996723, Obj: 0.900881, No Obj: 0.002529, .5R: 1.000000, .75R: 0.892655, count: 177, class_loss = 0.318342, iou_loss = 16.153864, total_loss = 16.472206 \n",
" total_bbox = 882600, rewritten_bbox = 0.038183 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3726: 0.177161, 0.232199 avg loss, 0.000026 rate, 1.187058 seconds, 238464 images, 0.136266 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839298, GIOU: 0.834175), Class: 0.992930, Obj: 0.840799, No Obj: 0.002361, .5R: 1.000000, .75R: 0.836735, count: 49, class_loss = 0.101176, iou_loss = 0.434303, total_loss = 0.535479 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837228, GIOU: 0.832637), Class: 0.993707, Obj: 0.875207, No Obj: 0.002962, .5R: 0.991489, .75R: 0.868085, count: 235, class_loss = 0.404555, iou_loss = 20.985426, total_loss = 21.389980 \n",
" total_bbox = 882884, rewritten_bbox = 0.038170 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3727: 0.253042, 0.234283 avg loss, 0.000026 rate, 1.289387 seconds, 238528 images, 0.135909 hours left\n",
"Loaded: 0.145025 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868203, GIOU: 0.865210), Class: 0.996616, Obj: 0.868195, No Obj: 0.002520, .5R: 1.000000, .75R: 0.954545, count: 44, class_loss = 0.069722, iou_loss = 0.419603, total_loss = 0.489325 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842342, GIOU: 0.838400), Class: 0.995391, Obj: 0.892022, No Obj: 0.002416, .5R: 0.983333, .75R: 0.872222, count: 180, class_loss = 0.241609, iou_loss = 15.631482, total_loss = 15.873092 \n",
" total_bbox = 883108, rewritten_bbox = 0.038161 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3728: 0.155824, 0.226437 avg loss, 0.000026 rate, 1.075556 seconds, 238592 images, 0.135528 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854643, GIOU: 0.851218), Class: 0.987882, Obj: 0.954819, No Obj: 0.001881, .5R: 1.000000, .75R: 0.969697, count: 33, class_loss = 0.020479, iou_loss = 0.264095, total_loss = 0.284573 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851947, GIOU: 0.848070), Class: 0.997920, Obj: 0.894256, No Obj: 0.002511, .5R: 0.994536, .75R: 0.918033, count: 183, class_loss = 0.271216, iou_loss = 16.174213, total_loss = 16.445429 \n",
" total_bbox = 883324, rewritten_bbox = 0.038151 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3729: 0.146008, 0.218395 avg loss, 0.000026 rate, 1.180406 seconds, 238656 images, 0.135095 hours left\n",
"Loaded: 0.001938 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838025, GIOU: 0.833854), Class: 0.985317, Obj: 0.854511, No Obj: 0.001717, .5R: 1.000000, .75R: 0.842105, count: 38, class_loss = 0.081213, iou_loss = 0.333789, total_loss = 0.415002 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829280, GIOU: 0.822331), Class: 0.988670, Obj: 0.865561, No Obj: 0.002462, .5R: 0.974359, .75R: 0.830769, count: 195, class_loss = 0.417837, iou_loss = 17.845736, total_loss = 18.263573 \n",
" total_bbox = 883557, rewritten_bbox = 0.038141 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3730: 0.249707, 0.221526 avg loss, 0.000026 rate, 1.258293 seconds, 238720 images, 0.134633 hours left\n",
"Loaded: 0.043296 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856113, GIOU: 0.851239), Class: 0.999497, Obj: 0.904064, No Obj: 0.002967, .5R: 0.982143, .75R: 0.892857, count: 56, class_loss = 0.070589, iou_loss = 0.552155, total_loss = 0.622744 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838143, GIOU: 0.832793), Class: 0.990097, Obj: 0.855715, No Obj: 0.002215, .5R: 0.981250, .75R: 0.881250, count: 160, class_loss = 0.332890, iou_loss = 10.994705, total_loss = 11.327595 \n",
" total_bbox = 883773, rewritten_bbox = 0.038132 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3731: 0.201907, 0.219564 avg loss, 0.000026 rate, 1.235809 seconds, 238784 images, 0.134231 hours left\n",
"Loaded: 0.017141 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846789, GIOU: 0.838990), Class: 0.999350, Obj: 0.914049, No Obj: 0.001869, .5R: 1.000000, .75R: 0.838710, count: 31, class_loss = 0.039719, iou_loss = 0.241085, total_loss = 0.280804 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839889, GIOU: 0.835423), Class: 0.998219, Obj: 0.922637, No Obj: 0.002681, .5R: 0.990099, .75R: 0.900990, count: 202, class_loss = 0.225789, iou_loss = 17.982441, total_loss = 18.208231 \n",
" total_bbox = 884006, rewritten_bbox = 0.038235 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3732: 0.132925, 0.210900 avg loss, 0.000026 rate, 1.180794 seconds, 238848 images, 0.133845 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854360, GIOU: 0.851085), Class: 0.999301, Obj: 0.961030, No Obj: 0.002020, .5R: 1.000000, .75R: 0.970588, count: 34, class_loss = 0.009327, iou_loss = 0.349989, total_loss = 0.359316 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840794, GIOU: 0.836593), Class: 0.993551, Obj: 0.886220, No Obj: 0.002915, .5R: 1.000000, .75R: 0.904977, count: 221, class_loss = 0.385308, iou_loss = 18.548449, total_loss = 18.933756 \n",
" total_bbox = 884261, rewritten_bbox = 0.038224 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3733: 0.197484, 0.209558 avg loss, 0.000026 rate, 1.311410 seconds, 238912 images, 0.133398 hours left\n",
"Loaded: 0.117135 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857260, GIOU: 0.854312), Class: 0.997363, Obj: 0.892001, No Obj: 0.002080, .5R: 1.000000, .75R: 0.904762, count: 42, class_loss = 0.060032, iou_loss = 0.427721, total_loss = 0.487753 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835060, GIOU: 0.830052), Class: 0.994025, Obj: 0.904445, No Obj: 0.002656, .5R: 0.985437, .75R: 0.859223, count: 206, class_loss = 0.284909, iou_loss = 16.833656, total_loss = 17.118565 \n",
" total_bbox = 884509, rewritten_bbox = 0.038213 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3734: 0.172639, 0.205866 avg loss, 0.000026 rate, 1.157248 seconds, 238976 images, 0.133037 hours left\n",
"Loaded: 0.292976 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873043, GIOU: 0.871047), Class: 0.998209, Obj: 0.861311, No Obj: 0.002413, .5R: 1.000000, .75R: 1.000000, count: 39, class_loss = 0.084207, iou_loss = 0.314349, total_loss = 0.398557 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847248, GIOU: 0.843355), Class: 0.995238, Obj: 0.899517, No Obj: 0.002561, .5R: 0.995000, .75R: 0.935000, count: 200, class_loss = 0.357116, iou_loss = 17.946064, total_loss = 18.303181 \n",
" total_bbox = 884748, rewritten_bbox = 0.038203 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3735: 0.220815, 0.207361 avg loss, 0.000026 rate, 1.179131 seconds, 239040 images, 0.132648 hours left\n",
"Loaded: 0.000062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857242, GIOU: 0.853699), Class: 0.979711, Obj: 0.873730, No Obj: 0.002504, .5R: 1.000000, .75R: 0.957447, count: 47, class_loss = 0.122676, iou_loss = 0.459045, total_loss = 0.581721 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841135, GIOU: 0.837915), Class: 0.992871, Obj: 0.887066, No Obj: 0.002894, .5R: 1.000000, .75R: 0.876777, count: 211, class_loss = 0.363895, iou_loss = 17.195391, total_loss = 17.559286 \n",
" total_bbox = 885006, rewritten_bbox = 0.038192 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3736: 0.243450, 0.210970 avg loss, 0.000026 rate, 1.284386 seconds, 239104 images, 0.132405 hours left\n",
"Loaded: 0.211391 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845248, GIOU: 0.840506), Class: 0.996008, Obj: 0.845374, No Obj: 0.002307, .5R: 1.000000, .75R: 0.902439, count: 41, class_loss = 0.080257, iou_loss = 0.348973, total_loss = 0.429229 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834723, GIOU: 0.828970), Class: 0.991686, Obj: 0.827735, No Obj: 0.002426, .5R: 0.994819, .75R: 0.834197, count: 193, class_loss = 0.562046, iou_loss = 18.305397, total_loss = 18.867443 \n",
" total_bbox = 885240, rewritten_bbox = 0.038182 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3737: 0.321326, 0.222006 avg loss, 0.000026 rate, 1.223937 seconds, 239168 images, 0.132023 hours left\n",
"Loaded: 0.041250 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846590, GIOU: 0.840720), Class: 0.998001, Obj: 0.876418, No Obj: 0.002366, .5R: 0.978261, .75R: 0.913043, count: 46, class_loss = 0.097545, iou_loss = 0.424438, total_loss = 0.521983 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844593, GIOU: 0.840048), Class: 0.992171, Obj: 0.872696, No Obj: 0.002473, .5R: 0.994318, .75R: 0.875000, count: 176, class_loss = 0.349267, iou_loss = 15.237855, total_loss = 15.587122 \n",
" total_bbox = 885462, rewritten_bbox = 0.038172 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3738: 0.223575, 0.222163 avg loss, 0.000026 rate, 1.239642 seconds, 239232 images, 0.131752 hours left\n",
"Loaded: 0.001746 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862164, GIOU: 0.858949), Class: 0.986099, Obj: 0.915441, No Obj: 0.002122, .5R: 1.000000, .75R: 0.944444, count: 36, class_loss = 0.053013, iou_loss = 0.359808, total_loss = 0.412821 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846404, GIOU: 0.842591), Class: 0.992164, Obj: 0.862960, No Obj: 0.002693, .5R: 1.000000, .75R: 0.877551, count: 196, class_loss = 0.363019, iou_loss = 17.592115, total_loss = 17.955135 \n",
" total_bbox = 885694, rewritten_bbox = 0.038162 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3739: 0.208175, 0.220764 avg loss, 0.000026 rate, 1.157573 seconds, 239296 images, 0.131366 hours left\n",
"Loaded: 0.013480 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872860, GIOU: 0.870934), Class: 0.999768, Obj: 0.896334, No Obj: 0.002137, .5R: 1.000000, .75R: 0.941176, count: 34, class_loss = 0.038957, iou_loss = 0.310425, total_loss = 0.349382 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829948, GIOU: 0.824103), Class: 0.987760, Obj: 0.859016, No Obj: 0.002528, .5R: 0.962567, .75R: 0.850267, count: 187, class_loss = 0.414019, iou_loss = 15.453594, total_loss = 15.867613 \n",
" total_bbox = 885915, rewritten_bbox = 0.038153 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3740: 0.226650, 0.221353 avg loss, 0.000026 rate, 1.222043 seconds, 239360 images, 0.130893 hours left\n",
"Loaded: 0.000057 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853841, GIOU: 0.848123), Class: 0.998847, Obj: 0.884590, No Obj: 0.002061, .5R: 0.975000, .75R: 0.925000, count: 40, class_loss = 0.054050, iou_loss = 0.283615, total_loss = 0.337665 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842602, GIOU: 0.838115), Class: 0.998564, Obj: 0.929989, No Obj: 0.002463, .5R: 0.989305, .75R: 0.909091, count: 187, class_loss = 0.173245, iou_loss = 16.871599, total_loss = 17.044844 \n",
" total_bbox = 886142, rewritten_bbox = 0.038143 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3741: 0.113814, 0.210599 avg loss, 0.000026 rate, 1.371423 seconds, 239424 images, 0.130477 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.867547, GIOU: 0.863990), Class: 0.998151, Obj: 0.904522, No Obj: 0.002045, .5R: 1.000000, .75R: 0.952381, count: 42, class_loss = 0.040598, iou_loss = 0.426635, total_loss = 0.467234 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851465, GIOU: 0.847995), Class: 0.998128, Obj: 0.885418, No Obj: 0.002779, .5R: 0.995049, .75R: 0.896040, count: 202, class_loss = 0.396390, iou_loss = 16.641798, total_loss = 17.038189 \n",
" total_bbox = 886386, rewritten_bbox = 0.038132 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3742: 0.218648, 0.211404 avg loss, 0.000026 rate, 1.222730 seconds, 239488 images, 0.130159 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862768, GIOU: 0.860333), Class: 0.999040, Obj: 0.940730, No Obj: 0.001968, .5R: 1.000000, .75R: 0.947368, count: 38, class_loss = 0.029063, iou_loss = 0.387273, total_loss = 0.416337 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841813, GIOU: 0.838140), Class: 0.996051, Obj: 0.884721, No Obj: 0.002992, .5R: 1.000000, .75R: 0.879310, count: 232, class_loss = 0.415638, iou_loss = 21.404341, total_loss = 21.819979 \n",
" total_bbox = 886656, rewritten_bbox = 0.038121 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3743: 0.222512, 0.212514 avg loss, 0.000026 rate, 1.309155 seconds, 239552 images, 0.129733 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852080, GIOU: 0.848097), Class: 0.997619, Obj: 0.813186, No Obj: 0.001955, .5R: 1.000000, .75R: 0.852941, count: 34, class_loss = 0.097148, iou_loss = 0.281147, total_loss = 0.378295 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845143, GIOU: 0.841081), Class: 0.998356, Obj: 0.902118, No Obj: 0.002505, .5R: 1.000000, .75R: 0.927083, count: 192, class_loss = 0.289075, iou_loss = 17.400110, total_loss = 17.689184 \n",
" total_bbox = 886882, rewritten_bbox = 0.038111 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3744: 0.193277, 0.210591 avg loss, 0.000026 rate, 1.218144 seconds, 239616 images, 0.129371 hours left\n",
"Loaded: 0.000051 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848821, GIOU: 0.845442), Class: 0.996198, Obj: 0.890260, No Obj: 0.002756, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.078151, iou_loss = 0.327955, total_loss = 0.406107 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844391, GIOU: 0.840010), Class: 0.991152, Obj: 0.909665, No Obj: 0.002182, .5R: 0.993421, .75R: 0.901316, count: 152, class_loss = 0.214012, iou_loss = 12.421940, total_loss = 12.635952 \n",
" total_bbox = 887080, rewritten_bbox = 0.038103 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3745: 0.146249, 0.204157 avg loss, 0.000026 rate, 1.256372 seconds, 239680 images, 0.128943 hours left\n",
"Loaded: 0.169894 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860751, GIOU: 0.856158), Class: 0.999397, Obj: 0.921095, No Obj: 0.001821, .5R: 1.000000, .75R: 0.968750, count: 32, class_loss = 0.018120, iou_loss = 0.309482, total_loss = 0.327603 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842646, GIOU: 0.838745), Class: 0.992407, Obj: 0.865841, No Obj: 0.002916, .5R: 0.986046, .75R: 0.906977, count: 215, class_loss = 0.487604, iou_loss = 17.963846, total_loss = 18.451450 \n",
" total_bbox = 887327, rewritten_bbox = 0.038092 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3746: 0.253024, 0.209043 avg loss, 0.000026 rate, 1.165451 seconds, 239744 images, 0.128544 hours left\n",
"Loaded: 0.073228 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.881980, GIOU: 0.880263), Class: 0.998906, Obj: 0.902897, No Obj: 0.002414, .5R: 1.000000, .75R: 0.976191, count: 42, class_loss = 0.056763, iou_loss = 0.467720, total_loss = 0.524483 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852348, GIOU: 0.848288), Class: 0.995911, Obj: 0.862317, No Obj: 0.002491, .5R: 0.994253, .75R: 0.896552, count: 174, class_loss = 0.380125, iou_loss = 12.947414, total_loss = 13.327539 \n",
" total_bbox = 887543, rewritten_bbox = 0.038083 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3747: 0.218589, 0.209998 avg loss, 0.000026 rate, 1.255338 seconds, 239808 images, 0.128201 hours left\n",
"Loaded: 0.211008 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865873, GIOU: 0.863183), Class: 0.999576, Obj: 0.925813, No Obj: 0.002009, .5R: 1.000000, .75R: 0.935484, count: 31, class_loss = 0.041202, iou_loss = 0.271506, total_loss = 0.312708 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831185, GIOU: 0.826231), Class: 0.997584, Obj: 0.883589, No Obj: 0.002499, .5R: 0.994681, .75R: 0.840425, count: 188, class_loss = 0.333194, iou_loss = 16.086761, total_loss = 16.419956 \n",
" total_bbox = 887762, rewritten_bbox = 0.038073 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3748: 0.187364, 0.207735 avg loss, 0.000026 rate, 1.137328 seconds, 239872 images, 0.127852 hours left\n",
"Loaded: 0.097392 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852997, GIOU: 0.850416), Class: 0.998996, Obj: 0.843898, No Obj: 0.002506, .5R: 0.977778, .75R: 0.933333, count: 45, class_loss = 0.078180, iou_loss = 0.313648, total_loss = 0.391828 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849636, GIOU: 0.846895), Class: 0.993882, Obj: 0.903150, No Obj: 0.002282, .5R: 1.000000, .75R: 0.906040, count: 149, class_loss = 0.235855, iou_loss = 11.284001, total_loss = 11.519856 \n",
" total_bbox = 887956, rewritten_bbox = 0.038065 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3749: 0.157180, 0.202679 avg loss, 0.000026 rate, 1.171939 seconds, 239936 images, 0.127518 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857114, GIOU: 0.851204), Class: 0.996698, Obj: 0.826009, No Obj: 0.002183, .5R: 0.975000, .75R: 0.900000, count: 40, class_loss = 0.104876, iou_loss = 0.339783, total_loss = 0.444659 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845784, GIOU: 0.841343), Class: 0.997166, Obj: 0.843179, No Obj: 0.002518, .5R: 1.000000, .75R: 0.897436, count: 195, class_loss = 0.459523, iou_loss = 15.100824, total_loss = 15.560348 \n",
" total_bbox = 888191, rewritten_bbox = 0.038055 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3750: 0.282362, 0.210647 avg loss, 0.000026 rate, 1.354063 seconds, 240000 images, 0.127127 hours left\n",
"Loaded: 0.098517 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.871162, GIOU: 0.868380), Class: 0.998085, Obj: 0.889171, No Obj: 0.001908, .5R: 1.000000, .75R: 0.857143, count: 35, class_loss = 0.038992, iou_loss = 0.337469, total_loss = 0.376461 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838158, GIOU: 0.833245), Class: 0.995799, Obj: 0.875086, No Obj: 0.002891, .5R: 0.995146, .75R: 0.854369, count: 206, class_loss = 0.384675, iou_loss = 18.535765, total_loss = 18.920441 \n",
" total_bbox = 888432, rewritten_bbox = 0.038045 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3751: 0.211993, 0.210782 avg loss, 0.000026 rate, 1.233851 seconds, 240064 images, 0.126796 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847967, GIOU: 0.843214), Class: 0.998185, Obj: 0.815057, No Obj: 0.002079, .5R: 0.972222, .75R: 0.916667, count: 36, class_loss = 0.091917, iou_loss = 0.286867, total_loss = 0.378784 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848093, GIOU: 0.843185), Class: 0.998057, Obj: 0.889115, No Obj: 0.002300, .5R: 1.000000, .75R: 0.903614, count: 166, class_loss = 0.320303, iou_loss = 15.246516, total_loss = 15.566819 \n",
" total_bbox = 888634, rewritten_bbox = 0.038036 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3752: 0.206276, 0.210331 avg loss, 0.000026 rate, 1.197513 seconds, 240128 images, 0.126450 hours left\n",
"Loaded: 0.000063 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840993, GIOU: 0.835788), Class: 0.977617, Obj: 0.852078, No Obj: 0.002370, .5R: 1.000000, .75R: 0.911111, count: 45, class_loss = 0.109369, iou_loss = 0.396986, total_loss = 0.506355 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841611, GIOU: 0.837437), Class: 0.984289, Obj: 0.892822, No Obj: 0.002821, .5R: 0.995215, .75R: 0.875598, count: 209, class_loss = 0.411728, iou_loss = 18.091751, total_loss = 18.503479 \n",
" total_bbox = 888888, rewritten_bbox = 0.038025 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3753: 0.260722, 0.215370 avg loss, 0.000026 rate, 1.345013 seconds, 240192 images, 0.126011 hours left\n",
"Loaded: 0.007005 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863513, GIOU: 0.861070), Class: 0.995549, Obj: 0.914095, No Obj: 0.002057, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.045389, iou_loss = 0.363459, total_loss = 0.408848 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834864, GIOU: 0.830444), Class: 0.994580, Obj: 0.878236, No Obj: 0.002679, .5R: 0.995169, .75R: 0.855072, count: 207, class_loss = 0.349874, iou_loss = 19.333628, total_loss = 19.683502 \n",
" total_bbox = 889136, rewritten_bbox = 0.038014 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3754: 0.197796, 0.213613 avg loss, 0.000026 rate, 1.295460 seconds, 240256 images, 0.125673 hours left\n",
"Loaded: 0.094574 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858859, GIOU: 0.857067), Class: 0.998890, Obj: 0.887189, No Obj: 0.002075, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.041659, iou_loss = 0.336737, total_loss = 0.378396 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833465, GIOU: 0.828662), Class: 0.993472, Obj: 0.883035, No Obj: 0.002696, .5R: 0.984772, .75R: 0.862944, count: 197, class_loss = 0.358883, iou_loss = 18.354908, total_loss = 18.713791 \n",
" total_bbox = 889370, rewritten_bbox = 0.038004 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3755: 0.200439, 0.212296 avg loss, 0.000026 rate, 1.243085 seconds, 240320 images, 0.125307 hours left\n",
"Loaded: 0.205490 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831816, GIOU: 0.826527), Class: 0.980209, Obj: 0.853694, No Obj: 0.002698, .5R: 1.000000, .75R: 0.872727, count: 55, class_loss = 0.116119, iou_loss = 0.506389, total_loss = 0.622508 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832087, GIOU: 0.825277), Class: 0.977181, Obj: 0.855383, No Obj: 0.002821, .5R: 0.981481, .75R: 0.865741, count: 216, class_loss = 0.515115, iou_loss = 17.790773, total_loss = 18.305889 \n",
" total_bbox = 889641, rewritten_bbox = 0.038105 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3756: 0.315801, 0.222646 avg loss, 0.000026 rate, 1.249147 seconds, 240384 images, 0.124964 hours left\n",
"Loaded: 0.026508 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.838438, GIOU: 0.835988), Class: 0.992300, Obj: 0.833088, No Obj: 0.002272, .5R: 0.976744, .75R: 0.906977, count: 43, class_loss = 0.080941, iou_loss = 0.307330, total_loss = 0.388271 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842849, GIOU: 0.836866), Class: 0.996182, Obj: 0.858206, No Obj: 0.002457, .5R: 0.994565, .75R: 0.869565, count: 184, class_loss = 0.405852, iou_loss = 14.126920, total_loss = 14.532771 \n",
" total_bbox = 889868, rewritten_bbox = 0.038096 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3757: 0.243571, 0.224739 avg loss, 0.000026 rate, 1.112821 seconds, 240448 images, 0.124700 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857844, GIOU: 0.854599), Class: 0.973085, Obj: 0.868560, No Obj: 0.002037, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.102123, iou_loss = 0.316146, total_loss = 0.418270 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828604, GIOU: 0.823705), Class: 0.988163, Obj: 0.849972, No Obj: 0.002430, .5R: 0.984772, .75R: 0.852792, count: 197, class_loss = 0.503177, iou_loss = 17.478273, total_loss = 17.981451 \n",
" total_bbox = 890108, rewritten_bbox = 0.038085 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3758: 0.302822, 0.232547 avg loss, 0.000026 rate, 1.284314 seconds, 240512 images, 0.124222 hours left\n",
"Loaded: 0.359045 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858636, GIOU: 0.856954), Class: 0.998893, Obj: 0.934641, No Obj: 0.002089, .5R: 0.974359, .75R: 0.923077, count: 39, class_loss = 0.035388, iou_loss = 0.387778, total_loss = 0.423165 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837839, GIOU: 0.833080), Class: 0.996692, Obj: 0.873547, No Obj: 0.002888, .5R: 0.986425, .75R: 0.900453, count: 221, class_loss = 0.384626, iou_loss = 18.891571, total_loss = 19.276197 \n",
" total_bbox = 890368, rewritten_bbox = 0.038074 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3759: 0.210173, 0.230310 avg loss, 0.000026 rate, 1.158748 seconds, 240576 images, 0.123843 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849182, GIOU: 0.846186), Class: 0.985368, Obj: 0.870863, No Obj: 0.002100, .5R: 0.974359, .75R: 0.897436, count: 39, class_loss = 0.089683, iou_loss = 0.332132, total_loss = 0.421814 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849556, GIOU: 0.845759), Class: 0.993103, Obj: 0.896484, No Obj: 0.002365, .5R: 0.988889, .75R: 0.888889, count: 180, class_loss = 0.315973, iou_loss = 15.328927, total_loss = 15.644900 \n",
" total_bbox = 890587, rewritten_bbox = 0.038177 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3760: 0.202993, 0.227578 avg loss, 0.000026 rate, 1.146053 seconds, 240640 images, 0.123621 hours left\n",
"Loaded: 0.000053 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857419, GIOU: 0.854876), Class: 0.998471, Obj: 0.890692, No Obj: 0.002384, .5R: 1.000000, .75R: 0.937500, count: 48, class_loss = 0.089272, iou_loss = 0.446606, total_loss = 0.535878 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839272, GIOU: 0.835498), Class: 0.994814, Obj: 0.863099, No Obj: 0.002081, .5R: 0.993464, .75R: 0.862745, count: 153, class_loss = 0.354464, iou_loss = 11.365756, total_loss = 11.720221 \n",
" total_bbox = 890788, rewritten_bbox = 0.038168 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3761: 0.222034, 0.227023 avg loss, 0.000026 rate, 1.235648 seconds, 240704 images, 0.123149 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860675, GIOU: 0.857723), Class: 0.992129, Obj: 0.915053, No Obj: 0.001690, .5R: 1.000000, .75R: 1.000000, count: 26, class_loss = 0.070699, iou_loss = 0.210007, total_loss = 0.280706 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840766, GIOU: 0.836760), Class: 0.996101, Obj: 0.875093, No Obj: 0.002803, .5R: 0.995671, .75R: 0.900433, count: 231, class_loss = 0.377114, iou_loss = 20.898840, total_loss = 21.275953 \n",
" total_bbox = 891045, rewritten_bbox = 0.038157 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3762: 0.224070, 0.226728 avg loss, 0.000026 rate, 1.283603 seconds, 240768 images, 0.122738 hours left\n",
"Loaded: 0.000051 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865806, GIOU: 0.862727), Class: 0.998918, Obj: 0.881821, No Obj: 0.002121, .5R: 1.000000, .75R: 0.971429, count: 35, class_loss = 0.051757, iou_loss = 0.263589, total_loss = 0.315346 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829960, GIOU: 0.821631), Class: 0.991646, Obj: 0.860386, No Obj: 0.002510, .5R: 0.974747, .75R: 0.868687, count: 198, class_loss = 0.442067, iou_loss = 15.401685, total_loss = 15.843752 \n",
" total_bbox = 891278, rewritten_bbox = 0.038147 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3763: 0.247078, 0.228763 avg loss, 0.000026 rate, 1.263802 seconds, 240832 images, 0.122359 hours left\n",
"Loaded: 0.000054 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858860, GIOU: 0.855966), Class: 0.999121, Obj: 0.915846, No Obj: 0.001906, .5R: 1.000000, .75R: 0.942857, count: 35, class_loss = 0.026956, iou_loss = 0.256704, total_loss = 0.283660 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844891, GIOU: 0.840907), Class: 0.996113, Obj: 0.901671, No Obj: 0.002293, .5R: 0.987421, .75R: 0.911950, count: 159, class_loss = 0.321723, iou_loss = 11.960864, total_loss = 12.282587 \n",
" total_bbox = 891472, rewritten_bbox = 0.038139 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3764: 0.174501, 0.223337 avg loss, 0.000026 rate, 1.157174 seconds, 240896 images, 0.121968 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873745, GIOU: 0.870715), Class: 0.998899, Obj: 0.970931, No Obj: 0.002925, .5R: 1.000000, .75R: 0.981132, count: 53, class_loss = 0.009622, iou_loss = 0.469646, total_loss = 0.479268 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846987, GIOU: 0.843425), Class: 0.992083, Obj: 0.888596, No Obj: 0.002364, .5R: 0.993750, .75R: 0.900000, count: 160, class_loss = 0.257029, iou_loss = 11.788874, total_loss = 12.045902 \n",
" total_bbox = 891685, rewritten_bbox = 0.038130 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3765: 0.133478, 0.214351 avg loss, 0.000026 rate, 1.279831 seconds, 240960 images, 0.121507 hours left\n",
"Loaded: 0.108262 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852518, GIOU: 0.848017), Class: 0.991484, Obj: 0.811598, No Obj: 0.002276, .5R: 1.000000, .75R: 0.863636, count: 44, class_loss = 0.111193, iou_loss = 0.383016, total_loss = 0.494209 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844435, GIOU: 0.839741), Class: 0.986291, Obj: 0.876968, No Obj: 0.002303, .5R: 0.994118, .75R: 0.882353, count: 170, class_loss = 0.366635, iou_loss = 13.532238, total_loss = 13.898872 \n",
" total_bbox = 891899, rewritten_bbox = 0.038121 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3766: 0.239079, 0.216824 avg loss, 0.000026 rate, 1.287497 seconds, 241024 images, 0.121127 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858319, GIOU: 0.855052), Class: 0.999583, Obj: 0.943620, No Obj: 0.002243, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.033904, iou_loss = 0.400816, total_loss = 0.434720 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846363, GIOU: 0.842058), Class: 0.991163, Obj: 0.893346, No Obj: 0.002179, .5R: 1.000000, .75R: 0.912500, count: 160, class_loss = 0.258921, iou_loss = 11.700004, total_loss = 11.958924 \n",
" total_bbox = 892102, rewritten_bbox = 0.038112 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3767: 0.146574, 0.209799 avg loss, 0.000026 rate, 1.211062 seconds, 241088 images, 0.120823 hours left\n",
"Loaded: 0.000035 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.832215, GIOU: 0.827828), Class: 0.981829, Obj: 0.829539, No Obj: 0.002704, .5R: 1.000000, .75R: 0.867925, count: 53, class_loss = 0.130823, iou_loss = 0.558847, total_loss = 0.689671 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837133, GIOU: 0.832317), Class: 0.983971, Obj: 0.846281, No Obj: 0.002103, .5R: 1.000000, .75R: 0.874172, count: 151, class_loss = 0.394881, iou_loss = 9.702250, total_loss = 10.097132 \n",
" total_bbox = 892306, rewritten_bbox = 0.038104 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3768: 0.263033, 0.215122 avg loss, 0.000026 rate, 1.203048 seconds, 241152 images, 0.120399 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849756, GIOU: 0.845872), Class: 0.999375, Obj: 0.885527, No Obj: 0.001989, .5R: 1.000000, .75R: 0.891892, count: 37, class_loss = 0.064496, iou_loss = 0.304000, total_loss = 0.368496 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847007, GIOU: 0.843449), Class: 0.997620, Obj: 0.898326, No Obj: 0.002395, .5R: 1.000000, .75R: 0.903226, count: 186, class_loss = 0.316130, iou_loss = 14.647833, total_loss = 14.963963 \n",
" total_bbox = 892529, rewritten_bbox = 0.038094 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3769: 0.190479, 0.212658 avg loss, 0.000026 rate, 1.271594 seconds, 241216 images, 0.119970 hours left\n",
"Loaded: 0.168238 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857648, GIOU: 0.855791), Class: 0.999280, Obj: 0.889988, No Obj: 0.002298, .5R: 0.975610, .75R: 0.926829, count: 41, class_loss = 0.079133, iou_loss = 0.419987, total_loss = 0.499121 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.853135, GIOU: 0.849098), Class: 0.998633, Obj: 0.896714, No Obj: 0.002764, .5R: 0.995098, .75R: 0.931373, count: 204, class_loss = 0.361811, iou_loss = 17.108822, total_loss = 17.470633 \n",
" total_bbox = 892774, rewritten_bbox = 0.038084 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3770: 0.220630, 0.213455 avg loss, 0.000026 rate, 1.238582 seconds, 241280 images, 0.119586 hours left\n",
"Loaded: 0.000092 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.871455, GIOU: 0.868377), Class: 0.997453, Obj: 0.869190, No Obj: 0.001902, .5R: 1.000000, .75R: 0.939394, count: 33, class_loss = 0.057094, iou_loss = 0.330767, total_loss = 0.387861 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840667, GIOU: 0.834240), Class: 0.998076, Obj: 0.898998, No Obj: 0.002241, .5R: 0.988095, .75R: 0.904762, count: 168, class_loss = 0.297739, iou_loss = 15.901716, total_loss = 16.199455 \n",
" total_bbox = 892975, rewritten_bbox = 0.038075 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3771: 0.177574, 0.209867 avg loss, 0.000026 rate, 1.170641 seconds, 241344 images, 0.119289 hours left\n",
"Loaded: 0.000078 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862012, GIOU: 0.859408), Class: 0.998873, Obj: 0.852433, No Obj: 0.002312, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.080819, iou_loss = 0.388624, total_loss = 0.469444 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844803, GIOU: 0.840624), Class: 0.994895, Obj: 0.882347, No Obj: 0.002423, .5R: 0.994506, .75R: 0.912088, count: 182, class_loss = 0.299787, iou_loss = 14.069104, total_loss = 14.368891 \n",
" total_bbox = 893197, rewritten_bbox = 0.038066 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3772: 0.190463, 0.207927 avg loss, 0.000026 rate, 1.275408 seconds, 241408 images, 0.118841 hours left\n",
"Loaded: 0.057119 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865111, GIOU: 0.861194), Class: 0.998056, Obj: 0.922608, No Obj: 0.002585, .5R: 1.000000, .75R: 0.956522, count: 46, class_loss = 0.033009, iou_loss = 0.401334, total_loss = 0.434342 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843606, GIOU: 0.839783), Class: 0.997372, Obj: 0.866092, No Obj: 0.002272, .5R: 1.000000, .75R: 0.889571, count: 163, class_loss = 0.255886, iou_loss = 12.345973, total_loss = 12.601858 \n",
" total_bbox = 893406, rewritten_bbox = 0.038057 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3773: 0.144606, 0.201595 avg loss, 0.000026 rate, 1.188347 seconds, 241472 images, 0.118460 hours left\n",
"Loaded: 0.000064 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862640, GIOU: 0.859232), Class: 0.998368, Obj: 0.985782, No Obj: 0.001693, .5R: 1.000000, .75R: 0.909091, count: 33, class_loss = 0.026916, iou_loss = 0.308209, total_loss = 0.335125 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832277, GIOU: 0.828235), Class: 0.988425, Obj: 0.883573, No Obj: 0.003079, .5R: 0.996124, .75R: 0.856589, count: 258, class_loss = 0.448085, iou_loss = 25.100672, total_loss = 25.548758 \n",
" total_bbox = 893697, rewritten_bbox = 0.038156 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3774: 0.237668, 0.205202 avg loss, 0.000026 rate, 1.327942 seconds, 241536 images, 0.118061 hours left\n",
"Loaded: 0.058822 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848954, GIOU: 0.846013), Class: 0.994713, Obj: 0.839509, No Obj: 0.001960, .5R: 1.000000, .75R: 0.880952, count: 42, class_loss = 0.093071, iou_loss = 0.347063, total_loss = 0.440133 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840297, GIOU: 0.836506), Class: 0.998768, Obj: 0.919768, No Obj: 0.002549, .5R: 0.988950, .75R: 0.872928, count: 181, class_loss = 0.242265, iou_loss = 17.089752, total_loss = 17.332016 \n",
" total_bbox = 893920, rewritten_bbox = 0.038147 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3775: 0.167838, 0.201466 avg loss, 0.000026 rate, 1.150346 seconds, 241600 images, 0.117714 hours left\n",
"Loaded: 0.000080 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863748, GIOU: 0.860651), Class: 0.991622, Obj: 0.914791, No Obj: 0.002094, .5R: 1.000000, .75R: 0.947368, count: 38, class_loss = 0.048443, iou_loss = 0.375180, total_loss = 0.423622 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837910, GIOU: 0.832717), Class: 0.992317, Obj: 0.865691, No Obj: 0.002742, .5R: 0.990610, .75R: 0.873239, count: 213, class_loss = 0.357076, iou_loss = 20.353998, total_loss = 20.711073 \n",
" total_bbox = 894171, rewritten_bbox = 0.038136 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3776: 0.202922, 0.201611 avg loss, 0.000026 rate, 1.307372 seconds, 241664 images, 0.117293 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.875708, GIOU: 0.873573), Class: 0.998641, Obj: 0.866373, No Obj: 0.001793, .5R: 1.000000, .75R: 0.972222, count: 36, class_loss = 0.060111, iou_loss = 0.334870, total_loss = 0.394981 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836582, GIOU: 0.832990), Class: 0.994972, Obj: 0.890261, No Obj: 0.002307, .5R: 0.989011, .75R: 0.868132, count: 182, class_loss = 0.314201, iou_loss = 16.793022, total_loss = 17.107224 \n",
" total_bbox = 894389, rewritten_bbox = 0.038127 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3777: 0.187313, 0.200181 avg loss, 0.000026 rate, 1.218243 seconds, 241728 images, 0.116933 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.876464, GIOU: 0.873586), Class: 0.999258, Obj: 0.927508, No Obj: 0.002280, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.034922, iou_loss = 0.417815, total_loss = 0.452738 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844572, GIOU: 0.840869), Class: 0.997167, Obj: 0.874060, No Obj: 0.002849, .5R: 1.000000, .75R: 0.910798, count: 213, class_loss = 0.349868, iou_loss = 16.688526, total_loss = 17.038395 \n",
" total_bbox = 894643, rewritten_bbox = 0.038116 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3778: 0.192548, 0.199418 avg loss, 0.000026 rate, 1.225894 seconds, 241792 images, 0.116519 hours left\n",
"Loaded: 0.000038 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860330, GIOU: 0.856751), Class: 0.997958, Obj: 0.881329, No Obj: 0.002639, .5R: 1.000000, .75R: 0.877551, count: 49, class_loss = 0.090554, iou_loss = 0.501855, total_loss = 0.592409 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844198, GIOU: 0.840627), Class: 0.992936, Obj: 0.909028, No Obj: 0.003098, .5R: 0.995763, .75R: 0.902542, count: 236, class_loss = 0.271952, iou_loss = 20.325224, total_loss = 20.597176 \n",
" total_bbox = 894928, rewritten_bbox = 0.038215 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3779: 0.181414, 0.197618 avg loss, 0.000026 rate, 1.290580 seconds, 241856 images, 0.116110 hours left\n",
"Loaded: 0.000049 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858007, GIOU: 0.855087), Class: 0.976068, Obj: 0.883406, No Obj: 0.001828, .5R: 1.000000, .75R: 1.000000, count: 34, class_loss = 0.081282, iou_loss = 0.300626, total_loss = 0.381908 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840153, GIOU: 0.835887), Class: 0.990603, Obj: 0.875732, No Obj: 0.002439, .5R: 0.994898, .75R: 0.862245, count: 196, class_loss = 0.394549, iou_loss = 17.498131, total_loss = 17.892679 \n",
" total_bbox = 895158, rewritten_bbox = 0.038206 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3780: 0.238080, 0.201664 avg loss, 0.000026 rate, 1.330416 seconds, 241920 images, 0.115741 hours left\n",
"Loaded: 0.004806 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851171, GIOU: 0.848825), Class: 0.996131, Obj: 0.865722, No Obj: 0.001849, .5R: 1.000000, .75R: 0.885714, count: 35, class_loss = 0.076675, iou_loss = 0.321542, total_loss = 0.398217 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833686, GIOU: 0.830354), Class: 0.997927, Obj: 0.880194, No Obj: 0.002501, .5R: 1.000000, .75R: 0.857868, count: 197, class_loss = 0.310481, iou_loss = 17.091166, total_loss = 17.401646 \n",
" total_bbox = 895390, rewritten_bbox = 0.038196 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3781: 0.193750, 0.200873 avg loss, 0.000026 rate, 1.124078 seconds, 241984 images, 0.115398 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841604, GIOU: 0.834362), Class: 0.998278, Obj: 0.862857, No Obj: 0.002123, .5R: 0.972222, .75R: 0.888889, count: 36, class_loss = 0.066324, iou_loss = 0.302417, total_loss = 0.368741 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850563, GIOU: 0.846800), Class: 0.995385, Obj: 0.904061, No Obj: 0.002494, .5R: 0.989189, .75R: 0.908108, count: 185, class_loss = 0.250275, iou_loss = 17.090624, total_loss = 17.340899 \n",
" total_bbox = 895611, rewritten_bbox = 0.038186 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3782: 0.158468, 0.196632 avg loss, 0.000026 rate, 1.231871 seconds, 242048 images, 0.114931 hours left\n",
"Loaded: 0.000035 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863076, GIOU: 0.858641), Class: 0.998314, Obj: 0.885289, No Obj: 0.002504, .5R: 1.000000, .75R: 0.913043, count: 46, class_loss = 0.107406, iou_loss = 0.447148, total_loss = 0.554554 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841501, GIOU: 0.837054), Class: 0.988181, Obj: 0.883478, No Obj: 0.002951, .5R: 0.985849, .75R: 0.877358, count: 212, class_loss = 0.440372, iou_loss = 19.398418, total_loss = 19.838791 \n",
" total_bbox = 895869, rewritten_bbox = 0.038175 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3783: 0.274050, 0.204374 avg loss, 0.000026 rate, 1.267569 seconds, 242112 images, 0.114527 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839491, GIOU: 0.833587), Class: 0.975995, Obj: 0.771435, No Obj: 0.001851, .5R: 0.972222, .75R: 0.888889, count: 36, class_loss = 0.141862, iou_loss = 0.318142, total_loss = 0.460003 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845269, GIOU: 0.841174), Class: 0.995260, Obj: 0.904390, No Obj: 0.002727, .5R: 0.980769, .75R: 0.923077, count: 208, class_loss = 0.270766, iou_loss = 18.846977, total_loss = 19.117743 \n",
" total_bbox = 896113, rewritten_bbox = 0.038165 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3784: 0.206486, 0.204585 avg loss, 0.000026 rate, 1.400105 seconds, 242176 images, 0.114146 hours left\n",
"Loaded: 0.123203 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842047, GIOU: 0.836938), Class: 0.985245, Obj: 0.854108, No Obj: 0.001996, .5R: 1.000000, .75R: 0.848485, count: 33, class_loss = 0.071770, iou_loss = 0.285124, total_loss = 0.356894 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842777, GIOU: 0.837993), Class: 0.992182, Obj: 0.882371, No Obj: 0.002359, .5R: 0.983784, .75R: 0.881081, count: 185, class_loss = 0.324012, iou_loss = 16.601021, total_loss = 16.925034 \n",
" total_bbox = 896331, rewritten_bbox = 0.038156 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3785: 0.198064, 0.203933 avg loss, 0.000026 rate, 1.307215 seconds, 242240 images, 0.113845 hours left\n",
"Loaded: 0.042097 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849793, GIOU: 0.843735), Class: 0.992076, Obj: 0.870569, No Obj: 0.001928, .5R: 0.972222, .75R: 0.861111, count: 36, class_loss = 0.065208, iou_loss = 0.351176, total_loss = 0.416383 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838264, GIOU: 0.833654), Class: 0.996154, Obj: 0.864044, No Obj: 0.002873, .5R: 0.995575, .75R: 0.858407, count: 226, class_loss = 0.460400, iou_loss = 19.694504, total_loss = 20.154903 \n",
" total_bbox = 896593, rewritten_bbox = 0.038144 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3786: 0.262975, 0.209837 avg loss, 0.000026 rate, 1.176397 seconds, 242304 images, 0.113561 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829471, GIOU: 0.825355), Class: 0.998470, Obj: 0.805152, No Obj: 0.002193, .5R: 1.000000, .75R: 0.825000, count: 40, class_loss = 0.096140, iou_loss = 0.363142, total_loss = 0.459282 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841274, GIOU: 0.837452), Class: 0.994049, Obj: 0.870568, No Obj: 0.002700, .5R: 0.994898, .75R: 0.882653, count: 196, class_loss = 0.398314, iou_loss = 17.317673, total_loss = 17.715986 \n",
" total_bbox = 896829, rewritten_bbox = 0.038134 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3787: 0.247407, 0.213594 avg loss, 0.000026 rate, 1.215210 seconds, 242368 images, 0.113149 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853263, GIOU: 0.848372), Class: 0.999642, Obj: 0.920374, No Obj: 0.002139, .5R: 1.000000, .75R: 0.976191, count: 42, class_loss = 0.029798, iou_loss = 0.354973, total_loss = 0.384771 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852353, GIOU: 0.848456), Class: 0.996192, Obj: 0.900163, No Obj: 0.001929, .5R: 0.992701, .75R: 0.919708, count: 137, class_loss = 0.199343, iou_loss = 11.519311, total_loss = 11.718654 \n",
" total_bbox = 897008, rewritten_bbox = 0.038127 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3788: 0.114731, 0.203708 avg loss, 0.000026 rate, 1.312634 seconds, 242432 images, 0.112737 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835842, GIOU: 0.832414), Class: 0.996942, Obj: 0.805228, No Obj: 0.001748, .5R: 1.000000, .75R: 0.852941, count: 34, class_loss = 0.110757, iou_loss = 0.315735, total_loss = 0.426493 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842175, GIOU: 0.838278), Class: 0.994821, Obj: 0.862838, No Obj: 0.002575, .5R: 1.000000, .75R: 0.902913, count: 206, class_loss = 0.486445, iou_loss = 18.985899, total_loss = 19.472343 \n",
" total_bbox = 897248, rewritten_bbox = 0.038117 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3789: 0.298777, 0.213215 avg loss, 0.000026 rate, 1.283992 seconds, 242496 images, 0.112383 hours left\n",
"Loaded: 0.094518 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.876227, GIOU: 0.873870), Class: 0.999290, Obj: 0.931619, No Obj: 0.002224, .5R: 1.000000, .75R: 0.974359, count: 39, class_loss = 0.053823, iou_loss = 0.432765, total_loss = 0.486588 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846083, GIOU: 0.842480), Class: 0.993984, Obj: 0.871983, No Obj: 0.002763, .5R: 1.000000, .75R: 0.885167, count: 209, class_loss = 0.475139, iou_loss = 16.907248, total_loss = 17.382387 \n",
" total_bbox = 897496, rewritten_bbox = 0.038106 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3790: 0.264633, 0.218357 avg loss, 0.000026 rate, 1.278288 seconds, 242560 images, 0.112011 hours left\n",
"Loaded: 0.011601 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848958, GIOU: 0.843335), Class: 0.997648, Obj: 0.815668, No Obj: 0.002072, .5R: 1.000000, .75R: 0.875000, count: 40, class_loss = 0.115722, iou_loss = 0.382454, total_loss = 0.498176 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836769, GIOU: 0.831958), Class: 0.992973, Obj: 0.876145, No Obj: 0.003169, .5R: 0.991342, .75R: 0.861472, count: 231, class_loss = 0.505905, iou_loss = 21.739204, total_loss = 22.245110 \n",
" total_bbox = 897767, rewritten_bbox = 0.038095 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3791: 0.310986, 0.227620 avg loss, 0.000026 rate, 1.298322 seconds, 242624 images, 0.111692 hours left\n",
"Loaded: 0.070948 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842225, GIOU: 0.831357), Class: 0.988081, Obj: 0.881206, No Obj: 0.002455, .5R: 0.977273, .75R: 0.886364, count: 44, class_loss = 0.086015, iou_loss = 0.379118, total_loss = 0.465133 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845359, GIOU: 0.842101), Class: 0.994726, Obj: 0.867094, No Obj: 0.002605, .5R: 0.994975, .75R: 0.894472, count: 199, class_loss = 0.393024, iou_loss = 16.773859, total_loss = 17.166883 \n",
" total_bbox = 898010, rewritten_bbox = 0.038084 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3792: 0.239690, 0.228827 avg loss, 0.000026 rate, 1.208016 seconds, 242688 images, 0.111336 hours left\n",
"Loaded: 0.252623 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852859, GIOU: 0.847899), Class: 0.999045, Obj: 0.867978, No Obj: 0.002203, .5R: 1.000000, .75R: 0.900000, count: 40, class_loss = 0.059059, iou_loss = 0.389739, total_loss = 0.448798 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825472, GIOU: 0.820380), Class: 0.997931, Obj: 0.892720, No Obj: 0.001841, .5R: 0.968992, .75R: 0.813953, count: 129, class_loss = 0.244080, iou_loss = 11.619605, total_loss = 11.863685 \n",
" total_bbox = 898179, rewritten_bbox = 0.038077 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3793: 0.151745, 0.221118 avg loss, 0.000026 rate, 1.168951 seconds, 242752 images, 0.110961 hours left\n",
"Loaded: 0.206907 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870411, GIOU: 0.868245), Class: 0.999035, Obj: 0.896454, No Obj: 0.002423, .5R: 1.000000, .75R: 0.928571, count: 42, class_loss = 0.072739, iou_loss = 0.411540, total_loss = 0.484279 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839828, GIOU: 0.835639), Class: 0.996927, Obj: 0.869914, No Obj: 0.002979, .5R: 0.995614, .75R: 0.868421, count: 228, class_loss = 0.410895, iou_loss = 21.796255, total_loss = 22.207150 \n",
" total_bbox = 898449, rewritten_bbox = 0.038066 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3794: 0.241975, 0.223204 avg loss, 0.000026 rate, 1.228622 seconds, 242816 images, 0.110669 hours left\n",
"Loaded: 0.041658 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844650, GIOU: 0.838868), Class: 0.998880, Obj: 0.892171, No Obj: 0.002782, .5R: 1.000000, .75R: 0.821429, count: 56, class_loss = 0.075115, iou_loss = 0.559318, total_loss = 0.634433 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846846, GIOU: 0.842826), Class: 0.991964, Obj: 0.895710, No Obj: 0.003130, .5R: 0.991632, .75R: 0.903766, count: 239, class_loss = 0.369703, iou_loss = 21.314270, total_loss = 21.683973 \n",
" total_bbox = 898744, rewritten_bbox = 0.038053 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3795: 0.222578, 0.223142 avg loss, 0.000026 rate, 1.293925 seconds, 242880 images, 0.110384 hours left\n",
"Loaded: 0.047087 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.881138, GIOU: 0.879602), Class: 0.995420, Obj: 0.880915, No Obj: 0.003210, .5R: 1.000000, .75R: 0.980000, count: 50, class_loss = 0.079416, iou_loss = 0.501967, total_loss = 0.581383 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846917, GIOU: 0.840673), Class: 0.992173, Obj: 0.874740, No Obj: 0.002380, .5R: 0.988439, .75R: 0.907514, count: 173, class_loss = 0.410417, iou_loss = 13.989700, total_loss = 14.400118 \n",
" total_bbox = 898967, rewritten_bbox = 0.038044 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3796: 0.245065, 0.225334 avg loss, 0.000026 rate, 1.331174 seconds, 242944 images, 0.110041 hours left\n",
"Loaded: 0.073443 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858425, GIOU: 0.854267), Class: 0.999584, Obj: 0.962174, No Obj: 0.001980, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.027165, iou_loss = 0.389648, total_loss = 0.416813 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838920, GIOU: 0.834840), Class: 0.993028, Obj: 0.895716, No Obj: 0.002627, .5R: 0.995049, .75R: 0.905941, count: 202, class_loss = 0.335303, iou_loss = 16.028120, total_loss = 16.363422 \n",
" total_bbox = 899206, rewritten_bbox = 0.038034 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3797: 0.181399, 0.220940 avg loss, 0.000026 rate, 1.182877 seconds, 243008 images, 0.109721 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837362, GIOU: 0.833963), Class: 0.996557, Obj: 0.907926, No Obj: 0.002142, .5R: 0.974359, .75R: 0.897436, count: 39, class_loss = 0.064262, iou_loss = 0.356478, total_loss = 0.420739 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841489, GIOU: 0.838125), Class: 0.993826, Obj: 0.894507, No Obj: 0.002991, .5R: 0.995833, .75R: 0.883333, count: 240, class_loss = 0.358645, iou_loss = 23.131521, total_loss = 23.490166 \n",
" total_bbox = 899485, rewritten_bbox = 0.038022 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3798: 0.211629, 0.220009 avg loss, 0.000026 rate, 1.243225 seconds, 243072 images, 0.109332 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845919, GIOU: 0.842817), Class: 0.994421, Obj: 0.896632, No Obj: 0.001944, .5R: 1.000000, .75R: 0.948718, count: 39, class_loss = 0.051310, iou_loss = 0.323681, total_loss = 0.374991 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849599, GIOU: 0.845006), Class: 0.998269, Obj: 0.904582, No Obj: 0.002041, .5R: 0.993421, .75R: 0.901316, count: 152, class_loss = 0.189189, iou_loss = 13.165087, total_loss = 13.354276 \n",
" total_bbox = 899676, rewritten_bbox = 0.038014 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3799: 0.120416, 0.210050 avg loss, 0.000026 rate, 1.272349 seconds, 243136 images, 0.108937 hours left\n",
"Loaded: 0.004111 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854592, GIOU: 0.849557), Class: 0.998845, Obj: 0.899036, No Obj: 0.001778, .5R: 0.970588, .75R: 0.911765, count: 34, class_loss = 0.094102, iou_loss = 0.371838, total_loss = 0.465940 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842042, GIOU: 0.838834), Class: 0.993491, Obj: 0.885690, No Obj: 0.002494, .5R: 0.995049, .75R: 0.896040, count: 202, class_loss = 0.381364, iou_loss = 17.808947, total_loss = 18.190310 \n",
" total_bbox = 899912, rewritten_bbox = 0.038004 % \n",
"\n",
" (next mAP calculation at 3800 iterations) \n",
" Last accuracy [email protected] = 57.98 %, best = 58.96 % \n",
" 3800: 0.237899, 0.212835 avg loss, 0.000026 rate, 1.229010 seconds, 243200 images, 0.108558 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 353, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.22% \t (TP = 162, FP = 7) \n",
"class_id = 1, name = no mask, ap = 47.63% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.95, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 10, FN = 120, average IoU = 78.24 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.579243, or 57.92 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.579243 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.878549, GIOU: 0.876161), Class: 0.999037, Obj: 0.952295, No Obj: 0.002392, .5R: 1.000000, .75R: 0.931818, count: 44, class_loss = 0.019750, iou_loss = 0.432836, total_loss = 0.452585 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832053, GIOU: 0.825546), Class: 0.991499, Obj: 0.848007, No Obj: 0.002586, .5R: 0.978022, .75R: 0.857143, count: 182, class_loss = 0.419631, iou_loss = 14.203317, total_loss = 14.622948 \n",
" total_bbox = 900138, rewritten_bbox = 0.037994 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3801: 0.219849, 0.213536 avg loss, 0.000026 rate, 1.072569 seconds, 243264 images, 0.109287 hours left\n",
"Loaded: 0.110368 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.874872, GIOU: 0.872838), Class: 0.997878, Obj: 0.925722, No Obj: 0.002007, .5R: 1.000000, .75R: 0.975000, count: 40, class_loss = 0.046095, iou_loss = 0.405665, total_loss = 0.451759 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846336, GIOU: 0.842557), Class: 0.989375, Obj: 0.884912, No Obj: 0.001969, .5R: 0.987261, .75R: 0.891720, count: 157, class_loss = 0.294454, iou_loss = 14.092202, total_loss = 14.386656 \n",
" total_bbox = 900335, rewritten_bbox = 0.037986 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3802: 0.170427, 0.209225 avg loss, 0.000026 rate, 1.186187 seconds, 243328 images, 0.108787 hours left\n",
"Loaded: 0.071709 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872165, GIOU: 0.868897), Class: 0.999188, Obj: 0.913541, No Obj: 0.002536, .5R: 1.000000, .75R: 1.000000, count: 44, class_loss = 0.066079, iou_loss = 0.425420, total_loss = 0.491499 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843487, GIOU: 0.839645), Class: 0.993149, Obj: 0.909137, No Obj: 0.002536, .5R: 1.000000, .75R: 0.907407, count: 162, class_loss = 0.318729, iou_loss = 11.483358, total_loss = 11.802088 \n",
" total_bbox = 900541, rewritten_bbox = 0.037977 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3803: 0.192560, 0.207559 avg loss, 0.000026 rate, 1.262467 seconds, 243392 images, 0.108412 hours left\n",
"Loaded: 0.178750 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856419, GIOU: 0.852698), Class: 0.999321, Obj: 0.862769, No Obj: 0.002070, .5R: 1.000000, .75R: 0.894737, count: 38, class_loss = 0.088690, iou_loss = 0.378658, total_loss = 0.467348 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833385, GIOU: 0.828808), Class: 0.993392, Obj: 0.870945, No Obj: 0.002532, .5R: 0.989691, .75R: 0.860825, count: 194, class_loss = 0.390515, iou_loss = 19.086203, total_loss = 19.476717 \n",
" total_bbox = 900773, rewritten_bbox = 0.037967 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3804: 0.239772, 0.210780 avg loss, 0.000026 rate, 1.205145 seconds, 243456 images, 0.108058 hours left\n",
"Loaded: 0.181208 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859805, GIOU: 0.856800), Class: 0.996372, Obj: 0.899683, No Obj: 0.002710, .5R: 1.000000, .75R: 0.961538, count: 52, class_loss = 0.060855, iou_loss = 0.490578, total_loss = 0.551433 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.855076, GIOU: 0.851733), Class: 0.990626, Obj: 0.865254, No Obj: 0.002760, .5R: 0.995327, .75R: 0.920561, count: 214, class_loss = 0.379779, iou_loss = 16.177464, total_loss = 16.557243 \n",
" total_bbox = 901039, rewritten_bbox = 0.037956 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3805: 0.220473, 0.211749 avg loss, 0.000026 rate, 1.205423 seconds, 243520 images, 0.107731 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.867943, GIOU: 0.865706), Class: 0.998583, Obj: 0.900606, No Obj: 0.002459, .5R: 1.000000, .75R: 0.977778, count: 45, class_loss = 0.060905, iou_loss = 0.455396, total_loss = 0.516301 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837184, GIOU: 0.832121), Class: 0.990239, Obj: 0.878090, No Obj: 0.002686, .5R: 0.994624, .75R: 0.865591, count: 186, class_loss = 0.376154, iou_loss = 13.897692, total_loss = 14.273847 \n",
" total_bbox = 901270, rewritten_bbox = 0.037946 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3806: 0.218691, 0.212443 avg loss, 0.000026 rate, 1.277084 seconds, 243584 images, 0.107405 hours left\n",
"Loaded: 0.134454 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829134, GIOU: 0.823106), Class: 0.999556, Obj: 0.925378, No Obj: 0.002565, .5R: 1.000000, .75R: 0.886364, count: 44, class_loss = 0.033966, iou_loss = 0.404919, total_loss = 0.438885 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844191, GIOU: 0.840352), Class: 0.996175, Obj: 0.873219, No Obj: 0.002939, .5R: 1.000000, .75R: 0.907895, count: 228, class_loss = 0.373662, iou_loss = 19.647984, total_loss = 20.021646 \n",
" total_bbox = 901542, rewritten_bbox = 0.037935 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3807: 0.203993, 0.211598 avg loss, 0.000026 rate, 1.201615 seconds, 243648 images, 0.107019 hours left\n",
"Loaded: 0.113608 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.821917, GIOU: 0.815852), Class: 0.995972, Obj: 0.859655, No Obj: 0.001865, .5R: 0.972973, .75R: 0.837838, count: 37, class_loss = 0.066200, iou_loss = 0.326508, total_loss = 0.392708 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835238, GIOU: 0.829992), Class: 0.984449, Obj: 0.848273, No Obj: 0.002832, .5R: 0.982143, .75R: 0.870536, count: 224, class_loss = 0.539679, iou_loss = 20.056519, total_loss = 20.596197 \n",
" total_bbox = 901803, rewritten_bbox = 0.037924 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3808: 0.303127, 0.220751 avg loss, 0.000026 rate, 1.191116 seconds, 243712 images, 0.106665 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842399, GIOU: 0.839528), Class: 0.999703, Obj: 0.928524, No Obj: 0.002449, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.054747, iou_loss = 0.414829, total_loss = 0.469576 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833799, GIOU: 0.825720), Class: 0.990714, Obj: 0.853814, No Obj: 0.002586, .5R: 0.968750, .75R: 0.895833, count: 192, class_loss = 0.427661, iou_loss = 16.184954, total_loss = 16.612616 \n",
" total_bbox = 902036, rewritten_bbox = 0.037914 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3809: 0.241381, 0.222814 avg loss, 0.000026 rate, 1.260545 seconds, 243776 images, 0.106294 hours left\n",
"Loaded: 0.063055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864781, GIOU: 0.859894), Class: 0.995759, Obj: 0.882142, No Obj: 0.001961, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.065184, iou_loss = 0.350428, total_loss = 0.415612 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843391, GIOU: 0.838615), Class: 0.990068, Obj: 0.883891, No Obj: 0.002630, .5R: 0.994652, .75R: 0.893048, count: 187, class_loss = 0.349589, iou_loss = 16.046522, total_loss = 16.396111 \n",
" total_bbox = 902257, rewritten_bbox = 0.037905 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3810: 0.207546, 0.221287 avg loss, 0.000026 rate, 1.239201 seconds, 243840 images, 0.105900 hours left\n",
"Loaded: 0.000070 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873767, GIOU: 0.871123), Class: 0.998673, Obj: 0.960922, No Obj: 0.002188, .5R: 1.000000, .75R: 0.953488, count: 43, class_loss = 0.006189, iou_loss = 0.403537, total_loss = 0.409726 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837801, GIOU: 0.832798), Class: 0.993967, Obj: 0.881183, No Obj: 0.002888, .5R: 0.981982, .75R: 0.887387, count: 222, class_loss = 0.382233, iou_loss = 20.644575, total_loss = 21.026808 \n",
" total_bbox = 902522, rewritten_bbox = 0.037894 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3811: 0.194369, 0.218596 avg loss, 0.000026 rate, 1.330645 seconds, 243904 images, 0.105528 hours left\n",
"Loaded: 0.017441 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.832358, GIOU: 0.828531), Class: 0.983376, Obj: 0.810596, No Obj: 0.001938, .5R: 0.975610, .75R: 0.780488, count: 41, class_loss = 0.132660, iou_loss = 0.390647, total_loss = 0.523308 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845177, GIOU: 0.841512), Class: 0.991809, Obj: 0.897176, No Obj: 0.002548, .5R: 0.994737, .75R: 0.878947, count: 190, class_loss = 0.320027, iou_loss = 15.286389, total_loss = 15.606417 \n",
" total_bbox = 902753, rewritten_bbox = 0.037884 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3812: 0.226520, 0.219388 avg loss, 0.000026 rate, 1.165402 seconds, 243968 images, 0.105172 hours left\n",
"Loaded: 0.101423 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845459, GIOU: 0.841637), Class: 0.996508, Obj: 0.888478, No Obj: 0.002956, .5R: 1.000000, .75R: 0.882353, count: 51, class_loss = 0.047588, iou_loss = 0.362585, total_loss = 0.410173 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845067, GIOU: 0.841577), Class: 0.997781, Obj: 0.877225, No Obj: 0.002159, .5R: 1.000000, .75R: 0.880000, count: 150, class_loss = 0.312665, iou_loss = 12.983851, total_loss = 13.296516 \n",
" total_bbox = 902954, rewritten_bbox = 0.037876 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3813: 0.180295, 0.215479 avg loss, 0.000026 rate, 1.291084 seconds, 244032 images, 0.104738 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863912, GIOU: 0.860980), Class: 0.999467, Obj: 0.937429, No Obj: 0.002483, .5R: 1.000000, .75R: 0.954545, count: 44, class_loss = 0.035836, iou_loss = 0.357388, total_loss = 0.393224 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835929, GIOU: 0.829739), Class: 0.993544, Obj: 0.901041, No Obj: 0.002135, .5R: 0.987097, .75R: 0.883871, count: 155, class_loss = 0.275987, iou_loss = 14.116262, total_loss = 14.392250 \n",
" total_bbox = 903153, rewritten_bbox = 0.037867 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3814: 0.156076, 0.209538 avg loss, 0.000026 rate, 1.259823 seconds, 244096 images, 0.104414 hours left\n",
"Loaded: 0.200207 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864867, GIOU: 0.862385), Class: 0.998962, Obj: 0.898540, No Obj: 0.002209, .5R: 1.000000, .75R: 0.921053, count: 38, class_loss = 0.046004, iou_loss = 0.339419, total_loss = 0.385423 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846809, GIOU: 0.842820), Class: 0.994821, Obj: 0.873480, No Obj: 0.002867, .5R: 0.990909, .75R: 0.890909, count: 220, class_loss = 0.384713, iou_loss = 19.643509, total_loss = 20.028223 \n",
" total_bbox = 903411, rewritten_bbox = 0.037967 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3815: 0.215516, 0.210136 avg loss, 0.000026 rate, 1.138099 seconds, 244160 images, 0.104020 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852062, GIOU: 0.848784), Class: 0.999426, Obj: 0.894627, No Obj: 0.001666, .5R: 1.000000, .75R: 0.862069, count: 29, class_loss = 0.042032, iou_loss = 0.261105, total_loss = 0.303137 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.825761, GIOU: 0.820003), Class: 0.994474, Obj: 0.835567, No Obj: 0.002733, .5R: 0.986547, .75R: 0.834081, count: 223, class_loss = 0.590128, iou_loss = 20.493971, total_loss = 21.084099 \n",
" total_bbox = 903663, rewritten_bbox = 0.037957 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3816: 0.316256, 0.220748 avg loss, 0.000026 rate, 1.367170 seconds, 244224 images, 0.103668 hours left\n",
"Loaded: 0.026900 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833916, GIOU: 0.828318), Class: 0.996349, Obj: 0.778128, No Obj: 0.002681, .5R: 1.000000, .75R: 0.836364, count: 55, class_loss = 0.156095, iou_loss = 0.470048, total_loss = 0.626143 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838856, GIOU: 0.834035), Class: 0.991339, Obj: 0.859231, No Obj: 0.002740, .5R: 0.990610, .75R: 0.887324, count: 213, class_loss = 0.453365, iou_loss = 17.905565, total_loss = 18.358931 \n",
" total_bbox = 903931, rewritten_bbox = 0.037945 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3817: 0.304909, 0.229164 avg loss, 0.000026 rate, 1.348652 seconds, 244288 images, 0.103330 hours left\n",
"Loaded: 0.088467 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857173, GIOU: 0.853402), Class: 0.999546, Obj: 0.911534, No Obj: 0.002321, .5R: 1.000000, .75R: 0.951219, count: 41, class_loss = 0.063277, iou_loss = 0.320037, total_loss = 0.383314 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832579, GIOU: 0.826239), Class: 0.983163, Obj: 0.860344, No Obj: 0.002302, .5R: 0.994253, .75R: 0.856322, count: 174, class_loss = 0.487344, iou_loss = 15.174466, total_loss = 15.661810 \n",
" total_bbox = 904146, rewritten_bbox = 0.037936 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3818: 0.275480, 0.233796 avg loss, 0.000026 rate, 1.163336 seconds, 244352 images, 0.102996 hours left\n",
"Loaded: 0.131619 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860415, GIOU: 0.856274), Class: 0.999419, Obj: 0.957640, No Obj: 0.002907, .5R: 1.000000, .75R: 0.903846, count: 52, class_loss = 0.027844, iou_loss = 0.534440, total_loss = 0.562284 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851712, GIOU: 0.848344), Class: 0.992762, Obj: 0.889922, No Obj: 0.002998, .5R: 0.995454, .75R: 0.927273, count: 220, class_loss = 0.445920, iou_loss = 20.447212, total_loss = 20.893131 \n",
" total_bbox = 904418, rewritten_bbox = 0.037925 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3819: 0.237039, 0.234120 avg loss, 0.000026 rate, 1.261385 seconds, 244416 images, 0.102599 hours left\n",
"Loaded: 0.045049 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852640, GIOU: 0.842774), Class: 0.991556, Obj: 0.850771, No Obj: 0.001854, .5R: 0.972222, .75R: 0.888889, count: 36, class_loss = 0.089083, iou_loss = 0.263457, total_loss = 0.352540 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836476, GIOU: 0.832883), Class: 0.997447, Obj: 0.866348, No Obj: 0.002347, .5R: 0.994475, .75R: 0.895028, count: 181, class_loss = 0.470850, iou_loss = 17.303143, total_loss = 17.773993 \n",
" total_bbox = 904635, rewritten_bbox = 0.037916 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3820: 0.280137, 0.238722 avg loss, 0.000026 rate, 1.208930 seconds, 244480 images, 0.102273 hours left\n",
"Loaded: 0.171178 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863621, GIOU: 0.860215), Class: 0.998292, Obj: 0.900490, No Obj: 0.003089, .5R: 1.000000, .75R: 0.913793, count: 58, class_loss = 0.079134, iou_loss = 0.614789, total_loss = 0.693924 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836648, GIOU: 0.833099), Class: 0.987200, Obj: 0.845372, No Obj: 0.003019, .5R: 1.000000, .75R: 0.849057, count: 212, class_loss = 0.496835, iou_loss = 15.284179, total_loss = 15.781014 \n",
" total_bbox = 904905, rewritten_bbox = 0.037905 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3821: 0.288149, 0.243665 avg loss, 0.000026 rate, 1.211404 seconds, 244544 images, 0.101878 hours left\n",
"Loaded: 0.000055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866790, GIOU: 0.864210), Class: 0.997447, Obj: 0.885275, No Obj: 0.001804, .5R: 1.000000, .75R: 0.967742, count: 31, class_loss = 0.052396, iou_loss = 0.305849, total_loss = 0.358245 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840503, GIOU: 0.836045), Class: 0.998366, Obj: 0.886746, No Obj: 0.002477, .5R: 1.000000, .75R: 0.857923, count: 183, class_loss = 0.268859, iou_loss = 13.735606, total_loss = 14.004465 \n",
" total_bbox = 905119, rewritten_bbox = 0.037896 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3822: 0.160787, 0.235377 avg loss, 0.000026 rate, 1.350485 seconds, 244608 images, 0.101546 hours left\n",
"Loaded: 0.142160 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843631, GIOU: 0.838171), Class: 0.987142, Obj: 0.873725, No Obj: 0.002394, .5R: 0.977778, .75R: 0.866667, count: 45, class_loss = 0.107618, iou_loss = 0.418804, total_loss = 0.526422 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827141, GIOU: 0.821673), Class: 0.986993, Obj: 0.852262, No Obj: 0.002680, .5R: 0.986301, .75R: 0.831050, count: 219, class_loss = 0.549838, iou_loss = 20.563160, total_loss = 21.112997 \n",
" total_bbox = 905383, rewritten_bbox = 0.037885 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3823: 0.328908, 0.244730 avg loss, 0.000026 rate, 1.122952 seconds, 244672 images, 0.101199 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866175, GIOU: 0.864756), Class: 0.999152, Obj: 0.937849, No Obj: 0.001908, .5R: 1.000000, .75R: 1.000000, count: 35, class_loss = 0.029483, iou_loss = 0.280791, total_loss = 0.310274 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832272, GIOU: 0.827770), Class: 0.992536, Obj: 0.869147, No Obj: 0.002880, .5R: 1.000000, .75R: 0.861472, count: 231, class_loss = 0.501436, iou_loss = 21.129438, total_loss = 21.630875 \n",
" total_bbox = 905649, rewritten_bbox = 0.037873 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3824: 0.265624, 0.246819 avg loss, 0.000026 rate, 1.277675 seconds, 244736 images, 0.100809 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868836, GIOU: 0.864101), Class: 0.999062, Obj: 0.940890, No Obj: 0.002106, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.039688, iou_loss = 0.482830, total_loss = 0.522518 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841405, GIOU: 0.837046), Class: 0.992258, Obj: 0.869928, No Obj: 0.002512, .5R: 0.989950, .75R: 0.879397, count: 199, class_loss = 0.431271, iou_loss = 17.235149, total_loss = 17.666420 \n",
" total_bbox = 905889, rewritten_bbox = 0.037863 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3825: 0.235638, 0.245701 avg loss, 0.000026 rate, 1.241994 seconds, 244800 images, 0.100425 hours left\n",
"Loaded: 0.091242 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.871217, GIOU: 0.869498), Class: 0.997521, Obj: 0.920540, No Obj: 0.002091, .5R: 1.000000, .75R: 0.972222, count: 36, class_loss = 0.018706, iou_loss = 0.375596, total_loss = 0.394302 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841037, GIOU: 0.836025), Class: 0.997733, Obj: 0.931718, No Obj: 0.002609, .5R: 0.990244, .75R: 0.882927, count: 205, class_loss = 0.177015, iou_loss = 19.810286, total_loss = 19.987301 \n",
" total_bbox = 906130, rewritten_bbox = 0.038074 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3826: 0.098018, 0.230933 avg loss, 0.000026 rate, 1.197692 seconds, 244864 images, 0.100025 hours left\n",
"Loaded: 0.019073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843707, GIOU: 0.840077), Class: 0.999354, Obj: 0.869899, No Obj: 0.001885, .5R: 0.971429, .75R: 0.857143, count: 35, class_loss = 0.043881, iou_loss = 0.337469, total_loss = 0.381350 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835056, GIOU: 0.830672), Class: 0.996201, Obj: 0.864518, No Obj: 0.002580, .5R: 1.000000, .75R: 0.854271, count: 199, class_loss = 0.375685, iou_loss = 16.255669, total_loss = 16.631353 \n",
" total_bbox = 906364, rewritten_bbox = 0.038064 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3827: 0.209959, 0.228835 avg loss, 0.000026 rate, 1.381565 seconds, 244928 images, 0.099648 hours left\n",
"Loaded: 0.043386 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.835264, GIOU: 0.829740), Class: 0.998848, Obj: 0.851018, No Obj: 0.001929, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.070451, iou_loss = 0.290339, total_loss = 0.360790 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827877, GIOU: 0.822604), Class: 0.991566, Obj: 0.813949, No Obj: 0.002658, .5R: 0.990000, .75R: 0.810000, count: 200, class_loss = 0.582118, iou_loss = 15.959111, total_loss = 16.541229 \n",
" total_bbox = 906598, rewritten_bbox = 0.038054 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3828: 0.326469, 0.238599 avg loss, 0.000026 rate, 1.245447 seconds, 244992 images, 0.099324 hours left\n",
"Loaded: 0.000058 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828627, GIOU: 0.822269), Class: 0.986515, Obj: 0.886989, No Obj: 0.001820, .5R: 1.000000, .75R: 0.774194, count: 31, class_loss = 0.071183, iou_loss = 0.244473, total_loss = 0.315656 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840606, GIOU: 0.836581), Class: 0.992010, Obj: 0.883058, No Obj: 0.002469, .5R: 0.983784, .75R: 0.918919, count: 185, class_loss = 0.362207, iou_loss = 15.901149, total_loss = 16.263355 \n",
" total_bbox = 906814, rewritten_bbox = 0.038045 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3829: 0.216876, 0.236426 avg loss, 0.000026 rate, 1.172935 seconds, 245056 images, 0.098947 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841640, GIOU: 0.838746), Class: 0.997366, Obj: 0.853870, No Obj: 0.001981, .5R: 1.000000, .75R: 0.857143, count: 35, class_loss = 0.091006, iou_loss = 0.307967, total_loss = 0.398973 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838695, GIOU: 0.834442), Class: 0.996917, Obj: 0.895467, No Obj: 0.002694, .5R: 0.980769, .75R: 0.899038, count: 208, class_loss = 0.251441, iou_loss = 19.274202, total_loss = 19.525644 \n",
" total_bbox = 907057, rewritten_bbox = 0.038035 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3830: 0.171399, 0.229924 avg loss, 0.000026 rate, 1.239059 seconds, 245120 images, 0.098514 hours left\n",
"Loaded: 0.000075 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853018, GIOU: 0.848899), Class: 0.976388, Obj: 0.884712, No Obj: 0.002196, .5R: 1.000000, .75R: 0.954545, count: 44, class_loss = 0.088262, iou_loss = 0.406355, total_loss = 0.494617 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834806, GIOU: 0.829406), Class: 0.989924, Obj: 0.858927, No Obj: 0.002539, .5R: 0.989744, .75R: 0.851282, count: 195, class_loss = 0.437724, iou_loss = 15.742011, total_loss = 16.179735 \n",
" total_bbox = 907296, rewritten_bbox = 0.038135 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3831: 0.263164, 0.233248 avg loss, 0.000026 rate, 1.181350 seconds, 245184 images, 0.098114 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842475, GIOU: 0.839308), Class: 0.999598, Obj: 0.896423, No Obj: 0.002066, .5R: 0.974359, .75R: 0.897436, count: 39, class_loss = 0.064705, iou_loss = 0.335061, total_loss = 0.399766 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851763, GIOU: 0.847959), Class: 0.996746, Obj: 0.917196, No Obj: 0.002782, .5R: 1.000000, .75R: 0.870466, count: 193, class_loss = 0.195332, iou_loss = 16.213358, total_loss = 16.408689 \n",
" total_bbox = 907528, rewritten_bbox = 0.038126 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3832: 0.130186, 0.222941 avg loss, 0.000026 rate, 1.224165 seconds, 245248 images, 0.097688 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870006, GIOU: 0.868144), Class: 0.999480, Obj: 0.956934, No Obj: 0.002307, .5R: 1.000000, .75R: 1.000000, count: 46, class_loss = 0.008893, iou_loss = 0.431047, total_loss = 0.439939 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841749, GIOU: 0.837397), Class: 0.993152, Obj: 0.878453, No Obj: 0.002620, .5R: 0.994975, .75R: 0.894472, count: 199, class_loss = 0.381847, iou_loss = 16.030979, total_loss = 16.412827 \n",
" total_bbox = 907773, rewritten_bbox = 0.038115 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3833: 0.195527, 0.220200 avg loss, 0.000026 rate, 1.285978 seconds, 245312 images, 0.097282 hours left\n",
"Loaded: 0.009531 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865528, GIOU: 0.863084), Class: 0.999455, Obj: 0.950315, No Obj: 0.002656, .5R: 1.000000, .75R: 0.936170, count: 47, class_loss = 0.028738, iou_loss = 0.525510, total_loss = 0.554248 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838850, GIOU: 0.833925), Class: 0.993752, Obj: 0.866704, No Obj: 0.003180, .5R: 0.991189, .75R: 0.867841, count: 227, class_loss = 0.418540, iou_loss = 16.327974, total_loss = 16.746513 \n",
" total_bbox = 908047, rewritten_bbox = 0.038104 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3834: 0.223801, 0.220560 avg loss, 0.000026 rate, 1.161639 seconds, 245376 images, 0.096906 hours left\n",
"Loaded: 0.000069 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841056, GIOU: 0.838128), Class: 0.992894, Obj: 0.807193, No Obj: 0.001996, .5R: 1.000000, .75R: 0.860465, count: 43, class_loss = 0.104719, iou_loss = 0.457725, total_loss = 0.562444 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835960, GIOU: 0.828156), Class: 0.989475, Obj: 0.866677, No Obj: 0.002733, .5R: 0.979798, .75R: 0.873737, count: 198, class_loss = 0.503616, iou_loss = 16.580610, total_loss = 17.084227 \n",
" total_bbox = 908288, rewritten_bbox = 0.038094 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3835: 0.304344, 0.228939 avg loss, 0.000026 rate, 1.204046 seconds, 245440 images, 0.096477 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857291, GIOU: 0.854654), Class: 0.998014, Obj: 0.843751, No Obj: 0.002297, .5R: 1.000000, .75R: 0.911111, count: 45, class_loss = 0.105827, iou_loss = 0.409476, total_loss = 0.515303 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846228, GIOU: 0.842354), Class: 0.989491, Obj: 0.876509, No Obj: 0.002374, .5R: 0.988372, .75R: 0.912791, count: 172, class_loss = 0.360714, iou_loss = 14.030373, total_loss = 14.391087 \n",
" total_bbox = 908505, rewritten_bbox = 0.038085 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3836: 0.233433, 0.229388 avg loss, 0.000026 rate, 1.338103 seconds, 245504 images, 0.096064 hours left\n",
"Loaded: 0.121230 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.860289, GIOU: 0.856863), Class: 0.999648, Obj: 0.953669, No Obj: 0.001530, .5R: 1.000000, .75R: 0.960000, count: 25, class_loss = 0.049109, iou_loss = 0.271574, total_loss = 0.320683 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833182, GIOU: 0.828475), Class: 0.990218, Obj: 0.871789, No Obj: 0.002760, .5R: 0.990783, .75R: 0.875576, count: 217, class_loss = 0.453784, iou_loss = 20.602068, total_loss = 21.055851 \n",
" total_bbox = 908747, rewritten_bbox = 0.038074 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3837: 0.251614, 0.231611 avg loss, 0.000026 rate, 1.260017 seconds, 245568 images, 0.095713 hours left\n",
"Loaded: 0.025441 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.876504, GIOU: 0.874272), Class: 0.999182, Obj: 0.918595, No Obj: 0.002276, .5R: 1.000000, .75R: 0.972973, count: 37, class_loss = 0.034362, iou_loss = 0.329830, total_loss = 0.364192 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838031, GIOU: 0.833652), Class: 0.993585, Obj: 0.854384, No Obj: 0.002317, .5R: 0.988372, .75R: 0.883721, count: 172, class_loss = 0.402852, iou_loss = 14.198994, total_loss = 14.601846 \n",
" total_bbox = 908956, rewritten_bbox = 0.038066 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3838: 0.218763, 0.230326 avg loss, 0.000026 rate, 1.180367 seconds, 245632 images, 0.095383 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.832744, GIOU: 0.828276), Class: 0.996314, Obj: 0.832213, No Obj: 0.002094, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.136634, iou_loss = 0.371426, total_loss = 0.508060 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820623, GIOU: 0.812755), Class: 0.986291, Obj: 0.817568, No Obj: 0.002825, .5R: 0.982456, .75R: 0.842105, count: 228, class_loss = 0.709816, iou_loss = 17.379055, total_loss = 18.088871 \n",
" total_bbox = 909224, rewritten_bbox = 0.038054 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3839: 0.423414, 0.249635 avg loss, 0.000026 rate, 1.253409 seconds, 245696 images, 0.094971 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855638, GIOU: 0.851609), Class: 0.999131, Obj: 0.913348, No Obj: 0.002368, .5R: 1.000000, .75R: 0.897436, count: 39, class_loss = 0.046968, iou_loss = 0.385051, total_loss = 0.432019 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844764, GIOU: 0.840031), Class: 0.994702, Obj: 0.899643, No Obj: 0.002445, .5R: 0.994475, .75R: 0.872928, count: 181, class_loss = 0.321373, iou_loss = 14.012367, total_loss = 14.333740 \n",
" total_bbox = 909444, rewritten_bbox = 0.038045 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3840: 0.184334, 0.243105 avg loss, 0.000026 rate, 1.263499 seconds, 245760 images, 0.094582 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846690, GIOU: 0.843324), Class: 0.996370, Obj: 0.822399, No Obj: 0.001915, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.101616, iou_loss = 0.331230, total_loss = 0.432847 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827226, GIOU: 0.820457), Class: 0.993590, Obj: 0.858645, No Obj: 0.002185, .5R: 0.969697, .75R: 0.854545, count: 165, class_loss = 0.344653, iou_loss = 14.117394, total_loss = 14.462048 \n",
" total_bbox = 909645, rewritten_bbox = 0.038037 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3841: 0.223313, 0.241125 avg loss, 0.000026 rate, 1.203389 seconds, 245824 images, 0.094198 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870134, GIOU: 0.867932), Class: 0.986167, Obj: 0.897774, No Obj: 0.002126, .5R: 1.000000, .75R: 0.976191, count: 42, class_loss = 0.078598, iou_loss = 0.449930, total_loss = 0.528528 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833614, GIOU: 0.828341), Class: 0.976518, Obj: 0.868974, No Obj: 0.002422, .5R: 0.972973, .75R: 0.864865, count: 185, class_loss = 0.483914, iou_loss = 15.608068, total_loss = 16.091982 \n",
" total_bbox = 909872, rewritten_bbox = 0.038137 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3842: 0.281418, 0.245155 avg loss, 0.000026 rate, 1.235042 seconds, 245888 images, 0.093788 hours left\n",
"Loaded: 0.007800 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858531, GIOU: 0.856401), Class: 0.994979, Obj: 0.921209, No Obj: 0.001856, .5R: 1.000000, .75R: 0.971429, count: 35, class_loss = 0.042406, iou_loss = 0.283356, total_loss = 0.325763 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852278, GIOU: 0.848449), Class: 0.993805, Obj: 0.922342, No Obj: 0.002474, .5R: 0.994652, .75R: 0.914439, count: 187, class_loss = 0.289080, iou_loss = 16.871166, total_loss = 17.160246 \n",
" total_bbox = 910094, rewritten_bbox = 0.038128 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3843: 0.165901, 0.237229 avg loss, 0.000026 rate, 1.243966 seconds, 245952 images, 0.093392 hours left\n",
"Loaded: 0.054266 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.884858, GIOU: 0.882724), Class: 0.999690, Obj: 0.958600, No Obj: 0.001631, .5R: 1.000000, .75R: 0.939394, count: 33, class_loss = 0.024151, iou_loss = 0.349493, total_loss = 0.373645 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844211, GIOU: 0.840320), Class: 0.995551, Obj: 0.908307, No Obj: 0.002326, .5R: 0.994253, .75R: 0.908046, count: 174, class_loss = 0.268385, iou_loss = 14.710144, total_loss = 14.978529 \n",
" total_bbox = 910301, rewritten_bbox = 0.038119 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3844: 0.146416, 0.228148 avg loss, 0.000026 rate, 1.253114 seconds, 246016 images, 0.093004 hours left\n",
"Loaded: 0.018012 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873812, GIOU: 0.870469), Class: 0.999619, Obj: 0.928665, No Obj: 0.002759, .5R: 1.000000, .75R: 0.940000, count: 50, class_loss = 0.036632, iou_loss = 0.496307, total_loss = 0.532939 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829792, GIOU: 0.824346), Class: 0.986818, Obj: 0.862950, No Obj: 0.002824, .5R: 0.977778, .75R: 0.817778, count: 225, class_loss = 0.430538, iou_loss = 20.473057, total_loss = 20.903595 \n",
" total_bbox = 910576, rewritten_bbox = 0.038218 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3845: 0.233747, 0.228708 avg loss, 0.000026 rate, 1.172154 seconds, 246080 images, 0.092640 hours left\n",
"Loaded: 0.000062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845316, GIOU: 0.842346), Class: 0.993089, Obj: 0.811260, No Obj: 0.002389, .5R: 0.975610, .75R: 0.878049, count: 41, class_loss = 0.114151, iou_loss = 0.366638, total_loss = 0.480789 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.819541, GIOU: 0.813511), Class: 0.998043, Obj: 0.838861, No Obj: 0.002311, .5R: 0.983957, .75R: 0.802139, count: 187, class_loss = 0.400165, iou_loss = 16.491587, total_loss = 16.891752 \n",
" total_bbox = 910804, rewritten_bbox = 0.038208 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3846: 0.257341, 0.231571 avg loss, 0.000026 rate, 1.236898 seconds, 246144 images, 0.092226 hours left\n",
"Loaded: 0.000055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852512, GIOU: 0.847911), Class: 0.999407, Obj: 0.880103, No Obj: 0.001957, .5R: 1.000000, .75R: 0.852941, count: 34, class_loss = 0.057920, iou_loss = 0.301746, total_loss = 0.359666 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839594, GIOU: 0.835342), Class: 0.998979, Obj: 0.896895, No Obj: 0.002474, .5R: 1.000000, .75R: 0.870968, count: 186, class_loss = 0.304887, iou_loss = 15.268595, total_loss = 15.573482 \n",
" total_bbox = 911024, rewritten_bbox = 0.038199 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3847: 0.181572, 0.226571 avg loss, 0.000026 rate, 1.153748 seconds, 246208 images, 0.091833 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836409, GIOU: 0.831702), Class: 0.997808, Obj: 0.846972, No Obj: 0.002847, .5R: 1.000000, .75R: 0.879310, count: 58, class_loss = 0.123787, iou_loss = 0.449564, total_loss = 0.573351 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841597, GIOU: 0.835659), Class: 0.995229, Obj: 0.846453, No Obj: 0.001764, .5R: 0.970803, .75R: 0.897810, count: 137, class_loss = 0.316655, iou_loss = 10.609360, total_loss = 10.926014 \n",
" total_bbox = 911219, rewritten_bbox = 0.038191 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3848: 0.220397, 0.225954 avg loss, 0.000026 rate, 1.212076 seconds, 246272 images, 0.091405 hours left\n",
"Loaded: 0.172974 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862035, GIOU: 0.857535), Class: 0.998451, Obj: 0.878815, No Obj: 0.003145, .5R: 1.000000, .75R: 0.948276, count: 58, class_loss = 0.095297, iou_loss = 0.577118, total_loss = 0.672415 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844373, GIOU: 0.839674), Class: 0.993221, Obj: 0.891158, No Obj: 0.002544, .5R: 0.989071, .75R: 0.874317, count: 183, class_loss = 0.332532, iou_loss = 13.462518, total_loss = 13.795050 \n",
" total_bbox = 911460, rewritten_bbox = 0.038181 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3849: 0.214075, 0.224766 avg loss, 0.000026 rate, 1.162502 seconds, 246336 images, 0.091003 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857687, GIOU: 0.855168), Class: 0.999515, Obj: 0.912924, No Obj: 0.001599, .5R: 1.000000, .75R: 0.875000, count: 24, class_loss = 0.037713, iou_loss = 0.216186, total_loss = 0.253898 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837906, GIOU: 0.834098), Class: 0.988599, Obj: 0.874152, No Obj: 0.002676, .5R: 0.990148, .75R: 0.886699, count: 203, class_loss = 0.404902, iou_loss = 18.035072, total_loss = 18.439974 \n",
" total_bbox = 911687, rewritten_bbox = 0.038171 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3850: 0.221474, 0.224437 avg loss, 0.000026 rate, 1.253874 seconds, 246400 images, 0.090653 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842726, GIOU: 0.836997), Class: 0.996791, Obj: 0.843818, No Obj: 0.002130, .5R: 1.000000, .75R: 0.846154, count: 39, class_loss = 0.095457, iou_loss = 0.303727, total_loss = 0.399184 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828004, GIOU: 0.822500), Class: 0.992135, Obj: 0.883244, No Obj: 0.002619, .5R: 0.985000, .75R: 0.830000, count: 200, class_loss = 0.427441, iou_loss = 17.665377, total_loss = 18.092817 \n",
" total_bbox = 911926, rewritten_bbox = 0.038161 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3851: 0.261629, 0.228156 avg loss, 0.000026 rate, 1.284777 seconds, 246464 images, 0.090269 hours left\n",
"Loaded: 0.211345 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.822612, GIOU: 0.809541), Class: 0.989152, Obj: 0.829423, No Obj: 0.002094, .5R: 0.975610, .75R: 0.829268, count: 41, class_loss = 0.094010, iou_loss = 0.352265, total_loss = 0.446276 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831745, GIOU: 0.825667), Class: 0.991963, Obj: 0.831454, No Obj: 0.002622, .5R: 0.985222, .75R: 0.837438, count: 203, class_loss = 0.587648, iou_loss = 18.256107, total_loss = 18.843756 \n",
" total_bbox = 912170, rewritten_bbox = 0.038151 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3852: 0.341018, 0.239442 avg loss, 0.000026 rate, 1.255389 seconds, 246528 images, 0.089898 hours left\n",
"Loaded: 0.050244 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.820078, GIOU: 0.811948), Class: 0.995658, Obj: 0.826051, No Obj: 0.002107, .5R: 0.972222, .75R: 0.805556, count: 36, class_loss = 0.091259, iou_loss = 0.343152, total_loss = 0.434411 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840723, GIOU: 0.836179), Class: 0.992846, Obj: 0.865411, No Obj: 0.002790, .5R: 0.995475, .75R: 0.900453, count: 221, class_loss = 0.466452, iou_loss = 18.866129, total_loss = 19.332581 \n",
" total_bbox = 912427, rewritten_bbox = 0.038140 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3853: 0.279041, 0.243402 avg loss, 0.000026 rate, 1.143951 seconds, 246592 images, 0.089602 hours left\n",
"Loaded: 0.003065 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843783, GIOU: 0.838950), Class: 0.992542, Obj: 0.856366, No Obj: 0.001738, .5R: 1.000000, .75R: 0.823529, count: 34, class_loss = 0.071889, iou_loss = 0.322706, total_loss = 0.394596 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845138, GIOU: 0.841616), Class: 0.995081, Obj: 0.874482, No Obj: 0.002131, .5R: 0.993421, .75R: 0.875000, count: 152, class_loss = 0.308225, iou_loss = 11.122503, total_loss = 11.430728 \n",
" total_bbox = 912613, rewritten_bbox = 0.038132 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3854: 0.190227, 0.238085 avg loss, 0.000026 rate, 1.213606 seconds, 246656 images, 0.089194 hours left\n",
"Loaded: 0.039989 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853508, GIOU: 0.848501), Class: 0.999305, Obj: 0.928430, No Obj: 0.002632, .5R: 0.979167, .75R: 0.895833, count: 48, class_loss = 0.030006, iou_loss = 0.452799, total_loss = 0.482805 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.856674, GIOU: 0.853526), Class: 0.993354, Obj: 0.911433, No Obj: 0.002432, .5R: 1.000000, .75R: 0.919255, count: 161, class_loss = 0.206169, iou_loss = 12.758337, total_loss = 12.964506 \n",
" total_bbox = 912822, rewritten_bbox = 0.038124 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3855: 0.118246, 0.226101 avg loss, 0.000026 rate, 1.248216 seconds, 246720 images, 0.088795 hours left\n",
"Loaded: 0.068431 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855467, GIOU: 0.851140), Class: 0.982021, Obj: 0.893324, No Obj: 0.002029, .5R: 0.975610, .75R: 0.926829, count: 41, class_loss = 0.078767, iou_loss = 0.499732, total_loss = 0.578500 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843196, GIOU: 0.837550), Class: 0.992627, Obj: 0.881766, No Obj: 0.002766, .5R: 0.990338, .75R: 0.922705, count: 207, class_loss = 0.379644, iou_loss = 19.113258, total_loss = 19.492903 \n",
" total_bbox = 913070, rewritten_bbox = 0.038113 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3856: 0.229370, 0.226428 avg loss, 0.000026 rate, 1.177233 seconds, 246784 images, 0.088426 hours left\n",
"Loaded: 0.000062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844532, GIOU: 0.841133), Class: 0.996315, Obj: 0.846954, No Obj: 0.003274, .5R: 0.985075, .75R: 0.850746, count: 67, class_loss = 0.146975, iou_loss = 0.698062, total_loss = 0.845036 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836119, GIOU: 0.830613), Class: 0.995371, Obj: 0.853285, No Obj: 0.002000, .5R: 0.985714, .75R: 0.828571, count: 140, class_loss = 0.407546, iou_loss = 9.925076, total_loss = 10.332623 \n",
" total_bbox = 913277, rewritten_bbox = 0.038105 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3857: 0.277435, 0.231528 avg loss, 0.000026 rate, 1.243379 seconds, 246848 images, 0.088040 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857761, GIOU: 0.853769), Class: 0.997625, Obj: 0.813272, No Obj: 0.002040, .5R: 1.000000, .75R: 0.923077, count: 39, class_loss = 0.084920, iou_loss = 0.365467, total_loss = 0.450387 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841670, GIOU: 0.835796), Class: 0.990354, Obj: 0.875176, No Obj: 0.002684, .5R: 0.990476, .75R: 0.885714, count: 210, class_loss = 0.387682, iou_loss = 18.752848, total_loss = 19.140530 \n",
" total_bbox = 913526, rewritten_bbox = 0.038094 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3858: 0.236466, 0.232022 avg loss, 0.000026 rate, 1.211145 seconds, 246912 images, 0.087654 hours left\n",
"Loaded: 0.105214 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861583, GIOU: 0.858365), Class: 0.997266, Obj: 0.945909, No Obj: 0.002323, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.044725, iou_loss = 0.412122, total_loss = 0.456847 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852727, GIOU: 0.849418), Class: 0.996559, Obj: 0.885858, No Obj: 0.002503, .5R: 1.000000, .75R: 0.922280, count: 193, class_loss = 0.356836, iou_loss = 16.336124, total_loss = 16.692961 \n",
" total_bbox = 913762, rewritten_bbox = 0.038084 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3859: 0.200937, 0.228914 avg loss, 0.000026 rate, 1.122371 seconds, 246976 images, 0.087255 hours left\n",
"Loaded: 0.000080 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.818185, GIOU: 0.812519), Class: 0.998817, Obj: 0.871943, No Obj: 0.002016, .5R: 1.000000, .75R: 0.783784, count: 37, class_loss = 0.073493, iou_loss = 0.330579, total_loss = 0.404072 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833099, GIOU: 0.827276), Class: 0.988809, Obj: 0.881798, No Obj: 0.002599, .5R: 0.984375, .75R: 0.838542, count: 192, class_loss = 0.410636, iou_loss = 15.413690, total_loss = 15.824326 \n",
" total_bbox = 913991, rewritten_bbox = 0.038075 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3860: 0.242255, 0.230248 avg loss, 0.000026 rate, 1.347066 seconds, 247040 images, 0.086863 hours left\n",
"Loaded: 0.079389 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847445, GIOU: 0.843705), Class: 0.979264, Obj: 0.868397, No Obj: 0.001676, .5R: 1.000000, .75R: 0.866667, count: 30, class_loss = 0.073987, iou_loss = 0.273916, total_loss = 0.347903 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833239, GIOU: 0.827361), Class: 0.993318, Obj: 0.870882, No Obj: 0.002501, .5R: 0.980488, .75R: 0.892683, count: 205, class_loss = 0.358115, iou_loss = 18.020727, total_loss = 18.378841 \n",
" total_bbox = 914226, rewritten_bbox = 0.038065 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3861: 0.216226, 0.228846 avg loss, 0.000026 rate, 1.143393 seconds, 247104 images, 0.086519 hours left\n",
"Loaded: 0.025010 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841179, GIOU: 0.838348), Class: 0.999578, Obj: 0.899299, No Obj: 0.002225, .5R: 0.975610, .75R: 0.878049, count: 41, class_loss = 0.067942, iou_loss = 0.306487, total_loss = 0.374430 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848781, GIOU: 0.844792), Class: 0.998719, Obj: 0.896807, No Obj: 0.002214, .5R: 1.000000, .75R: 0.928571, count: 168, class_loss = 0.276889, iou_loss = 15.588933, total_loss = 15.865822 \n",
" total_bbox = 914435, rewritten_bbox = 0.038056 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3862: 0.172585, 0.223220 avg loss, 0.000026 rate, 1.158051 seconds, 247168 images, 0.086125 hours left\n",
"Loaded: 0.124356 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859869, GIOU: 0.856045), Class: 0.998176, Obj: 0.869913, No Obj: 0.002317, .5R: 1.000000, .75R: 0.955556, count: 45, class_loss = 0.081789, iou_loss = 0.433716, total_loss = 0.515505 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847672, GIOU: 0.843754), Class: 0.997416, Obj: 0.890927, No Obj: 0.002317, .5R: 0.994186, .75R: 0.901163, count: 172, class_loss = 0.256906, iou_loss = 16.111847, total_loss = 16.368753 \n",
" total_bbox = 914652, rewritten_bbox = 0.038047 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3863: 0.169507, 0.217848 avg loss, 0.000026 rate, 1.258930 seconds, 247232 images, 0.085718 hours left\n",
"Loaded: 0.316471 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847919, GIOU: 0.844471), Class: 0.999293, Obj: 0.920554, No Obj: 0.002347, .5R: 1.000000, .75R: 0.953488, count: 43, class_loss = 0.047067, iou_loss = 0.354915, total_loss = 0.401982 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833174, GIOU: 0.829093), Class: 0.994903, Obj: 0.871781, No Obj: 0.002417, .5R: 0.994595, .75R: 0.870270, count: 185, class_loss = 0.439384, iou_loss = 16.619635, total_loss = 17.059019 \n",
" total_bbox = 914880, rewritten_bbox = 0.038038 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3864: 0.243400, 0.220403 avg loss, 0.000026 rate, 1.168805 seconds, 247296 images, 0.085387 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865249, GIOU: 0.860508), Class: 0.998011, Obj: 0.905337, No Obj: 0.002214, .5R: 1.000000, .75R: 0.971429, count: 35, class_loss = 0.065321, iou_loss = 0.428326, total_loss = 0.493647 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833360, GIOU: 0.827501), Class: 0.990921, Obj: 0.865806, No Obj: 0.003070, .5R: 0.978723, .75R: 0.859574, count: 235, class_loss = 0.429859, iou_loss = 20.210985, total_loss = 20.640844 \n",
" total_bbox = 915150, rewritten_bbox = 0.038027 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3865: 0.247755, 0.223139 avg loss, 0.000026 rate, 1.200735 seconds, 247360 images, 0.085094 hours left\n",
"Loaded: 0.000071 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862444, GIOU: 0.860104), Class: 0.999678, Obj: 0.898836, No Obj: 0.001636, .5R: 1.000000, .75R: 0.962963, count: 27, class_loss = 0.050687, iou_loss = 0.191364, total_loss = 0.242051 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843083, GIOU: 0.839694), Class: 0.998380, Obj: 0.897070, No Obj: 0.002433, .5R: 1.000000, .75R: 0.941799, count: 189, class_loss = 0.230028, iou_loss = 19.570242, total_loss = 19.800270 \n",
" total_bbox = 915366, rewritten_bbox = 0.038018 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3866: 0.140518, 0.214877 avg loss, 0.000026 rate, 1.181553 seconds, 247424 images, 0.084694 hours left\n",
"Loaded: 0.101847 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863652, GIOU: 0.861380), Class: 0.999201, Obj: 0.942119, No Obj: 0.002634, .5R: 1.000000, .75R: 0.953488, count: 43, class_loss = 0.059111, iou_loss = 0.366718, total_loss = 0.425829 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834617, GIOU: 0.829617), Class: 0.995146, Obj: 0.871953, No Obj: 0.002654, .5R: 0.984615, .75R: 0.882051, count: 195, class_loss = 0.362443, iou_loss = 16.186850, total_loss = 16.549294 \n",
" total_bbox = 915604, rewritten_bbox = 0.038008 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3867: 0.210942, 0.214483 avg loss, 0.000026 rate, 1.273143 seconds, 247488 images, 0.084286 hours left\n",
"Loaded: 0.007577 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855426, GIOU: 0.851341), Class: 0.999581, Obj: 0.816001, No Obj: 0.001550, .5R: 1.000000, .75R: 0.958333, count: 24, class_loss = 0.060565, iou_loss = 0.215396, total_loss = 0.275961 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833797, GIOU: 0.829445), Class: 0.992559, Obj: 0.886734, No Obj: 0.002844, .5R: 0.986175, .75R: 0.870968, count: 217, class_loss = 0.381024, iou_loss = 20.696066, total_loss = 21.077089 \n",
" total_bbox = 915845, rewritten_bbox = 0.037998 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3868: 0.220964, 0.215131 avg loss, 0.000026 rate, 1.331166 seconds, 247552 images, 0.083952 hours left\n",
"Loaded: 0.046490 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865203, GIOU: 0.862905), Class: 0.997221, Obj: 0.848866, No Obj: 0.002209, .5R: 0.972222, .75R: 0.972222, count: 36, class_loss = 0.094550, iou_loss = 0.307774, total_loss = 0.402324 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831682, GIOU: 0.826677), Class: 0.994707, Obj: 0.845462, No Obj: 0.002547, .5R: 0.994737, .75R: 0.863158, count: 190, class_loss = 0.480513, iou_loss = 16.846027, total_loss = 17.326540 \n",
" total_bbox = 916071, rewritten_bbox = 0.037988 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3869: 0.287698, 0.222388 avg loss, 0.000026 rate, 1.236319 seconds, 247616 images, 0.083603 hours left\n",
"Loaded: 0.000062 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856418, GIOU: 0.851718), Class: 0.999058, Obj: 0.820862, No Obj: 0.001959, .5R: 1.000000, .75R: 0.914286, count: 35, class_loss = 0.090203, iou_loss = 0.296737, total_loss = 0.386941 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838998, GIOU: 0.834028), Class: 0.991822, Obj: 0.837169, No Obj: 0.003176, .5R: 0.979253, .75R: 0.900415, count: 241, class_loss = 0.501878, iou_loss = 20.605955, total_loss = 21.107832 \n",
" total_bbox = 916347, rewritten_bbox = 0.037977 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3870: 0.296207, 0.229770 avg loss, 0.000026 rate, 1.252367 seconds, 247680 images, 0.083234 hours left\n",
"Loaded: 0.000063 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861763, GIOU: 0.857563), Class: 0.998334, Obj: 0.857951, No Obj: 0.002333, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.082249, iou_loss = 0.422204, total_loss = 0.504453 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834071, GIOU: 0.829583), Class: 0.988272, Obj: 0.871521, No Obj: 0.002209, .5R: 0.987578, .75R: 0.863354, count: 161, class_loss = 0.331074, iou_loss = 14.992364, total_loss = 15.323439 \n",
" total_bbox = 916549, rewritten_bbox = 0.037969 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3871: 0.206828, 0.227476 avg loss, 0.000026 rate, 1.135595 seconds, 247744 images, 0.082854 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.821689, GIOU: 0.813087), Class: 0.985380, Obj: 0.820372, No Obj: 0.002070, .5R: 1.000000, .75R: 0.815789, count: 38, class_loss = 0.107182, iou_loss = 0.283192, total_loss = 0.390374 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841268, GIOU: 0.836517), Class: 0.986412, Obj: 0.881754, No Obj: 0.002607, .5R: 0.994898, .75R: 0.877551, count: 196, class_loss = 0.387403, iou_loss = 16.634083, total_loss = 17.021486 \n",
" total_bbox = 916783, rewritten_bbox = 0.038068 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3872: 0.247477, 0.229476 avg loss, 0.000026 rate, 1.216278 seconds, 247808 images, 0.082432 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864621, GIOU: 0.862050), Class: 0.996942, Obj: 0.938246, No Obj: 0.002426, .5R: 1.000000, .75R: 0.914894, count: 47, class_loss = 0.029206, iou_loss = 0.472617, total_loss = 0.501824 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847605, GIOU: 0.839412), Class: 0.987992, Obj: 0.894110, No Obj: 0.002226, .5R: 0.976471, .75R: 0.911765, count: 170, class_loss = 0.332047, iou_loss = 15.020422, total_loss = 15.352468 \n",
" total_bbox = 917000, rewritten_bbox = 0.038059 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3873: 0.180784, 0.224607 avg loss, 0.000026 rate, 1.266767 seconds, 247872 images, 0.082040 hours left\n",
"Loaded: 0.154519 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856121, GIOU: 0.850722), Class: 0.996471, Obj: 0.869242, No Obj: 0.002196, .5R: 0.979592, .75R: 0.959184, count: 49, class_loss = 0.072162, iou_loss = 0.452302, total_loss = 0.524464 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849920, GIOU: 0.846227), Class: 0.998845, Obj: 0.889734, No Obj: 0.002338, .5R: 1.000000, .75R: 0.923077, count: 156, class_loss = 0.340586, iou_loss = 11.926777, total_loss = 12.267363 \n",
" total_bbox = 917205, rewritten_bbox = 0.038050 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3874: 0.206535, 0.222799 avg loss, 0.000026 rate, 1.138735 seconds, 247936 images, 0.081667 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853189, GIOU: 0.849370), Class: 0.999484, Obj: 0.860541, No Obj: 0.002801, .5R: 1.000000, .75R: 0.826087, count: 46, class_loss = 0.114805, iou_loss = 0.400884, total_loss = 0.515689 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851722, GIOU: 0.848732), Class: 0.998827, Obj: 0.881705, No Obj: 0.002426, .5R: 1.000000, .75R: 0.920000, count: 175, class_loss = 0.277774, iou_loss = 14.503298, total_loss = 14.781072 \n",
" total_bbox = 917426, rewritten_bbox = 0.038041 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3875: 0.196451, 0.220165 avg loss, 0.000026 rate, 1.281931 seconds, 248000 images, 0.081303 hours left\n",
"Loaded: 0.040505 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850186, GIOU: 0.845608), Class: 0.999394, Obj: 0.856833, No Obj: 0.001869, .5R: 1.000000, .75R: 0.852941, count: 34, class_loss = 0.074228, iou_loss = 0.303117, total_loss = 0.377344 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.857456, GIOU: 0.854377), Class: 0.994836, Obj: 0.916337, No Obj: 0.002953, .5R: 0.995454, .75R: 0.918182, count: 220, class_loss = 0.254374, iou_loss = 18.587200, total_loss = 18.841574 \n",
" total_bbox = 917680, rewritten_bbox = 0.038031 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3876: 0.164461, 0.214594 avg loss, 0.000026 rate, 1.175392 seconds, 248064 images, 0.080935 hours left\n",
"Loaded: 0.000059 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858911, GIOU: 0.854397), Class: 0.996673, Obj: 0.931036, No Obj: 0.002501, .5R: 1.000000, .75R: 0.938775, count: 49, class_loss = 0.043455, iou_loss = 0.406990, total_loss = 0.450446 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831580, GIOU: 0.826450), Class: 0.989859, Obj: 0.844823, No Obj: 0.002701, .5R: 0.990099, .75R: 0.861386, count: 202, class_loss = 0.533042, iou_loss = 18.058266, total_loss = 18.591307 \n",
" total_bbox = 917931, rewritten_bbox = 0.038020 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3877: 0.288418, 0.221977 avg loss, 0.000026 rate, 1.313817 seconds, 248128 images, 0.080544 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850710, GIOU: 0.845799), Class: 0.999596, Obj: 0.890177, No Obj: 0.002041, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.052035, iou_loss = 0.245913, total_loss = 0.297948 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848369, GIOU: 0.844802), Class: 0.996969, Obj: 0.900020, No Obj: 0.002589, .5R: 1.000000, .75R: 0.934010, count: 197, class_loss = 0.238827, iou_loss = 19.101776, total_loss = 19.340603 \n",
" total_bbox = 918162, rewritten_bbox = 0.038011 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3878: 0.145595, 0.214338 avg loss, 0.000026 rate, 1.256754 seconds, 248192 images, 0.080188 hours left\n",
"Loaded: 0.021360 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834460, GIOU: 0.830137), Class: 0.998430, Obj: 0.842529, No Obj: 0.002174, .5R: 1.000000, .75R: 0.842105, count: 38, class_loss = 0.096397, iou_loss = 0.345574, total_loss = 0.441971 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834290, GIOU: 0.828709), Class: 0.996131, Obj: 0.880903, No Obj: 0.002788, .5R: 0.980000, .75R: 0.860000, count: 200, class_loss = 0.418058, iou_loss = 17.149729, total_loss = 17.567787 \n",
" total_bbox = 918400, rewritten_bbox = 0.038001 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3879: 0.257409, 0.218645 avg loss, 0.000026 rate, 1.177278 seconds, 248256 images, 0.079812 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848416, GIOU: 0.836669), Class: 0.979072, Obj: 0.874247, No Obj: 0.001897, .5R: 0.970588, .75R: 0.941176, count: 34, class_loss = 0.075298, iou_loss = 0.289088, total_loss = 0.364386 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838601, GIOU: 0.834347), Class: 0.994465, Obj: 0.884588, No Obj: 0.002351, .5R: 0.989362, .75R: 0.882979, count: 188, class_loss = 0.274661, iou_loss = 18.259523, total_loss = 18.534185 \n",
" total_bbox = 918622, rewritten_bbox = 0.037992 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3880: 0.175151, 0.214296 avg loss, 0.000026 rate, 1.210543 seconds, 248320 images, 0.079417 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852881, GIOU: 0.848905), Class: 0.994132, Obj: 0.870366, No Obj: 0.002675, .5R: 1.000000, .75R: 0.937500, count: 48, class_loss = 0.103627, iou_loss = 0.415581, total_loss = 0.519209 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832762, GIOU: 0.827159), Class: 0.993750, Obj: 0.891283, No Obj: 0.002854, .5R: 0.982222, .75R: 0.857778, count: 225, class_loss = 0.332969, iou_loss = 20.711437, total_loss = 21.044405 \n",
" total_bbox = 918895, rewritten_bbox = 0.037980 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3881: 0.218470, 0.214713 avg loss, 0.000026 rate, 1.200440 seconds, 248384 images, 0.079026 hours left\n",
"Loaded: 0.000032 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859614, GIOU: 0.855226), Class: 0.999156, Obj: 0.933508, No Obj: 0.002054, .5R: 1.000000, .75R: 0.948718, count: 39, class_loss = 0.043328, iou_loss = 0.331115, total_loss = 0.374444 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848050, GIOU: 0.844436), Class: 0.994082, Obj: 0.886096, No Obj: 0.002628, .5R: 1.000000, .75R: 0.913979, count: 186, class_loss = 0.344294, iou_loss = 14.853887, total_loss = 15.198181 \n",
" total_bbox = 919120, rewritten_bbox = 0.037971 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3882: 0.193971, 0.212639 avg loss, 0.000026 rate, 1.196456 seconds, 248448 images, 0.078633 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840538, GIOU: 0.834443), Class: 0.977481, Obj: 0.830268, No Obj: 0.002185, .5R: 1.000000, .75R: 0.875000, count: 48, class_loss = 0.148845, iou_loss = 0.449870, total_loss = 0.598715 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839176, GIOU: 0.834440), Class: 0.987922, Obj: 0.849058, No Obj: 0.002189, .5R: 0.987730, .75R: 0.858896, count: 163, class_loss = 0.391635, iou_loss = 11.026258, total_loss = 11.417893 \n",
" total_bbox = 919331, rewritten_bbox = 0.037962 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3883: 0.270415, 0.218417 avg loss, 0.000026 rate, 1.243284 seconds, 248512 images, 0.078238 hours left\n",
"Loaded: 0.123590 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844496, GIOU: 0.839188), Class: 0.994760, Obj: 0.897733, No Obj: 0.002437, .5R: 1.000000, .75R: 0.895833, count: 48, class_loss = 0.046344, iou_loss = 0.402818, total_loss = 0.449162 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.826823, GIOU: 0.819745), Class: 0.988864, Obj: 0.861281, No Obj: 0.002734, .5R: 0.977376, .75R: 0.868778, count: 221, class_loss = 0.509032, iou_loss = 18.049776, total_loss = 18.558807 \n",
" total_bbox = 919600, rewritten_bbox = 0.037951 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3884: 0.277868, 0.224362 avg loss, 0.000026 rate, 1.166965 seconds, 248576 images, 0.077860 hours left\n",
"Loaded: 0.021338 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.839719, GIOU: 0.834256), Class: 0.985579, Obj: 0.919578, No Obj: 0.002366, .5R: 1.000000, .75R: 0.851064, count: 47, class_loss = 0.053328, iou_loss = 0.397023, total_loss = 0.450350 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831007, GIOU: 0.824149), Class: 0.978221, Obj: 0.872696, No Obj: 0.002266, .5R: 0.988304, .75R: 0.865497, count: 171, class_loss = 0.485190, iou_loss = 14.250080, total_loss = 14.735271 \n",
" total_bbox = 919818, rewritten_bbox = 0.037942 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3885: 0.269439, 0.228870 avg loss, 0.000026 rate, 1.237228 seconds, 248640 images, 0.077499 hours left\n",
"Loaded: 0.046698 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.830659, GIOU: 0.825348), Class: 0.999053, Obj: 0.869903, No Obj: 0.002135, .5R: 1.000000, .75R: 0.805556, count: 36, class_loss = 0.053637, iou_loss = 0.239570, total_loss = 0.293207 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831383, GIOU: 0.826868), Class: 0.993767, Obj: 0.869764, No Obj: 0.002310, .5R: 0.994382, .75R: 0.842697, count: 178, class_loss = 0.375321, iou_loss = 14.953230, total_loss = 15.328550 \n",
" total_bbox = 920032, rewritten_bbox = 0.037933 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3886: 0.214664, 0.227449 avg loss, 0.000026 rate, 1.169727 seconds, 248704 images, 0.077127 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872327, GIOU: 0.869486), Class: 0.999678, Obj: 0.894096, No Obj: 0.002321, .5R: 1.000000, .75R: 0.953488, count: 43, class_loss = 0.074584, iou_loss = 0.387876, total_loss = 0.462460 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850621, GIOU: 0.847310), Class: 0.995635, Obj: 0.890037, No Obj: 0.002614, .5R: 0.994536, .75R: 0.907104, count: 183, class_loss = 0.286475, iou_loss = 13.412320, total_loss = 13.698795 \n",
" total_bbox = 920258, rewritten_bbox = 0.037924 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3887: 0.180681, 0.222772 avg loss, 0.000026 rate, 1.254643 seconds, 248768 images, 0.076740 hours left\n",
"Loaded: 0.012836 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845452, GIOU: 0.840980), Class: 0.998209, Obj: 0.862715, No Obj: 0.001918, .5R: 1.000000, .75R: 0.875000, count: 40, class_loss = 0.091555, iou_loss = 0.346078, total_loss = 0.437633 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842722, GIOU: 0.838420), Class: 0.990454, Obj: 0.892069, No Obj: 0.002657, .5R: 0.995215, .75R: 0.904306, count: 209, class_loss = 0.321229, iou_loss = 19.594799, total_loss = 19.916027 \n",
" total_bbox = 920507, rewritten_bbox = 0.037914 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3888: 0.206562, 0.221151 avg loss, 0.000026 rate, 1.197294 seconds, 248832 images, 0.076367 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868614, GIOU: 0.865728), Class: 0.999460, Obj: 0.938137, No Obj: 0.002193, .5R: 1.000000, .75R: 0.975000, count: 40, class_loss = 0.048640, iou_loss = 0.341437, total_loss = 0.390077 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827906, GIOU: 0.823256), Class: 0.997977, Obj: 0.855749, No Obj: 0.002270, .5R: 0.982659, .75R: 0.855491, count: 173, class_loss = 0.333838, iou_loss = 14.461864, total_loss = 14.795703 \n",
" total_bbox = 920720, rewritten_bbox = 0.037905 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3889: 0.191405, 0.218177 avg loss, 0.000026 rate, 1.173602 seconds, 248896 images, 0.075980 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.880504, GIOU: 0.878412), Class: 0.999457, Obj: 0.917755, No Obj: 0.002243, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.062476, iou_loss = 0.351930, total_loss = 0.414406 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852805, GIOU: 0.849217), Class: 0.997298, Obj: 0.901202, No Obj: 0.002441, .5R: 1.000000, .75R: 0.920904, count: 177, class_loss = 0.254901, iou_loss = 13.875847, total_loss = 14.130748 \n",
" total_bbox = 920938, rewritten_bbox = 0.037896 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3890: 0.158834, 0.212242 avg loss, 0.000026 rate, 1.159064 seconds, 248960 images, 0.075582 hours left\n",
"Loaded: 0.000051 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857186, GIOU: 0.854095), Class: 0.998901, Obj: 0.933129, No Obj: 0.002768, .5R: 1.000000, .75R: 0.897959, count: 49, class_loss = 0.056870, iou_loss = 0.491651, total_loss = 0.548521 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833389, GIOU: 0.825486), Class: 0.997896, Obj: 0.881592, No Obj: 0.002619, .5R: 0.989691, .75R: 0.860825, count: 194, class_loss = 0.354680, iou_loss = 15.345427, total_loss = 15.700107 \n",
" total_bbox = 921181, rewritten_bbox = 0.037886 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3891: 0.205944, 0.211613 avg loss, 0.000026 rate, 1.179930 seconds, 249024 images, 0.075180 hours left\n",
"Loaded: 0.000065 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.833788, GIOU: 0.827553), Class: 0.997899, Obj: 0.880000, No Obj: 0.002787, .5R: 0.960784, .75R: 0.843137, count: 51, class_loss = 0.079039, iou_loss = 0.437018, total_loss = 0.516057 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837046, GIOU: 0.832240), Class: 0.990774, Obj: 0.899665, No Obj: 0.002566, .5R: 0.995000, .75R: 0.885000, count: 200, class_loss = 0.308995, iou_loss = 16.009781, total_loss = 16.318775 \n",
" total_bbox = 921432, rewritten_bbox = 0.037984 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3892: 0.194197, 0.209871 avg loss, 0.000026 rate, 1.231656 seconds, 249088 images, 0.074786 hours left\n",
"Loaded: 0.000037 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853335, GIOU: 0.848796), Class: 0.999470, Obj: 0.943647, No Obj: 0.002296, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.045485, iou_loss = 0.244069, total_loss = 0.289554 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842565, GIOU: 0.836410), Class: 0.995883, Obj: 0.877570, No Obj: 0.002706, .5R: 0.995192, .75R: 0.913462, count: 208, class_loss = 0.312861, iou_loss = 20.390158, total_loss = 20.703018 \n",
" total_bbox = 921674, rewritten_bbox = 0.037974 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3893: 0.179339, 0.206818 avg loss, 0.000026 rate, 1.285882 seconds, 249152 images, 0.074407 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855312, GIOU: 0.852122), Class: 0.998733, Obj: 0.907023, No Obj: 0.002266, .5R: 1.000000, .75R: 0.897436, count: 39, class_loss = 0.073898, iou_loss = 0.314278, total_loss = 0.388176 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.859386, GIOU: 0.855999), Class: 0.996281, Obj: 0.897390, No Obj: 0.002046, .5R: 1.000000, .75R: 0.909091, count: 143, class_loss = 0.277194, iou_loss = 11.740833, total_loss = 12.018027 \n",
" total_bbox = 921856, rewritten_bbox = 0.037967 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3894: 0.175702, 0.203706 avg loss, 0.000026 rate, 1.191034 seconds, 249216 images, 0.074045 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859244, GIOU: 0.855858), Class: 0.999411, Obj: 0.926957, No Obj: 0.002564, .5R: 1.000000, .75R: 0.892857, count: 56, class_loss = 0.053531, iou_loss = 0.570739, total_loss = 0.624270 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830085, GIOU: 0.825480), Class: 0.993942, Obj: 0.855814, No Obj: 0.002676, .5R: 0.995146, .75R: 0.834951, count: 206, class_loss = 0.389519, iou_loss = 15.566536, total_loss = 15.956055 \n",
" total_bbox = 922118, rewritten_bbox = 0.037956 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3895: 0.221695, 0.205505 avg loss, 0.000026 rate, 1.234256 seconds, 249280 images, 0.073656 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.832554, GIOU: 0.827670), Class: 0.997626, Obj: 0.842244, No Obj: 0.002682, .5R: 1.000000, .75R: 0.787234, count: 47, class_loss = 0.096283, iou_loss = 0.426308, total_loss = 0.522591 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847261, GIOU: 0.842769), Class: 0.998558, Obj: 0.896229, No Obj: 0.002466, .5R: 0.994475, .75R: 0.883978, count: 181, class_loss = 0.290304, iou_loss = 16.583376, total_loss = 16.873680 \n",
" total_bbox = 922346, rewritten_bbox = 0.037947 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3896: 0.193469, 0.204301 avg loss, 0.000026 rate, 1.241964 seconds, 249344 images, 0.073279 hours left\n",
"Loaded: 0.000036 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843610, GIOU: 0.839639), Class: 0.998703, Obj: 0.835280, No Obj: 0.002077, .5R: 1.000000, .75R: 0.833333, count: 36, class_loss = 0.068755, iou_loss = 0.303209, total_loss = 0.371964 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.834274, GIOU: 0.828361), Class: 0.996141, Obj: 0.864135, No Obj: 0.002979, .5R: 0.986547, .75R: 0.887892, count: 223, class_loss = 0.496989, iou_loss = 19.492846, total_loss = 19.989834 \n",
" total_bbox = 922605, rewritten_bbox = 0.037936 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3897: 0.283048, 0.212176 avg loss, 0.000026 rate, 1.351790 seconds, 249408 images, 0.072905 hours left\n",
"Loaded: 0.002673 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.840043, GIOU: 0.836098), Class: 0.998000, Obj: 0.875927, No Obj: 0.002078, .5R: 1.000000, .75R: 0.891892, count: 37, class_loss = 0.101213, iou_loss = 0.319213, total_loss = 0.420426 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844291, GIOU: 0.840044), Class: 0.994365, Obj: 0.870032, No Obj: 0.002571, .5R: 0.994792, .75R: 0.890625, count: 192, class_loss = 0.363992, iou_loss = 16.395084, total_loss = 16.759077 \n",
" total_bbox = 922834, rewritten_bbox = 0.037927 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3898: 0.232775, 0.214236 avg loss, 0.000026 rate, 1.197165 seconds, 249472 images, 0.072563 hours left\n",
"Loaded: 0.014825 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.876949, GIOU: 0.874944), Class: 0.996671, Obj: 0.924907, No Obj: 0.002610, .5R: 1.000000, .75R: 0.977273, count: 44, class_loss = 0.030388, iou_loss = 0.429625, total_loss = 0.460012 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.854004, GIOU: 0.850848), Class: 0.994218, Obj: 0.908965, No Obj: 0.002573, .5R: 1.000000, .75R: 0.902703, count: 185, class_loss = 0.235007, iou_loss = 13.097520, total_loss = 13.332527 \n",
" total_bbox = 923063, rewritten_bbox = 0.037917 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3899: 0.132845, 0.206097 avg loss, 0.000026 rate, 1.242517 seconds, 249536 images, 0.072177 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863254, GIOU: 0.860048), Class: 0.996915, Obj: 0.893531, No Obj: 0.002892, .5R: 1.000000, .75R: 0.963636, count: 55, class_loss = 0.052877, iou_loss = 0.501319, total_loss = 0.554197 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833493, GIOU: 0.828314), Class: 0.988720, Obj: 0.852755, No Obj: 0.003380, .5R: 0.991903, .75R: 0.870445, count: 247, class_loss = 0.526361, iou_loss = 20.822342, total_loss = 21.348703 \n",
" total_bbox = 923365, rewritten_bbox = 0.038013 % \n",
"\n",
" (next mAP calculation at 3900 iterations) \n",
" Last accuracy [email protected] = 57.92 %, best = 58.96 % \n",
" 3900: 0.289785, 0.214466 avg loss, 0.000026 rate, 1.234452 seconds, 249600 images, 0.071808 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 350, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.20% \t (TP = 162, FP = 7) \n",
"class_id = 1, name = no mask, ap = 47.70% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.95, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 10, FN = 120, average IoU = 78.25 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.579478, or 57.95 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.579478 \n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Loaded: 0.000061 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849116, GIOU: 0.846502), Class: 0.986948, Obj: 0.910002, No Obj: 0.002237, .5R: 1.000000, .75R: 0.878049, count: 41, class_loss = 0.074759, iou_loss = 0.379158, total_loss = 0.453918 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837559, GIOU: 0.832878), Class: 0.988571, Obj: 0.879383, No Obj: 0.003414, .5R: 0.992806, .75R: 0.892086, count: 278, class_loss = 0.551067, iou_loss = 24.579412, total_loss = 25.130480 \n",
" total_bbox = 923684, rewritten_bbox = 0.038000 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3901: 0.313085, 0.224328 avg loss, 0.000026 rate, 1.091781 seconds, 249664 images, 0.071996 hours left\n",
"Loaded: 0.248160 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848747, GIOU: 0.845601), Class: 0.991934, Obj: 0.873159, No Obj: 0.002173, .5R: 1.000000, .75R: 0.900000, count: 40, class_loss = 0.068842, iou_loss = 0.301751, total_loss = 0.370593 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839692, GIOU: 0.835722), Class: 0.995561, Obj: 0.863945, No Obj: 0.002068, .5R: 0.993378, .75R: 0.880795, count: 151, class_loss = 0.266746, iou_loss = 14.205261, total_loss = 14.472008 \n",
" total_bbox = 923875, rewritten_bbox = 0.037992 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3902: 0.167965, 0.218691 avg loss, 0.000026 rate, 1.192017 seconds, 249728 images, 0.071576 hours left\n",
"Loaded: 0.171788 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853375, GIOU: 0.849683), Class: 0.996154, Obj: 0.837799, No Obj: 0.002010, .5R: 1.000000, .75R: 0.918919, count: 37, class_loss = 0.088698, iou_loss = 0.297271, total_loss = 0.385969 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836977, GIOU: 0.832659), Class: 0.997259, Obj: 0.877566, No Obj: 0.002866, .5R: 1.000000, .75R: 0.846512, count: 215, class_loss = 0.453517, iou_loss = 18.917221, total_loss = 19.370737 \n",
" total_bbox = 924127, rewritten_bbox = 0.037982 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3903: 0.271277, 0.223950 avg loss, 0.000026 rate, 1.189425 seconds, 249792 images, 0.071253 hours left\n",
"Loaded: 0.060994 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845992, GIOU: 0.841830), Class: 0.999064, Obj: 0.884889, No Obj: 0.002521, .5R: 1.000000, .75R: 0.918367, count: 49, class_loss = 0.050594, iou_loss = 0.329217, total_loss = 0.379810 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833473, GIOU: 0.829399), Class: 0.990897, Obj: 0.886616, No Obj: 0.002050, .5R: 1.000000, .75R: 0.889655, count: 145, class_loss = 0.273109, iou_loss = 14.228195, total_loss = 14.501304 \n",
" total_bbox = 924321, rewritten_bbox = 0.037974 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3904: 0.162026, 0.217758 avg loss, 0.000026 rate, 1.166823 seconds, 249856 images, 0.070907 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865069, GIOU: 0.862408), Class: 0.999494, Obj: 0.906131, No Obj: 0.002008, .5R: 1.000000, .75R: 0.945946, count: 37, class_loss = 0.029626, iou_loss = 0.318980, total_loss = 0.348606 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850483, GIOU: 0.847479), Class: 0.998207, Obj: 0.920187, No Obj: 0.002722, .5R: 1.000000, .75R: 0.934673, count: 199, class_loss = 0.242653, iou_loss = 18.237455, total_loss = 18.480108 \n",
" total_bbox = 924557, rewritten_bbox = 0.037964 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3905: 0.136295, 0.209611 avg loss, 0.000026 rate, 1.399637 seconds, 249920 images, 0.070525 hours left\n",
"Loaded: 0.093992 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843606, GIOU: 0.840691), Class: 0.999174, Obj: 0.908104, No Obj: 0.002251, .5R: 1.000000, .75R: 0.863636, count: 44, class_loss = 0.045788, iou_loss = 0.447703, total_loss = 0.493491 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844774, GIOU: 0.840434), Class: 0.998539, Obj: 0.918573, No Obj: 0.002060, .5R: 0.993378, .75R: 0.887417, count: 151, class_loss = 0.161174, iou_loss = 12.097658, total_loss = 12.258832 \n",
" total_bbox = 924752, rewritten_bbox = 0.037956 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3906: 0.103651, 0.199015 avg loss, 0.000026 rate, 1.206867 seconds, 249984 images, 0.070189 hours left\n",
"Loaded: 0.000047 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862963, GIOU: 0.860756), Class: 0.999506, Obj: 0.933378, No Obj: 0.001693, .5R: 1.000000, .75R: 0.939394, count: 33, class_loss = 0.010709, iou_loss = 0.270405, total_loss = 0.281114 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828789, GIOU: 0.823480), Class: 0.995708, Obj: 0.884742, No Obj: 0.002225, .5R: 0.988827, .75R: 0.826816, count: 179, class_loss = 0.354263, iou_loss = 16.808567, total_loss = 17.162830 \n",
" total_bbox = 924964, rewritten_bbox = 0.037947 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3907: 0.182654, 0.197379 avg loss, 0.000026 rate, 1.284731 seconds, 250048 images, 0.069827 hours left\n",
"Loaded: 0.224639 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856880, GIOU: 0.853038), Class: 0.997804, Obj: 0.838892, No Obj: 0.001998, .5R: 1.000000, .75R: 0.921053, count: 38, class_loss = 0.126910, iou_loss = 0.318219, total_loss = 0.445128 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.821604, GIOU: 0.815930), Class: 0.987816, Obj: 0.829741, No Obj: 0.002474, .5R: 0.984375, .75R: 0.843750, count: 192, class_loss = 0.536779, iou_loss = 18.007433, total_loss = 18.544212 \n",
" total_bbox = 925194, rewritten_bbox = 0.037938 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3908: 0.332020, 0.210843 avg loss, 0.000026 rate, 1.291548 seconds, 250112 images, 0.069461 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849657, GIOU: 0.845428), Class: 0.993464, Obj: 0.867580, No Obj: 0.001972, .5R: 0.974359, .75R: 0.923077, count: 39, class_loss = 0.058055, iou_loss = 0.341507, total_loss = 0.399562 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839906, GIOU: 0.834647), Class: 0.996042, Obj: 0.903452, No Obj: 0.002334, .5R: 0.988166, .75R: 0.863905, count: 169, class_loss = 0.239913, iou_loss = 13.556384, total_loss = 13.796297 \n",
" total_bbox = 925402, rewritten_bbox = 0.037929 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3909: 0.149154, 0.204674 avg loss, 0.000026 rate, 1.363949 seconds, 250176 images, 0.069154 hours left\n",
"Loaded: 0.243320 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859023, GIOU: 0.855616), Class: 0.997477, Obj: 0.831435, No Obj: 0.002414, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.101457, iou_loss = 0.442816, total_loss = 0.544273 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835048, GIOU: 0.829313), Class: 0.991989, Obj: 0.862936, No Obj: 0.002985, .5R: 0.982222, .75R: 0.857778, count: 225, class_loss = 0.483973, iou_loss = 15.598894, total_loss = 16.082867 \n",
" total_bbox = 925670, rewritten_bbox = 0.037918 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3910: 0.292882, 0.213495 avg loss, 0.000026 rate, 1.270814 seconds, 250240 images, 0.068807 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856025, GIOU: 0.852033), Class: 0.999298, Obj: 0.921610, No Obj: 0.001776, .5R: 1.000000, .75R: 0.866667, count: 30, class_loss = 0.044534, iou_loss = 0.208237, total_loss = 0.252771 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837797, GIOU: 0.832832), Class: 0.987514, Obj: 0.853455, No Obj: 0.002114, .5R: 0.988024, .75R: 0.892216, count: 167, class_loss = 0.383792, iou_loss = 15.392387, total_loss = 15.776179 \n",
" total_bbox = 925867, rewritten_bbox = 0.037910 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3911: 0.214330, 0.213579 avg loss, 0.000026 rate, 1.274806 seconds, 250304 images, 0.068497 hours left\n",
"Loaded: 0.024834 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849284, GIOU: 0.844147), Class: 0.999386, Obj: 0.914860, No Obj: 0.002313, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.056128, iou_loss = 0.399281, total_loss = 0.455409 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.827553, GIOU: 0.819940), Class: 0.996851, Obj: 0.871061, No Obj: 0.002629, .5R: 0.979899, .75R: 0.874372, count: 199, class_loss = 0.385293, iou_loss = 17.213850, total_loss = 17.599142 \n",
" total_bbox = 926109, rewritten_bbox = 0.037901 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3912: 0.220887, 0.214309 avg loss, 0.000026 rate, 1.235575 seconds, 250368 images, 0.068128 hours left\n",
"Loaded: 0.168941 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861889, GIOU: 0.859305), Class: 0.997397, Obj: 0.892243, No Obj: 0.002171, .5R: 1.000000, .75R: 0.891892, count: 37, class_loss = 0.044152, iou_loss = 0.307650, total_loss = 0.351802 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843038, GIOU: 0.838854), Class: 0.994757, Obj: 0.853367, No Obj: 0.002797, .5R: 0.995146, .75R: 0.907767, count: 206, class_loss = 0.419779, iou_loss = 17.263500, total_loss = 17.683279 \n",
" total_bbox = 926352, rewritten_bbox = 0.037891 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3913: 0.232127, 0.216091 avg loss, 0.000026 rate, 1.149398 seconds, 250432 images, 0.067754 hours left\n",
"Loaded: 0.000044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859025, GIOU: 0.856379), Class: 0.998841, Obj: 0.952478, No Obj: 0.001939, .5R: 1.000000, .75R: 0.882353, count: 34, class_loss = 0.019625, iou_loss = 0.379267, total_loss = 0.398891 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842115, GIOU: 0.838038), Class: 0.995288, Obj: 0.877564, No Obj: 0.003020, .5R: 1.000000, .75R: 0.890411, count: 219, class_loss = 0.399399, iou_loss = 15.972017, total_loss = 16.371416 \n",
" total_bbox = 926605, rewritten_bbox = 0.037880 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3914: 0.209675, 0.215450 avg loss, 0.000026 rate, 1.313407 seconds, 250496 images, 0.067395 hours left\n",
"Loaded: 0.249655 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842834, GIOU: 0.839297), Class: 0.995200, Obj: 0.777110, No Obj: 0.002267, .5R: 1.000000, .75R: 0.909091, count: 44, class_loss = 0.158571, iou_loss = 0.340642, total_loss = 0.499212 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847564, GIOU: 0.840935), Class: 0.994434, Obj: 0.895528, No Obj: 0.002968, .5R: 0.991266, .75R: 0.895196, count: 229, class_loss = 0.295386, iou_loss = 18.322992, total_loss = 18.618378 \n",
" total_bbox = 926878, rewritten_bbox = 0.037869 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3915: 0.227148, 0.216619 avg loss, 0.000026 rate, 1.285292 seconds, 250560 images, 0.067035 hours left\n",
"Loaded: 0.003229 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869711, GIOU: 0.866967), Class: 0.998316, Obj: 0.871264, No Obj: 0.002530, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.069499, iou_loss = 0.394408, total_loss = 0.463907 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843275, GIOU: 0.839022), Class: 0.998376, Obj: 0.870317, No Obj: 0.002673, .5R: 0.994709, .75R: 0.878307, count: 189, class_loss = 0.360567, iou_loss = 14.626994, total_loss = 14.987561 \n",
" total_bbox = 927110, rewritten_bbox = 0.037860 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3916: 0.215190, 0.216476 avg loss, 0.000026 rate, 1.279249 seconds, 250624 images, 0.066727 hours left\n",
"Loaded: 0.116877 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842715, GIOU: 0.838695), Class: 0.998130, Obj: 0.830195, No Obj: 0.002268, .5R: 1.000000, .75R: 0.825000, count: 40, class_loss = 0.121397, iou_loss = 0.312977, total_loss = 0.434374 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844222, GIOU: 0.839719), Class: 0.997729, Obj: 0.889697, No Obj: 0.002554, .5R: 0.990000, .75R: 0.880000, count: 200, class_loss = 0.278559, iou_loss = 17.844225, total_loss = 18.122784 \n",
" total_bbox = 927350, rewritten_bbox = 0.037850 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3917: 0.200149, 0.214844 avg loss, 0.000026 rate, 1.130614 seconds, 250688 images, 0.066359 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858398, GIOU: 0.855856), Class: 0.999167, Obj: 0.858907, No Obj: 0.002700, .5R: 1.000000, .75R: 0.897959, count: 49, class_loss = 0.066178, iou_loss = 0.450272, total_loss = 0.516450 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842312, GIOU: 0.838291), Class: 0.994341, Obj: 0.879644, No Obj: 0.002752, .5R: 0.986046, .75R: 0.897674, count: 215, class_loss = 0.332060, iou_loss = 19.336531, total_loss = 19.668591 \n",
" total_bbox = 927614, rewritten_bbox = 0.037839 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3918: 0.199283, 0.213288 avg loss, 0.000026 rate, 1.228003 seconds, 250752 images, 0.065983 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864377, GIOU: 0.859309), Class: 0.994319, Obj: 0.876165, No Obj: 0.002123, .5R: 1.000000, .75R: 0.952381, count: 42, class_loss = 0.067606, iou_loss = 0.375204, total_loss = 0.442810 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836511, GIOU: 0.830334), Class: 0.991679, Obj: 0.852343, No Obj: 0.002375, .5R: 0.988950, .75R: 0.878453, count: 181, class_loss = 0.446451, iou_loss = 12.862277, total_loss = 13.308728 \n",
" total_bbox = 927837, rewritten_bbox = 0.037830 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3919: 0.257192, 0.217678 avg loss, 0.000026 rate, 1.213319 seconds, 250816 images, 0.065603 hours left\n",
"Loaded: 0.000032 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841961, GIOU: 0.835485), Class: 0.994491, Obj: 0.816407, No Obj: 0.002421, .5R: 1.000000, .75R: 0.888889, count: 45, class_loss = 0.164256, iou_loss = 0.367294, total_loss = 0.531550 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835286, GIOU: 0.829785), Class: 0.986096, Obj: 0.895501, No Obj: 0.002041, .5R: 0.966667, .75R: 0.873333, count: 150, class_loss = 0.298179, iou_loss = 11.588637, total_loss = 11.886816 \n",
" total_bbox = 928032, rewritten_bbox = 0.037930 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3920: 0.231394, 0.219050 avg loss, 0.000026 rate, 1.216067 seconds, 250880 images, 0.065220 hours left\n",
"Loaded: 0.056959 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843642, GIOU: 0.834449), Class: 0.996011, Obj: 0.810044, No Obj: 0.002394, .5R: 0.956522, .75R: 0.847826, count: 46, class_loss = 0.150142, iou_loss = 0.376043, total_loss = 0.526184 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832412, GIOU: 0.828087), Class: 0.996687, Obj: 0.865685, No Obj: 0.002353, .5R: 0.988636, .75R: 0.863636, count: 176, class_loss = 0.365842, iou_loss = 15.651359, total_loss = 16.017200 \n",
" total_bbox = 928254, rewritten_bbox = 0.037921 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3921: 0.258169, 0.222962 avg loss, 0.000026 rate, 1.216219 seconds, 250944 images, 0.064838 hours left\n",
"Loaded: 0.221176 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829888, GIOU: 0.826200), Class: 0.987174, Obj: 0.852699, No Obj: 0.002439, .5R: 1.000000, .75R: 0.809524, count: 42, class_loss = 0.090094, iou_loss = 0.291842, total_loss = 0.381936 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838421, GIOU: 0.833895), Class: 0.996363, Obj: 0.853548, No Obj: 0.002467, .5R: 1.000000, .75R: 0.902174, count: 184, class_loss = 0.435617, iou_loss = 14.171038, total_loss = 14.606654 \n",
" total_bbox = 928480, rewritten_bbox = 0.037911 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3922: 0.263037, 0.226969 avg loss, 0.000026 rate, 1.131134 seconds, 251008 images, 0.064469 hours left\n",
"Loaded: 0.317896 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852962, GIOU: 0.849726), Class: 0.972081, Obj: 0.874454, No Obj: 0.002188, .5R: 1.000000, .75R: 0.878049, count: 41, class_loss = 0.101432, iou_loss = 0.349442, total_loss = 0.450874 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839462, GIOU: 0.835598), Class: 0.988353, Obj: 0.867454, No Obj: 0.002974, .5R: 0.995614, .75R: 0.885965, count: 228, class_loss = 0.520767, iou_loss = 19.079796, total_loss = 19.600563 \n",
" total_bbox = 928749, rewritten_bbox = 0.037900 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3923: 0.311268, 0.235399 avg loss, 0.000026 rate, 1.083980 seconds, 251072 images, 0.064118 hours left\n",
"Loaded: 0.000124 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.834178, GIOU: 0.824893), Class: 0.993280, Obj: 0.830467, No Obj: 0.001943, .5R: 0.974359, .75R: 0.846154, count: 39, class_loss = 0.095597, iou_loss = 0.275319, total_loss = 0.370916 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831704, GIOU: 0.827277), Class: 0.991765, Obj: 0.885103, No Obj: 0.002189, .5R: 0.994152, .75R: 0.859649, count: 171, class_loss = 0.295963, iou_loss = 14.881267, total_loss = 15.177229 \n",
" total_bbox = 928959, rewritten_bbox = 0.037892 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3924: 0.195962, 0.231455 avg loss, 0.000026 rate, 1.352984 seconds, 251136 images, 0.063776 hours left\n",
"Loaded: 0.094301 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856080, GIOU: 0.852451), Class: 0.998144, Obj: 0.860254, No Obj: 0.002213, .5R: 1.000000, .75R: 0.878049, count: 41, class_loss = 0.101488, iou_loss = 0.360241, total_loss = 0.461729 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840845, GIOU: 0.836627), Class: 0.993340, Obj: 0.896168, No Obj: 0.002942, .5R: 1.000000, .75R: 0.895455, count: 220, class_loss = 0.358284, iou_loss = 19.215811, total_loss = 19.574095 \n",
" total_bbox = 929220, rewritten_bbox = 0.037881 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3925: 0.230052, 0.231315 avg loss, 0.000026 rate, 1.195094 seconds, 251200 images, 0.063424 hours left\n",
"Loaded: 0.000073 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866822, GIOU: 0.864110), Class: 0.999489, Obj: 0.929076, No Obj: 0.002659, .5R: 1.000000, .75R: 0.957447, count: 47, class_loss = 0.039061, iou_loss = 0.465381, total_loss = 0.504442 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846981, GIOU: 0.842849), Class: 0.992272, Obj: 0.875264, No Obj: 0.002525, .5R: 1.000000, .75R: 0.909091, count: 187, class_loss = 0.343253, iou_loss = 14.616928, total_loss = 14.960181 \n",
" total_bbox = 929454, rewritten_bbox = 0.037872 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3926: 0.191313, 0.227315 avg loss, 0.000026 rate, 1.190227 seconds, 251264 images, 0.063058 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849421, GIOU: 0.847159), Class: 0.999262, Obj: 0.906160, No Obj: 0.002103, .5R: 1.000000, .75R: 0.888889, count: 36, class_loss = 0.089496, iou_loss = 0.259070, total_loss = 0.348567 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851931, GIOU: 0.847324), Class: 0.997820, Obj: 0.885880, No Obj: 0.002436, .5R: 0.994624, .75R: 0.919355, count: 186, class_loss = 0.290631, iou_loss = 15.538143, total_loss = 15.828774 \n",
" total_bbox = 929676, rewritten_bbox = 0.037863 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3927: 0.190227, 0.223606 avg loss, 0.000026 rate, 1.240269 seconds, 251328 images, 0.062673 hours left\n",
"Loaded: 0.000076 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836477, GIOU: 0.830080), Class: 0.996691, Obj: 0.897466, No Obj: 0.002112, .5R: 0.976191, .75R: 0.928571, count: 42, class_loss = 0.081543, iou_loss = 0.345077, total_loss = 0.426620 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837288, GIOU: 0.831057), Class: 0.990842, Obj: 0.875511, No Obj: 0.001905, .5R: 0.985294, .75R: 0.867647, count: 136, class_loss = 0.309031, iou_loss = 11.165678, total_loss = 11.474710 \n",
" total_bbox = 929854, rewritten_bbox = 0.037855 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3928: 0.195466, 0.220792 avg loss, 0.000026 rate, 1.194701 seconds, 251392 images, 0.062297 hours left\n",
"Loaded: 0.093681 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852884, GIOU: 0.848647), Class: 0.998705, Obj: 0.879144, No Obj: 0.002376, .5R: 1.000000, .75R: 0.974359, count: 39, class_loss = 0.078698, iou_loss = 0.358720, total_loss = 0.437418 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830731, GIOU: 0.825370), Class: 0.990970, Obj: 0.832475, No Obj: 0.002690, .5R: 0.980488, .75R: 0.858537, count: 205, class_loss = 0.513939, iou_loss = 17.310669, total_loss = 17.824608 \n",
" total_bbox = 930098, rewritten_bbox = 0.037845 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3929: 0.296492, 0.228362 avg loss, 0.000026 rate, 1.212855 seconds, 251456 images, 0.061913 hours left\n",
"Loaded: 0.046048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863563, GIOU: 0.860194), Class: 0.998173, Obj: 0.885391, No Obj: 0.001885, .5R: 1.000000, .75R: 0.941176, count: 34, class_loss = 0.046557, iou_loss = 0.237318, total_loss = 0.283875 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841223, GIOU: 0.837006), Class: 0.993856, Obj: 0.864935, No Obj: 0.002553, .5R: 1.000000, .75R: 0.887255, count: 204, class_loss = 0.350455, iou_loss = 19.802664, total_loss = 20.153118 \n",
" total_bbox = 930336, rewritten_bbox = 0.037836 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3930: 0.198667, 0.225393 avg loss, 0.000026 rate, 1.221471 seconds, 251520 images, 0.061552 hours left\n",
"Loaded: 0.041398 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.868655, GIOU: 0.865898), Class: 0.999681, Obj: 0.907416, No Obj: 0.001988, .5R: 1.000000, .75R: 0.916667, count: 36, class_loss = 0.047845, iou_loss = 0.366376, total_loss = 0.414221 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842562, GIOU: 0.838319), Class: 0.996275, Obj: 0.886723, No Obj: 0.002532, .5R: 1.000000, .75R: 0.869110, count: 191, class_loss = 0.335707, iou_loss = 14.794879, total_loss = 15.130586 \n",
" total_bbox = 930563, rewritten_bbox = 0.037827 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3931: 0.191934, 0.222047 avg loss, 0.000026 rate, 1.185384 seconds, 251584 images, 0.061183 hours left\n",
"Loaded: 0.000054 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849661, GIOU: 0.844542), Class: 0.999036, Obj: 0.891811, No Obj: 0.002079, .5R: 0.950000, .75R: 0.875000, count: 40, class_loss = 0.069055, iou_loss = 0.372433, total_loss = 0.441488 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833618, GIOU: 0.829276), Class: 0.995408, Obj: 0.868616, No Obj: 0.003167, .5R: 0.992278, .75R: 0.837838, count: 259, class_loss = 0.494534, iou_loss = 24.587999, total_loss = 25.082533 \n",
" total_bbox = 930862, rewritten_bbox = 0.037814 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3932: 0.281968, 0.228039 avg loss, 0.000026 rate, 1.313720 seconds, 251648 images, 0.060806 hours left\n",
"Loaded: 0.000069 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843589, GIOU: 0.839952), Class: 0.997285, Obj: 0.827196, No Obj: 0.001414, .5R: 1.000000, .75R: 0.952381, count: 21, class_loss = 0.068380, iou_loss = 0.160643, total_loss = 0.229023 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830781, GIOU: 0.826816), Class: 0.987857, Obj: 0.881040, No Obj: 0.002255, .5R: 0.994709, .75R: 0.846561, count: 189, class_loss = 0.397693, iou_loss = 18.300272, total_loss = 18.697966 \n",
" total_bbox = 931072, rewritten_bbox = 0.037913 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3933: 0.233215, 0.228556 avg loss, 0.000026 rate, 1.162794 seconds, 251712 images, 0.060446 hours left\n",
"Loaded: 0.000068 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.876138, GIOU: 0.873961), Class: 0.998367, Obj: 0.902401, No Obj: 0.002215, .5R: 1.000000, .75R: 0.911765, count: 34, class_loss = 0.051786, iou_loss = 0.330936, total_loss = 0.382722 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842071, GIOU: 0.836635), Class: 0.992281, Obj: 0.884199, No Obj: 0.002451, .5R: 0.983425, .75R: 0.928177, count: 181, class_loss = 0.320655, iou_loss = 15.240807, total_loss = 15.561461 \n",
" total_bbox = 931287, rewritten_bbox = 0.037905 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3934: 0.186374, 0.224338 avg loss, 0.000026 rate, 1.139534 seconds, 251776 images, 0.060058 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.821811, GIOU: 0.817294), Class: 0.991305, Obj: 0.864294, No Obj: 0.002492, .5R: 1.000000, .75R: 0.775510, count: 49, class_loss = 0.087469, iou_loss = 0.342208, total_loss = 0.429677 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.828663, GIOU: 0.822438), Class: 0.993438, Obj: 0.837406, No Obj: 0.002563, .5R: 0.994819, .75R: 0.854922, count: 193, class_loss = 0.486425, iou_loss = 13.889367, total_loss = 14.375792 \n",
" total_bbox = 931529, rewritten_bbox = 0.037895 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3935: 0.287138, 0.230618 avg loss, 0.000026 rate, 1.218032 seconds, 251840 images, 0.059667 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.842267, GIOU: 0.831973), Class: 0.998333, Obj: 0.903428, No Obj: 0.002398, .5R: 0.976744, .75R: 0.930233, count: 43, class_loss = 0.053279, iou_loss = 0.448048, total_loss = 0.501327 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833674, GIOU: 0.828978), Class: 0.991321, Obj: 0.868257, No Obj: 0.002990, .5R: 0.991150, .75R: 0.862832, count: 226, class_loss = 0.410982, iou_loss = 20.353416, total_loss = 20.764399 \n",
" total_bbox = 931798, rewritten_bbox = 0.037884 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3936: 0.232308, 0.230787 avg loss, 0.000026 rate, 1.303510 seconds, 251904 images, 0.059290 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863762, GIOU: 0.861382), Class: 0.999479, Obj: 0.943262, No Obj: 0.002683, .5R: 1.000000, .75R: 0.941177, count: 51, class_loss = 0.027685, iou_loss = 0.533920, total_loss = 0.561605 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841528, GIOU: 0.836638), Class: 0.982494, Obj: 0.874605, No Obj: 0.002515, .5R: 0.974227, .75R: 0.891753, count: 194, class_loss = 0.413874, iou_loss = 14.545485, total_loss = 14.959358 \n",
" total_bbox = 932043, rewritten_bbox = 0.037874 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3937: 0.220941, 0.229802 avg loss, 0.000026 rate, 1.243362 seconds, 251968 images, 0.058929 hours left\n",
"Loaded: 0.002872 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848948, GIOU: 0.843611), Class: 0.997097, Obj: 0.849731, No Obj: 0.002089, .5R: 1.000000, .75R: 0.900000, count: 40, class_loss = 0.081404, iou_loss = 0.309549, total_loss = 0.390953 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835061, GIOU: 0.828201), Class: 0.987208, Obj: 0.882166, No Obj: 0.002425, .5R: 0.984127, .75R: 0.873016, count: 189, class_loss = 0.389956, iou_loss = 17.344332, total_loss = 17.734287 \n",
" total_bbox = 932272, rewritten_bbox = 0.037864 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3938: 0.235853, 0.230408 avg loss, 0.000026 rate, 1.274329 seconds, 252032 images, 0.058557 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.808885, GIOU: 0.800788), Class: 0.999096, Obj: 0.846991, No Obj: 0.002054, .5R: 0.975000, .75R: 0.775000, count: 40, class_loss = 0.080564, iou_loss = 0.302724, total_loss = 0.383288 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832717, GIOU: 0.827095), Class: 0.993129, Obj: 0.860571, No Obj: 0.002825, .5R: 0.990476, .75R: 0.871429, count: 210, class_loss = 0.470094, iou_loss = 19.795387, total_loss = 20.265482 \n",
" total_bbox = 932522, rewritten_bbox = 0.037854 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3939: 0.275525, 0.234919 avg loss, 0.000026 rate, 1.125221 seconds, 252096 images, 0.058191 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.853964, GIOU: 0.850036), Class: 0.996966, Obj: 0.850869, No Obj: 0.002845, .5R: 1.000000, .75R: 0.890909, count: 55, class_loss = 0.093034, iou_loss = 0.487222, total_loss = 0.580256 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.856558, GIOU: 0.853344), Class: 0.998435, Obj: 0.887119, No Obj: 0.002617, .5R: 1.000000, .75R: 0.934426, count: 183, class_loss = 0.324079, iou_loss = 13.468099, total_loss = 13.792177 \n",
" total_bbox = 932760, rewritten_bbox = 0.037845 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3940: 0.208715, 0.232299 avg loss, 0.000026 rate, 1.226228 seconds, 252160 images, 0.057800 hours left\n",
"Loaded: 0.000057 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861536, GIOU: 0.859487), Class: 0.998325, Obj: 0.816517, No Obj: 0.002481, .5R: 1.000000, .75R: 0.916667, count: 48, class_loss = 0.107535, iou_loss = 0.419589, total_loss = 0.527124 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.832211, GIOU: 0.827349), Class: 0.984471, Obj: 0.876070, No Obj: 0.002226, .5R: 0.988372, .75R: 0.825581, count: 172, class_loss = 0.377572, iou_loss = 14.238661, total_loss = 14.616233 \n",
" total_bbox = 932980, rewritten_bbox = 0.037836 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3941: 0.242721, 0.233341 avg loss, 0.000026 rate, 1.271704 seconds, 252224 images, 0.057427 hours left\n",
"Loaded: 0.000120 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.863215, GIOU: 0.860275), Class: 0.998052, Obj: 0.895895, No Obj: 0.002664, .5R: 1.000000, .75R: 0.960000, count: 50, class_loss = 0.062938, iou_loss = 0.447448, total_loss = 0.510386 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847934, GIOU: 0.844535), Class: 0.998803, Obj: 0.912927, No Obj: 0.002335, .5R: 1.000000, .75R: 0.899408, count: 169, class_loss = 0.270452, iou_loss = 12.664981, total_loss = 12.935432 \n",
" total_bbox = 933199, rewritten_bbox = 0.037827 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3942: 0.166853, 0.226692 avg loss, 0.000026 rate, 1.235973 seconds, 252288 images, 0.057061 hours left\n",
"Loaded: 0.323788 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.878493, GIOU: 0.876088), Class: 0.999301, Obj: 0.872576, No Obj: 0.002458, .5R: 1.000000, .75R: 1.000000, count: 46, class_loss = 0.075427, iou_loss = 0.444071, total_loss = 0.519498 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840444, GIOU: 0.836612), Class: 0.995946, Obj: 0.897985, No Obj: 0.002552, .5R: 0.994413, .75R: 0.877095, count: 179, class_loss = 0.292398, iou_loss = 14.409123, total_loss = 14.701522 \n",
" total_bbox = 933424, rewritten_bbox = 0.037818 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3943: 0.184066, 0.222430 avg loss, 0.000026 rate, 1.275616 seconds, 252352 images, 0.056689 hours left\n",
"Loaded: 0.026455 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.873712, GIOU: 0.871465), Class: 0.998524, Obj: 0.948200, No Obj: 0.002474, .5R: 1.000000, .75R: 0.937500, count: 48, class_loss = 0.026824, iou_loss = 0.518580, total_loss = 0.545404 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839325, GIOU: 0.834577), Class: 0.994149, Obj: 0.886048, No Obj: 0.002776, .5R: 0.995261, .75R: 0.838863, count: 211, class_loss = 0.367741, iou_loss = 18.366262, total_loss = 18.734003 \n",
" total_bbox = 933683, rewritten_bbox = 0.037914 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3944: 0.197440, 0.219931 avg loss, 0.000026 rate, 1.306523 seconds, 252416 images, 0.056376 hours left\n",
"Loaded: 0.069169 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.843024, GIOU: 0.838411), Class: 0.985895, Obj: 0.854792, No Obj: 0.002246, .5R: 1.000000, .75R: 0.875000, count: 40, class_loss = 0.090639, iou_loss = 0.373591, total_loss = 0.464230 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.856198, GIOU: 0.853388), Class: 0.992270, Obj: 0.900478, No Obj: 0.002395, .5R: 0.988166, .75R: 0.899408, count: 169, class_loss = 0.265644, iou_loss = 14.152810, total_loss = 14.418454 \n",
" total_bbox = 933892, rewritten_bbox = 0.037906 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3945: 0.178306, 0.215768 avg loss, 0.000026 rate, 1.177662 seconds, 252480 images, 0.056019 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852696, GIOU: 0.849611), Class: 0.998966, Obj: 0.868015, No Obj: 0.002524, .5R: 1.000000, .75R: 0.900000, count: 50, class_loss = 0.116789, iou_loss = 0.492747, total_loss = 0.609536 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843272, GIOU: 0.839584), Class: 0.996298, Obj: 0.900351, No Obj: 0.002562, .5R: 0.994681, .75R: 0.882979, count: 188, class_loss = 0.284549, iou_loss = 14.198538, total_loss = 14.483087 \n",
" total_bbox = 934130, rewritten_bbox = 0.037896 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3946: 0.200835, 0.214275 avg loss, 0.000026 rate, 1.200355 seconds, 252544 images, 0.055649 hours left\n",
"Loaded: 0.006539 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.862973, GIOU: 0.861103), Class: 0.998625, Obj: 0.840606, No Obj: 0.001789, .5R: 1.000000, .75R: 1.000000, count: 32, class_loss = 0.073707, iou_loss = 0.319794, total_loss = 0.393501 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842194, GIOU: 0.838471), Class: 0.992926, Obj: 0.878122, No Obj: 0.002413, .5R: 0.994506, .75R: 0.884615, count: 182, class_loss = 0.403655, iou_loss = 15.753766, total_loss = 16.157421 \n",
" total_bbox = 934344, rewritten_bbox = 0.037888 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3947: 0.238843, 0.216732 avg loss, 0.000026 rate, 1.185283 seconds, 252608 images, 0.055273 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850235, GIOU: 0.844867), Class: 0.996612, Obj: 0.866671, No Obj: 0.002577, .5R: 1.000000, .75R: 0.941177, count: 51, class_loss = 0.115895, iou_loss = 0.477220, total_loss = 0.593115 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847233, GIOU: 0.843362), Class: 0.990271, Obj: 0.903201, No Obj: 0.002472, .5R: 1.000000, .75R: 0.912568, count: 183, class_loss = 0.273545, iou_loss = 14.823979, total_loss = 15.097525 \n",
" total_bbox = 934578, rewritten_bbox = 0.037878 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3948: 0.194885, 0.214547 avg loss, 0.000026 rate, 1.258524 seconds, 252672 images, 0.054896 hours left\n",
"Loaded: 0.000043 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.852778, GIOU: 0.849502), Class: 0.996772, Obj: 0.874069, No Obj: 0.002010, .5R: 1.000000, .75R: 0.973684, count: 38, class_loss = 0.068926, iou_loss = 0.313141, total_loss = 0.382067 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.839139, GIOU: 0.834160), Class: 0.995773, Obj: 0.886807, No Obj: 0.002557, .5R: 0.985000, .75R: 0.920000, count: 200, class_loss = 0.392328, iou_loss = 18.442043, total_loss = 18.834372 \n",
" total_bbox = 934816, rewritten_bbox = 0.037975 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3949: 0.230795, 0.216172 avg loss, 0.000026 rate, 1.191781 seconds, 252736 images, 0.054529 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.827954, GIOU: 0.814934), Class: 0.997712, Obj: 0.834418, No Obj: 0.002245, .5R: 0.976744, .75R: 0.860465, count: 43, class_loss = 0.092350, iou_loss = 0.399485, total_loss = 0.491835 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.824396, GIOU: 0.818044), Class: 0.980500, Obj: 0.859020, No Obj: 0.002504, .5R: 0.994924, .75R: 0.852792, count: 197, class_loss = 0.483082, iou_loss = 15.050878, total_loss = 15.533959 \n",
" total_bbox = 935056, rewritten_bbox = 0.037966 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3950: 0.287906, 0.223345 avg loss, 0.000026 rate, 1.223007 seconds, 252800 images, 0.054152 hours left\n",
"Loaded: 0.000052 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.848131, GIOU: 0.843470), Class: 0.979349, Obj: 0.926193, No Obj: 0.001660, .5R: 1.000000, .75R: 0.870968, count: 31, class_loss = 0.060310, iou_loss = 0.284416, total_loss = 0.344726 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848463, GIOU: 0.844666), Class: 0.995956, Obj: 0.923488, No Obj: 0.002343, .5R: 0.994536, .75R: 0.912568, count: 183, class_loss = 0.193819, iou_loss = 17.112665, total_loss = 17.306484 \n",
" total_bbox = 935270, rewritten_bbox = 0.037957 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3951: 0.127230, 0.213734 avg loss, 0.000026 rate, 1.207332 seconds, 252864 images, 0.053781 hours left\n",
"Loaded: 0.000034 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872432, GIOU: 0.868394), Class: 0.984122, Obj: 0.879937, No Obj: 0.002479, .5R: 1.000000, .75R: 0.930233, count: 43, class_loss = 0.098408, iou_loss = 0.437997, total_loss = 0.536405 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.848433, GIOU: 0.844006), Class: 0.997630, Obj: 0.880478, No Obj: 0.002601, .5R: 0.989071, .75R: 0.907104, count: 183, class_loss = 0.368322, iou_loss = 14.539290, total_loss = 14.907613 \n",
" total_bbox = 935496, rewritten_bbox = 0.037948 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3952: 0.233518, 0.215712 avg loss, 0.000026 rate, 1.264470 seconds, 252928 images, 0.053407 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851535, GIOU: 0.847798), Class: 0.999298, Obj: 0.867450, No Obj: 0.001981, .5R: 1.000000, .75R: 0.918919, count: 37, class_loss = 0.077839, iou_loss = 0.327951, total_loss = 0.405789 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.854223, GIOU: 0.850983), Class: 0.997902, Obj: 0.891481, No Obj: 0.002582, .5R: 0.994872, .75R: 0.943590, count: 195, class_loss = 0.281789, iou_loss = 17.064888, total_loss = 17.346676 \n",
" total_bbox = 935728, rewritten_bbox = 0.037938 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3953: 0.179975, 0.212138 avg loss, 0.000026 rate, 1.192704 seconds, 252992 images, 0.053042 hours left\n",
"Loaded: 0.000057 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.837988, GIOU: 0.831448), Class: 0.996427, Obj: 0.828570, No Obj: 0.001873, .5R: 0.970588, .75R: 0.852941, count: 34, class_loss = 0.088497, iou_loss = 0.265167, total_loss = 0.353664 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838171, GIOU: 0.833305), Class: 0.989052, Obj: 0.887288, No Obj: 0.002382, .5R: 0.989130, .75R: 0.880435, count: 184, class_loss = 0.342087, iou_loss = 16.697929, total_loss = 17.040016 \n",
" total_bbox = 935946, rewritten_bbox = 0.037930 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3954: 0.215469, 0.212471 avg loss, 0.000026 rate, 1.400478 seconds, 253056 images, 0.052667 hours left\n",
"Loaded: 0.324212 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864947, GIOU: 0.862303), Class: 0.999599, Obj: 0.918264, No Obj: 0.002065, .5R: 1.000000, .75R: 0.969697, count: 33, class_loss = 0.076071, iou_loss = 0.271862, total_loss = 0.347933 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849708, GIOU: 0.846308), Class: 0.994101, Obj: 0.906814, No Obj: 0.002310, .5R: 0.994012, .75R: 0.934132, count: 167, class_loss = 0.239734, iou_loss = 12.155218, total_loss = 12.394952 \n",
" total_bbox = 936146, rewritten_bbox = 0.037921 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3955: 0.158058, 0.207030 avg loss, 0.000026 rate, 1.185883 seconds, 253120 images, 0.052319 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872739, GIOU: 0.870526), Class: 0.995838, Obj: 0.912488, No Obj: 0.002667, .5R: 1.000000, .75R: 0.893617, count: 47, class_loss = 0.059975, iou_loss = 0.428113, total_loss = 0.488088 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849217, GIOU: 0.843355), Class: 0.992071, Obj: 0.900588, No Obj: 0.002600, .5R: 0.990244, .75R: 0.936585, count: 205, class_loss = 0.280497, iou_loss = 18.800552, total_loss = 19.081049 \n",
" total_bbox = 936398, rewritten_bbox = 0.037911 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3956: 0.170388, 0.203366 avg loss, 0.000026 rate, 1.335813 seconds, 253184 images, 0.051985 hours left\n",
"Loaded: 0.028350 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.826175, GIOU: 0.819816), Class: 0.971610, Obj: 0.778307, No Obj: 0.002125, .5R: 1.000000, .75R: 0.767442, count: 43, class_loss = 0.155016, iou_loss = 0.332081, total_loss = 0.487097 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.840533, GIOU: 0.835914), Class: 0.989046, Obj: 0.876785, No Obj: 0.002440, .5R: 0.994506, .75R: 0.895604, count: 182, class_loss = 0.371660, iou_loss = 15.354113, total_loss = 15.725772 \n",
" total_bbox = 936623, rewritten_bbox = 0.037902 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3957: 0.263520, 0.209381 avg loss, 0.000026 rate, 1.148026 seconds, 253248 images, 0.051628 hours left\n",
"Loaded: 0.170930 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865926, GIOU: 0.863298), Class: 0.995414, Obj: 0.902514, No Obj: 0.002521, .5R: 1.000000, .75R: 0.934783, count: 46, class_loss = 0.052886, iou_loss = 0.399180, total_loss = 0.452066 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.831054, GIOU: 0.825222), Class: 0.992906, Obj: 0.876009, No Obj: 0.002309, .5R: 0.988304, .75R: 0.859649, count: 171, class_loss = 0.288018, iou_loss = 13.042138, total_loss = 13.330156 \n",
" total_bbox = 936840, rewritten_bbox = 0.037893 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3958: 0.170618, 0.205505 avg loss, 0.000026 rate, 1.205603 seconds, 253312 images, 0.051252 hours left\n",
"Loaded: 0.080248 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.828915, GIOU: 0.822052), Class: 0.998718, Obj: 0.810099, No Obj: 0.002088, .5R: 1.000000, .75R: 0.868421, count: 38, class_loss = 0.099882, iou_loss = 0.291543, total_loss = 0.391425 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.824697, GIOU: 0.819523), Class: 0.998526, Obj: 0.874109, No Obj: 0.002551, .5R: 0.984536, .75R: 0.819588, count: 194, class_loss = 0.372236, iou_loss = 18.136950, total_loss = 18.509186 \n",
" total_bbox = 937072, rewritten_bbox = 0.037884 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3959: 0.236248, 0.208579 avg loss, 0.000026 rate, 1.268032 seconds, 253376 images, 0.050900 hours left\n",
"Loaded: 0.000039 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.841274, GIOU: 0.838501), Class: 0.999162, Obj: 0.846226, No Obj: 0.002382, .5R: 1.000000, .75R: 0.883721, count: 43, class_loss = 0.092807, iou_loss = 0.371148, total_loss = 0.463956 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841545, GIOU: 0.837339), Class: 0.998569, Obj: 0.884382, No Obj: 0.002158, .5R: 0.993103, .75R: 0.924138, count: 145, class_loss = 0.291117, iou_loss = 12.437119, total_loss = 12.728236 \n",
" total_bbox = 937260, rewritten_bbox = 0.037876 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3960: 0.192136, 0.206935 avg loss, 0.000026 rate, 1.229741 seconds, 253440 images, 0.050545 hours left\n",
"Loaded: 0.000042 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845304, GIOU: 0.841710), Class: 0.995310, Obj: 0.854907, No Obj: 0.002440, .5R: 1.000000, .75R: 0.936170, count: 47, class_loss = 0.121757, iou_loss = 0.386705, total_loss = 0.508462 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.820673, GIOU: 0.813312), Class: 0.989382, Obj: 0.851122, No Obj: 0.002576, .5R: 0.976303, .75R: 0.819905, count: 211, class_loss = 0.574425, iou_loss = 18.366594, total_loss = 18.941019 \n",
" total_bbox = 937518, rewritten_bbox = 0.037973 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3961: 0.348273, 0.221069 avg loss, 0.000026 rate, 1.189612 seconds, 253504 images, 0.050176 hours left\n",
"Loaded: 0.000081 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869371, GIOU: 0.866753), Class: 0.999499, Obj: 0.946385, No Obj: 0.002433, .5R: 0.978723, .75R: 0.936170, count: 47, class_loss = 0.026167, iou_loss = 0.477314, total_loss = 0.503481 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.857437, GIOU: 0.854279), Class: 0.998120, Obj: 0.911223, No Obj: 0.002286, .5R: 1.000000, .75R: 0.939394, count: 165, class_loss = 0.200193, iou_loss = 13.284540, total_loss = 13.484734 \n",
" total_bbox = 937730, rewritten_bbox = 0.037964 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3962: 0.113329, 0.210295 avg loss, 0.000026 rate, 1.242604 seconds, 253568 images, 0.049803 hours left\n",
"Loaded: 0.116350 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845022, GIOU: 0.842729), Class: 0.988424, Obj: 0.840527, No Obj: 0.002715, .5R: 1.000000, .75R: 0.862745, count: 51, class_loss = 0.135622, iou_loss = 0.531299, total_loss = 0.666921 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849688, GIOU: 0.845985), Class: 0.996828, Obj: 0.901003, No Obj: 0.002613, .5R: 0.994681, .75R: 0.893617, count: 188, class_loss = 0.338194, iou_loss = 13.210505, total_loss = 13.548699 \n",
" total_bbox = 937969, rewritten_bbox = 0.037954 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3963: 0.237075, 0.212973 avg loss, 0.000026 rate, 1.148297 seconds, 253632 images, 0.049436 hours left\n",
"Loaded: 0.000048 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.836000, GIOU: 0.831475), Class: 0.996750, Obj: 0.870921, No Obj: 0.002421, .5R: 1.000000, .75R: 0.775000, count: 40, class_loss = 0.072465, iou_loss = 0.364595, total_loss = 0.437061 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.835762, GIOU: 0.830492), Class: 0.995127, Obj: 0.890616, No Obj: 0.002512, .5R: 0.989011, .75R: 0.873626, count: 182, class_loss = 0.278367, iou_loss = 14.841183, total_loss = 15.119550 \n",
" total_bbox = 938191, rewritten_bbox = 0.037945 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3964: 0.175596, 0.209235 avg loss, 0.000026 rate, 1.333123 seconds, 253696 images, 0.049072 hours left\n",
"Loaded: 0.111257 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846667, GIOU: 0.842585), Class: 0.998844, Obj: 0.855396, No Obj: 0.002251, .5R: 1.000000, .75R: 0.894737, count: 38, class_loss = 0.082248, iou_loss = 0.282499, total_loss = 0.364747 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.833859, GIOU: 0.828886), Class: 0.993158, Obj: 0.877739, No Obj: 0.002445, .5R: 0.984615, .75R: 0.887179, count: 195, class_loss = 0.317180, iou_loss = 18.350935, total_loss = 18.668116 \n",
" total_bbox = 938424, rewritten_bbox = 0.037936 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3965: 0.199889, 0.208300 avg loss, 0.000026 rate, 1.290112 seconds, 253760 images, 0.048715 hours left\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846968, GIOU: 0.841715), Class: 0.975769, Obj: 0.868317, No Obj: 0.001713, .5R: 1.000000, .75R: 0.857143, count: 35, class_loss = 0.058635, iou_loss = 0.248240, total_loss = 0.306874 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.851816, GIOU: 0.847982), Class: 0.995196, Obj: 0.892530, No Obj: 0.001934, .5R: 1.000000, .75R: 0.911765, count: 136, class_loss = 0.265620, iou_loss = 12.084590, total_loss = 12.350210 \n",
" total_bbox = 938595, rewritten_bbox = 0.037929 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3966: 0.162292, 0.203700 avg loss, 0.000026 rate, 1.278629 seconds, 253824 images, 0.048364 hours left\n",
"Loaded: 0.035044 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.854762, GIOU: 0.851312), Class: 0.999166, Obj: 0.943064, No Obj: 0.003270, .5R: 1.000000, .75R: 0.898305, count: 59, class_loss = 0.031792, iou_loss = 0.587271, total_loss = 0.619064 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836976, GIOU: 0.832139), Class: 0.991789, Obj: 0.864034, No Obj: 0.003035, .5R: 0.991342, .75R: 0.861472, count: 231, class_loss = 0.458526, iou_loss = 18.017906, total_loss = 18.476431 \n",
" total_bbox = 938885, rewritten_bbox = 0.037917 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3967: 0.245328, 0.207862 avg loss, 0.000026 rate, 1.337820 seconds, 253888 images, 0.048001 hours left\n",
"Loaded: 0.000055 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845598, GIOU: 0.840523), Class: 0.997578, Obj: 0.885776, No Obj: 0.002326, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.097778, iou_loss = 0.350005, total_loss = 0.447783 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.842258, GIOU: 0.837288), Class: 0.996127, Obj: 0.875353, No Obj: 0.002300, .5R: 0.994220, .75R: 0.913295, count: 173, class_loss = 0.366426, iou_loss = 16.698231, total_loss = 17.064657 \n",
" total_bbox = 939099, rewritten_bbox = 0.037909 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3968: 0.232273, 0.210303 avg loss, 0.000026 rate, 1.265398 seconds, 253952 images, 0.047647 hours left\n",
"Loaded: 0.176442 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861110, GIOU: 0.858766), Class: 0.999538, Obj: 0.937981, No Obj: 0.002842, .5R: 1.000000, .75R: 0.949153, count: 59, class_loss = 0.068023, iou_loss = 0.650303, total_loss = 0.718326 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.849116, GIOU: 0.845484), Class: 0.994537, Obj: 0.912275, No Obj: 0.002616, .5R: 0.994444, .75R: 0.911111, count: 180, class_loss = 0.278998, iou_loss = 10.966314, total_loss = 11.245313 \n",
" total_bbox = 939338, rewritten_bbox = 0.037899 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3969: 0.173669, 0.206640 avg loss, 0.000026 rate, 1.137657 seconds, 254016 images, 0.047283 hours left\n",
"Loaded: 0.244016 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869696, GIOU: 0.868469), Class: 0.999384, Obj: 0.896182, No Obj: 0.001542, .5R: 1.000000, .75R: 0.892857, count: 28, class_loss = 0.034946, iou_loss = 0.200986, total_loss = 0.235932 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.852689, GIOU: 0.849331), Class: 0.997628, Obj: 0.893380, No Obj: 0.002799, .5R: 1.000000, .75R: 0.916667, count: 228, class_loss = 0.337587, iou_loss = 22.514078, total_loss = 22.851665 \n",
" total_bbox = 939594, rewritten_bbox = 0.037889 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3970: 0.186418, 0.204618 avg loss, 0.000026 rate, 1.188865 seconds, 254080 images, 0.046923 hours left\n",
"Loaded: 0.034006 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.875115, GIOU: 0.872403), Class: 0.999576, Obj: 0.941400, No Obj: 0.002271, .5R: 1.000000, .75R: 0.977273, count: 44, class_loss = 0.040170, iou_loss = 0.431693, total_loss = 0.471863 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836821, GIOU: 0.830942), Class: 0.990333, Obj: 0.876652, No Obj: 0.002900, .5R: 0.990698, .75R: 0.893023, count: 215, class_loss = 0.438576, iou_loss = 19.384991, total_loss = 19.823566 \n",
" total_bbox = 939853, rewritten_bbox = 0.037878 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3971: 0.239530, 0.208109 avg loss, 0.000026 rate, 1.299315 seconds, 254144 images, 0.046573 hours left\n",
"Loaded: 0.106411 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855544, GIOU: 0.851819), Class: 0.998693, Obj: 0.884247, No Obj: 0.002447, .5R: 1.000000, .75R: 0.911111, count: 45, class_loss = 0.066359, iou_loss = 0.410871, total_loss = 0.477230 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829538, GIOU: 0.824345), Class: 0.991421, Obj: 0.889917, No Obj: 0.002972, .5R: 0.987180, .75R: 0.837607, count: 234, class_loss = 0.427540, iou_loss = 20.300102, total_loss = 20.727642 \n",
" total_bbox = 940132, rewritten_bbox = 0.037973 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3972: 0.247121, 0.212010 avg loss, 0.000026 rate, 1.286112 seconds, 254208 images, 0.046215 hours left\n",
"Loaded: 0.009373 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.849297, GIOU: 0.844039), Class: 0.997931, Obj: 0.860898, No Obj: 0.002962, .5R: 1.000000, .75R: 0.907407, count: 54, class_loss = 0.110676, iou_loss = 0.517385, total_loss = 0.628061 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830786, GIOU: 0.826482), Class: 0.994882, Obj: 0.856174, No Obj: 0.002893, .5R: 1.000000, .75R: 0.872727, count: 220, class_loss = 0.555240, iou_loss = 17.736488, total_loss = 18.291729 \n",
" total_bbox = 940406, rewritten_bbox = 0.037962 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3973: 0.333133, 0.224123 avg loss, 0.000026 rate, 1.255949 seconds, 254272 images, 0.045861 hours left\n",
"Loaded: 0.000060 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.870961, GIOU: 0.869177), Class: 0.999631, Obj: 0.947729, No Obj: 0.001926, .5R: 1.000000, .75R: 0.968750, count: 32, class_loss = 0.040619, iou_loss = 0.313777, total_loss = 0.354396 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847299, GIOU: 0.843706), Class: 0.997935, Obj: 0.888688, No Obj: 0.003233, .5R: 0.995885, .75R: 0.921811, count: 243, class_loss = 0.418746, iou_loss = 23.290178, total_loss = 23.708925 \n",
" total_bbox = 940681, rewritten_bbox = 0.037951 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3974: 0.229837, 0.224694 avg loss, 0.000026 rate, 1.277249 seconds, 254336 images, 0.045497 hours left\n",
"Loaded: 0.047885 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.857909, GIOU: 0.853779), Class: 0.999238, Obj: 0.933227, No Obj: 0.002225, .5R: 1.000000, .75R: 0.928571, count: 42, class_loss = 0.035406, iou_loss = 0.360288, total_loss = 0.395694 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.838051, GIOU: 0.833247), Class: 0.994451, Obj: 0.898579, No Obj: 0.002738, .5R: 0.995327, .75R: 0.873832, count: 214, class_loss = 0.308363, iou_loss = 19.462065, total_loss = 19.770428 \n",
" total_bbox = 940937, rewritten_bbox = 0.037941 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3975: 0.172051, 0.219430 avg loss, 0.000026 rate, 1.260792 seconds, 254400 images, 0.045135 hours left\n",
"Loaded: 0.047011 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.819192, GIOU: 0.812128), Class: 0.968880, Obj: 0.807226, No Obj: 0.001813, .5R: 1.000000, .75R: 0.800000, count: 35, class_loss = 0.128152, iou_loss = 0.251837, total_loss = 0.379990 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846024, GIOU: 0.841888), Class: 0.995856, Obj: 0.884027, No Obj: 0.002299, .5R: 0.988372, .75R: 0.883721, count: 172, class_loss = 0.297363, iou_loss = 13.600752, total_loss = 13.898115 \n",
" total_bbox = 941144, rewritten_bbox = 0.037933 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3976: 0.212941, 0.218781 avg loss, 0.000026 rate, 1.233503 seconds, 254464 images, 0.044774 hours left\n",
"Loaded: 0.120001 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869214, GIOU: 0.866890), Class: 0.999531, Obj: 0.936693, No Obj: 0.001947, .5R: 1.000000, .75R: 0.944444, count: 36, class_loss = 0.018793, iou_loss = 0.309815, total_loss = 0.328607 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.830345, GIOU: 0.825486), Class: 0.991718, Obj: 0.853181, No Obj: 0.002578, .5R: 0.990244, .75R: 0.848781, count: 205, class_loss = 0.417721, iou_loss = 16.805216, total_loss = 17.222937 \n",
" total_bbox = 941385, rewritten_bbox = 0.037923 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3977: 0.218421, 0.218745 avg loss, 0.000026 rate, 1.199633 seconds, 254528 images, 0.044412 hours left\n",
"Loaded: 0.030818 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850643, GIOU: 0.847758), Class: 0.998605, Obj: 0.921703, No Obj: 0.002329, .5R: 1.000000, .75R: 0.893617, count: 47, class_loss = 0.053594, iou_loss = 0.522683, total_loss = 0.576276 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.857138, GIOU: 0.854290), Class: 0.994711, Obj: 0.898934, No Obj: 0.002561, .5R: 1.000000, .75R: 0.925134, count: 187, class_loss = 0.363147, iou_loss = 13.242004, total_loss = 13.605151 \n",
" total_bbox = 941619, rewritten_bbox = 0.037913 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3978: 0.208530, 0.217723 avg loss, 0.000026 rate, 1.202842 seconds, 254592 images, 0.044052 hours left\n",
"Loaded: 0.034643 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.874333, GIOU: 0.873175), Class: 0.996041, Obj: 0.890429, No Obj: 0.002515, .5R: 1.000000, .75R: 0.942308, count: 52, class_loss = 0.066967, iou_loss = 0.519755, total_loss = 0.586722 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837107, GIOU: 0.832379), Class: 0.996649, Obj: 0.871119, No Obj: 0.002380, .5R: 0.982857, .75R: 0.880000, count: 175, class_loss = 0.317058, iou_loss = 15.571632, total_loss = 15.888691 \n",
" total_bbox = 941846, rewritten_bbox = 0.037904 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3979: 0.192170, 0.215168 avg loss, 0.000026 rate, 1.162818 seconds, 254656 images, 0.043687 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844005, GIOU: 0.837582), Class: 0.994285, Obj: 0.827120, No Obj: 0.002081, .5R: 0.971429, .75R: 0.942857, count: 35, class_loss = 0.071530, iou_loss = 0.204110, total_loss = 0.275640 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.822147, GIOU: 0.813983), Class: 0.994370, Obj: 0.853708, No Obj: 0.002211, .5R: 0.975904, .75R: 0.849398, count: 166, class_loss = 0.464671, iou_loss = 13.399048, total_loss = 13.863719 \n",
" total_bbox = 942047, rewritten_bbox = 0.037896 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3980: 0.268283, 0.220480 avg loss, 0.000026 rate, 1.238801 seconds, 254720 images, 0.043320 hours left\n",
"Loaded: 0.113039 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.856541, GIOU: 0.852859), Class: 0.986594, Obj: 0.896221, No Obj: 0.002423, .5R: 1.000000, .75R: 0.886364, count: 44, class_loss = 0.087480, iou_loss = 0.459286, total_loss = 0.546767 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.855622, GIOU: 0.851939), Class: 0.996045, Obj: 0.893249, No Obj: 0.002652, .5R: 1.000000, .75R: 0.917098, count: 193, class_loss = 0.327684, iou_loss = 17.289867, total_loss = 17.617552 \n",
" total_bbox = 942284, rewritten_bbox = 0.037887 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3981: 0.207740, 0.219206 avg loss, 0.000026 rate, 1.209287 seconds, 254784 images, 0.042956 hours left\n",
"Loaded: 0.000082 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.872560, GIOU: 0.871274), Class: 0.998100, Obj: 0.951203, No Obj: 0.001813, .5R: 1.000000, .75R: 0.969697, count: 33, class_loss = 0.031824, iou_loss = 0.352718, total_loss = 0.384542 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.850738, GIOU: 0.847055), Class: 0.995045, Obj: 0.895288, No Obj: 0.003180, .5R: 0.995798, .75R: 0.928571, count: 238, class_loss = 0.356890, iou_loss = 21.288858, total_loss = 21.645748 \n",
" total_bbox = 942555, rewritten_bbox = 0.037876 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3982: 0.194509, 0.216736 avg loss, 0.000026 rate, 1.178676 seconds, 254848 images, 0.042596 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.859248, GIOU: 0.855270), Class: 0.997135, Obj: 0.877838, No Obj: 0.002869, .5R: 1.000000, .75R: 0.925926, count: 54, class_loss = 0.083714, iou_loss = 0.465230, total_loss = 0.548943 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847824, GIOU: 0.843794), Class: 0.996677, Obj: 0.874651, No Obj: 0.002555, .5R: 0.994506, .75R: 0.884615, count: 182, class_loss = 0.363642, iou_loss = 14.640075, total_loss = 15.003716 \n",
" total_bbox = 942791, rewritten_bbox = 0.037866 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3983: 0.223838, 0.217446 avg loss, 0.000026 rate, 1.378727 seconds, 254912 images, 0.042229 hours left\n",
"Loaded: 0.099096 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.866904, GIOU: 0.864061), Class: 0.994504, Obj: 0.877262, No Obj: 0.002122, .5R: 1.000000, .75R: 0.925000, count: 40, class_loss = 0.071075, iou_loss = 0.389947, total_loss = 0.461021 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.837816, GIOU: 0.834196), Class: 0.992615, Obj: 0.884327, No Obj: 0.002781, .5R: 1.000000, .75R: 0.892857, count: 224, class_loss = 0.381045, iou_loss = 19.853586, total_loss = 20.234631 \n",
" total_bbox = 943055, rewritten_bbox = 0.037856 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3984: 0.226221, 0.218324 avg loss, 0.000026 rate, 1.281513 seconds, 254976 images, 0.041872 hours left\n",
"Loaded: 0.000056 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.869046, GIOU: 0.866223), Class: 0.995964, Obj: 0.886817, No Obj: 0.002204, .5R: 1.000000, .75R: 0.947368, count: 38, class_loss = 0.084396, iou_loss = 0.392133, total_loss = 0.476529 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847025, GIOU: 0.843547), Class: 0.996484, Obj: 0.882629, No Obj: 0.003051, .5R: 1.000000, .75R: 0.884444, count: 225, class_loss = 0.372222, iou_loss = 19.047611, total_loss = 19.419834 \n",
" total_bbox = 943318, rewritten_bbox = 0.037845 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3985: 0.228465, 0.219338 avg loss, 0.000026 rate, 1.263557 seconds, 255040 images, 0.041514 hours left\n",
"Loaded: 0.027154 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.846819, GIOU: 0.841969), Class: 0.999367, Obj: 0.901233, No Obj: 0.002296, .5R: 1.000000, .75R: 0.885714, count: 35, class_loss = 0.033992, iou_loss = 0.296916, total_loss = 0.330908 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.853658, GIOU: 0.850022), Class: 0.996780, Obj: 0.889859, No Obj: 0.002712, .5R: 1.000000, .75R: 0.925373, count: 201, class_loss = 0.353813, iou_loss = 17.190075, total_loss = 17.543888 \n",
" total_bbox = 943554, rewritten_bbox = 0.037836 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3986: 0.194066, 0.216811 avg loss, 0.000026 rate, 1.217474 seconds, 255104 images, 0.041152 hours left\n",
"Loaded: 0.000038 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.867531, GIOU: 0.864563), Class: 0.999014, Obj: 0.938327, No Obj: 0.002634, .5R: 1.000000, .75R: 0.978723, count: 47, class_loss = 0.040434, iou_loss = 0.481677, total_loss = 0.522111 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.841847, GIOU: 0.836729), Class: 0.992980, Obj: 0.868523, No Obj: 0.002663, .5R: 0.990000, .75R: 0.885000, count: 200, class_loss = 0.405861, iou_loss = 16.157900, total_loss = 16.563761 \n",
" total_bbox = 943801, rewritten_bbox = 0.037826 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3987: 0.223307, 0.217460 avg loss, 0.000026 rate, 1.271869 seconds, 255168 images, 0.040789 hours left\n",
"Loaded: 0.013330 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.861637, GIOU: 0.858604), Class: 0.983367, Obj: 0.869046, No Obj: 0.001869, .5R: 0.972222, .75R: 0.944444, count: 36, class_loss = 0.083685, iou_loss = 0.359922, total_loss = 0.443607 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.836061, GIOU: 0.831374), Class: 0.991025, Obj: 0.887422, No Obj: 0.002492, .5R: 0.985437, .75R: 0.898058, count: 206, class_loss = 0.413113, iou_loss = 20.522135, total_loss = 20.935247 \n",
" total_bbox = 944043, rewritten_bbox = 0.037922 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3988: 0.248564, 0.220571 avg loss, 0.000026 rate, 1.276276 seconds, 255232 images, 0.040427 hours left\n",
"Loaded: 0.000040 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.850026, GIOU: 0.846674), Class: 0.994508, Obj: 0.898794, No Obj: 0.002213, .5R: 1.000000, .75R: 0.863636, count: 44, class_loss = 0.044225, iou_loss = 0.398496, total_loss = 0.442721 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.843163, GIOU: 0.839628), Class: 0.989509, Obj: 0.874622, No Obj: 0.002267, .5R: 1.000000, .75R: 0.877193, count: 171, class_loss = 0.353168, iou_loss = 14.391312, total_loss = 14.744480 \n",
" total_bbox = 944258, rewritten_bbox = 0.037913 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3989: 0.198864, 0.218400 avg loss, 0.000026 rate, 1.260196 seconds, 255296 images, 0.040065 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.865282, GIOU: 0.862573), Class: 0.992647, Obj: 0.852301, No Obj: 0.002005, .5R: 1.000000, .75R: 0.914286, count: 35, class_loss = 0.089678, iou_loss = 0.301456, total_loss = 0.391134 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.845467, GIOU: 0.836651), Class: 0.992577, Obj: 0.906100, No Obj: 0.002506, .5R: 0.977778, .75R: 0.922222, count: 180, class_loss = 0.245896, iou_loss = 15.042200, total_loss = 15.288095 \n",
" total_bbox = 944473, rewritten_bbox = 0.037905 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3990: 0.167945, 0.213354 avg loss, 0.000026 rate, 1.201435 seconds, 255360 images, 0.039703 hours left\n",
"Loaded: 0.000036 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.864452, GIOU: 0.862901), Class: 0.999676, Obj: 0.946811, No Obj: 0.002310, .5R: 1.000000, .75R: 0.974359, count: 39, class_loss = 0.017154, iou_loss = 0.478389, total_loss = 0.495543 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847046, GIOU: 0.842594), Class: 0.993637, Obj: 0.885796, No Obj: 0.002791, .5R: 0.995475, .75R: 0.904977, count: 221, class_loss = 0.334318, iou_loss = 20.506361, total_loss = 20.840679 \n",
" total_bbox = 944733, rewritten_bbox = 0.037894 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3991: 0.175894, 0.209608 avg loss, 0.000026 rate, 1.363854 seconds, 255424 images, 0.039340 hours left\n",
"Loaded: 0.336496 seconds - performance bottleneck on CPU or Disk HDD/SSD\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.883361, GIOU: 0.881609), Class: 0.999202, Obj: 0.921898, No Obj: 0.002207, .5R: 1.000000, .75R: 0.950000, count: 40, class_loss = 0.029730, iou_loss = 0.384960, total_loss = 0.414690 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829409, GIOU: 0.823574), Class: 0.991000, Obj: 0.856893, No Obj: 0.001982, .5R: 0.979592, .75R: 0.857143, count: 147, class_loss = 0.343494, iou_loss = 11.516303, total_loss = 11.859797 \n",
" total_bbox = 944920, rewritten_bbox = 0.037993 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3992: 0.186769, 0.207324 avg loss, 0.000026 rate, 1.153317 seconds, 255488 images, 0.038980 hours left\n",
"Loaded: 0.095543 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.844187, GIOU: 0.841730), Class: 0.998735, Obj: 0.907786, No Obj: 0.002492, .5R: 0.975000, .75R: 0.875000, count: 40, class_loss = 0.056050, iou_loss = 0.377674, total_loss = 0.433724 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846735, GIOU: 0.842404), Class: 0.994844, Obj: 0.887284, No Obj: 0.003087, .5R: 0.987234, .75R: 0.902128, count: 235, class_loss = 0.366587, iou_loss = 21.199764, total_loss = 21.566351 \n",
" total_bbox = 945195, rewritten_bbox = 0.037982 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3993: 0.211487, 0.207741 avg loss, 0.000026 rate, 1.147632 seconds, 255552 images, 0.038624 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.855618, GIOU: 0.853293), Class: 0.995538, Obj: 0.861439, No Obj: 0.002658, .5R: 1.000000, .75R: 0.913043, count: 46, class_loss = 0.102876, iou_loss = 0.443802, total_loss = 0.546678 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.847773, GIOU: 0.843303), Class: 0.994869, Obj: 0.863532, No Obj: 0.002215, .5R: 0.987730, .75R: 0.907975, count: 163, class_loss = 0.316426, iou_loss = 11.428655, total_loss = 11.745081 \n",
" total_bbox = 945404, rewritten_bbox = 0.037973 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3994: 0.209813, 0.207948 avg loss, 0.000026 rate, 1.248420 seconds, 255616 images, 0.038262 hours left\n",
"Loaded: 0.000041 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.858951, GIOU: 0.855669), Class: 0.999117, Obj: 0.915181, No Obj: 0.002637, .5R: 1.000000, .75R: 0.914894, count: 47, class_loss = 0.049248, iou_loss = 0.448268, total_loss = 0.497516 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844863, GIOU: 0.840827), Class: 0.987330, Obj: 0.855767, No Obj: 0.002811, .5R: 0.989899, .75R: 0.888889, count: 198, class_loss = 0.443053, iou_loss = 16.326168, total_loss = 16.769222 \n",
" total_bbox = 945649, rewritten_bbox = 0.037963 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3995: 0.246312, 0.211784 avg loss, 0.000026 rate, 1.242453 seconds, 255680 images, 0.037900 hours left\n",
"Loaded: 0.000045 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.829058, GIOU: 0.824767), Class: 0.998917, Obj: 0.858234, No Obj: 0.002337, .5R: 1.000000, .75R: 0.844444, count: 45, class_loss = 0.115645, iou_loss = 0.338915, total_loss = 0.454560 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.823841, GIOU: 0.818015), Class: 0.994668, Obj: 0.847317, No Obj: 0.002812, .5R: 0.977477, .75R: 0.815315, count: 222, class_loss = 0.480417, iou_loss = 18.998669, total_loss = 19.479086 \n",
" total_bbox = 945916, rewritten_bbox = 0.037953 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3996: 0.298221, 0.220428 avg loss, 0.000026 rate, 1.180209 seconds, 255744 images, 0.037538 hours left\n",
"Loaded: 0.000033 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.831707, GIOU: 0.828239), Class: 0.998872, Obj: 0.855491, No Obj: 0.002132, .5R: 1.000000, .75R: 0.813953, count: 43, class_loss = 0.091510, iou_loss = 0.422183, total_loss = 0.513694 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.829316, GIOU: 0.823123), Class: 0.983530, Obj: 0.834558, No Obj: 0.002651, .5R: 0.985849, .75R: 0.849057, count: 212, class_loss = 0.519232, iou_loss = 17.319330, total_loss = 17.838562 \n",
" total_bbox = 946171, rewritten_bbox = 0.037942 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3997: 0.305556, 0.228941 avg loss, 0.000026 rate, 1.221064 seconds, 255808 images, 0.037176 hours left\n",
"Loaded: 0.033664 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.851358, GIOU: 0.848449), Class: 0.998725, Obj: 0.896800, No Obj: 0.002348, .5R: 1.000000, .75R: 0.926829, count: 41, class_loss = 0.064095, iou_loss = 0.379672, total_loss = 0.443767 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.844146, GIOU: 0.840189), Class: 0.995627, Obj: 0.905547, No Obj: 0.002385, .5R: 1.000000, .75R: 0.905028, count: 179, class_loss = 0.313135, iou_loss = 15.225773, total_loss = 15.538908 \n",
" total_bbox = 946391, rewritten_bbox = 0.037934 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3998: 0.188782, 0.224925 avg loss, 0.000026 rate, 1.284134 seconds, 255872 images, 0.036814 hours left\n",
"Loaded: 0.000046 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.847405, GIOU: 0.843760), Class: 0.996289, Obj: 0.852014, No Obj: 0.001789, .5R: 1.000000, .75R: 0.909091, count: 33, class_loss = 0.079803, iou_loss = 0.221541, total_loss = 0.301344 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.855498, GIOU: 0.851844), Class: 0.994437, Obj: 0.894481, No Obj: 0.002570, .5R: 1.000000, .75R: 0.929648, count: 199, class_loss = 0.316556, iou_loss = 19.052393, total_loss = 19.368948 \n",
" total_bbox = 946623, rewritten_bbox = 0.037924 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 3999: 0.198342, 0.222267 avg loss, 0.000026 rate, 1.263770 seconds, 255936 images, 0.036453 hours left\n",
"Loaded: 0.000064 seconds\n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 30 Avg (IOU: 0.845111, GIOU: 0.839183), Class: 0.983529, Obj: 0.849793, No Obj: 0.002227, .5R: 1.000000, .75R: 0.928571, count: 42, class_loss = 0.099385, iou_loss = 0.433864, total_loss = 0.533250 \n",
"v3 (iou loss, Normalizer: (iou: 0.07, cls: 1.00) Region 37 Avg (IOU: 0.846412, GIOU: 0.842028), Class: 0.992369, Obj: 0.866832, No Obj: 0.003276, .5R: 0.988417, .75R: 0.903475, count: 259, class_loss = 0.508512, iou_loss = 21.737629, total_loss = 22.246140 \n",
" total_bbox = 946924, rewritten_bbox = 0.037912 % \n",
"\n",
" (next mAP calculation at 4000 iterations) \n",
" Last accuracy [email protected] = 57.95 %, best = 58.96 % \n",
" 4000: 0.304117, 0.230452 avg loss, 0.000026 rate, 1.100409 seconds, 256000 images, 0.036092 hours left\n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 350, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 68.26% \t (TP = 162, FP = 7) \n",
"class_id = 1, name = no mask, ap = 47.65% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.95, recall = 0.60, F1-score = 0.73 \n",
" for conf_thresh = 0.25, TP = 180, FP = 10, FN = 120, average IoU = 78.20 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.579528, or 57.95 % \n",
"Total Detection Time: 2 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n",
"\n",
" mean_average_precision ([email protected]) = 0.579528 \n",
"Saving weights to backup//yolov4-tiny_4000.weights\n",
"Saving weights to backup//yolov4-tiny_last.weights\n",
"Saving weights to backup//yolov4-tiny_final.weights\n",
"If you want to train from the beginning, then use flag in the end of training command: -clear \n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "A4WjyX8OlFSC",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 575
},
"outputId": "41beeeeb-cbe4-464e-d40a-95f12552599d"
},
"source": [
"imShow(\"chart_yolov4-tiny.png\")"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAIuCAYAAACYSoPfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e9QtV1Un+qvaz+99XslJchICAfKAJMTAQUw0YGweUWmure1A8OJVu2HwEsS+itxuhojpIYMh0nIvNo6WQWsrPXSA3HtFuTxCSCCBSJBgREJCQpKT5CTn9e333rWrat0/dmZ9s2bNVbVq7+9LvkNqjpGRc9apVb85Z/3mrNpVv1rlGWNQWWWVVVZZZZVVdjqY/2Q7UFlllVVWWWWVVeZq1YVLZZVVVllllVV22lh14VJZZZVVVllllZ02Vl24VFZZZZVVVlllp41VFy6VVVZZZZVVVtlpY9WFS2WVVVZZZZVVdtpY0YWLWeg/Y7L/RZHBdGoQBAZxvDUehrN/MzMbj2Lzpjca43vGeJ4xnodt+e+882Buv32GCsDEcWxOnTplzOy9cAPARFGUGQvD0HQ6ndSYMcZsbm6aMAxTY6dOnTJxHKdycc8995hvf/vbqbHBYGDG43FqbrfbNUEQpLbTsIMgML1eL+OPxKYxvp0WszHG9Hq9FLYxxnQ6nVR8AMzRo0fNbbfdlpo/Ho/NYDDIxDcajVJjGnYYhmZzczPjj8SmWKIoKsz3cDhMYVN8k8kktV2v1zM33nhjCns6nZput5uJr9/vp+Zq2Fp8hMOxKb7pdJrhE48PgJlMJhns4XBohsNhZrvPf/7zqflRFGVyO51OrVwuyq0tvn6/78RlDXsymWS4HEWR+fznP5/ap2utathardqwR6ORE5dtfULj8k033WQ6nc5cXJbYFJ/ksoYdBMG2ctkYY77+9a+bhx9+uJDLMj4btsZl1z5h47Jrbr/zne+Y7373u6VrtYjL88Rn47KtT3Aua/Viw5a1asN2rdXt7hPGGPP3f//3BjlWz/tHZ5NrwXje1p9vuw3Ytw941rOA8Rj4m78BvvUtoFYDzjoL+LmfAxoN4K//GhgMgMsuA5aX0XjgQRx+zotw6tVnYmVlhYAQhlP4fh2+7ydj02mAer0Bz9u6DovjCHEco16vA5j5E0UhzjjD4LzzGtsSdmWVVVZZZZVV9sRa+QuXOAYeewwYjWYXH+Mx8IxnzMY6ndkFSuPxC4NOB3jf+4BLLgF+53eAen029vd/D7z3vcAnPgF873vAFVcAd90FfOc7wJEjwK23wv83/wY/9BPPwk+8qo5zz11N4AeDMVqtJdTrWxcpvd4Iy8s11GpbY9NpiOk0wPLy1tzJZApjYiwtVRculVVWWWWVVXY6WvkLlzCcXXD8xV8Az3nO7ELk2c8Gul3g6FHgxS8G3vCG2cXLP/8zsLkJ3HAD8MY3AocOze6yrKwAF188++9rXwN+9VdnFy2vfjXQ6cA7eBB461uB734XAEA3V4yZ/ed5+WNkNM5vAAGe+Htlp5N51cGrrLLKKntKW/kLl0YDeO5zgZMngX/374B+H3jLW4D/+l+BZhP4jd8AXvYy4JnPnN1ZOXwY+Lu/A266CfiFX5jt48gR4Hd/F5hMgN/6rdn+/tN/Aj75ydmFzqteNbsQMgZRFCEIggQ+iiJMp1MY9niKxuI4TsbCMEzG+ZgxJrU/wzDopBjHMeI4To1FUZTZn4ZtjEnm+uxKiuZz7DAMEcdxZjsNQ45Pp1OEYZga07Bd4yN/fHH1p+XW5g/tk28nxxbNLY1FUZQZk7F4npfxh8al35InGnfCMFS5w7HjOM7km8eijWlcpvjIR4kdhiEAZMbkfM0fLT7CDoIAtVotFV8Rn2iu9IfyzY1jU9zaGHE5DENMJpOMj/wYSI55nuecWzqutK3neUldBkGQGvN9PxmzYXN+S3/oGNJ84h3PkTwuGjbfHzcNW+aW9kd51PLDcyvzTdh8Ps837xMyPg2bxqhWeW4lNucy91k71q65jaIoOSfIWDzPy41PYnuel/BLxgdAzXcZLkts2QdlveTFJ/3RsLXcynqRscieoMXCsbVa9TwvFatm82lcajVgdRU4cGB2W2NpCTj77NljpOFw9hjpoYeAO++cXcCcfTbw6U8D//pfz7Y/99zZo6MzzwTW1mbzbrhh9rjoqquAD38Y2NiAue46TFdWUo2LSM6bj2yutF0URam5nGBkVCCTySQZN8ZkThRaE83D1i4K5Hx5EuVjsgFoDVzzR2K7xmfDpu14fNQQtNzKMRmfLbfyWNmwXeKzYdOFK4+Pir8otxqfbLmVBcuxtWKXXJ5MJk5cBpDhmHaRqjV7Vy7L/eXlO47jVHy2WtVyK8d4HuXJjGNTbbhw2VarLlzWajWvT0h/qDnTPvncotza+gTh5WFr+aZjxfOQx2XNHx4LjfGLXhqTXNawbX1CO9a2Cxetd3DsvFh838/EYqtVHp+G7VqrZbhsw7b9oOB+a+c86nnyQs+FO0W16tInJLatVvNsvkdFd945u9Py3e/OtC3D4WxsOp1pXr7+deDBB2d3VF7/+tnjoP/8n4G/+ivg/vtnFzadzuyiBphdsNx55+zx0D/90+ziJo7hxTHaS0tYXd3SqRhjsLS09LjodivIlZWV1IENggBBEKTmjsfjZD7fXxRFWFtbS8bolwufS4nkYzbsMAyxurqaOmDtdhue56XmD4dD1Go1tFqtlD/tdhuNxpYOR8OmxiH90bBlfBSznAsArVYrhR3HcSa+4XCIVquVmj+ZTBBFEZaXl1Pb+b6Pdrudi01Elv5o2JRveXKVMY9GI3iel8IGgGaziWazmRnj2GEYYjQaZeILw5AJxXXsvNxK7DiOsby8nOHy6upqKr4gCDCdTlPYo9EIAFJcDoIAzWYzlR+6mJDxSS7asCWftHoBZk25Xq9nuCxrVcPWajWOYzQaDSwvLyf7dK1V2larI9c+QceGTOMynUhduNxsNrEkepkrlzVs2ifnk4Y9nU4xHo8X4rI81q1WC+12O3O8JJeJOzw+DVurVQ1biy8MQwyHQycua7lttVrwfV89XkW1qmFrfNJq1cZlWx/U+gTnslYvgH7O02pVqyPXWiV/FukTslb5nzUrf+Hi+8DLXw4873nA058OBAFw4YXAeefN7px87GOzOymDAfBTPzXTtLz0pTPR7oEDwI/8CHDddcD552/t82lPA37t14Dl5ZlG5tAhYGMDePRRgF0t8qu0vDFp2fEtnYttPr9tZdtfGX/m3V9xLOX9WWSsyM88/4rmuvgj87jI/qRPRb67xLJofC5zi8bmmb8oJ2zbyV972+3jIrEUYW9Xvncit3mcdfV9Hi5vdywcf54+oY0t0ids+8vbThuftw+6+F0mljK9zXWfLv5sV63abL4Ll2c8Y/YfmbwIkba+PruAsRm/8m80ZqJdYHY3ZxvNmNmNnec9bybHsRy3ynax2Yqtssoqq6yyp4aVvnB5fGUaxP0+TBzDq9dR29iYCWk7HZjpFPX9+wHfn62e4s0ETtq/m/EY8XCI2vo6UKvBhOHsDkuzmZygptNpcquN/u77fkp0Rc/cpJiSbpM+7gbuucfgzW+u4X3vG+Oqqwzowi4Mw2Q7YOs2Fx+jZ4B8zIZNcykGz/NS/tAVpe15Hz12ycOW8dmwXeMjf2gfefFxjQuPJY7jzLHSflktklsak/HJZ9xSY8Tj489SSWPCYyE9AveHjhWPT8Mm7YIWi8SmuZLL4/E4owGQ2BQLH+PPn/mvF+kPPbvWfJTYNJbHJ/JH07hoGh4XLtue2btyWcN26RPAlnBQ6zvcXLlM9R8EQeZ4uXDZptfyPF0LV3SsF+Gy580EqLIva1zO0zjwuVSrfEzDdo3Phi25TLHUarVMLFILZ4vPJbc2bWUZLmt9gnO5rMZF1qqG7VqrWm75GDdbn+DnPM9L6+I0K3/HxRic+J//E8f/x/+A5/tYv/ZanPXrv47ezTfj2Mc+BoQh1n/8x3Hgl34JHj2nMgbdG2/EsY9+FACw/pKXYN/P/AyOfexj6P/DP6B56BBaF1yA8d1348BrXoOVw4cfn2YyBKK/SxJIFTIlh4+fd16A//JfGrj0Ug+UFxuGHKNngBLHhi19JH/kBQn/fxlsLT4bti2Htlg0bIlB2xIBbT76vl+IXRSL5qOML4qizJhL3LbjUiZnHFvDteXHlcs2v/n/pd+0Ty0WW77zxoriy+OOVgdF/nAcGqcxmW8bR+ftE675LsNlbVtbbiWXF6kj195hy63cznv8h6jLsab98Qu+omOdN1aWyxI7r95c+1YRl8twp2xdFvX07eatK3c0H21cdsUuelxU+sIlHo3Q+/KX4TUaqC0vY+2aaxCdOoWjf/AH2PPKV2LpkkvwwDvfiZXDh7H8vOfBAxB1Ojj6h3+IPdddh/ZFF+HIu9+N5jnnYHTXXaitr6Nx4AB6X/wili69FEuXXppgeZ6XiA0pmCiKsLS0lIh3jDGYTqcZEeBkMkEQBFheXk4S5/s+rrjCpER3cTx7bY5vR1eafCwMZ69I8jEN2xiT4PKiITGSFMTVarVElEbxtdvtlDBMww6CAJPJJOOPxOZj/GQmYybitFqtBJt+Fcjc9no9NBoNLC0tJfPH43EiGOPm+35KGKZhkxJf+iOxeb75K7tavj3Pg+d5CTbF12w2M6I0ErXxu3wAUmPj8Ri1Wi0Vn4atxUfjHJvHJ7m8vLycEpDSLyuOTfvmXJ5MJslxofn05oOMzxijcpljl4nPGIN6vV7IZQ1bq9UoipL90T4Je2VlJbWdxmWJXaZPjEYjxHFcyGUN28blRqOBdrud6mVBEGS4TPuTd3c4to3LGja9JSK5LAWyGratTxAuj0XjMuWVc1nD1rjs2idsXJbYtj7RbDbh+37KH5datWETn+aJTzvv5PUJzmWtXmzYslZt2K61mtcneK1q2LZa5TWqWbkLF2NgRiPE/T7WXvQimMkEj7z//Xja+9+P5SuuwMlPfAKNAwfQPOsstM49dyspgwGCRx7BygtegMY558Cr12HiGAde/WpMH30U8XCI5SuvxFm/9mvw2cnwybSiK74ne39PVduJPFbHprLTzSrOVvZUttJfh/ZXVnDoXe/C2f/hP+Dg296G8NQp9G+5BcGDD2L50kux8vznI+x2EZ46BcQxTBTNVLHCPN/H2otfDG9pCePvfx+rhw+j+/nPwzANSGWVVVZZZZVVVhm30o+Kom4XRz/8YRx47WtRW10Fogj+ygrCxx7DxitegaVnPxsnP/UphCdOYHz33QhPnMD6tdeiceaZGP7jP6I9HMJMp2iedx66X/gCejffjP2vfjWO/emfwms2gVoNe376p1OY9LyM/1k+YwOyz/Fc5tq2s83lY3wfeXoB+dyvKBbb88tF/cmLLy8/tv0BWzkvE8si/uTFp+HM64+WWxvv+LgtFle/bT66cF7b1sadeX3Mm6v5Yxtz5TKfXyaWstxx7RM7zWVXbJmbMv7k1UbRsSaNiw17nro0xmSExkUcnYfLZetokV42b093jcXm93bGIv3MG5P7zKtp17rMs9IXLvX9+7H/538eJ//6rxGeOIF9P/uz2HPddaitreHYRz+KTQAHfvEXsXTppdj827/F9Ngx+MvLOPsd78CxP/1TdG++GQde9zo0Dh7E4BvfwNnveAf81VW0n/EMTE+cwBK9Cv14MIPBAJubm8lYEATJaodkk8kkI16iZ/tSiW1Mesl/ABnlszEmo+ynZ3byIGjY9OYQHxsOhwiCIBULvS0g32iQqyRq2BSfVF9r2C7x2bBJ7c3zPRgMMB6P0el0Ep8ot/LtI8/zMm8qSGw6JlpuJTa9/ZMXnw2bYuPxjUYjTCYTdLvdVNMhXRFZFEXJODeZ77zcSmx6U8CFyxKb/qwth9/tdjPPnzudTrId8Uk2Clcu2/Lt+35mcTf5No6GbePyZDJBr9dLaZwmk0kqlrx8a7mVfNKw87gs3wJx6RPEw8FgkBrXckvxybdA5u0TxJui+DRsLT7yYzAYpI6Da60Sl7erT+Rx2SW3tLgfj8W1VvO4rNWqXN5f47KsVRu2VquyXghbnvOoJiWXbX1invOOFh9hF3HZ87zMOVpa6QsXr1bD2jXXYPmKK2CCAPW9e4F6HevXXouVK6+ECUPU9+0DajXs+7f/FjAGqNVm//78589eh963D/B9HHjta2efDwBw8G1vgwlD+CsroEPheR5WVlawZ8+eBL/b7WaESt1uF6urq6qgUa5gaExWnAsAGxsbKZFUr9dLjdEqievr68lcDZsO8vr6eopoJ06cQK1WS8UyGAxS4lxgJnzlAlnCHgwG2NjYSMZInCtXxJXYNMZjieMY3W43NWbD7nQ6WFlZyQga2+12yh9NnDscDlMCWRt2FEXo9/tYX19P+dPtdlMrRhpj0Ol0sLa2VphvDbvf76PRaKQEjbRyMcemVz35sdb4pGHbcqthL8plQF85d319PSXOlbldhMtavQAzLssVMXu9XmZFTA1b4zIJxdfW1pJ9xnGMTqdTWKsaNsUnuaxha31Cq1VbnxgMBql8G2OSlWYpblutGmOwZ8+eTG7L9AmOrcWn1aqGbeMyiYx5L5N9QqtVG/YifUKrVVufMMZgY2Mj1SdIUMpjcalVG3aZ844rl136hFYvNuyyXJ73vLO5uan2iSIuG2Myq5tLK3fh4m29/15nB5r+rb5vH0Uy+z8jLIDZHC685W+BiOWs07veagD0togm4OVj2p/l/+WYtl3eHBu2nGsbk7Hw27Hadi6+uWBr+9Bym5dv275cYnbx0ZYL17EyudXyYzvutmOfl9tF43PlvLZtnj958+eJj/+7vOOgWV6Natvx2Iq4XDY++X/5a32R3mGL2TUPcswWnwt/bRh5/671BOmPay9y8cuGre1Tm5OHPU8dFPUOLYYyvrhweV4+2ebmHZd5jpfmty3fZeKzWeGFizEGBsA0DlH3fPge0/N6AB6voUk8RcOrwff8jFMGQBBN0fBr8B/XA4fx7Lbi48vUwcDAQznnK6usssoqq6yyp5blXrgYYzCJp/jb738Ntz12F85a3otnbxzCS8+9Eq3a7LZVEIf4v79/K245+m2ct3IGXnfRT+BAe+v2UBCH+H++fytueeTbOHftDLzuwn+FwXSEv7j7BtT9Gi7ffwFiY9ALhviZC65O9st94M/TSMQjx7TtpOCHFrpx2Y7/n8+1Cdo0H/nVJMfhWgrP8wrj07Dz/OEYfCwv5rzc2vLN9xHH8dzHpYw/hFUUsy230h/XY63N1bC3I7dyro23AJw5Xybf88ZnO9bzHH/OMZrvGl8eto2jRcfaxh2X3lE2P1r92rg3T5/Q+KRha7nhvawoFtc85NVqEU9s+bZhu+TWtVZdc1umVvNiycu3Vi958bn0wXl69Xb2wTzLvXCJjcHHv/tF/NX3voT//YqfxxcfvgMf+edP4+qznovudIi1xhJuP3Y3/vCbf413Pf81+PjdX8Q4muCdV74atcfvpHzj2N34wzs+gXdd+Rr8+Xc/jyiO4Hs+jo07+PbJB3B83MWXH74Tv3HFz6Hupx8tGTNbdrvb7SZjNtGdMboITIrSAKiiNI5hjElEjnJMJlTDDoIAvV4v+bvnzcRItE/aB4mkpIBUxqdha6I7DVuLj7bTxqSYUhOBDYfDjKDVVUCqYWv5tmHbRHcyZk0QN51OM4JGEuf2er0kljLiXA1byzdhS1FaGUFjkeCPxLn9fj8Z03JL+3Lhcpn4pODPlcs2wR/FIvVVLtxx7ROu4lWtVl37hOfp4lwppCYfZb5tfULWat6x3i4uUy+TfbmsOLeIyxq2a3w2bBkfxeL7fqr+XWtVq6O888488dE8Fy5r9aKd8/LEuTK3LmJv8qdMn8g753melzlHS8u9cBmGY3zq+7fglU//Ebzk0OW4aO95+Mz9/4AH+o/hI//8abz8aS/AkcExHFo9E9ce+iF8r/sIvnr0OxiFE6w2lmAA3PTInbhg/Ry85NDleGR4An93/2149+FfxMfvvhGvf+5P4l9OPoA3XfpKvOoZVyWPjcg8z8Py8nJKOKUJ/jqdTkbQ6Pq5ejoomniV42qiQhv25uZmRix6/Phx1Gq1lNBpOBwm4tC8+KIoSkR3ZPS9CPnZcIntGp8NmwSNUiwqxbnUuHhuSbHPhVgaNonu+P4IW37OnUR3efHZsPv9fuZz9ZR/jq3llpT9UtAosWlM5lbDtsWniXMltk2cS0JjLqYl0R1ZWS5r8W23OFfWqiY2XJTLi/SJRbksxbmU26JatWFr4lwNexEu08WAzG273c70ZY3LWh/UsG3iXIlti08KZDVsW26Xlpbg+35qnzZxroxP47KrkL4MlzVhsORyWXGurFXXc55WL4B7vl37xELi3NDE6AdjnNHegAcP5yzvwy9d/FL0piP8rxf9K5yzsh/f6z6S0qZM4zC5TQQYjKNgpnuBh5rnYxpNcdGe8/B/PP8X8OE7/1+sNZZxyb6nYXPSx4H2OgwAqXLJE/LIXzaaaaIoMm2f2lxNnKRhu+4vL74ysbhiFwna+NX7vP4UxZf3Z80f6fcWr8qLHG2xuArR8nx2wXHZznb8bGI4F39cx1xry5Xf83BnHh9dsXeCy2X9LuPPE5HbormL9Iky8RXV3Xb0ZRu2bWzec4xrrZblchl/8mLJ267MPl19XLRWbZa7cm671sAzN87GLY9+G8Nwgvv7j+GGh74JwGAUTuABOLi0B51JD4PpCJuTPva2VjGOpvjiQ3fgwf4xPG3lTJwYd9CbjvDw4CT2L28gjCN89F8+gyiOce7qAfzpv/x/+NA/fQq96bDQ4coqq6yyyiqr7KlrBRcuTfza5f8Ljg5P4T/e9jH84R2fRNOv49HhJv78u1/A7cfuwY+efSk2Wqv4j7f9d3z92N34+We9GCfGXfz3uz6Hbx6/Fy8970qs1Ft479f/Al8+eif+t4tejjtO3ItpHOGtl78Kzdrspo/n+bBdZ/Ff2i5jRdu6bKf9yl/EH7k/zZ95Ynmix+RzVZfcbmcsLselbG7LHOt5YnH1x3XuTuV2O30k8zxvV/hY5Le27W7Ity23ef3EFWc3xMLj2Q19omzvsG07L3eejPPOk83lvDGbFb4O/dy95+OPfvRNuK97FAeWNnD+6pmIEeMPrno9luotLNWa+L+ueSvu7z2K/e11nL96EAYGH7j6DViut9CuNfF/XvNWfK/zMM5c2oPz1w5iHAV44ZkXoenX8YrzDuM5e8/HvvYa1hvLKWxjDMbjMfr9fhIQCTb5c9MgCDAYDFInVFq9kCeC/i5FaVLQaozJiI3iOFaFrxo2bcdvG47HY0wmk1QsQRDA9/2UaIu0InJFTImtxadh2+KziXjDMMzoK4wxqXyToJXHQgI5LtqiVRK50ErDzvNHYk8mk8ztRylItWFTfFwYNhqNkvkUC4nSuFF8UgSoYdt4IrFd4yPhKscm/ziXSZw7GAySsbJc7vf7hbm1zdW4LGu1LJdpxWkbdh53Fu0TnMsUXxGXtfg8z0ti0XLrkm+JrXE5L7fcXLmsxed5M6HxeDxOjWtc1uLTsCmuefqEjcsufYL6su/7mb7sUqu2fEdRlOKTVquEU3TesWHbzjuyXjRsrVZdc7vIeceGLc95sm9rlnvh4nkeDAwOtNdxoE0CHQ8+fOxprCfrx53R3sAZ7Q36Z3jwsf9xvYr27yv+lsis4dfxzPWzEzyJL0VSURSh2WxmRFKtVit1YOnExQVtRAA+Zszs7YFWq5Xgk3JariwYx3FqjLCbzWbqZD+dTtFut1Px1Ov1REDFsWu1WkZg12q1UvFp2HRgpT8UCxdJkWgzLz6eWymmbLVaqfgajUZGYEWqe7lPz/MyMWu51eZq2Fp88vjZsOM4RqPRyAifpUCaCpP7o8WnYdOYjMWGLbks4yNsyWX6hSo5QXzi4lxXLmvYtvhkvm1clvHZuCzjM2b2aXsuaJ6Hy7JPaLXq2id838/wyTW3lBsZd1Gt5mFrfJLYdMJy4bJrbuv1OhqNRganqFZt2IBbn9D80Wq1TG4bjYaaW+Iez63GJ61PuNTqolzW4pP1kocta9WVy1q9lMm36zmvJhavlVZ4x8WbXYkkFobAl78M3HEHcM01wBVXUHIA8o9fjHkeYPgO2HaPAwAZOe6W8SApaF6wVNT1ej0VuDEmKW5KHF0JywPm+z6azWZqO9/3U3PDMEQQBKkxwqYTuRzjBUvfvuDY/ETD45NFo2GT75o//MTFicILZDQaZeZSQ9LyLUlF43yfnudl4iN/ZL5lbieTScYfic3H+FLeWr7DMEz5Y8vtZDLJ+ON5HsIwzMQHpNXuGrYWH+FwbD6Xc1nGR+MSm05I0h85ny7MuD/EO1u+83Kr1Qswa9gyPi3fNmytVqmuaX4cxxkua7WqYWu1mocdx3Ehl219wsZlmz8835QbefHIsXnPk5yQ2DTuwmWJbesTspfx+GRfllzWsDUu2/qE5A79Orf15aLc1mq1zHGlHObVah62PMfY4nPlsq1P8HOeVi82bFmrNmzXWtXOO1p8GnZebeRZ/r8q5nnAQw8BH/4wQHfdjJn998gjwPe/P7u4mTkPPPoocOQIQHdd4xg4enS2jyhKX+RUVlmRuT4Drayyyiqr7AfTSn9k0feB888H1teBs2dPeGAM8Ld/C/z5n88uRl78YuDf/3vg058GPvMZ4NQp4GUvA37pl4BPfAL44heBzU3gla8EXvtaoNHIx9ROVq5j2rjLdnmvZj1ZY67bcpGT/H/en7fDn+2ORY7txHEps8/tjGWnxnabP6eDj9r4Ex1LmbosenX0qc7lJ7J/a+Pzzn2yzztPJnaZH6WlL1xmAFt/jqLZXZYPfQj45V8GLr4YeMtbgMOHgdtvn/3b2WcDgwEQBMBXvwo8+CBw8CDQ683m2y5cjMmunOsqIKXV/VxEYNrn3MfjceaxjFz50IZNKwby+STOlasAy1UEtfg0bBJJaStGcpEUxcf94WNyLt0e5H5LkeNwOMR4PE7NJ1+4CIzyLEVgEpvik/5o2LTaY158NuzJZJLcquSxSH9sgpRcbeAAACAASURBVE1tWWpbbjmfbNhafDYua8Jn/n/aTh5/LbeuXC4T3zxcpvxy8THPOYkp+QqfhC395mMkIJWrceatnMuxXVfO1bCN2VqBlPZH2HLl3DKrjdI++P5o8bU8bL66K8+3beVcrSfI3I7HYwyHwwSHxrRVrmVdll05tyi3XEjPczsejzPHWlsFeDQawff9VCxUq1wsSl+1luJcia1xuUx8kl8ato3LWr3YVhDXVs615ZvHp9WLllstPg3bVqtaf+I214XLVmCzi5M//mOg0wEOHdq6CzMaAT/908DqKvCtbwF33jnb/md/FrjppplG5s47tx4haUaCLbnCY7vdTp0AaJVLuSLmdDpNzSUyyxUMo2j2mXXe7OM4Ts2lkwYfs2HTCrKc5CT+4vM9z8sIQwFkBLIaNi1LLf2R2K7x2bC1+AaDAZrNZmq+tnIuNQUpfNvO3GrxEbYmIuPPrml+o9FIYYdhiPF4nBqjNw3kqssS2xiTxCfFwhq25DLtTwoaJTYVvhTONRqNVH6owcj4gGy+KbdcFyBjseXb87zMc3MtPg1bq1V6jr68vJx69m3jslzJ0xiDVqtVyGWtjuiNJN4n8rjMsW1cbjQaWFpayqwO7MpliQ2494nJZFJYq7bcav6QyFger6WlpUxflly29QlZqxo2aRSLalXDtuWWBKXa8XLhstYnFjnvGGNULmt9gnNZqxcbtrZiu4at1apWLxSLC5c1bK1WGwWPYUpfuEQRcNdds8c/f/mXwL33zjQtP/mTwH/7b8CBA8CzngVceinw0Y8C998/+/NgMLtwueEG4LHHgMsum+1L9PaMkeCIAvR9PxHz0BhdAMgDS8JESlytVoMxBrVaPcGlX7z1ej1VILRPnnTC5k1cYtNYvV5PFaznealYyB+XWDRs8lvzh2NTznh89MtIztVyK8fIF4lNJNe2k81My21Zf6SAlER2PLeUi7xYaDsbNo9PxqJhU3w83/z45R1rLT5g61eqzK3MN/0q4/P5WF58nCc8t+SjFOdq8Wm1mpczXm+yVqkG+XzXWi3bJ6Q/9Cu6iMu2PmHzR+aHtivism2u9EfD1voE3YFx4bLMty2WvHxzLmvY9O+yT9h4ZuvB2ljZ3HKMIu5o2MTlolotw+W8PsHFuRonNGytDxbVEfcxr3e49ImiWOSdJM1KX7h4HvDCFwJ/8AezP195JXDhhbM7LbfeOrvT8sM/DJx5JvCGNwC33TYT5B4+DOzZA7ztbbOxWg14wQsAdiH4hNi//MvsoqnRKL5oqmz3WZnnoJVVVllllf3g2Vzi3Msum/0n7WUvS/99717g5S9Pj+3fD1x33dbfXS4e5MmKP6/N206Of//7dbzxjcAHPmBw9dVprU7RXP7vLthlfJwnFptvErvIf5f9ufrjMnfRPErxWt6+Pc+by588HxeJxXVMxrwdx2Ve7LztFsFd1Mft3F8ZnJ3AnrfHLOrPvHVQlo8uNShr1TUX270d//s8+d6O3Czqz3bFsh0429EnNJvrjssTZcYYDIdDdDqdJCh6hiifm0phmCYCO3AgxPXXAxdeWMfm5hYOFykRbhAE2GQb0ZgmhrWJ0shIBBYEQSoWioML7LT4NGyKTfu8uCZylTaZTFLx2bDpmTSPbzAYYDwep2KhfHNRFeVe4ktsik8SV8PW8q3Fp2HT835+65pWAeaxaLml+OSKjhr2eDzO5FbDlp9zt8WnYVN8XMwXRVHm+Gu5NWYmPHXlshTYaTGX4bLEptvrmli01+ul9ulSqzZsLT461kViUZug0dYn5MU2rQDO49ZEznm55f+W1yc49qJclrXKxbl83FarMj5XLpM/RbnlYlHpd1FuuThX9uXJZJLhsqxVDTtPfKzFxy2Pyy59QquXPC5rwu6ic55WL4Ttct5x6RM7Ls7dafO82afO+SfZ+/1+RqjU7XaxurqaOrCaiGg8HuOqqwza7bRIyhiT+nR3HMfo9/upsSiKMBwOU74Q9srKSuqE1Ol0sLa2liJVu92G7/up+ZpQqd/vZ4RKGjYVlxRyadgyPi1mG3av18sIGsfjcfIJdTJXca6GHUURBoNBxh8NWzvWxphMzJrgj0TFPD7yj8dCojueW00gq2HbcjsYDDKCv16vlxE0avGVEec2m83UfI3LYRhiNBqpXJbYkk+2+IbDYUacq9Wqjcua4I9i4eJcrVZ7vZ7KZa1PyFp1FefaBI0S29Yn6CUDPk65deGyrCNbn5B1pPUJrVY1bNuxbrfbWFpaSo271qqrONe1L5fhspZbrS+71qqGXUac6xKfDVvGp9WLDdvGZZdznu2lkDJ9wuWct+3i3CfaSDAEbN1SJDEPH+PbAVsrp/q+nyTT930YYzKvZ8rtyPgYx9bGNB+lOFf6yEWutv3ZsEkkZfOHE1rO1WI2xjj7Q7EU5VaL2YbtmlvCKso37auIJzSnKD/aXA3bxqc8nhTlW8ZC+wNg5bzc1uX4u3A5Lz6XfGvztVqlX+98flFuZSxFvcOGbeOJHLNh8+3L+OPaO2y5tfUJrVZpZVNtbt6xzotFjhGWzKPEJrx5+oRtO4ldpi+71qWGbatVlzrg+XCpS75PrV5c47Nhu9bqTvXBPCu9cm5llVVWWWWVVVbZk2XVhUtlp5UVXYlXVllllVX2g227/lHRdDrNrARIz0nlmFy1VX6anIRd8rknaRr4LbIoilJjJB6UAiuJbYxJ5nKcMAwzsUyn04y4lj6oKAVfEns6nSbPr3ksEts1Pton/fs8uY3jOBMf3aokWzS3NCbjo8/Yc38kNt8P345ErXw7LT7ym+dbYmv5tmFLLmvx8XzL3AJZ8bGcT2K6onzn5baIT4QtBZJ5XJY1LWuDuCzFmHIu57yGrfUJKQyV2ITJBYRSCGvD5vwm8zwv8Yfvk3gneSLrQMOmW/aacJJja/mmvsN90bD5sZaxyFV7KT7eJ7T4NGyqVSkWldiu8dmwZXwUCwmfiWcUQ1EftHGZtC88ZgBqvl25LLEll231Mp1OM49eqFalYF/jskut8lhkvuV2GrasVc/zMudFabv6wsUYkzQCMlqtUi69Lpumth0lTM6lMX5ip//ISC0uE5qHLdXvEpvmyTGpztewtfg0bC0+8tk1ZzaMIn/oOad2rGTDlbnJw6YVNG3x2bBdOeEany23Nn9svJVjPD7Afvzp32Qs/PjzMb4/Ld8attzfovmmWLTjz8c4T2jctVZpXPpoq1U5bhvj/7dha/HJePjfSatWlFsXbNuxds13WS7LfdpqVb6Jo+VWXoTZjrXLsdKwi3Kr9Tz5A5f8nCff/P958eVxJ4/LWr3YfLT1YBcu53GH+2jLtw1b2y7PdvWFi+ell/ynRCwtLaU+8T2dTjOqa/rexPLycko4ZYxJKdrjOE5U4PwXKSnfuSiJ5vKDI7GNMQkuJ7625D8wE6SRmp7ia7fbmU+TS2z6Noz0R2KTj3Jp6el0mpkbxzFarVbqLQ56m4XnttfrodlspubT9zRkfL7vpxTtGja9rin9kdgUi1yWnsY00R1hU3zNZjOjpqelsgmbfsXI+MIwzLz5IrE1PtE4x6b4NC7LtzPol5X8XAT5yLejpeW5aE/mln6FaVyWuZV8ssVnzGw11CIua9harUZRhEajgXa7nezTVqvEEx6LxC7bJ+I4+0kMyWUNm16Plf5QLLyXuXJZYtu4rNUR3c3YLi4bYxJcHovGZcqrfCNRYmtc1rC1+Gxclti23DabTfh+esl/l1q1YROf5onPxmVbn+Bc1urFhi1r1YbtWqtl+qBLn6Bt8qzSuFis6Irvyd7fU9V2Io/VsansdLOKs5U9la26cLHYdotAK1Hp9thO5LE6NpWdblZxtrKnsu3qR0V0y28wGCRjtKKeXAmQFmkiI5HUcDhMbUfP3rhNp9PUdnTri4/RrS8+ZsOm7XhzoVtsw+EwwSchJH++So8puIAwjuNkLlkURVZ/JLZLfMCWKJFj0yMpHh8tsjQajZJYNHEm3aaWz0MXzS0tWCXHirBJKMpFbuPxOBMLidy4P3SbmnORsHm+83IrsQlX47IUuZEYk++P8Ph2cn7ZfA+Hw0Iu2+Kjx1LSR8llOV+rVbpFTo8gbbHQdpo/ErtMn5Bcplqdh8ue5yWCRn4L3JXLGrbGJw1b4zLFp3FZCmS1WIIgyPRlik+unK3FJ7E1Lrvm1tYHbdiSy9TfpD8utaphE5/mic/G5bw+oYnmtRrk2CSilto6ie1aq+SPa5+Q2LJWSTSdZzt+4eJ6S5M3WjkutQvaIkK2BcjkdvRv3D+5nTam+VLkDz+I9Hf+pottroYjtyMhlM0fjl0mPjlOuDYf6XjRn4ti2YncyrzasPPyzedrPtqOi/SnKD5Xf1z4LfPNOc/1TGWPQV6+y3BH2582X6tVvh1vztp2tI95/LH1CZfj8kRx2dVHDTuOYyfuaNh5deBSH7Z+sp19Yh4+FvUJ13zb8uOSb21uUU/Pw9HqxYatbefaJ7TcaLkt02Ns+c6zHb1woaayubmJkydP4ulPfzp838eJEydw0003IY5jvPjFL8aBAweSQAHg+PHjuPnmm/Hwww/jFa94BdrtNjzPS65S+fLAxhhMJhO0Wq2M6A5AMpf7JMWik8kktR39SuFjdKXJxzRsYwzG43GylDRZvV5HHMcZbCnOpfikOFdi01Wq9Edi8zF+MpMx0xW3FOcGQZDJbaPRQL1eR6vVSl2EkXCax+f7WXGuxKY7BdIfic3zzUV3Wr6JT1zQGIahKmgksRhh069CPuZ5XiKS4xgSW4uPcKTgj+KTXG6325mVRUmMx7EBpMYmk0lyXLg4V+aWXknVuMyxy8QXRVFGdDedzj5BIMW5Elur1SiKUKvV0Gw2U+JcrVY1Lss6KtsntFqVXNawbVymzyFwPtKnM4q4LLF5biWXJTbdRd0uLpPQmETgNKZxmfYnV23VsAHM1SdsXJbYttw2Go3McXWpVRu27/sIgmCu+LTzTl6f4FzW6sWGLWvVhu1aq9vRJ2Staqv6cttxjcvm5ibe9a534Y/+6I9gjEGv18O73/1u3HDDDbjhhhvw7ne/O/VxpuFwiN/93d/Fpz/9aQwGA/zZn/1Z6jb+E2WV+G13WiXOrayyyip7atuOX7j0+30cO3YsuVI7deoU7rrrLrzgBS/AVVddhe985zvY3NxMrsqOHDmCr371q3jrW9+Ka6+9Fl/4whdw77337rSblVVWWWWVVVbZaWA7rnE5dOgQLr74Yhw/fhwAcNZZZ+Hiiy/GRz7yEcRxjBe+8IU4ePBgsj0JP9fW1nDq1CmMx2P0er1kBT7bCobaiphy5T66bSofHckVA7UxEmvZVmjk2DSX40yn04z4jW7FSYGlXBlYw7atYKhhu8RH/tD20h8p2NVW44zjOBOffFZpy63mj4ZN+dbi42MkzpX7IzwyyvW8q41KbFtuNWyKRXJZW3XZZTVO8pHP17ijxWfDdo3PZUVMG7ZWq4QzmUySfbrWah72k7FyLuFMJpPClXNpjJuGbVs515XLslY17LxjLXvZTqyc65JbEoS7rJxr68u+72diITy5PxmfxHat1TJctmFrK+fyeiFsec7TatX1nLfIeYfmu/aJPHtC3iriTt5zzz345je/ieuvvx71eh2/+Zu/ifvuuw/79u0DMFuQrV6vJ4rw5z73uThy5EjyNs6ePXswGAySg2iMwb59+9DpdFJEo2eU3W430cfQojmDwSCV4P379+P48eOpZ8B79+7FiRMnkrFarZZcTPEmLrGNMThw4ABOnjyZintzcxNRFCUXcMbMPrHO1e/GGGxsbGA0GqWaa61Ww/r6Ok6ePJlg0zPmTqeT8mf//v04depUCnv//v04ceJE8nctPg2b4ut2uykiDYdDdDqdpBBJN1Sv19Hr9ZJYVldXEcdxSm3ueR727duXyrfv+9jY2EjFZ4zB3r170ev1Um+VyPgo3zw+YwxWVlZgjEmwjZl9Yp3e7iILggBHjx4Ft3q9jpWVldSdQHoGS3yyYWt80rApvn6/n+Ly/v37sbm5meKyxKb4AKS4HMcxjhw5gltvvTWV2z179izEZZf41tbWMJ1ufYJCq1UbNj2Xl1w+cuQIvva1r6Wed7tyec+ePRgOhxkua32CYxOXa7Ua+v1+ist0wi3qE7JWAeDBBx/EZDJJPcd3qVUN29YntDqixRWJy6R3aTQaSa2WyS0AHD16FMeOHUstQOdSqwASrQbvE7JWbTzT4tNq1bVPAEj2RT3AVqsalzXs7T7vuJ7ztHrRsLVatWGXqVVXLhM2XeRotQoAjzzyCPLMK3i+v9DDf2MM7rvvPrzzne9Ep9PBBz/4QRw8eBC//uu/jkOHDiGOYxw9ehS/93u/hz/5kz+B53l44xvfiHe9611YX1/HhRdeiHvuuQfvec97kiLp9XpJ4ZF1u12srKykGhzdueErGNL3KKRwqtvtYn19PXUC6PV62NjYSLajV8DW19dTMUps2t/a2lrqV9K9996LyWSCSy65JBkbDoeo1WopgV2/38+IwDRsIt7q6momFo6dFx8fs2F3u93MyrmPPvooHnjgARw+fDgZozsXfIVGarRcBKZh02vGWm4ldqfTKYzPhj0YDNBoNFJi0V6vh3/8x3/Ej/3Yj6VEaePxGGtra6n4tNVGXXNrw5YrubpymS4aOZeDIMDNN9+Ml7zkJSlxrswtXSzz+DRsVz5RfCQM5vHJWtWw6fVazuU4jnHjjTfi6quvTokkXfNdpk9I7PF4nKx+S0avic/DZWMMvvKVr+Dyyy9PxsvkVsPu9/sZ4bOGrfUJrVbL5Pb222/HOeecg7PPPjuV26JatWEv0ie0WiXs1dXVDJdlLHfddRd838ezn/3sZMy1Vm1cdqlVzZ8oitDv91PnHcIu4rJWL4B+ztPOO67nPK1eynK56JxnjMFnP/tZXHfdddZXi3b8jst0OsXLXvay5O2GvXv34vrrr8dnPvMZAMCb3/xmHDx4EK95zWsAzK7S3vOe9+Czn/0sTp06hTe84Q1YXV1Nrs48L/saGKC/Nk3/538GkFHs0xi/gpRz6d/5mIZNYy6vKtK+imLRsPnfpT9afuRrgFrMmj8y3zZsOdcWs4ZNx0DG4nKs846/a26lP3n5lm8u2WLU8l3kj407GrbGZb6dhiProAx3+KMnLT4bd1zr0qW28mrVhctyfzZsm9+24+/CZYm9E1zWsF37oCuX8/qEaywSWxvTsLX4aI4rl12Oq9xu0XPMIucd11jyjp/LmK1PzHvesfUJF78LbqYAeAIuXC688MLkapYCOHToEH7lV34lNXbRRRclc84991z88i//Mu64447UlWJllVVWWWWVVfbUth29cJFXodq/5c31PC8RZJHZviSprSKpzZXbGbP1FUu+nRyLIvvXoW1jcpVNzUcAGX9IUJeHXeQPf/ZpjEmtvKrFTP5IbA1Dyy1husSn5TbPHy0+flWu5TuKZl931Tghc+tyrLW5GrYtt9pxpTHOZcLl8bnmlh8Xmm87Vnk+5uU2jzu2GpRjWr1p+ZY1w//Of4W7+pO3XdGxtuW7DJdt/nAdBvkiRbcSW+snrlzW+KRhL3qsNT7ZatDzPKe+vAiXy+TWpVZt+aZ+W4Rh47wtFtkneB61euHj21mXrucdWas033aOkfnJs12/5P94PMZgMEgCmUwmiOM4dZuLRFSSVJK4s8RkiREEAfr9fgrXZcyGLZfD9jwvWQ6bx0KKdvnGjqbul9hECnmAJXbemBaLxNbi02LRGiS9VcTj07DnyW1evm3Y9NYD1ziQwJHHEsdxxmeKjzc9G7YtllqtlhIG27gs4yMuc2wqcnkC0JYR17gj4yNsIJ/LtvjoTRMpfJbx2XIra5XmD4fDzFLn3J887izSJ2QT1/jk2idonlyCXjvWMj4btsblvD7Bx2xc1rC1WIIgwHg8To3Tm1guXJbYFJ/8UeCS2zwuF+XW87zkcwq8/l1rNY/LRbVK/rj0Qdc+odWLjcuyVvNyK7ljq1WNt9qYds6L4zg572jnDGm7+sLF82afY+fiIE0kJYVYgC4iGo3G+MY3DF7wgiWQNoiu7LkoKY6zQiWbgFTDNsZkREn0pgKfrwmVNCGWq+iOsKVISvpDV9dSBGYT50pBI62SyP3RRHeaqFDLt02UpmEDyAj+tHxrgj9N0Ej5LxKvauJcDVuLz4atCRq1+MqIc1utVmq+xmWb0FwTU7rGV0ac6yL4i+MYrVYLq6urKXGuVqvdbtdJ0OjaJ8qIcyW2jcutVgsrKysZ0e76+npurdqwbeJciV1GaO56rNvtNpaXl1PjGpdlfDZsm3hV6xOe5zlxGXDrE0tLS/B9PzXftVZduewan1arNmwAKS5r9WLD1mpV47JrfBSPxp15Rfw895rt6gsXMikCKhqzzb///jre8Q7gAx/wcPXVgOfZ59N43mOuefwpu7955nPhFN9Ge3S3Xbl18c9ln0X+yOOyyP6kTy7HqyiWReNzmVs0Ns98V3+2I9/b6aPrdjvB5UX8XrRP5HHWdZ9FcxfhxKJc3u78PNF9ed74XPzerj7xRPQO7VzkOjfPTosLl+2ypz89xB//scFllzWKN65sV5qt2CqrrLLKKntq2K6/cImiSP2UuBRd0Yp8ZGEYJtvysWc/2wAIQMMkIpLPruUYPduTz940bJrLT7Kk/+C+0/NHHp8mANWwtfjysIviIxwNm1ZalP5wjQ35I49VHMeZZ6kSm555a/5o2ISVFzOJwqQ/UixGx64otxQz35+GXZRbeVykTonm8vhsuQWQeZ4t53Pe8bmajxp2mfikPzY+ueSbi/v4QmBluCOxy/QJWZf0XL+Iy3m55bHwsSIua9ia8NE1txqfNGwtPs/z1FqQ/YDvr4jLWq26Hmutfm3Yrrl1rdW8fM/DHRuXaSzvnKfVS158ADJ8cjnnuZ53Fu0TUn8lbVdfuBhjMssLa0KuMAzV5Z3lcsU2wY/czhiTGSNSaEsYa0u0a0vQUyxEQCosKVQj/DxsLT4btkt8NmzKrdRc0Hx+4RLHcQqXr1o6b24lti0+bZl0iU3x8WZG2hy+VDYVnFzqWsanYRflVhN88vhIu6RdXBXlNgzDTC3Y8q0t223DLuITzXURJWrYeVwm4Z4tFlu+NWytVm19Qt6uDoIAvu+n4nPlMvUrErVKf4q4rGFrfHLtE4twOS8WrVbn5bIrb21ctmHblvzXPolQVKu2PhFFUWZ/0spwWTvnEa7MN68XG7ZWq65cXuS8Y8OWtUoXx3m2qy9cPG8mrpSrIkpxbhzHzitiGpNdOTeKohQGiVf5GAlkpS9xHGcEf7Q/fhBJBMb90cS5AKziXI5tE+dq2DI+uhqWsXielxHnGmMyuR2NRokQjKyMOFdik6hQ+qNhU77lyYcWKeQ+En94fFJ0R2M8ljAM4fu+kzhXYuflVmIbYzKiOy2+MuJcioWLcyWX6dekjcsyt5xPWr0AuugOyHJZw7aJc5vNJpaXl1PiXJlb+qUo/dGwtVpdVJzrymWKRW7rwmUNW+OThu0qztWwbVxutVpYWlrK9BTJZS0+mzhX1qqtTwDYNi4DM47IWnetVVcu28S5GpdlrdqwJZe1egH0c55NnCv9cY1Py+2ifYL/WbNdfeFCtpOiuydKnDvv/opimcefRQV2eX5ul+jO5s+8oru87VyOjWssOykgfbIEdvP4uCiX59nnTvaJsnPn8adMfHmcdfV9Hi5vdywcf54+oY0t0ids+8vbThuftw+6+F0mljK9zXWfLv5sV63aLLvGcmWVVVZZZZVVVtkutdPijou8AuNX1HnbaePzzpX72E4fF4mlCLvIf5f9ufrjMnfRPMqr8rx9e543lz95PrrmYTvHtuO4uI658nZR3EV93M79lcHZyeNftjYW9WfeOijLRxd+y1p1zcV2b8f/vsh5Yie4uNM1XdZPF5zt6BOa7eoLF2NmnzrvdDoJuSeTSSKoAmYnMnomzW9JkbiKr/JH4h+pppcCImD2LHZzczPlC60OSfuzYU8mE3S73eTvnudhNBohCIIkFmBLGEbPQLX4bNhcVc4PuMR2jS8vt7TwE40Nh0OMx+NULNobRPSMVOLbckt/tmHTXElwLT461vRvnuclz2d5bkejESaTSSoWLbcUn3yzgOYW5TYIAkwmk+SZNOVbi0/yScOm+LiYkkTG/Phz7vAxEne6cFnGJ/NN8blyWb4pRrUq3yyYTCbo9XrJPjVsio/nG9jSBUl9hdYnSNTM88g5CegiTtqnrU/w/NBKszxu11rVsLX4NGztzSXbm0+ufWI8HmM4HKbGbVzudDoql+WbKrR9HnZefPItFA1b4+1oNILv+5m+PJlMUryjFxKkOFdi81otiq8MlyW2xmWtXrRznjzv2LBpTNaqrBfCLsNlmVt53pHnaGm7+sLF87yMCMzzZiIuuUKjJs6VgkabONcYk1odkA4UH4uiCMPh0ElASiuQclJpIjBNnOt5WYGshm0T50psik8bk6tNatgAsLy8rIpzpeBPinOpKfD4NGyb8FnD7na7GdGdjI+wiStk2ufqyT8pShuPx6ncUvPg8QH2fMvcathAVmiuxWfjMoBUfNPpVBXn9vv9wpWByXeJ7RrfcDhEvV7PCJ9lrdq4HARBKj4SG66urib7tNVqr9fL+OO6CrSGTScF3ie0WqULW43L0h9aOZfHTSv5ypVzNS7LOtLic11hW6vVMn2i3W5jaWkps6K5S63a+oSs1bw+4cJl1z6h9WWtVrUV2zXsRc87slZt2JLLWr3YsG1cltiutQq4nXds2BqXT3txrud5ycGhuy6+7+eOAVuf0+af1fZ9H8aYzFsqcju5D4mjjWn+aJ9Plz66xKJhR1GUzNf8kZ+cr9VqyXZazMYYZ38olqLcajHbsF1zS1hF+aZ9ufBEHmvNRy0WDdvGJxfe/qqDYgAAIABJREFU5vmoHQMAqTG6w6VtWxSfK5fz4tPy7XL8ud95+yzKrWsstpzlHWvJJxdsOVaml+X1DltubX1Cq9U4juficl4scoywZB4lNuHN0yds20nsMn3ZlTsatsYT1zrg+ZiHy7ZYiuKzYbvWah53+HnHNbc0lmeVOLeyyiqrrLLKKjttbNffcQGywipNBCS308Zd5/Lt8/7dhsGx5DYusdi2s+2/zL/Zxmz+5PmoYc6TW9u2ZWIvg+NyrPNy5LIfG27RsdbGynBebuvKWw27iMuazVOXZca03JTBcOGyDdfVv7w5RWNl6nVRbJceo+G6+GPjjg3b83RxbtFxLYrPhcu2GF3qMg/bZW6Z4zxPvZSNxaWO8niSV6uu/th84LarL1yMMRgMBinBkKtQiS9LT0bixiJxLm3DRYkkKNNEYBKbnivyMfrcOI+FVkSUojv6rLrE5geU4pMrDGrYWnxSKGbDpmfSPN+DwSAjzqXcctGdFp+GTfmWhKXFquSxLoqPY3MsKZAFtsS53W43wc8T3WmCRu5PXm5rtVpKlGaLL0+cS2YT5wZBgG63m/JHEzQuwuV5RXc2bK1WyR8uNqTc8rrMy7cmzpVc1upI6xOuXNZqleZJca6WWxKk8rFF+oQmztVqVcPW4iM/ZF92rVWtjrRade0TeVzWeKv1Zd/3M+cYl1p15bImkM2LTxP7LyLO1bgsxd6u5zzX845Wq4RdxGXP+wEQ566srKQ+te0iVALKiaQAFH5e3Ca607ABZD7nfeLECdRqtdQ+XYVKrqI7DZvik2PyE+Y2bC2+yWSCdrud8qeM6E5il8kticB4Ecv4bNia6I7yXyT40/ikYdty6yr40+Jz5TKJc9fX11PPmiWXywgatfgAZOLTxLllBI3ayrkkmubi3E6nU1irhC1X47SJc2Ud2VbO1QSNrn2CxLlynB9r+tW5sbGRObluZ5/QapXwObaNy+12O9OXu91uZnVXjcuL9ol+v+/EZQ1by+3S0lKmLz9R4twyXNb6hFw5V9aLDduVy2EYYjgczn3ekfHZsDUuy5cYpO3qCxcyKTQlMQ+NAUiN0d/p//zPfH/A1htEfDu+TylUsm1X5I/NR5e5Gjb/u4s/UnSlxaz5I8ek79Kfopg17DL+uOZ7UZ7I+LS52j61WLT5tli0PLrm1ha3dqy0fLv4mBcfkK1VPmbDzuMyn19Ug2W5I3OWx2UtFlufmNefvOMvcytzY8N27YMadl4s0p+y9VY0ZusTi3DZ9bhqc/NiKcqtNrcMl11isXFCw9bGNOy8Pljkoxafa25dHhVV4tzKKqusssoqq+y0serCxWLar8ndtL+nqu1EHqtjU9npZhVnK3sq265+VESCocFgkIyRaEeKjWiRJjJa3W84HKa20xTN0+k0tR0J1/gYCZX4WB72cDhM3XKbTCYIggDD4TDBp8/Ay8+n8//bsKMoUv2R2Lb4ZG4AJMI3KZyT8dFz3NFolMSiCeSCIIDnealxDbtMbmlMxscFaTZsWgWSC+fG43EmFhK5cn9I4Mi5qGFr3LFh05d7NS7z+DRsudIwbSfnz8NljTt5fCJ/pGiPfCzislarxBNaPdmGncdliV22T3CjWp2Hy57nJdoAfgxJI1HEZQ1b45Nrn6BanYfLnre1AjWfr3HZFp/E1rjsytu8PljEZYrF9/1UX7bVKq1+nodNfCqKj/vDY9a4rGFLLtvqRcOmF1z4dq5c1upFy60Wnw1bnvM8z8sI9aXt6gsXQH+uqC0iJMdI0+HynNr2/LFoOxs2x+fbac9nbQsiac8fi3zUsDWNg7Y/Gzb3U9uO78sYM1csGoZtft6Ylm8X7mj5ccHVsPN4UiYWlzGZR855qQtw5bItZ/PGJ/OtzddqlfMkT69DJ/N5/XHtE9r+NOwy+eH4tvjKxMLH83zUatXWJ7aby2X6hEsvWoTLfDvZl+flsmvMrucdG7Yc0+rFhq3tz7VPaPWi5TaPyy685XM029UXLp7nodFoJIpougrnCmR67arVaqVU1/SqWbvdTiUhjg3aba7ujpO3ZGg7upLmY3SVyMc0bGMMxuNxspQ0WaPRyKi7aQVJUtPz+LiqWsOmK2npj8QmH5eWllLNXsZMV9wcm+54yWXbG40G6vU6Wq1WqtijKMrE5/t+Zkxi050C6Y/Eplja7XZqlUUt31Q4nDthGKLZbKYU7WEYol6vp7DpVyEf87zZrwD5ZoDE1uIjHI5N8Wlc5vEBs2YxnU7Vt+H42GQySY4Lzde4PJ1OrVwuyq0tviiKkjzSXHrLiXNZw9ZqlfbXbDaTfRI25zLdHZOxyDoq3yfiQi5r2PSLVPpDsXA+jsfj1LHix0CeVDg2z63ksjzWdBfVhcsS29YnGo1Gpi9rXCbuyFVbNWwAc/UJG5cldl5flsfVpVZt2HTynic+G5dtfYJzWasXG7asVRu2a63m9Qleqxq2rVa1VX25PeU0Lt/6FvB3fweIpxoZc1E2V/bE204cl+pYV1ZZZZWdPrar77iQaScW1zE+7nnArbcC995rcO21ALvgzMznV5Pb4c927G87/VlkjF9By213OpbtPi5l97mbj8tuwNZyu9t9tI3v5nzncdZ1n4vMtR3X3cKTnegTtjFtfN65O3HeMWa+leZ3w5jNdvWFC92C6vf7yRitGCgXmxsMBqlbgFIABMxufb32tQZAhDAE+v2tW3EcQxujW198zIZNc/kJnoRrfD4Jw7iAUItPw6ZHANI0bJf4yMcoijKLzQHpZ+QkFBsMBgnZaKVZKSCkW8N52HEcq/5o2ISrxSfHJDatQMlFbrSiMY+Fcisf9URRlCkuiW3LrYZNfy6KT8OmYy9XRJXzy+SbxvK4nBdfrVZz4rKcr9Uq3UIeDofJPl1r1Yat1aq2Yi+Jc7eLy543E4FqIvd5uUy1yvmkYdu4HMfxXFz2vNmLBqPRKNOXgTSXp9OpE5cXyS3FZ+vLRbkl4bOMRatV+QhDw7add4wxGTGsK5c1bMllrV5s2Fqt0vyic55WL+SPS5+gFzvy+oTneeq5jduuvnDxPC+zGic9f5QHsdlsqiIpuQJfvW7Qam2NUYL5dnQQ+Ri9MSH3p2FPJhM0m81UgdTrdURRhFarlRQtPbuW8ZGGJA+blnKW/mjYNJYXsw17Op2i0Wik8l2v11Gr1dBsNlMNKI7j1D61+DRsUvBLfzRsmqvFJ+8EyeNPz1flc+parZZZgVTm1sYniW3LrQ1bi4+eu+dhU96lj3RcuJ5pO7lcJj5XLtO+ZXy+76dWMLXVqiuXtfioscv583KZGrvcH3GMj+fVqtTbuPQJrY5sfULGp2Fr8RHHZF925TLto4jLrn2CPiGgcVli2/qyzK2tVuV5R8N2rVVbfLJWbdiSy1q92LDpx2kRtlartnpx7ROuXC7SuOzqCxcAidgQmCVjMpkk4jAao6bAA6d/k03cGJNZ6lg2e/qeCR8jYZg8OBKbxmSD1Io9DMPU8sc8PrmdxPY8Lyka6Y8ktHYyk2NENHmiGI/HaDabqdzShUuj0UjNpwsz7rfv+4X5pjxIfyQ2zzcX3Wn5jqIInudlBHaNRiPlD9314tjT6TRpkPLWLZ+rYWvxEQ7Hpvg0LssmRcax6RcUHwOQyU8URZmmQr94bNzJy60tvul0aq1V2fgkNm0va5BioX3aalXjjsQu2ydoCXUyjcsaNv1S13Ir8+PKZYlN8fH90XbSHxLNS39IiM9z4HKsjZkJjWUsGpeprjiX6QdFEZdd+4SNyxI7ry/L4+pSqzZs2n6e+KIoSnqe7INF5zytXmzYslZt2K61ut19go5fnj3lxLmVnd5W5jloZZVVVlllP3i26++4AE+McEqO/6CIc+X/F91f0fhOxgJU4lyXsd3mz+ngozb+RMfC/22ROnDFPl2Pi8tYJc6db+zJxC7zo3RXX7gYYzAajdDtdpMx7dP0JAyT74vTM0iyvM+5cwy6fcXHSBgmTcOmuXyMBK29Xi85QPSYgn/enIRhmqCRGz1L1z7nLrHpc+d58dF2pPkgoy/lSnEu7ZNiIV/kapMkTMzDtvmjYdvyzeOzYZMwjH9SXYuFnvfyQrJ9zt01txo2idJcuVy0wjKJNXu9XuaxieTydDpVj7/EtvFJi0/jsqzVMlwmAaLcp+ROEARqLLKOJpNJ5ja0hk19gnOZ4iviMsXHx0jQKleqJe7Mw2WqVc4nDZvi41ymeOfhsud5GI/Hmb6s1arkog1b47Jrn1iUy+PxGL7vp+a71qqGrZ13FonPhq3Fp9WLhq3VqlZH23Hece0TvFYl1zXb1Rcu9CyUfwLdGJNZRIoWPpOiu+l0mppLjUsu0BOGYWo7esbNx6jQ5KfgNWzaHz+I9PxueXk5aSJcTFkUn8QOwxCTySTjj4Yt4zPGWD9rL7FpIS5+AqDPvvNYgiDILEA3Ho8zz7M1bC3fNmxbvuVCRxo2gMxzamNMajEt2p/neSl/aKlqLd8c25ZbDds1Plcu0/NjPn+7uazVC7AYl7X4jDHJQlX82bdWq65cpvh4vqfTKYIgyORWLkBni09i23LbaDTQbrczNazVquQyvY0k66jZbKqi8qI+odWqhq3FR8JT2ZddubzdfYIuLhfpy77vq8dL1qpciFPDLnPeKdMHJbaMT6sXG7bGZdc+odUL5WI7+4TUoUnb1RcuABKlNIDk1xJXfNMYid/IqKHV6/WUuItOVHw72icXSdEbTVzkJrfTsLmPcqlkGicLgiD1RgvfH/fRhk240h+Ozce4+NC2P80fEuPJWGq1WipnAFJ+09V1Ub5JfGiLRcstF91p+aZfqUW5pRg4Ns2XnJDc0bC1+ChnRcdai4/2GcdxRhgo882xuTjX5o8t33m5tcVHr1gW5VvD1mqV/ObzbbWaV5dFXCYRoeQj5w6gc1nDprdKXP2hmrPlW8Mu2ye0nM3LZdquyB9jTJIHeTEjsYu4nNcnAJ3LEruoL3PsPO64cnme+LTzjus5T6sXG7asVRu2LT6X884ifULeFdWsEudWdlpZmeeglVVWWWWV/eBZdeFS2Wll/Oq9ssoqq6yyp57t+kdFtDoh/dLWxGYkCpUCO7kt/VkKf0hkRWaMyYyR6EoKezVsmstvH9MtRBkL94e2kysT8rl58WnYrvHReg8SW4qxaDstt1LMJeOzYdOjEJlbipnnlnC5uE/LGd3u57mluZpYsOhY05jGHbniZ15u5XGxHT8eH8UrcwsgNcYF0vTvWm5JPKhxWWK78In2KUV1Nj7J+eSvxlG5gqkLl23YeX1Cy892ctkWiwuXNWzqCXLMJbcanzTsPC5rfJyXy7JWbdjbzWWKhV7Y4OJ8l1q1cVnjDoCFuZN3zrPVi8YdzR9bbm3cseXbpU9IbFmrdB7Ms1194UIJH41GyRglQgrsSB1ORsnQ5kqMMAxTCnJtjEjBx2zYtJ1UfE+n05Q/9OxaKtDlGw0athafDdslPhs2bSefudO4vHDhRkt583FbbqWKn/ZJS3IXxTcajTIaFcKT8fFmRop2ErEBWxdM3B+KT97xkdh5udXepiBdAh+bTCaZ+OjCIC++MAwz+aGm7JJvG7bcny0+25tPkssSm7iscZSEsjbsPH8kdl6f4PPlG2WAXquufcLzvOSEIjml5VZyWaujsn2iiMsathZfXixarWp8ktgal137hFarediyd0ynU/i+n+nLNi5rS/7LPLjU6jxczjvnafXC58r9yTefXLms8YniduGyhk0cpv/TBWWe7eoLF8+bfR58bW0tNb60tJQR2K2urmaWRA6CAKurq8kYnWjlJ8fjOE5hxPFshV0+FkURBoNBxhcNO4oirK2tpQ4YKcD5/OFwmFo5l6zdbmeEUxKbTjI8Phs2jeXFDGy9xSVFeysrK6n4RqMRWq1WCptefeUq8uFwCN/3M2p6iU0klf5o2JRvefKRMVPBSDV9s9nMLNEtY6GC4/7QBc7KykrKR4mdl1uJTW+AaFyWF4rT6TSFTY2Wc5lWbOXzNS7Tr0kbl/Nya4tvMBhkVuMEslzWsLVajePZqtArKyupVTa1WtX80bDL9Ik4jgu5rGFHUYR+v5/xp9lsYnl5ObOtzDftj3NZw9b4pGHTCc6FyxLbdqxbrVamL2tc1uLTsLVade0TYRhiOBzOxWVgxhHZl11rVcPW+KTVqut5x4YtuazVC6Cf87Ra1bjsWqtabim+9fX11HaufUKKoKXt6gsXMp4MlzHbfO3vtvk0ru1zHn/m3V9RLPP4s8hYkZ95/hXNdfFH5nGR/Umfinx3iWXR+FzmFo3NM39RTpTdbrt8dN1u0T5Rdu48/pSJL4+zrr7Pw+XtjoXjz9MntLFF+oRtf3nbaePz9kEXv8vEUqa3ue7TxZ/tqlWbVeLcyk4rsxVbZZVVVlllTw3b9XdctOez9AySjMReUptBz/zI6LmwfK4YRVFmFUE5Rs/2+JgNm+bK56tSSyHFYzw+KfaV2Fp8NmyX+Gifnpd+lk7+aLmlz60DSHyWx8rzvMwvAIlN2g/NH7q1LP3R4uNjpB+Rx8DzvNQVPXGp6FjTsZLPdiV2Xm7p3/lcyWVNKzCdTlUdBgD1+TrPj8Yden5v4468ve4an/ylFIahVVxdxGXCkULcMlyWdVSmT0gukxZiXi5regh5rGhM47LElkJ/G7Ytvnm57HleSkvFcbS+rHFZYlOtFvXl7eYy+e37fiYW8oHP1eKT2K61WpY7Wp/gXNbqhbaT5zytVjVs11qlbRfpE1qt5tmOX7i43PYB7LeJpOI4T2EthWFyLims+Rg9iysao2eAfMyGbVOlS2Jp/kgBpw2bisbmj8Quio/2KRf+0eIjcRU/DnyMb0eNLg87L7eUI5f4ZGOX2FI0x/3mOLZYXPJtyy1hSB9duGzzB0iLT0n4WOQP+aId/yIu53EHgHpcZHxyvlarHCcPuyjfcmzePuHaO7T46MeArZcVcZm0D0VctvUJLd95vSwv33mxaLWqCTG3s0/k1aXEtvUJ8kvOLapVDdu1Vstw2aVPaPVCc21clhfhLvnW6oX749InJLasVfnjUrMdvXAh8PF4jF6vhwMHDiTEv/vuu3H8+HH80A/9ULJ0PAUzGAzwrW99C/feey9+9Ed/FCsrK0kwcTxbWpqvsheGYUa8NJlMEARBMheYiaRI6ERGyeXbESH5GBGHj2nYxphESMkbJImRuKjJ82bLH5MojeKTyzZr2PSWg/RHYvMx+StczjVmtvQyX2I9iqJMbvv9fiI2pPnj8TjJGdlgMIDv+ylhmIZNzUz6I7F5vvmKmFq+h8MhPM9LsCk+Wq6cjMZ4LPT2F/dnPB4jDMPU8dOwtfg4DheaUnySy1KQTN+l4djD4RAAMkuL06cY+Mq5ksv0S13jMscuEx+AZMlxmqtxWcPWajWKouRTDLRPW61qXJbYZfsE8ZHM87wMlzVsG5dpyX86hpRbFy7LOrJxWcOmOzrbxWWOy2OJoijTl2V8NmyNy659gn4I2vpyUW5brRZ838/koqhWbdjEp3ni02o1r09wLmv1YsMG0rVK86U/rrW63X3CGPPkL/k/GAzwvve9D0EQ4Prrr4fnefibv/kbfPzjH8cznvEMfO5zn8Pb3/527NmzB8AsMe9///tx11134ZnPfCYee+wxvPnNb86okHfaXO8UPVn7e6raTuSxOjaVnW5WcTbfTtf8nK5+P9G24+LcY8eO4fbbb0en0wEAPPzww/jgBz+Ic889F5dddhnCMMTm5may/ZEjR/CZz3wGb3/72/GqV70Kn/rUp3Dfffdt2wE1Zuu/yiqrrLLKKqvs9LIdv+Ny/vnn48orr8Tx48cBzC5cHnroIRw+fBg33XQTVldXsX///mT70WiEIAhwxhln4NSpU+j1euh2u8kzMLp15vJ8jrblY6dOeXjsMYPzztvan7YdkBYI0bM5+dzc9qxSPl+1+ejybFfD5toM6Q/Hpvjk80ctFu3ZtW07ia09D7XlRsu3LbeaSEs+S9fyXSa3/P98/0Xxadi23Lo+06a58lm6xh0g+2xezrfVQV6+83K7aHw2fzQ+yflluWPLLTdXLhflm6xsn6B9SB8llyW2a5/IO/7zctm11rlPedi2WnWJxZZvDbtMn7D1QU0/ovlTxB3X844NW+ZbqxeO41KXEtu1VrmP29kH82xHL1xIlyKb8N69e/Grv/qraDabeM1rXoN7770XF1xwQTLH9/1EaX7ppZfie9/7XnLHZs+ePRgMBimR6/79+7G5uZlKUqvVQrvdTuYBwMrKEj772SvxT/80wutf/1X4/owM+/fvTy6sgNkXMffu3YsTJ04kY/V6Hevr6zh58mQqxn379qHT6aSwDxw4gBMnTqTipm0eeeSRZGxtbQ1hmF79ds+ePRgOh6klkTXsZrOJpaWlVHw27AMHDqTi02IGgI2NjeTCkcfX7XZTpBoOh+h2u+j3+wkOLQrY6/WS7VZXVxHHcfKc1YZdq9WwsbGh5lZi79+/H6dOnUo1Hy3mlZUVGGNS2BsbGxiPx5m3AB599NGU+K3RaGBlZSV1J5CewXa73ZSPEtuW2/X1dUwmkxT23r170ev1CuPTsEl/MRgMkrE4jvHggw/iS1/6UjJm4/La2hpOnTqV8lGrI9f41tbWMm/NaLWqYWu1CgD3338/4jhOnpu71qoNW6tVrY6WlpZQq9XQ7/eTsdXVVURRlKpV3/exb9++Qi57nocHH3ww0Ybx3J48eTLDZZlbDVurVQ2b9FuSy41GI1WrGraWb8/zcPToUTzyyCMp3UQZLktsrVZtfWLPnj2pY63Vqg1b6xOnTp2C53l44IEHkjFbrfb7/RSfGo0GVldXM1xutVqpWiX9HK/VRbms1aqsFxu2VquufWKR844NW57zPM/DkSNHkGdewZXNQg9UjDF49NFH8Vu/9VvY3NzEhz70IbRaLbzpTW/CVVddBWMMbrnlFnzgAx/AX/7lX8LzPLzuda/D29/+dlx++eW44IILcOONN+L3f//3k9X7hsMhWq1WSvDV7/exvLysvkIqVxY9ftzHeLyECy4Ik/B6vV5mFcjBYJASWEXR7BU+udqkht3v9zOipPvuuw9BEOCiiy5KxmjJZt7MhsMhms1mZpVEEouSheHsFTIputKwXeKzYQ8Gg2TVX7Jjx47hgQcewPOf//xUbklklRefhk0XN9KfwWCAdrudOdZF8QFIXs3j2KPRKPNp+n6/jzvuuANXX311MhZFs9f4eG41PhH26upq6m6WtnKqhm2Lz4XL1FS59ms6neIrX/kKrrnmmpRITua2DJdlfDTmEp9Wqxr2dDpNhJxkxhh86UtfwlVXXZU6hotwWYtPq6MyXJbH2sblW265BZdddllqW9fclukTEts1Pg1bi8/zPHzjG9/AOeecg4MHDybjrlym13qLuOya20W5fPfdd8P3fTzzmc9Mxlxr1cZll1otwx2X3NrqRcMejUao1Wqp7VxzazvvbDeXP/e5z+GnfuqnrIt27fijoqNHj+KCCy5AFEV46KGH8MM//MN473vfi0984hMAgPe+9704++yz8eM//uMAZldpv/M7v4NPfvKTuOuuu/CWt7wF+/btS+7e+L6fIhUf44HT7adGo5FSbZ9xhsHysgegAc9DcoUqt/M8LzVGB4yPadjGmGQuL5parZYhy3Q6TY3x/cm3iqSP5Kf0R2LTPvl2dHtUzq3VailsW24pFrnPKIoy8UmSathafNxvmdt6vZ56W4B8lCckfuFijMFkMsnkljA5Np1IZXzGmMyJi3zkFwrasZLYeVxuNBqpJkV3LSUnAFj94W8VSX/ouNjyLXPrEl8QBCqXNc5r2FqtylpwrVWtjvL6hOQy7bOIy1pu87hs86eIyxLblltbnwjDMMPlMAxV7nBsLd+UL1vf4lym4yI/2QGgkMsathafjU8SW+MyMOtl8ri61GoedhzHc8VXxOW8c55WLzbsIAgy22nYtvhkvZTtE7bcyrE82/ELl+c973m49NJLASBZROmSSy7Bb//2bwPY+nDUi170omTOc57zHFx00UW44447sHfv3m31x/Nm/1VWWWWVVVZZZaef7bjGBYD6Tnbhe9qP/xKhX5v0SIuuaPmzSz7O/67NtW1HdwJojP8bsPWLW2p2NGzaXloedt52GrYWn4atxScFVHn+5OW7TG6lb3KuzZ+iY839kNh5udC2k3dXXOPT/OH70/y2jWlzufDOJT6+rS2WvHxLEXcRn1y21XzM47JrbvNicc33vFy29Yl5/cnjsmssErtsfBp3tGPNY50n30Vc1rC1WGz5pn/T5s7jty0WiW3LTV6+ivoy/Vue39vVB8vUpWu9zNsn8mxXL/lvzEywxYVAtMyx/OKoTBAt5sPFS3TbjAvaaD4XUxljEARBCjeOY/Vz9xo2fZGTj5GQrtvtJvugW3FcqERfAparl2rLe9Mqhtw0bC0+uRSzDZu++iwXxBqPx6lYSFHOBWQksJZLtEtsyreWW4lNn0zIiw/YOtYci75sKr90PZlM0Ov1UkVOi12RaW/22LC1McKVC8tpXJbxadgal6NotjQ4Fz7mcVk25rzcFuXbxmUZn8ZlrVZpfr/fT+2zDJcX6RPGmLm4rMVH8waDQWrcpVZt2BqXtTpahMsUHx/zvNnS/IPBIMUp11p15bKGbeOyjM+GPZlM0Ol0Mn3Z9/3MOUbWqo3LWm7lG0mLxGfD1uLT6kXD1mrV9Zxnq9Xt7BOe52U+XSBtV1+4eN5sxUdanA6YCX7kJ7A7nc7cn6ung7KxsZG68u12uyncMJx9wlx+plvD3tzcxPr6eopoJ06cSFT/ZIPBILVyri0+DTsIAkwmk4z4SWK7xkfYfOVcAOh2u+pqo+12OxWLtnLucDiE7/up+DTsKIrQ7/dT+7Nhu8Rnw6a3Onh8tVoNrVYL6+vrqWe74/E4lVu6yODx2XLy58MnAAAgAElEQVSr+aNha/FpfNJWzqU3TKT4vNVqYW1tLaVxkbl15TLF55Jv7XP1ZbgsazWO4yQWvoKplm8bl137hKwjrU9otWrrE4PBIMNlWjWXx70Il7Va1Y61xmWtVvNyK/1pt9uZvuxSq4BeR3KVaxu2Lb7RaJTh8ubmZqoObLklgSuPpd/vo9FopLjc7XZTKwPbsG21aozJnHc6nU4mvl6vl+Gyhi25rNWLDVurVddznlYvZfuEyzmP81qzXX3hQiZvC3uelxnj29nmy7m2fWpz5T5s2K7749sUxaL9mc9zwda2l3Nt/tj2p/njErP2Z80fiV10rG15ypubl08Np4hj2v7y4tPG5FzX3Mrti2JxwZZjrvwuW5eL+liEneePliv5d9s2ef8+rz9FY4vmtmws8vi71NYitWrDzvNRwy5bM/LvLnVp8ydvf7Z9usZSljtl8uCyT5cYy/YTvr+ix0TAE7BybmWVVVZZZZVVVtl22a6/42JMduU++SyVhD22lTflGN+OhEF8ZUK+HY3Riog2wRbtk++PXznafPQ8L+OP3I6eC8tYbIItju0aH9+nlm/5a8HmT1EsGrZ2rGg+365I2CWf7bvk1nasXeOT2Lbcath53OFmOy7kqxYLGV/d0zXfMr4iPuXlx7UutXzn5acsl/mx0lYCLTrWRfnO6xMadlkuS2xbn3A51nl90IXL2nxbvjUua3Nlreb1Cdd8F3E5b9tFuKzFR77mxacdP8Lm5zyNT1q9lInPxp3tPO+45pbm5tmuvnAxxmA0GqXEhiSwk89NgfStKxIQ8QST6E6K0kjUxHHlGAmVpGnYNJePjcfjjHCSRHdcOEVCJbn2wXQ6Tc2l+OQB1rBd4rNhk9iP55uExnzlXMotJyTFx/OmYRtjEoEsN+1Yu8RnwybxMRc5jkYjTKfTlHBSO9YanzTsvNxK7O3mMolzB4NB6mKPFuMjW5TLtvhqtVqKy5pgMy+3Gpf5ipo27mj+ELbUCkkua9iLcFmrVapx0nLIPM7L5TAMU3wibD6fhKJF8dE+e71eijvSH4pF9mWtT0guErY8cZXtEy5c1rBtfdn3/UwsLrXq2ie0Wi3LZZc+IevFhh0EAXzfz4iFXbjset6xxaKd80j3RLUquaDZrr5w8TwPy8vLKTFWr9dLlpfn5irONcakRGB0dccx4jhGr9dLjUVRhMFgkBGBadjGmIwo7fjx4xlx7nA4TMShPD4pVNKwqbDkKosSm+Lj4lMSYkkBYb/fR6vVSmF3u12srKxkPk3fbrczorQoilIisDxxrszt/8/elwZLclVnfpm1v3pLd6s3bbQkJCTLCItFAkk2YBDGsgCDPciMjT3B6gCZAENMePDYTHhiHMaOsD3jGDAKzATbjJE8NmAQ2EwwYg/EAMISCAkDUqtb3VKrl7fUmlWZd35Un+yTJ8/NvFlVr/Ua5YlQqPt23vudc+53bmZlfnnT8zxVnCuxgcm20fKOG48PmFyQeJ5XSJxLRp9hyBPnatjGnBLdcXMV52rx0ULKsbPEuXz+NS7bxLkaNtWGvOsl49ssce7i4mJCnLu2tubEZQ0bcF8noiiamsua0Jxi4XG71KoNW+OTqzjXJjTX5lrjcrPZTK3LGpe1dVDD1risYWvrxCxcJkzf9xNjutaqK5dd49Nq1YYNQBXn8nqxYWeJc/Nyq8VH8WjckVx2XSd+IsW5eW22/trfbf2pPUuolOXPNMKwaWJxxXYVgc3qj6uwyzUW2SbnJc9Hl+Nc5lr7+zQ5myXf8xTYTevPPPI9q495tXW6uFzU7yL+5I2XxVnXMfP6zsKJWbk87/zMOl7WcVr7tPG5+D2vdeJ0rB2z1qrNSnFuaaWVVlpppZV2xtgZccdFuwJzbdPaXY7Luvqbpm0e483Tn3m0ae2bHcu856XomGfqvGy1tjPBn60cS96v0yc6lzdjnSji47R9T6ffZ8r8a7alL1yMmYhz+e57th0aAXdBoxT+uOwYGUVRasddGzbtkMsfzZCgle/Qqu2IKYVKNmwS3Wli0bwdDI0x8XEyFvrwIxk975fiXLnbrCYC04RYGraWbxu2lm9N2GsTPstPqtt2zi2yY6QmKtZ2zpXYRcW5UtDI/0/H2QSNksuj0Uidf4ldJL5KpZLisk2cy/tnCZ+73W5qTFcuu64Tso5m4TLVqtxtlnbOlfFxMSz56MJlqlXOJw3bJs6VAlkNW+OO5012zpXrslarWnxFxLmu6/K0XKZYfN9P9HetVVcua7VKY7qsg0XEubJetHMeiXPlLtA2LnOznXdcd87VsH8ixbmNRiO142Cj0UgIlcIwjEVWZPSFX96X3irgIjdaoPhx9LoXb6NCk5/z1rBpPD6JJDbiIint8+K2+CT2aDRCEKQ/Ly6xKb5Wq5Vok0Jaaq/X6wmRVBRFaLVaiYuZbreLWq2WEoZSLsgGg0E8hxxDYmv5tmHb8s3js2EDk69B8/iMMalY6MvS3B96i0PLt8ytdpyG7Rqfhk2LKufyaDRCtVpFs9lMiHNn5bJLfJ7nzcRlWavGmDgW/tVYrVZtXNawm81mIt9aHdGJQtaq7/spQaPEpjcupD+1Wi0WtcrccnGuxmUNW6tVDZvePJJclrVaZJ2o1+updbkIl+e5TtDF5TRcplh830/1l19PjqIIzWYzJc6V2K616nresWHL+LR6AfRznlarruvELOcdG7ZWq/KFDGlb+sIFQPxpbGASoO0T35VKJRE4LSrVajVOHF19ypMHjUnHkXqdt3melzpOw+Y+8qLxfT8RC3DqV6oWCz/Ohi3j07CpTX7WXhuP4sj6fDqPReYMQCo+GbOGTd+psMWi5VZ+rl7mm37F5eW2Uqmk5pr6y/gkdzRsLT7KWd5ca/HRmBKbfpHYcsu3/Lf5Y8t3Vm5t8Q2HQycua9harZLfvL+tVrPqMo/LURTFvOd85NwBdC5r2HnrRNZc27gssYuuE1rOpuUyHZfnjzEmrit5MVOUy1nrBKBzWWIXWZdt5xjeZsOmC4Bp4tPOO67nPK1ebNiyVm3YtvhkvWRxh593NOys2siyLX/hMm8zBogiwCKoLm2LW5HnoKWVVlpppf3k2Rlx4TJPsdFXvgI88ojBr/86IF6Ln6tIyhh997/TIZzi2PL/WX+ehz95fWfFdp0X+tXlglGKc5N/PxN8nOd4RXA2c/43sy61try6nJc/jwdPSnHudG2z9NfWjlkxbLalL1yMMej1eqnPp8tPfGvCME3QGIZj/Ou/+njgAeCXfilArTbBoM+dc1yXz9XbsDWhEolzOQ49zpAiMCmQLSoW5dg8Pq2NG20uJHcblSLHXq+HwWCA9fX12CdNBKaJjzXsLOGzxKZNBOXtR/m5eg1bi6/f76dioXxLwWYURaldl+edWy0+mmcpFqVx+XG2+eeWxeW83GbF5/t+isuyVotyudPpxGMW4bKr0FzDnjeXqR/faZp8zKtVGzYJSKcR8Wtcds0trVfauqyJoeU6qGHbhM8uuXXlsi23pB/iOK616splrVbJn9XV1cxatWHbzju8XoBTXJYvKchateV7nucdG7asVckFzbb0hYvnTT51znd9BJDaOdcYk9phVdttdDAY4Ld+y6Beb6JWO7UbpzEGi4uLied4xpgErrabqg07iiIsLi4mSNVsNuF5XqK/tnMuidTk88der5foa9s5V2JTfEtLS5nxAfrOucBEnCVP9vV6PYGt7Zyr7V6rYdPOwNIfID3XWnxRFCXis2GTqJgLwyjfPBZtrjU+adgan2zYWnxFuGyMSQmkaV74s2YAU3GZ4tP4JONz5bItt9rOufV6HQsLC4mdc125rGHbcuu6c66MrwiXKRZqz8qt5HKRnXMltrZOaLWalVs51/V63Wld1tbBousEx9bis3HZNbckZOf9XWvVdZ3I2rHdhcsatuSyVi82bFcuu9ZqUS67rBPyHCRtS1+4AKdUyMAkGSSm4m0kSuMLku/7cTslbvJng2YzedVMGFL9zPtyHK1N+lOpVBIFa/PRJRYNm67ANX84Nm/jAkItFld/qE3m1hijHifbiuS2Uqlk+sPbpOhOcsc2B/x44oSML29e+IVCFp9cYuExazzhebRxXpsHHl+RfHM+zRKfDZvi423amNPUqsv8a1wGoOZWvu0w6zrhyuVZ1gkt3ySy1PoSNueYXCfyaisr3xJby7cNuwiXXXKr1dGsXNbGk22bweWs9TbvOA3btVbnvU7Iu76alTvnllZaaaWVVlppZ4xt+TsugJsISDtOtlO/aftmHSuPc8Fx9Uf7M++XlZ88/138sbVp/rjGkpfvLOwicU3jT9Zcu+K5xmfDmIYn2rGuvNWws7g8S3xFj503dh6XteNc59WVW0U46No2zRqV1TcvL9Nw2Ybned7c8q1hF1mXbcdpdWnzZ9o8FPFHO24zsG3/Pu06USQWm23pCxdjDLrdLlZXV+M2eoYon5vSrSkyTdCoCZUAJIRChBsEQQJXE2zasDWRI31ufG1tLZ4gioPja/Fp2DaRlIatxUfCMG42UZoUWHa7XQwGg0QstFukJmjURGDSnyAIUsTVsDXBl4yPY0tBI+0jQEY750px7ng8FsLudHwathafDdsWn8ZlKWikP3Ms2jlX7n4qczsrl2359n0//hotxVyEy5rweWNjIzFmES4XWSc0cS5fJ7K4rK0TPN/Ur9PpJOIukluJrdWqhj1vLpMfcl22cVnGp2FrXHZdJyg+jctabrV12ff91DmmUqkkeJclNM/jMv1ZE+dq8WlcdlkntHrRsLVadT3nzXLe4dhZ5zzP+wkQ57bb7cSntjc2NlJCpfX1dWfRnTG6SIp/fjuK0p8Xt30+XcMG0p9UP3bsGCqVSqK/JlTSBLIkSuN9beJcie0anw1bi284HKLZbCb8KSK6k9hafIQtP+e+traWG58NWxM0Uv45tiZKo4VLinMltjEm9Xl4QBf8aVyW8QG64E/7XD2Jc3l/G5c1QePa2hoWFxdTXJbxafl2/Vy9Vkc2cS6JpqU414XLGnaRdUIT5/q+PzWXG40G2u12qt2Fy0XFuXKdGAwGKS7bxLkytxqXm81mal12qVXClnVkWyckdhiG6HQ6zlzWcruyspLILe32y8d0rVVXca5Wq8YYrK2tOXNZWyd4rWr1AujnPK1WXc95Wr1QPMvLy05cluc8rVbPeHEugEQySGzE2wAk2ujv/D9q4+MBdnEXH4P6yPE0bGqTIrAsH/NiIR9lLDZ/ODblTAofZXy23Mo2Lb9aLLaYNWy6otf8kbFo+dawXWOR/ttyq/XVxtRi0XIxSyzcbxvntTFlHUyTb61eiua7CJfzsLVancc64TIHGnYWl+c1/1nrhMR2XQdd5osfx/tPk+88LmvYtnVQy3eR3NqwXWLR8i3H09qKcNklFpuPNr9duFykVuXaYVsnXGORfaSV4tzSSiuttNJKK+2MsfLCxWJ5V3yP93hPVNuMPJZzU9qZZiVnS3si25Z+VESCoV6vF7dpn0Afj8fx58l5Gz2DJNMEoMaY1HHGTHbN5G0kVOJtWdj03JZjj0ajRCy0iyAXP1FcXNylYY/HY6s/EluLT7bx/MhdLWV8/LPvXGgsxWJBEMDz0m8LSGwS2El/NGxq0+LjbcPhMIVNwkUuLKNdGzl2GIapttFoFG8EyE1i23KrYVMsUtBMu3lmYWviNeI8z4/GHS0+G7ZrfPTVX8llz/MSfNKwNS4TDokQbdhZ+ZbYtlqV2FQHksu+70/NZYqFz6GcKz5eHjb5yPmkYWvxUa1Ow2Vae7V1WXKZ+uZxmWqVmy23Gpdt+c7jMvnj+34qliiKcmvVdZ3QarUod7R1gnNZqxfCluc8rVY1bNdapXbXdVBbJ2gMPl6WPeHvuJzuXy4ueOWvqeI2S87489rTiW3rpz0TntaK9D0d3HSNeTOwXe3xutsqdRKnE3va4/P6znteN+vYvL5nYq0WOXbauZsF03a8S98tfcfF87x4G2Pg1FUcVyDTXZlms5lQXdNVfKvVSiwIxpiEmj6KIgyHw8RxdKXJ2+iVQt6mYdNrbq1WK3G1X6vV1DeaKpVKrKan+BqNRkLRrmHT3Qzpj8TmbfxXeBAEqb5hGCaw6c6TzG29XketVos/YwBM1Ovamwq+7ydi1rDpToH0R2LzfPNdFuktJ02URtgUX71eTyjawzBEtVpNxEJ3R7g/g8EA4/E4FZ/E1uIjHI7N49O4LN/i8n0/gU3G24bDYRwL9de4TL8oNS7TWxY8Ps4nrV6onbCpr8Zl+sXF+2u1SvPSaDTiMW21qnFZYhdZJ/r9fuqtIo3LGraNyxQLX8uIO3lcltg2LmvY9It7Xlw2xsRv3PBYRqNR4o1ELT4bNplcl11ya+OyLbfauixry6VWbdjEp2nis3E5a50gLmv1koXNa9WG7Vqr814nqF6y7Al/x8Vm8vZaaVvDNmNeyrku7UyzkrOlPZGtvHCxWCnOtdvjGUspzi2ttJ88zpbr7cTKPLjZln5URLegOp1O3EY7IspNpGiTJjK6rSiFWMaYhDCIbsV1Op3Uo5RutxsfR7fSeJsNezQaodvtJrAHgwGCIEjF4vt+QogUBEGMT6b5o8WnYWvxUZuMhTamkp9A97zkO//9fj/lD902lQJCz/MSIjcNW4uP+gNIzXW32008CtPyrWFTfFzkpsVCOZB8krtFathavm3YLvHZsKkv5zIJ53q93tRczsttVnyj0SjBZapVzicNW+MyF8jTmDSWrFUblyV2kXVCcplqVYphtbVD8ycIAvT7/cSjCzqO55tyI3MrsTU+Za0TWq1y07Btc027QPO1TOOyjM+GTX21dWKWdblIbuW67FKrrlzWatXG5SLrIOeyVi82bK1WNd4WrVXJHRmfDVs758ldnaVt6QsXz5t8XZI/VwyCANVqNfEMrFKpoFqtpnb8pOexZLQYyU/dD4dD1Gq1FIGq1WrcRhcYckc/iU3Po6vVaqJg6au7chdR2TYajVCtVlM7545GoxS2FovEtsVHx8kFW2KTboLnlsaX2GEYpvz2PC81BxI7DMNUHgi7VqulckvPpW3x2bC1+Cg23kYXPDI+ALncsfmjYdu4zOOzYWtcBpCaf1qQ8uLTsCmWPD4BOpe1+OgETJovHiNv41zW8sP7EQ6Pj9o4b6lWpRZKYhNHqc3zvHjLdY5D2HJeaK65P4Qt9TUyjzYuep4X9/U8L8bg49FXlyV2FEWp3GpzoOVW1jn9iKFjKT8UC88t9ZUnOY6txWfDtsWnxaJha7mlLxpzf0ajUQLHxicN2xiT4BPlX3LMlu9puWyrF4lNXJZ51LD5OS+rVoFT54m8fEtsHh9vkzUqbUtfuABIbE1MiyaJQ6mtUqmgXq+nBD3GGNTr9cQJe33doNdrYO9eOiaKtyDmJ9LBYJBoo1+zfDwN2xiDfr+PRqORSH61Wo23ZSajSdTik+JciU1CY+mPxOZtPA8yPiIuxyaRlMwtkUxi+76fik+2adjj8TjGloJGmdvBYIB6vZ64mOn3+6jX64l802LIc0snGe4P3Vnh2HRylf7w8WzYtLjy+AiHY/NYNC7Li3ASP/L4ACTaAKT6h2EYc0pehNu4LHPL+WSLj06kksty6/TRaJTiMt0d4W38YpaLc11qVcPm+ZYXD1odabXq+35K0GjjsvRHxsK5k8dlic3jkz5KbHr1lccHwJnLWm6p/vlc00U557KMz4ZNXJZb/rvkln69a+ugS27p5C/XBCnOlbVqw6b/59VqES5r64TkslYvhCOxqVbzuOxaq9OsE5LL8rwjOSPtCaVx8TzglluA3/s9QLxeXtoZYqUosbTSSivtiW1b/o7LPM0Y4KabgG4XUN4YK6200korrbTStrht+QsXeiZKRjsaSg2A3OmQnu3J3QHPO8+g1QphDE7+Z2IM/ihF9g3DMNWmYfPx5HNBzUdNvCqPo50GZSyyTcPOio+38TG1fMvn1DZ/8mLRsLV8U38btoxZiildc6v5k5VvOZ7EtuVWw7a1SSFuFnYe5zXe5uVbw8jiU5H4bHWp5TurtvK4XMQfl7nW+GTjTpF1wpXLNPY0ubW1TctlW/+8+Gx9XXNbdF3O47Jsz8pt0Xzn1arG5bxYss55Wr0Uic8137Ocd4rkNu/O+pa+cKFnZxsbG3EbbWnMJ5Geu0mNA52AyMbjMYxJbmlvzCn1s2zjuFEUqUpnDVtTU9NbRXxM2pacq6nps+/8GR9h874Un5xgDdsWH2+j4yQ2bWClvVXU6XRifMotJ5/2eQYNO4qiVG4oF3KubfFtbGyknqVKbPpUwXA4TMXS7XYTC7aca41PGnZWbiW2jctA8jVGDVvbJpveApBvkA2HQ2cuS2xtPFt8vu+nuCwX3Kzcalzu9XrxmLwu8/zR6ihrneDYWVzm8blymfrxt72ycuvKZdriPQs7DMM4Hh6fdqJwyS3F4rIua7WqYc+yTti4rL1BZFuXfd9PjOlaq67rhFarrucdG7btvMPrhTDlOU+rVVu+i9SqC5dt6wSvVckFzbb0hYvnTXYgXFlZids2NjbQarVSQtzFxcXUCTcIAiwuLsZt9G0duXvt2tpaAiOKImxsbCTawjBEt9vF8vJyyk+JbYzB8vJyglRHjx5FpVJJjNnr9RLiXIpP7tCoYVNh8fg0bLryXV5eFiLl9YQvANDpdBK7XwLA+vo62u12avfLZrOZ8IdOUnyHRnpdT4rFJHYYhuh0Oil/NGwAWFpaSv36WFlZSRQIfTeDY3c6nZTwmXYu5rHQNzaWlpYS8Y3HY7Tb7YQvElvjkw17fX0dCwsLKS7L+Ggh5dj0DRDOZRIu8vnXuDwej9Hr9Zy57BJft9tNCDYBncsatlarUTQRxy4uLiZEkoSdx2UNW4vPtk5EUTRXLlMsPG6tVmV8NmyNTxo2fdMmj8tFcttsNlPrssZlbR3UsDUuazzT4svisss6Qbu98jFda9WVy67xabVqwwaSXNbqxYat1ao2167xUTwuXHZdJ3juNdvSFy5kfNF0abP11/5u60/t2pgu/nie/v2bouNN01/D5m3y7YK8WIr4kxez7c+u/sh5yfPR5TiXudb+Pk3OZsm3a9s0/TXuzDu+zfDRFXszuFzU7yL+5I2XxVnXMfP6zrJOzMrleedn1vGyjtPap43Pxe95rROnY+2YtVZt9oR6q6i0M99sxVZaaaWVVtoTw7b8HRf5nC2KotQnr+mZKb9So+eMUgNgjEk9S5XHkShJ9rVhy2fI1MZPsuSj/Cw6ADU+3lfDpt1Ubf7wq1fKoWyTfWk86bcWn5ZbGR/lMS/f0+RWCsa0nHmel/JH+qg9A6bx8+LTsG251bCzYpbaLBfu8DxSf9tcuWLPGp/mty23UgMg+2tc1uLL8kfyScMmH6XfkstFc2vzh/LNcyu5rGG75tbWZqtLl3VCW5elqJzqSopptdzKWrWty9o6qPkosW25pX/X5kXqWSSGhk1tebVq47Jci2zY8pyn1QsfM487ruc8rV64j1nnnSxs27zYbNMvXORtn7zbXfL44XCIfr8ft2tiUdrqWBa7LCRatGRSaJt07oNso0ngbdR3MBgksEkjweMjnQKPhSZVCqe0kz0Jr3h8crIJW4oACZePR8dxo62XpQhQ3u6jbZt5LJRbPn8UnzYPefmm/gBy51rGZ8Omzbh4fFosWsFpfMrC1nIrsV3jc+UycWIwGMRtRbnsmlstvkqlonJZEzRKLodhmBqTYuFjFuGytk7IWtWwXbmsYWv5ppPycDhM6GtonZiWy9rFh22u5fpEJyqJI3ObFQtvd+Wyhm1bJ2Zdl/NyS+uy7/upc4w8OWvxZXGZW9Z5Jy/fNmxbbmW9aNgUs/yh4JJbW63ScXlc1rDlOU/jgrRNvXDhJ7XhcIiFhQV4nhcvCr1eL/70OA84CAI8+OCDeOihh3DllVcmhGWaONcYM5M4N4qihACJJpm32cS5GnYURVhaWkrERCIwHksRca7neU7iXIpFXr1KUeDa2loqFk2cCyAlkKVdEqXgz0Wcq+WbSCr90cS5xpiU6E7Lt6s4l3bN5LEUEedKbC0+G7ZN0DiLOLder2NxcTEhzgWQEh9rgkaX3Nri2wxxbr1eR7vdTohztVo1xqT80bCLrBNR5CbOldg2LjcaDSwsLKR8d+FyEXGuxHYV52rYtE7LWJrNJlqtVqJd47IWn02cK2vVdZ2YhcsUi1yXT5c41+W8Y8OWXNbqBdDPeTZxrpzrIuJced6ZdZ2Q5yBpm65xCYIAt9xyC/7iL/4icaV933334W1vexuOHDmSOH48HuOWW27B7//+7+OOO+7A5z//efXOgib6oba8Y12OyxIXFW2jizUb9iyxnO62aXI7z1hc5qVobovM9TSxuPrj2nezcjtPH/OOO90+TuPPVsi3LbdZ64krzlaIhcezFdaJeXF5Wu48Huedx5vLWW022/QLlwMHDuDjH/84Dh06FLcdO3YMf/zHf4wvfelLqYuSgwcP4mMf+xhuvvlm3HTTTfjoRz+Khx56yElpXFpppZVWWmml/WTbpmtcLrjgAjznOc/BsWPHAExuXb33ve/F8vIyWq1W4i6M53nodDro9/vYt28fTpw4gePHj+P48eO46KKL4jHl82ferhlvd+3Lr1a1MWz9+f/zcOgYeZxs0/7Mj8nClv+3tRXxxxa3a8watnasFov8ZZKVJzmHrsdlzbXLvBSJz9bXNWe2tqL+5HEnKw+u8U17rAv2NHyaF44rJ6ZpmxVbO9aldmzHZbXLf6O6mqUGp823xC6yLtuOc12Xi/hdZM2alifTzkHWmFoMrutEnj82H7ht6oWL53mpDYC++MUv4nOf+xzOP/98PPLII3j/+9+P17zmNTjvvPMSfaJosg30ZZddhh/96Efxjn4rKyvodrsJcc/27duxvr6eEPTQ1z35LoStVgue5xidtU8AACAASURBVKXEZtu3b8fx48fjNtqQ6MSJE3FbpVLB0tISVldXEzFu27YNGxsbCewdO3bgxIkTiQlYXV3FeDzGo48+Gre1222EYZgQUy4vL6Pf7ydEdxp2rVZDq9XC+vp6wh8Ne8eOHYn4tJht2Fp8vV4Pq6ur6PV6MQ5plbrdbnzcwsICjDEpQZzELpLb7du3Y21tLSE202LWsJeWljAcDhO7No5GIxw+fDgxXrVaRbvdxtraWtxG2h+5Q6vEtuVWw7ZxWcanYWtcjqIIDz30EL785S/HbRqXtfhcc2uLb3FxMbXb6MrKCnq9XoJP1WoVi4uLibnWahUAHnroIXz1q19NrCGSy1p8gDuXNWyNy1qtunLZ8zzs378//jqxLbdafDbs5eXleDfuLGxtndDi07C1+DzPw6FDh/Doo48mdCqutapx2XWdmDeXAeD48ePwPA8PP/xw3La0tIQgCFJclrVqWyfq9frczjs2bC0+rV40bK1WXc95tlqdlcu8VuV8aOblXN3kX/pkdTYTEeg73/lOnDhxAn/1V3+FIAjw8MMP4wtf+ALe+9734s///M/x3Oc+F7feeis8z8PLXvYy/PZv/zZe+tKX4vzzz8ett96Kd7/73di2bRuAyR2bWq2mikXlp+DDMEx9ztsYk1g8qGBogqltMBgkBE1RFGE4HCbabNi9Xi8xHgDs378fQRDgkksuidvojR0uRNLi07DpDZWm+Fpkv99Hs9lMxOISX5HcHj16FAcPHsSVV16ZmVstPvKHCx+L5NYlPhs2vdXBRW7dbhf33HMPnvOc52TmVuMTkJ5rLT4b9ry5PBqN8PWvfx3XXXddQpxbhDt5XLbl2zW+KJps256X2yiK8LWvfQ1XX3114nP38+aya25n5fKdd96Jyy+/PCXOd8mtbZ2oVqspMazLXI9GI0RRlIjZlluNy3fffTf27t2L3bt3Z+bWNd+z5HYWLgPAj370I/i+jwsvvDBuc+Wy6zqRdd5x4Y4Ll7V6sWFr8WnYWlvRdVBbJ3zfzz3n3XHHHXjpS19qFbxs+qOi+++/H543eSPme9/7Hp7//Odj165d+MEPfoDrr78ee/bswfLyckycXbt24Q/+4A/wsY99DD/+8Y9x880345xzzoHv+zBmolRutVpx4MZMXkmUqmv6ddtut+PE9ft97N9v0O0u4OlPBzwPMGbyDvni4mJ8HL0Kx/vSa2W8TcM2xsRvgPCiaTQa8DwvocbudrvxlvPUN4oiNJvNBNE0bHqtTPojsclHHh+9Ny/7GmPiXwzURm8K8dyS6p73HwwGCMMw8Sus2+3C9/1UMWi5jaIo5Y/E5vkmklObzDe9mkfYFB/9YiAzxsS/nAibXuOT8VEeeV+Zby0+OpZj8/gkl+WbVPTKNsemX1B84RsOh6jVaon+tBeDjK/X66lc5n2z4uN8IqtWq7lcpoWUY2u1GoYhqtUqFhYW4jE1bK1WNeyi6wTljEzjsm2d0Lhcq9WwsLAQzyHl1oXLEpviazQaCS5r2HRR4MJliW1bJ+r1OprNZiKWMAxT6zJxR34uRGJrXHZdJ2xclthZ67Lv+6lc5NWqDZv4NE189KqxbR3MOudp9WLDBpK1asN2rdV5rxO0JmfZpl+4POtZz8LP/MzPTMBOOlOv1/GqV70Kr3zlK1Gr1eD7Pm688ca4z7XXXotnPvOZuPvuu3H22Wc7K43zzPOA224DfvhD4H3vA8SFbWlngLk8/yyttNJKK+0n1zZd41KpVFIfyQMmz15t72rzX/42QZKLKEm2GwP89m8bRJFJXbTk990cQZTrcZo/NjGT9m9542X5kyW6kv5ME4vtWBu2a1yu4twiPrrMiy02W3tezK651frPkm+Na1ljuWIUPXbe2Hlc1o5zndci3Jr2uDwfXXGm5XJWLqZdB4uIc11ikNjzWHe0urT5M20eivgzSyxFsG3/Pu06USQWm23JLf/5Lahut5sQB9FmXHJTIxLzkmlbE09evQaazQBcB8qFQoQbBEECl3YRlLsfati06Q9v6/f7CIIAa2tr8QRRHBxfi0/DpltxcodBDVuLbzgcpsSwttzK7a+73S4Gg0EiFm0rb9oRU+7kKrEp35K4GvZwOMTa2lpmfMCpT8jL3MrdS/v9PobDIdbX12N8LbdafBo2xSdNw7bFp3FZ21qcjufHDYfDhHBOy+2sXNbyTbzhAktXLtu2EadY+Jizctm2TvC5pkezUsTtwmWKj+eb+nU6nUTcRXIrsWkjMKkfktjz5jL5IddlG5dlfBq2xmUN28Zl+VkBG7aWb9rcT55jKpVKgndafK5cpj9zPmXFp3HZZZ3Q6kXD1mrV9Zyn1QtQfJ3IOud5npfwV7MteeFC5nle6vPp2i572g6rRXbONcYkdv2LovTnxW07NGrYQPqT6seOHYPv+4n+2s652u612q69tp1zJbZrfDZsLb7hcIhms5nwx3XnXA3btiuxtmPk2tpabnyA+865lP9pdhvVsI05tSsx96fb7aJWqyWwtV2g19bW1N1di+ycy/Nj47LcGVjDphOEjE/L92bsnNtoNLC4uJjQGrhyedZ1wnXnXFcuNxoNtNvtVLsLl4vsnKutE9NyOYoirK+vp3LbbDbRbrcT7S61asPWapWwuT9hGKLT6SRwtfg0bIpvZWUlkVva0ZyP6VqrWh251qq2ThThsqxVrV6AYjvnupzzbDvnEnfyuDyvnXO39IULkHylmq7ofN9PtMnj6O/8P2oD0t+boL58ceZjUB85noZNbdxHLRY+fl4s5KOMxeaPzI+MT+Lz47R8S38kvhaLrU3Dpit6zZ+8ubb56BqL9J/y5xKfNqbGJ47lEovkTpbfNs5rccs6mCbftviK5LsIl/OwtVq1cVmOl+dP3hxo2Flcdp3/WdYJie0an8t88eMAZPqdl+88LvO+PLfSH/4rPYs7rrmV2HmxaPmWsWhtRbhMfafJt81vFy4XqVW5dsyyTsg7N5pt+s65pZVWWmmllVZaafOyLX/HBUh+4ppuQclnmrJNEwxpfW3H2fraBEh5/th8LHKcqz82DPmrUPa15cfmY15ubbFIbK2tyJhZOLPwRPNHjifbbbEU8XsePJFz7JJvFx+LzJU2B6755mPLWDiXZ+VOVm1NG8u0/mjzl9V3Wn9ssWjcscVi6z8tvz3Pm2rNK8Jl13nV+trGk9hF1p15xqLVyzR5cMm3bNNwtFq1+WPzMcu29IWLMRNxLt+Z0FWoZBNJGWNSwh+bOJfjasI3G7ZNBCbHtInubIJGjl1EJEXiUx6fTUAqBX+kXdHEuVzQSrnVxLnTiO5s2DbRnTQNm2JzFedKUZoUyGrYWbmV2EUFjXmCvzAMEQSBKs7VuLwZ4lzJ5SKCRsllEhvyfXyKcFnLreRTljjXVWjOzSbOHQ6H6Ha7iXaXWuXYksvTinO1+AibC9+1+CgHcl12rVWNy1nrBMewcdlVnKsJ+/v9PnzfT51jXGp1HuLcvPion8s6IeuFsOU5T6tV13Oe63lHq1XCzjvneZ6X4qa0LX3h4nmTjZNo11zATagE2D8vboxJiO5oUrhoi4RhHNcmzs0SNEpxbrVaTYwpN6Cj+PgmcDZsekuFC8M07Kz4pFBNw9ZEdyTO5UIubQM6m6BRYmuiOxv26upqbnyE7XleQpSWJ86l/kUEja657XQ6qNVqCVGaTdAouaxtQJcnzuUb0MnczsJlW743S5y7tLSUEOeura05c1lbJ9rtdiLfWh1p4lytVjXs8XiMbrebyLcxJt6wjeIuklutjmzrhMTWuKzVahEukziXr2W2WuVcBPQ60mrVdZ2gzSIllyW2bV1eWFiA7/uJWGy1yjfYs2HbalWed2zxbWxsJHyxYdvEubxebNharWrYs553ZK0Sdt45z5jkTr+abekLFzIX8RI/ztZf/t82ZlZfzR8NO288fkxWfDZsTRCWha0drwmsXPzR8iL7ZsXskp9p5tolty7+2HJvw5Xj2OLL8ydr/l1yqx2bFYsLts1v1/mz4eb5Mw8fi/TVsG080fwrmu9Z2vK4nNc/KxbbcXKdyPPHlSc2f1zXiax1OY8nNn+0mLW+WTHk4bquO7Oug64xF+GtS4zzWk9sVopzSyuttNJKK620M8bKCxeLFbn6ezzGe6LaZuSxnJvSzjQrOZttZ2p+zlS/T7dt6UdFJPDhn0AnEafUs9BzYLLxeHxyp9xTRCChkVQvj0ajxCfeSajE26IoSrXRmBKbxuPYw+EwFQt9KZMLuSg+LqbSsOnLpJLoEpvi63Q6qTYZC4kzOTZ9pE0KwyjndKuPRGr8Nib15UIuDZtEYNIfDZtw5bzKfGvYJCDkwi/a0VjLLW/TdinWsG25DYIghU15llymj+plYVNfzuXxeBzzkfyxcUfjsobtGh9pF6bhslarhNPv9+Mxi3BZw9ZqNWud4FymWp2WyxQLn2s5V3w8uXZIbI3LGrbGZU2YrWFn5VZblz0vKbClvpJPElvjsi238+Qy5dH3/VQsLrWqYVOtyvGmjc+GLc95Wr3YsEmHw4/TuONaq4DbeceGrdWqfAlC2pa+cPG8ybeOarVavIj4vo9qtZqYRPpEt9x4x5jkVybpxCq/PDkcDhNtxpgYh/cdjUapvnQcx6Y2/izQ9/1ULOPxOPV5cTrOBTuKIqs/kizyk/EyPsqj5o+Mr1KpxO0UizEm/kIpWRiG8DxvU3NLbXKnRQ2bYpNt1J8/b5Wx0L9pPrrkluLT/MnjsoZNJ7G8+acFgR+nxWfDtvFJ9rVxWcZHb57I/rIueR6lMNwl31odaXzSsLV1gt7qmIbLVP8yFpdatWFrXLbVkcZlbf5dcsvXMm3d4nNNtSEvSGdZJySujcsatrYua/U/Go1SOFqt2tYJFz5p8Wm1asOWtWqrFxuXZXwatmutarkF7FzOO+e56F229IULgIT6mZJbr9cTn/geDAao1+upBc6Yycca+SJOCn8yKgZ+XBiGGAwGiTb6NSvHk9jGGPT7/fhz6TwOUn6ThWGYUFjz+OTbAhKbrlKlPxKbt/Ff4TI+ukLm2HTHS+aWiqNer6cWBvmpdO2tIi23QRCk/JHYPN/8bYF+v496va7uTMlzOxqNUm8L0CLFYxmNRgjDMOEPgMR4NmwtPhqTY/P4JJcbjUZqgRyNRqk8Aki00beQeH7o+0XcH/rFo3GZY2t80uqF5lB+rj4IgtTW6Rq2VqtUG7VaLR7TtVa1Oiq6TkRRlMtl2zqhcVnGwrmTx2WJzXPLuaxhB0EQrzvz4DKdtORca1yW8dmwNS67rhM2Lttyq63Lvu+n1oR6vZ5ZqzZs+v808dm4bFsnOJe1erFhy1q1YbvW6jzWCVmr2oeZuW35C5d5mzGT/0o7M82Uk1daaaWV9oS2M+LCRTtZubbJ9iAAPvUpg+c9D9i7136c9urZLP7MY7x5+jOPNq19s2OZ97wUHfNMnZet1nYm+LOVY8nirOuYWyUWYBLPVl8nbG1a+7R9N+O8Y0x6l1tXfx7vNptt6QsXugXFdwKlzZPkpkZA8iNWJJLiyRiNRjh61OBDH6qg3Q7wvOeZ+FaV3G2UdiEkI6ESb7Nh03H8FhmJQHn/IAjg+35ClESiO7kjpuxLuzPKyZbYFN/6+nqqTYuFnkHyNmNMIj7abbbT6cT4tHslFxCSYI+L3DTsKIpS+bZhD4fD1DNQLd8aNgnDuICw1+ulsKUwj+KjXT+52fKtxSKxbfEBOpc5Nvknd+gMgiAhiNNyOwuXbfFpXNZqVcPWapVwut1uPGYRLruuE1odkTh3Wi7b8iNF5XKu+HguXB6Pxwk+aXNt43IURSmxaBEuy3VZ47KMz4Y9yzpB8eVx2ZbbwWAA3/dTsWi1So8/srBt5x36Nxkf53LWOiixbfHxeiFsY0xKDCtr1ZXLs5x3bNharZ7xO+fW6/XEjophGKLZbKbERs1mM6W6Ho1Gib6e5+Gccww+8pEqlpd9eB7iSW02mwkCyTY6cfDxNGxjTKxH4EVcr9dhjEn1l89XoyhKPUvVsOmNIvmpdIlN8bVarcz4bNhabunZqtRXaPnR4ptnbqmNx0emPUuXmoswDFGr1RLYVORyV1rKo8y3S26NMbEuiGM3Gg0nLkts7Vk6CTN5fugkIePTuOia7yLxabUqsbVaJeF5s9lMPPt25TLllusCtNxqdeT7/ty5TFo9anet1SzsadcJ+nEkueyaW5pnySnOZds6qGEDeq3acsvbtFrldanxlvtTq9VQqVRS/V25LLFda9WWb8KRXObYGpe1eiFsWW/GmFh/kpVvusic13knC1ty+YzXuJDgCDgVdLVaTbTZ1NQ0mXwijDHYubMC4NSESwU6ieF4GynQ5RsbEpvaarVa6u0MHgtw6psYWiz8OBs2KdqlPxybt/ECkW223NrexJH+0PcrZHzyrRsN2/NOvXWh+cNzKxX2PGfy1UfP8zK5AyDGlIp4LT5jjPWtC36hkPVGQ9Zc87mSdykkNv0i0XLL88PfDND80bgjc8v5ZIuPOCHzLTmvYWu1Sn7z/q61WnSdkHNNr3vmcdm2Tthya6v1PC5LbG28LGwSRPKcSe64clmb17x8y7sUEjuLy1pu894WysqtXJf5W0VyvLx1WcMmLk8Tn43LWf5wca7GCQ1bWwc1bH4sj892HnRdJ1zXwSwrN6Ar7YyyIs9BSyuttNJK+8mz8sKltDPK5C300korrbTSnli25R8V0aZK/O9yVz16Nsh/jWufT6djpAhMHke35mVfV2w6TupHZCx021TGJwV1GjaJwDR/ODbFx3fZ1WImHM1vKcaiWGR+tJ08XfNty62GLT9jr+WbNrVyya2caxo/Lz4N25ZbDVuKmW3x0VzncYfzhPrb5ior31m5nSa+PC5rbYTD+xfljuaP5BPNq+aPxhM5XpHc2vyhfPP4JJc17Glzq8WnYWfNtbYuSy5TXXE+2XKriXNd5lqrVRu2bV0G0mswbfon27hp2NSWV6uu5x0btjzvaPXCx8zjjus5T6sX7mPWeScLW2vLsi194WLM5O2eXq8Xt9HGa1LP0O/3U8UuC4kWLZkU2nqb48q2KIriNwNkX4k9Ho8TbxB4nocgCBAEQfyZcerreV5K8U3PEbOwtYsMDZv7yOOj47gRtrbVtRTY0ZgUC+VWquk9L73lv8TW8m3D1vIt47Nha1t5DwaDVCxawWl8ysLWYpHY9OdpuEx95UlhPB5jMBjEbTYuaz4Wya0WX6VSSXFZ1qqGbcstxcLH1GrVxmVtnRgMBqncyjqahctafHRSHgwGiboej8czcVm7eNByq8VHJyqJI9cJLRba8l+uy0A+lzVsW25d1+VpuUyx+L6fikWenLVadeWyVqvU7rIOuq4TWr1o5zyKWf5QcDnn2c471DePyxq2POdJLmi2pS9cSL28vLwct21sbKDVaqW2K15cXEy9iREEARYXF+O2wWCgKqyjKEpg0CTztjAM0e12E202bBqPTyIp3JeWluK2Xq+XUlhvbGyg2WymhFMSm17X4/HZsGV8xhisra2lYul0Ook3Mcja7XYiPtolkcdCbwssLCwk4pO7jWrYRFLpj4ZtjMHS0lJqAVlaWkrETEXNsTudTmpXYnpbg8dCJxQZ33g8RrvdTvgnsTU+2bDX19exsLCQ4rKMj9664di0IMg3Gur1OhYXFxMiOSCZWzrZalzOy60tvm63m9jlGtC5rGFrtRpFkzcN2u12YgdTrVaNMSl/NOwi60QURblc1rDDcPKdGulPo9FAu91O+e7CZQ1b45OGTRdM03JZy22z2UytywBSXNbi07A1LmvY2joxC5cpFt/3E/1da9WVy7b4XM47NmzJZa1ebNharWpcdo2P+vPzzqzrhDwHSdvSFy5kPBkubbb+2t9t/aldG3Maf6YdLy+WafyZpS3Pnyz/XMbM80fmcZbxpE95vrvEMmt8Ln3z2qbpPy9OzIvL04x5urk8i9+z5jaLs66+T8PlecdSxB/X/rOsE7bxso7T2qeNz8Xvea0Tp3vtmKavzUpxbmlnlNmKrbTSSiuttCeGbfk7LuNxcnfI8XgcPxMjI+0Afy5Gf9d2EeTjGWNSx5EIjLfRs0veZsOm47Rn6TKWKIpSx5GfWdjj8TjOhfSHY1N8tOOsLWYa0/f9FDY98+XHabmNoigVn+/7Tvm25VZiU5vc/VTmm56by+OkuJb8zssttfFYNGxbbjVsapNclvGNRiOVOwASbZzz/FGR9CeLy3m5zeKO9MeVyxSf3MmT+mdxOYs7Gra2Tmhz7cLlormlx7uyjXLHcyu1CxLbxidtndDyTXmU+Xada8lHjctUV5LLEpvmeJp1QovPhm3LbaVSccqtVqsuudVqw/W8w/3OOudp9ULY8pxHbVJO4HLO0+qF+5hVqzZsrVbPeHGuTJKNQJqYUluQjDHWpHNcjVRZE+ZSIHKCpHKd2jzPU9XwLgskkU8jBo/PViAyt+PxOLXY22LRLgC0xzKuFy4atm2u5UJD2HIOyAcyGp/H4noC0LCzFnsp+LRd9GqLj+YPACvHsk4+eSd7mVuNT1pfGZ+Ny64neyk+5T6S2bisYdtq1fYDx4XLEluLz/M8dT2y5dbGZZkHz/NSi72WW9uF2TRctsXiWqtZ64R8ZOLC27wLRRcua3PtUquuF1JarWrx5f3oyeOyVi/aOY9i5uZ6zsv70ZPHZQ1b1ipxLMu29IWL503ElVwIZIxJiXPDcCIKnVacOx6PU8LAKIoSbZRIKUoKwzAlIKXx+CTSVspclKaJc40xqjhXYtvEuRq2jI9IKvsCSIlzoyhKxdfr9WIhGFkRca7EJjJrgi+JTfnmBUtiPx6zJs4FkBLdURuPhcS53B+boFFiZ+VWYpMAVHJZxldUnMv7a1ymhdTGZZlbzietXgBddKfVqoZtE+fWajUsLCwkxLlarWr5ttWR5NOs4lxXLtMW+XIeXLisYdOYUpwrsUmcO08uNxqN1LqscVmLzybOlbXquk6QgHQaLlMsvu+r85VXq65ctolzZXxardqwJZe1egH0c55NnCv9cY2Pjp1lnSjFuRn9tb/PW0w77/HyYpnGn1kFdll+zkt0Z/NnWtFd1nEuc+May2YKSLeCwK5ofPK28Lx9nCWWPOx55XszcpvFWVffp+HyvGPh+NOsE1rbLOuEbbys47T2addBF7+LxFJkbXMd08WfedWqzUpxrsVsk1ra42ubMS/lXJdWWmmlnTm2pe+4GGNSm9hom7aRUExu7iU34wqCQL2ylxtB0bNC3pee1/E2GzbhcpzRaJSKhZ5RSl0APXbJwqZnypo/HFuLj9pkX4qBY2sbZ1EsMrdRFKkfOuSmYdOzVM0fbdMu+hS9HI9jyeetNB7pEsjo1nVebun5traRn5ZvLRaJTXMtuczjs2HTM2bJMdlfyy1pFGzckbfX8/hE2C4bi2nYWq0SznA4TNy90WrVlm+JTcdJPrlwWeoJpsltEASJOSzCZRctnIadFZ8rl7W51tblWbjseZ7qT95c2/IdhqFTbkejEXzfT8XiUqtZXM6rVVt85Dc32zrBzztavfBY8mrVlluX805R7kidi22dyLItfeECJG/78b9P2xZFBo88YrBjB1Cr2Y8DkHjjhy+emn/y3+XCN2ssEjvPb16w8jgqSPlGk3asze8i/uRh23AlNj9Oa5P9XH2cd5uMbzNxbG3yzy75tnE5zxeXdvl3flLQ2vi/acdq9eba16VNjlnkONnmeZ41xrz4TlcsGrZWb5xDebEU8dvmo43LZHQCtsWSlVs+LxpP55XvrNzkxcf7auvJtPmelsvT+JhX/9Jvmpcs29IXLp7noV6vxyI5YyZXca1WK/EJ7CAI0Gw2E+Kl4XCIIAjQarXiZHqeh0ceMXjjGxfwjncAL34xYMxE4b6wsBAfR1fSvI3U8Hw8DZvaFhYWEhcu9XodxpiE4M+YyefgSZRG8TWbzYQwTMOmXymaPxybt8k7SrzNmIlYrNFoxNjGTO54SYFlvV5HrVZLYPu+nxLnGjPZcp0LwzTs8Xgczyv3R2LzNv65eppneaFI+eHx1ev1hDAsDMNULPQrhrfRVtoyPolNb0zw+AiHY1MsXJTGx+N3BeiXFccm423D4RDVajXRX+My/eLSuJOXW1t8URShWq3mcpmweX+qVVmDNB6NqWHTr0KNyxzbxmV6XZP37/f7sTCcm+Syhk1vlUh/arVavHtukXxr2LTISy5r2PRrn7cRl3l8trnWclur1RKCdj7XeVzWsGlszuWsdUJymdbVolwGJmuZ7/spbFmrMj7CtnFZvoShxefKZe2cR2sHcVmrFxu2MSZRqzZsW3yyXrTzjm2dkNi2WuU1qtkTTuOyYwfwjncAV12VfVzeFV9Rm/d4T1TbjDyWc1PamWYlZ0t7ItuWvuOyGVarTe60lFZaaaWVVlppZ56dERcuRZ6x8b/z4/mfjck/zt43//mza1vR55Su/tgw+KMiGZ/Nnywfizyf5X+X2FpbkTGzcGbjSfZzb63dFksRv6fliXasjTvT+likrzYHrvnmY08Tyzxqa9pYpvWH++GqAZrGH1ssGndssdj6T1OXxpiU0LgoT1z5OO06kRVLXm6zfJlXLFq9zCMWW23k+cj9017QcPXHZlv6wsUYg263i7W1tbgtCAKMx+PUpkYyQbTDn1RiG5PeOVequOkYjkvPXGVCNWza9Ie39Xq91JikppaKf1K6Z2FTfFJ9rWEPh0Osr68n4pNb1xN2EAQpfUUYhgl/ut0uBoMB1tfXY58ot/LNLs9Lb+UtsSnfWm4lNqnmZb6ladgUm/zSNeWHLzqkKyILwzBu56Zxx5ZbiU1vCuTFp2HTn7WdWNfX11PPnzUuy8XDlcu2fPu+n+KyjE/DtnF5OBxiY2MjoXEaDoeJWLLyreVW8knDzuKyfJtCYmu1SjzsdruJdlutIwOPFQAAIABJREFUrq2tpd7E0Lgsa1XDJt7kxadha/FRDuS67FqrxOVZ1glXLrvktt/vw/f91DnGpVazuJxXqzYuy/hs2Lb4eL0QtjznabXqes5zPe9QfPy8Q9jaOY9z2fO8FDelbekLF8+b7DS7bdu2uE37BPba2prT5+r7/T6MSQtkAWBlZSVxR2J9fT3RRjs0ys90S2wab3l5OUG0Y8eOoVqtJmLpdrsJcS7FxwWyhN3tdrGyspKIbzgcJj5Xr2G7xmfDXltbQ7vdTgkam81mwp/BYBDv5khm221UYodhiE6nkxgPSH/O3RiDtbW13PgIm4tzAf1z9bRzMf8kO73ux3Or7fhZJLedTicWaNrio3xLLpM4N283Tto5d3l5OSHOlbmdhcu2fLt+rl7Dtu2c22g0sLS0lBBJrq2tOXNZWyckl7U60nbO1WrVtk7IWjXGxDvNUty23BpjsG3btlRup10nNC5rtaph23LbbDZT67KtVpeWllLiXG2dkLXquk7Qa9mcTxq2bV0mQSmPxVarXCBrw7bVqjzv2OLb2NhI5VvDlrWq1YsNW+OThm2rVdfzzurqqrpO5HHZGJPa3Vzalr5wIZOvJHuel2rjx9n6y//bxuT9tD4u2Np42jhaLLKv5ofNtyKxSGzNH9km45BjucTskp+sedFi1nBceJKXT1vcNuys+PL8yZt/lzzIY7NiccG2+e06fzbcPH/m4WORvhq2jSeaf0XzXQRHtuVxOQ8nL16XdcLFH9nXNT4bdpavLtgu42nHZdWlzZ8iecjLt61Nw3HBdvXHNqZLjHnnDtf1xGZPuLeKSiuttNJKK620M9e2/B0XY0zieRqJePLaoii9MRG1yb7acfz/tvHy/OFXxoQjffQ8b+pY6D8tX1JMFYZhfEVri4XGc8m3zZ9p+7rmlo7XjpPP9l1zK8fU/NHmT8PW4svKha1NxqsdB2Cq3Oble9r4bLXlWpdaG+9fhMtF8u2yTmh8mia3WXPNfXHh8qy5teUhb65t/V1q1TW3s3JZw3ZdlzfrHDPNecfVH61eisRXdB10XSd4rRbJLZ8jzR7XCxd+m0hrN8ag3+9jY2MjvvUkhUrURv9ORomgZHreKcEPCZbISNDIjYRO3BcSOHG/NewgCLCxsRH/3fMmYiRqp+NpK28SoWnx2bCjKIrjkLF0Oh01Fm4yZltu6Xk/vz1IglaeH8o1XTRRvun/Wfmm+Ph4NmybEFPmm+aab3lNwmcuDNNi0XIr47Nh23IrsSkWLT7JJ8LWuMxzS+JcPv9abo05JcwsyuWs+LjgL4vLmoBUE/xRLFJflecPtbkIGmmu5XbjPEfAKUGj5J+Ny1pt0WZgMj5uWny0vb8U59rWCY5N8fETjU1oXmSd6Pf7iXb6jADP7SxCcw07Kz55ossSr/JY6LMAvD5GoxGCIEgJSKX4WMPm64SMTxND58Vnw7bVqqwXDVvjsoZtq1VZL4QtuaPxScOWXObrm8029cKFL5Tj8RjVahWeN3nt7ejRozDGYNeuXQmH6errsccew/Hjx3HJJZckxFia6A6AkzhXE90Zowv+SKhEZhM0atirq6spEdjRo0dRqVQSY/Z6vVgcmhVfGIbodrsJbE10p2HTHGiCRi5Is2F7npf4fDrlUYpz6a0CntsscS7HtolzPc9LiVcBYGlpKRGfnD8bdpY4N0/QqIlzAaQEaOSPzK2GrYlzZXw2bJs4l4TGfAfLWbmsxfd4iXOB6bnsKuLX1olZuSzFuZRbV6G5xNbEuTbx6qxCc5nbZrOJhYWFTHGuFp8NWxPnanXkKs61YWtiUdpJl4/pKqTXuOwqpKd88/hs+d4Mca6sVQ3btVYBdy67rhOPuzh3PB7j4x//OA4fPoybb74Zo9EIn/70p/GFL3wBx44dw0te8hK86lWvSrwFceutt+KTn/wkdu/ejRe+8IU499xzUalUEr8OXYVKsl2KgLQxZbs2hg3bNl6Wj7PE4oqticBkX9t4rv7kxZf1Z80f6Te/A1JUQGaLJU90lhVf1vy7xlfER1c+FTk2L98ux2WNt9k+umJvBpeL+l3En9OR27y+s6wTReLT8Fz7F12XXfyhv0+Tb9daLbpOFPEnK5as44qM6erjrLVqs00X5+7fvx/vec978P3vfx8A8MADD+Bzn/sc3vzmN+M3f/M38dd//dc4cOBA7PThw4dxyy234Dd+4zfwyle+Eu9///vx8MMPOwXjasac+q+00korrbTSSjtzbNPvuDzpSU/CNddcg9XVVQDAxRdfjHe96124++67cdttt+EFL3gBdu/eHV/Jr66uotPp4KlPfSpOnDiBw4cP48iRIzj//PMT42oXMraLG95uDLCxYdBuA+I7Zs5Xf4/XcY+HP1l9tWOnjeV0+G1rcxlzM+ZlM2KZxZ95YGu5ndZH17Z5xKK1TxvL6cgt/ZKdhst03CzzYus/bR5m8WfetVVkPNux0/JuM2Lhd6qz+p4u3hbpa7NNvXDxPA/VajXxTHk8HuMjH/kIRqMRXvOa1+CKK65ArVZT39bwPA8XXnghHnzwwVgEtbi4GG9iRMctLS2ldqWsVquo1Wrx81Ng8txsMGjjz//8yXjFKx7GJZccgjEelpaWcN999yVu8y0uLuL73/9+3EZfZ+10OonkS2xjDJaXl3H//fcn4jl27BjG43EsfjLGoNVqxV/lpLZ2ux3rRcjo66UbGxsxdrVaRb1eR7fbTfizvLyM++67L4G9tLSU8mdpaSkRH2GTUIrH1+v1EuK+TqeD48ePJ9pqtRoqlQr6/X5cLM1mE8akdyrW8t1utxPx0VzTl3p5fJ1OJzPfGrYxk+e8o9EoIQwcDoc4ePAg7rzzzriNNkjic12r1VCtVhN8ss21jE/DtsWncVliU3zARI9BOGEY4tChQ/jGN76Ryu08uazFV4TLElurVWMMDh06hG9961uJ9cOlVjXsrHVC1lG9XofneXFutfg4NvdHq1UAOHjwIKIoSnwV15ZbyeVWq4UoihJclrVqwyYNF49P1qoNW8s3ABw4cAAnTpzA/v37Y3+KcHnWdYLPtVarRbh85MgR+L6P48ePx8fZapWfd2zYtvMO51OR+FzPebZ6KcJll3Ui67zjymWXdeLRRx9Flm26OHcwGKDX66HX66Hf7+OHP/whPvWpT+GKK67Agw8+iM997nP41V/91fhR0nXXXYeVlRV885vfxK5du1Cv13HFFVdgx44dABCrj7kIaDweY/fu3QlS0FsYXEw12Yq5ghtu8PGsZ52Fs85qwZjJmLt27UpMhGwjpfiePXtSx3FsrS8wIdBoNMJFF10Ut9HbAvLCjsfHsTkOxXf22Wcn8u0Si81HW265gBqYXIT5vo8nP/nJidwaY1L5BpCIL8sfLY+VSkX1Jy8WDVvLLXHzoosuSuV27969iTmQfJolt1n5duWyjG80GuH48eO46KKLMsfU4nPlclZ8rlx2yS0J+C+44ILEjprz5rJWRzbuyPiy1gk5h6urq9i3b18satys3LqsE1qtFvFnMBhgz5492LlzZ+I4rVZlHua9TszCZcL0PA/79u3LzO0sXJ4lPg3blgdZLzbsLC7LMeU5b5bzjg1by+3hw4eRZZv+qOiuu+7C4cOHEQQBvv71r2Pfvn1405vehKNHj+Jv//Zv8ZznPAf79u3Dd7/7XXieh127duHtb387brvtNmzfvh2vfe1rcckll8D3fRhjsLGxkVBYG2NihbV8bZLUz5Q4Uli/7nUegDaARRgTxep1/suVFNbURttp863hNWxjTm11zCdibW0NQRBg165dcZvc/pjiazab6lbeHJu2XubxadjUJrfyljEbY9DpdFJbL6+vr6e2Saf87Ny5M+6vbeXd7Xbjq3YyDXs8HsdvC3B/JDblW27lreVbvqlA8dXr9ZSifWFhIVFg9KbC0tJSIr7xeJxQ02vYWnyEw7EpvoWFhRSX5Tbp2psK9Gotf1tgOByi1Wph586dCbG73Mp7NBrFbwtILufl1hYfvYaZx2UNW6vVMAzRarVw1llnxWNq2FqtathF14koinK5bFsnNC4vLCxgx44d8dsrlFv+eQYblyU2xddoNBJc1rDptd55cZnuAKysrMRrmY3LMj4btsZl13XCxmXX3NKPML4uu9SqDZv4xN/ico3PxmXbOsG5rNWLDVvWqg3btVbnvU7wO8o22/QLl6uuugq33HJLfJuoXq/j4osvRhRFeN3rXhdfhLz61a8GMLk9deONN+K5z30u7rnnHuzbty8R+DyMj2fcH6uVtgXMbMKEbcaYpZVWWmmlbY5tusZF7l1BJvc04VflwOSDTYuLi4lneNy0k43tBOTSV7bzq0kXnNPR5nqsMfqn0rXj5+3PvGORbZsxL0XGnGcsm9W21fw5E3zU2k93LEXqMouzrtibsSZsFZ641rTxPMDzgCiCmXSc/AdA82azufN4n3fmPeasGDZ7XHbOzbuDwiev1+ulPp/usiOm9vlt7RPf1F9+Xtz2SXWZXNsOjXK3yX6/H+9MSGPYPvFt2xGTY9t2MCTsLH8oPvn5dNrdVeZW7ojZ6/UwGAwSsVBu8z5XT2O6fs5dYsvPp2vx2bDl59OBUzvn8liiyO1z9TZsW24lNgnSeL61+DRsbbfRMAxTu1VqXKb4JJddc6vFR7zhXNZqVcPWapX6dzqd1JharWr5nnWdyOOyhq1xmfpJoapLrdqwNT5p2EV3zs1bJ2i90tZlbXdXGZ+GTfFxLttyO1cu9/tYuOsutO+8E9i+HabZxMYLX4igUsHI99HnsTSbCHftgs+1Z+OxE5dnOe/QcS7rhFYvGrZWq1q+i9bq2tqaE5cltrZzrsyVtC39rSLP8+IdJ7k1m82UsKzdbicmlrZt5s+paeHiz8+MmezUK3ftNMYk2miipC8aNj0f55PYbDbheV5q91Pf9xPPqbvdLur1emrnXImtxUfY8vmj9McYk4rPhm3M5Pk8XyB7vR7q9Xoqt1EUJTQAWny2fMv4bNgUS16+SUWfl1tg8qYDj2U8HmMwGCT8oeLiz4o1bC0+ylmtVkthSy5r8WnYVPicy6PRCLVaDQsLC4lnzRqX+/3+VFzOio/eOMiKT8PWuGzM5NP2CwsLiWffYRjm1ioweZaurROST7Z1woXLRdaJWq2GVquV8p3nm+KTXJ5lnSjCZYltWyfq9XpqXXatVVcua9havrX4qL/EBnAqvsEA+PSn8eihQxi/8pXYuW8fvG4X7U9/GvVOB77vo8L61qMI1Ubj1HjbtiF8wQswANDevj3eW6NIfK5cpr5Z64RWLzZsrVZtXO71elOfd2R8NmzSVnIuy3VS2pa+cAEmmhcuzvR9H5VKJdHmeV7iOADxFSqpxoFT33WRBCCVMxdJyTbyhbdp2NTGFfYAVB9tsfA2G3YURVZ/pLrf87z4cwu2mG25lW3ki8SmX1DacXn55krzPH/oOC660/Lt+34cNx9P+kOYNmzuo+yrYWvxafOvzTXH5ScA+pUqcyvzzTnPxblZPNHasnJri0/m1pZvDVvzkWqQ99c4r9Wqhm2rLds6IXOrxWJbJ4r6w/NNvkgua32lPxq2ljMblyV21jqRN9dafDZsjcu2dULG4vs+qpUKKvwuvu9PPpvhefCMAU7iLy0uTu6Y+D5QrQIvfzmWT649Zs8eeACqv/u76Pd6qFerqNIFM4Dw4EHU1tdRpVhOnID3wQ+iMR6jcv758Go14Od/HuHKCqJqdRLLyTsVtvhcuWxbJ3getXqxYbtyWVsH89YTzh15nIadtc5n2Za/cCmttNJKK600zTzPw+Cuu7DxpS8hGo3QfMpTsOPlL0f0yCM4+olPIOr1sO3GG9G85BJs3HEHBvfdh9bll6O2ezeGBw9ixxVXoE6bm9LJkh6r0d+NQbS8DOzdC9Rq8QVJ9MxnYtjtovHgg5M7OH//96gcOQLvSU+aHHvRRcDllwPj8eRCyZhTY5Y2k50RFy6a4GdasdG0feUY8/CRjnE5TvNH8832b3njZflj81HzZ5pYbMdmYbvE5Xn5O1gWyc+ssbi2yZht82xrmyd21nGz4M7q4zzHc8HJmgPbvxf1Z158cj3WZY1x/fdZ/NZq1TUXZjjEYx/6EDp33onqjh1oP/3piDodHPyjP0J1+3bUdu/GgXe+E3vf+lYcu/VWRN0uOl//OqLBAF6ziX1/+ZdWzNxY6O7NlVdOhLxXXYVxEGD03e+idvw4cNddwK23wl9eBp7/fJirr55c+OTkRmsvct5KtJzMqwlDwBh4k06TizOucaKLNdrkjo7TxrS0GUtbwugujcN4WbalL1yMmYhz6XMBgLuA1FXQCCAhFCLcIAgSuNTGRW42bCmc4uLctbW1mGw2oZKMT8POEudKkZRLfDZsEobx8brdLgaDQSIWepzBBY2Ub00EpuVWFqGG7RKfDZv2vnER58rcavHZsAeDQSq3o9EohW0TkGpctuWWi/lInCsFljZhtyuXtfikEW/oS7gUn+RTUeHzxsZGYsxZuey6TtC4Mj7JZds6wfNNgtZOp5OI25XLNhG/TZyrzfU0XNZqlfzodruJdttLEzI+Vy67rBOtVguVjQ0EBw6gddllMEGA7l13oX722ejfcw/2/eVfor5vH47edhuifh+tpzwF4eoqlp77XJy4/Xac/fa3I1xZQefEiYSPVKuSy5rQXBU+X3ABxpdcAlx9NRCGMEeOoPLFL6J6xx3oPO95MJdfDlQqhbicu054HmqHDqHz1a+izy6OojCEAVC9917UDxwAPA91qgvGHc8YtIIAIB2VMQh+6qcQPOlJWBW6pSiKMOaPKI3BKAyxXqkk7lKNxmOsVauJu0y0nnPh83g8xtj34ZE4F0D9/vuBG26Azbb0hYvnTTYQ469Nz/tz9XQlyzfZiaIIGxsbibbxOP2JbwDxJmn8OTWNx4lGn0/n/W2fq5fxadhafMZMNitaWlpKaFxc4gMQb9DGhVPa59wHgwEajUbCHy23WnxRNPl8OscOwzDeYE/mlmO7xmfD1uIj0SPfoGs0GsWbdpHRwiwFpFpuNX80bNpMUcYnuaxh06LKBaRBEKBeryf6h2GITqeTy2UNm+Jzybfr5+pduRxFURwL3wjMlcsSm+KTmym6rhOuXLblttFooN1ux+3GTDYR4+vErFzWsGflsowPmAg9FxYWEuuyrVZduCw3i7RhSy57nodoOMTu174W7auvxvj4cTzwpjdh8VnPQvvZz8aRv/kbNC66CKPHHkNlaQl73/Y29L/3PTx6yy3Y+Zu/Cb/ZhPEmL0xwjnY6HdRqtQSX19fXExufUm77/X4i39pmkf12G3jSk1BZXcXyZz8LfPWriF70Ipjzz8+Mz4adyK3nAfv3I/qnf8LOe+/F0uWXo8ZfUjm5U3H9uuuA3/gNAEAwGKBaqaDKX8KIIgz6fTTYvDS+9S14d9+NJufYyd10G7wvgEEQoFmvw2Nt/SBAi7UBwHA8hu95qPFNCUcj1CqVWAxtAOx64AFk2Za+cAFOiRqBU7cUSeDD2/hx1I//x8fyPK40j1h78h163kZ/5uPRcXk+arHwv+fFomFn+aONyWOR4+blVsai5db3Jzsba8fZ8sAXSH58lj+2fNty5nKczIWWW61vFvdkvuVxRbgjY6F+3H+JkTX/2vy5zj/9ynOJr0hd2vzh/TVsrVa1vkW4nOW3Nv+SO/z4PH+sbQW5Y8N2jc+Vy0ViIZ/y8shrkJu2TvA2YwxMECA4fBhtz0P15GdhgkceQf3cc+E3GggOHEB1cRHVs85CcOAAHvnv/x1n/dqvYe1zn8Px48ex6/Wvx8KVV8Z4HNe1LrV1OREzAFQq8M47D97rXgccOgTv059G85//Gf4v/iK8yy8Hmk2gUkG9Xk/lodFoJF6u8DwvfoPL63bhffGLwHXXwVx3Hfyf/mn4XHQ7GMAA8Oii1/OATmeiueG704bhZE+blRXAm4iazfOeh9FVV6G1tHTqgmQ0wigI0Gy3Excpwfo6WicF0dSGwQC+2AHXP3m3x2MXLpXxGP5JEa93su8jn/88nga7bfkLl3nbeAx85SvA054GiB/4pZVWWmlbw44eBR58EHjGMx5vT7aseZickMerq3j0r/4KUa+H1iWXYPnnfg5HP/pRjFZXMTx4ELvf8AbU9uzBo+95D3a++tVoXnwxVm+/HSaKMD5x4vQ67fvAeefBvPGNGP3gB2h96UvAl74E/OzPwnvmM9EEMPzhD2HGY3j1OhoXXIBmvY7g4EGEa2toXHQR/HYblX4fwwcfRG3XLvi//uuIhkNc6p18i5Jd9Ma6Ft7mYp430bjQY0fqb8zkTS3RpgmaW56H4Y9/DDMaAZ6H5kUXoV6tYvToo+g98ggaF16IysoKqkGA4MAB1Hbvhr+wAFQq+Nlrr8107wl34XL0KPCudwH//t9nPkJL/JosbevYZsxLOdelbbbVajV3nhkD3Hor8NhjwM6dwO7dm+vcGWz+4iL2vvWt6H372wg3NtB+xjNQ3b0be3/3d9H95jexvdWa3FGJIux585tRPflhyL1vexvC9XXUL7sMYRimdm7fFOPz73mI9u4FXv96YP9+4HvfAzY2cPwTn8Aj//W/wqvVsPILv4Bz/+N/xNrnP48jH/hAfOdo79vfjsf+x/9A9+67J48QL7kEgx/9CHvf+lYs5pzwT6dtfOlLOPDOd8LzPLSvugrn/8mfYHDffTj0Z3+G6soKDIDz/vAPcfyTn5wIprtdLFxxBaq7dmH3G9+YOfaWvnAxxsTPEclIJCfFdPRskbfR812yIAiwfbvB+97nYe/eyRtsxph4EyMyEl3xNhLwSUGVDVt+wnw0GqViIXEdF9PReFJMJ2PR4tOwKT7+CXstZvKR8HjbYDBIbdpFfnKhsdzdkUSF3FzzzWOR+0AMBoMEjpbvIAhS2BSfFEhqcy1zS/Hx+dOws3JrjElgUw4ll2V8GjYJR3mM4/E4HpPfXi/C5bzcZsVH+h7e5vt+isuyv8ZlwuFiTI3LNu4Q9+QOpq7rhDEmlW95Cz8rt6Q3IrviqU9Fa2EhkR/aQEy2eZ4H80u/hPHGBsxnPoPxy18OiI28aO8jTbCfl1uNT3xeXeZarmUal8MwdOay53lWf7Lii6IIYRShdcEFiBYXMW40MB4MYDwP9Wc/GwAwPMmBqN3GmATA55yDyrnn4sEDB+D7Ps4555yEjy61qnGZ1kZ5zuIvayTiCwLg7LNROfdcVI2ZiIvPOw9etYr2VVch6vdx9IMfxNI112DbDTfggTe9CZ2vfx3j48dRO+sstJ/5TPT+5V+wdO21aD/zmXF+s7C1WqUvQeetEy7nnUqlgqrvo/ftb0/uCDUaWLz6ani+j6Mf/Sjq55+PvW95Cx78nd/B6v/5PxgdOYLqygqaz3oWxsePI+x0EsJhzbb0hQuAFIHo75IE8g0JmhjZFzA4//wocXdLO86lzYZN+PyZJPWn/3hfF2waM88fic2P5bhyvCIx8uP4WK5+yzatb1YubG28EG3Ytnzz/rZYsnzkuZ1HLNNwgvvNTz5FY5mm3or0lcflcSdrrotwucg6Me0ccP/GR4+i87Wvxa/etl70IoxOnEDv7rtR3bYNzcsuw9gYhOvr6H7zm2hecAFqe/disL4Or16H/1M/BRNFMB/+MPDmN+dy2bUG8+oti8t8LZsmZ7PkW+sbRhGCH/wAzW9+E+bf/BtEZvJ4o9frYWFhIfYXmAjIqY3aaVfivLg1LrvGQn/OWlcrlQrMaAS/VsP2l70MfquFR//bf0Ntzx6svOhFeOQ978H6HXegsrCA5ec/H+1nPAPD/fvRv/deNC68ELte/3qgXocRb+xp2EXOOy5zIPMT5ygMsfILv4DGBRfg0b/+a1R37cLKi1+Mh/7Df8DwwQcxPn4cK9dfD7/ZRP/eexE88gjGq6vY+zu/gx8+9BAuvfRS2GxLX7h4npfYWt4YE3++myusR6NR4u0M4NTnt4mowORNDGNM6vPi8ji60uRt9Nobb9OwjTHxePyXBinU5TbblUol8YnvMAwTn/i2YdOvFOmPxOZt/FfqaDRK9Y2iCI1GI7HF+ng8TuV2Y2Mj3sKc+g8Gg3jLcG6+76feFpDY9Lqm9Edi83zzN1+CIIjf2iKjAiJsio9/rp78kbHQL3Luz2AwUN/EkNhafNTOsSk++eaLjA849aYCx6axOZ+Gw2EcC3+rSHKZfnHZuCxzKz8hIPlEx8rP1Wtc1rC1Wg3DMB6v2WhMbq1balXjssQuuk5EUZTLZQ2buNyo13H0s5/FoXe/G36rhR2veAUWn/1s7H/72zE6fBjG81DbvRu7/t2/w/odd2D02GMIDhxA88ILMfjxj3HeH/0Rlp78ZHiXXw7v//0/eN//PmpXXz3Zl0PhE8eW6wTxZGYuGwMDoNZooN5ooH2Se+YktuQyjce5rGFrXM5dJ2gOfvhD1L/yFdRe/Wp4O3bE+5YEQYBms5nJZQCxGFZia7WqvVVE5xPJZZf4OO/oImHnq1+NxoUXApUKjv3DP6Dz1a+i953vYPvLX46la67Bw+9+N/r33oul667Dxpe/jNGhQ1i87jo8+r73Yee//beon3NOghMatqxVQOeya62q553xGNt/+ZdR3bsXlZUVrP3f/4v1L34RXhRh+bnPxVk33YSH//RP0fnGN3DWTTehe9dd6N55J7a/7GVY/exnceErXoEs8zP/9Qls/Nf7VhzviWqbkcdybraYmYmgsDYYwKNb7ltljk7+os/zx4Qh+t/7HhoXXojmBRfAhCHMeIzFq6/GhX/zN9j9hjdgvLqK9tOfjvr558OvVrH3LW9BZft27Ln5Zixdd93k5FyvY3TTTQi//W3gnnuYG3PMhxyLx+d5E2HgwYPAww8D//RP2PvBD2Lx9tsnf3/sscmxnpcUa54OCwJE/+t/IbjxRuDkG0Vnqnm2sds8AAAgAElEQVQAzHCIIx/4AI7/wz9MNDurq2hdfjm8RmPyQ4y+lVSp4MQ//iO63/kOdr7mNVi9/XaMjxzB6mc+c+oxwuNsJgxx7O/+Dkc//GH0774bwwceQPvKK+O3m7xmcyKurtex8ZWv4MQnPoE9b3kLVj/7WVSWl1ET3zyTtqXvuDyeNm/BZikAnY+V4twniP34xzj39ttRuf/+yWubl146ecPmpEbBAHjcZm0wOLVRl82MwcJTn4ptN96I2q5deOj3fg+Nffuw5+abEQ0GOPHJT2LP616H2tlnY/cb3oDRoUM4+j//J1qXXYbln//5+M6KBwC1Gsx11wFf+xpw8cWAuNs1i8WXGKPR5DVZY4BeD/jnfwYGAzSCYBIvbcZ35ZU4/uIXoz4aYfkDH5jsBLuygrrvw3/JS4DFRZilpYlGYTPrajQC/vEfgWuugdm1a9J2htexv7SEs9/+dhz7279F91vfwu7XvhbLL3whmpdeiiPvex9O/O//jd1vehMWnvY0dL72NZz7h3+IyvIytt1wA3r33IPlF7wg/tjj421evY49b34zjn3sY3jsQx/C9htuwI5XvALh9dfj0fe+F0c/8hHs+JVfwbbrr0fnG9/Auf/pP6F+zjnY/su/jOGBAxgNh6hX7ZcnW/rCxRgTfw6ejG59yl0t6VklGQkVe71eoi9/lkkYo9EI3W438SglCIJE3zAMU20aNo1HmyqR0S02HstwOEyJF8lHLiDUsEkkJQWDEluLj/vIjXZj5Nj0SEo+upD+yN1Q6TgpILTlW/NHwyZcl3xLbNp9mAvs+v1+ClvLN4ne5OMRl3zbsIk7kss8Phs29eFcJk5I8aoWn5ZviV0kPhIuSiEuH4t29uVt1IduwUdRBG88hrn3Xvz4xS/GzksvRXVtDfjXfwX+839GfWkJuPRSmHYbvZ/7OUSVCkbjMbr9fnynwPO8uI64iFnmxvO8xDphRF/y0fO8U34fO4bKxz4G87M/i+CpT41zQRbrvoxBbedO1M87D/Vzz518G2f/fni1GtY/8xmEGxtYvv76yZ4Znodjf/d38BcX4bdaOPiud+GsV70Ki9ddh/5wOOHyk54EPPww/I9/HKNf+ZW4VmmXXznX1MbnmmKhWu30eqjfdx9q3/8+wrU1VO6/Hz3fB1ot4MUvBhoNDEcjRE95CnDyUYPn++j+y7+gd/bZ6F5/PcxgAO+BBzBcX8f4Pe+BHwRoXnYZ/HYb5tJL0bv44smeHZUKvJPcIS7z3PLHJZyPPLcxHzsd1G6/HaPFRYRXXZWKmXNZilI552mufd9Ht9tNzD89YuU5o122+VxruaUNNfl45H9WfJ7noXr22djzjndM9u2o1TAcj1E57zyc91/+CzAew9TrGI3HWHjhCzEOQ4zGYyz+4i9i5YYbcOToUSyK8fg5j+eb6o7zXOMyrYPUV9ZLVm4rKyvY9eY3Ty5663UE4zG8bdtwzh/8AczJXXpH4zFaz3veRLA9HKJ57bVoex6++OUv4wUveAFstqUvXGgjH37iok2AeBud3PhiH0WR2tcYk9omm/rzBU32pf6yTR5rzKkvd8rNilxiob/nYdOJQDtO2zzJ9sVYDSPPH81vOmHlHcex+aIiL1Dy/MmKj46TY2r+8K9D89xqfrtwh/eV/th468JliU3/Ln0kPsrNyDTe2tp4bmUsWfmW8bXbbaDbxWg4hIki+MvLqNVqqFYqGB89Cq9Wg9duo1atAuvrCEejeDdTvPCFeEa/j8bi4gTn6U+Huekm9B5+GAv79wPdLip/+qfwwxD1K69Edfv2yeZMu3YBzBeuZ9HqmnImORFFUZo7x4/D/9Sn4L/kJTBf+QoqAPyLL059PTeKIsDz0Lv/fqx94QtoXnIJhvv3Y/cb3oCo18Ox227DWTfdNNkwLQxx7O//HjAGu37rt3Doz/4MfquF7re/jcVrronnw/d9+M95Dvxbb0X1/vvh79un1qBW13KdCMMQCENUv/MdeHffPbmb9dM/jeGv/RoWFxfj79lExiDqdlE5+aZTaq5rtckdl6c9DabbhX/ttaj4PrzvfhdYX0frjjuAD38Y3gUXAE95CvCMZyBst2GUmpZzwOeFr1teFKHy6U/D374dlec/f7LfiZgrGtN1nXBZg4k7nE/8q/bcb5data3LvV4PKysr8Gq1Sf1FEfr9/8/em0f7UVX54p+q73znIfPEEBMCJAECCBgZmxCDRhMmgQahARfiQ1sbfKLd+gOfuuhufNK6ntPyOTRPwQEVEWmgIYiAoEYSQAyDDEkIme+933ms8/uj7v7m1K59qup77w1c5HvWYpF7bp367L3P3vucW/WpfUpuVeJMBhiNyWKxiFQq5eoYi0EBeOrpp3Hcccf5KoNL8pjysunkdGledF2kdadYLKKvrw/W6Nd09uiDCCSTSFKfbTe/HKX5skb1C2qTeuMCuPUPdMJftVpFKpXykMDK5TKSyaQvSQEuKVZPukopX9nucrmMdDrtST6VSsUzlnaa/H5U/l4nkNL99MUnHo/DcRwfIYqTc+kzSk7O5di0k+bylEolD7Yujx4gXD/acevY9MRL14/mhMq760mACJH6z7btL5NeqVQ88tCTAi4Px9btrW8UqY8v9pZleWxL+unktVqthlgs5sGmv0i5fvr9TNiSP9E9OeGvUqkgmUz6fFnXj3A5Nj1J0vssy2rOi07OpZjR9Qvy5SDbmvSr1+s+cm59zx68/PGPo/bqq7C7uzHn//v/0LFkCYZ++Uvs/dnPkJg6FVMuvhiqWsXO734XjaEh95C8Wg1WLIaZ11zTfL/fxO7vBw46CJZSSK9YAadaRWPdOqRqNVg//CFw6KFQZ56Jajzu82Ueq2QzwJ8nmrFKf5Hu3g37zjuRWrMGmDcP6O2F/Z3voHLQQa4t3Js1fdlKJDD9yiuRfeghVF58EXM+9zl0HnMMVK2GWf/zfyK9YAFq9TriALre/nakzj4bViaD6R/6EIpPPonud74TVjyO1Og9bdtGqrsbuPBCxL/xDVTPPRfJOXOQYnmCxxE96UulUs1Xa1axCOe730W6vx/q4ouBjg7EAMSHh5FKJDxzXWFzrZRCIpFAMpn0zHWlUkEykUAikYA65hhAKZSPOgo96TRiL7/s1in5v/8X1mGHoXHccUhrxwVIvuzJE6N9jWoVjXvvRWrGDFinnYa4baMWi7lkaCEPRskT8Xjcl6NMsaqvO3Qdx6b/h8Vq0LpD8W5Z7scp9Okx9ZEMlIdpLF0fhs1jVccOyxOmeOFrHunHdaF1S9elXC43fYqe4oTV1Zn0G5d2aze9tYm0Qhu1iQUgo70yeaNb+YUXUN2yBbHubnQeeSRSBx6IwhNP4NUvfhEz//EfoapV7PnBD5CYPRt2MgmVycDu6ED217/GnM9/HioeN/JYLNsGUimoeBy1k05yS5WXSsBvfgPcdBOwdq3LByHi6Fga2XDHDtg//Sms977X3bQAwPTpsM44A+lf/AK46CL3VQqzuZVOo/eMM4DR1zIOgFgqhc6jjoICkBsZQU86jYxlAaN/Ndvz5qF//nx3vCRTTw/wznfCXrcO1vnnu088WtEvm4V9221Qp50GLF4MizbNoabYd8X8+fORTqc9ffQFj96XyWRgJZNQixYBixbBKhRgr1sH9Z3vAIsXA8uXRy+uV6vBuuMOxAYGAOJyjHVe223SNnplGNbeFBsXSZGofVJ/lOv03eREyDMR95tIecbTx3keY7nfeLEnUr9W7vl6zUvL8jgO7Mcfx+Cdd8J67TWoCy7wFS17vf2kvn07krNmoeeUUzBy333Y9Z//Ccuy0Ni7F9kHHkB9zx5M/8d/RMfSpRi5+24kZs7E0F13YdY//zM6jz4ae4eG0N/f78PwYdNTkUwGWLECOOwwJH/+c8RSKaiDDvJtKCLnCQDYuRO4/XbUV62CPWvWvgXesqCWLUOlWET6xz+GOu+8Jg/E12wbGzduxNKlSz2HHSoA6te/hurpcTdZcGuN9Pb2uglc060pDwCccALipRLsn/7UfWISQRcAUNks8KMfoXHCCagvXAilPT0IHVupoLRpE5xSCTGlkBg936cxMoLSU08hOW8erLlz4eRyKD3zDBLTpyM+MIBGPg9VqSAxcyZUZycaZ5yB+rHHQm3YAHz/+8CBB0KdcAKsKVPM8wIAv/wlnO5uVE84ARnb9tmGy70/8oSpT+of69j9se7Qm4axyPNG95napN640COofD7fVIpIafrjPiK98tcWOnEN2HdcvU6QpPG5XM6DW6lUPH1EVNL7TNh0nf54rVwuo1KpeHQhYphOzqSqufy9IseW9JOwTfpJuhBpixNx6V0kNSKp6bpQrRletZEIa0HYQfJwbP1Rqq5fPp/3jJWwST+dYEfkWF0XTlDW9eMEZAnbp4tloTJ6NL2OLennXu59xdRoNHyvDgF4XjFZpRIaxSK2vPvdmNnbi/Qtt6C6ejWcnp6WfDmfz4fa1jSWfJlea3Ueeyw6jjwSyXnzEB8cxPavfQ2dy5Yhs3gx5nz+89jzk59gxze/ifnf+x56V67Eq1/4ArqXL0d1yxYUN2xA7+LFzbofJmzRd/r7UX3Pe5D52c+QPOAAlFasAEZlayVPqD17EL/9dlRXrUJ1cBB2sYiaFqtKKVQWLULOspC65RZUL7gADUEein+d+AgA9Z07Ufnzn1G/7DL3i54Ae9u27fXlww5D+ve/h71pExpz5hjnlfSzhoeR/OUvUTnuONQPOABOqQRHi1UJm16vOo6Dwh/+gJevvhoA0HXMMZh7441oDA1h6w03uORby8LgueeisGEDCuvXo7p5MzqWLkX5pZcw+P73Y/Dv/x7FYtF9dRWPw3nHO1xO0vr1cL75TaQWLkTu9NOB7m5gdKGtVqvI5fOIbd8O+/nnUf3AB1CN6MtR8gTNi23bvrwcJVZN9tZJr8C+ulBjWXdM2KZ1h2wchC2tO1IcTfS6Y8Lmax7P21Kb1BsXegemcxIoiXOSFH93SQuX/h6PHCCVSqPRcA/IpOBMsXfpVFBJx+UcFcJOJpO+kvicA0AcF10XpVzSlL4o0TtTTpLi2DSxXB7ShRegC9NPt63+Hpdsq+unc1yoEROf39OyLJ/Okm2lsRK2pB+fPxM2FZvT9aOA4YW8lPJyoST9JGzqa16nlPt4/oEHEDv2WMRmzmyWs5Z82QZQ37EDapTQGp8xA8lYDM6ePW4idRzEZs5EMhZDY9s2NLq73S844nHYxx+PtwPIdHYi1t8P61vfgrNiBeqLF0fyZW5bvY/rx+3NfTlm2xj5wx+Qe/RRzPjoR1F+/nkkZ89G55IlKD31FBr5vPslS3c3GiMj2PZv/4au446DUy6j+OSTyD/6KGZ99rNIDAz4ijtG8uXBQcQuugix9euRvusuYNUq1Efl4/7kyxPVKpydO5H61a9grVkDe84cqNGvrbg/1et1pN/+dsQ2bID14otoHHKIaFuyje4X1p/+hMSRRyI+bZpnsZZsy7EbjoP4RRch/u1vQ117LZBOi/Nar9eB3/8eqUceQey882AdcgiqowsF92WTbS0ApaeeQmLqVMS6u5GaPx9WLIbdt92G4saNmH7VVaht347qli3uk79kEgNnnQWnVEK8vx8DZ50FS5O/iZ1OA+96FyrHHQc88QTS3/wmsGgRcNppUD09rm137YJ1992wPvABYHAQ9ULBpx+PVcmXTbZNjHJ6+LzGRzlSTXsb1h0pT3B/oqceUe1tyss6tqRfnPG6grD5uhN1zZPipRV7R13z3vQcF11JUlpffCio4/G4R3GlVHOh8jL+FR55JIlHHgGuvRZIpdynN8lk0nOdbduesXT+iN5H2DpJSu/TFwBiTfMqopJ+PGgkbAA+/QhbPxpddxQ9QEqlkm9sPB5vkqS4vblTUb+H8T9KwNL1I3l0mSXbUtVXXR6Orffxr7i4vYnxH2Zb+sxVx7ZGCZFcPwCesbo8OimtaZtcDnjgAWDDBtSPPBKxW25B8uijgXe9C2qUQc99ufzcc3j5wx9GI59Hcu5czLvpJjSGh/HKxz4Gp1RC+uCDMffGG5H/wx8wdMcdaOzdi85ly1DbvRuZww7D9Kuucv8CXroUsQUL4Nx+O+qbNyNx5pmwRl+71Ea/CjDZO8i2NH+6PwFuwtZtq5RC98kno7ptG1794hfhFIuY9YlPIHXQQai88gq2ffGLsGIxzLr2WlQ3b0bvaaehd+VKlJ95BsWnnkLmiCMQ6+mBHY975oD7shSrpIs9MADrXe9C8uGHob7yFdirV7sbBY0f4ckTNK+7dkH98pdIrF3b5LTURkmcPOHato1EKgXrkksQu+021GMxVA44QJSnaR+loHbuBJ57DvGPfQzW6Im+kj9JcaSUQsy2YU+disSJJwL33QesXo16IrEvjtwLEXv0UcS2b0fiU5+ClU4jBjSftETx5VKpBEsp2Ok0Bs87Dx1LlmDbTTdh9//7fyg+8QSseByVl15ya3F85jPoW7MGleeeQ/GZZ1DdtAkzP/Yx98RfAIl4vPlE1pPfurqgTjwRyXe8A3j8ceDrX4ezZAnsefOQ+P3vYZ17LjBjBjD6RwaP1VqtZszLui9LtqUvWXhO4HmQx2oQtlJKfELK82BUX5byBPmTTs6ldTAMm8eqCZvWJy5PlHVH0k/ClvKy9BSat0m/cdkfTU0O7mK7jaG18h50Iht9fcDxm4fijfZbluV+BqyUW+Oiqwvq2mvdT3xPPx1Ytw746U+Bk04CWEl5ACg9/TSU4yAxYwa6jz8e8YEB5B95BFYigURPD7qWL0esrw+VF19ErLvb/Su4vx/ll15C/9q1qCuFOEaJnZkMcPbZ7sL24x8D55wDDA7uf2ONNqunB1OvuAKNbBZ2Og17VN+Zn/wkGsPDsDs63D7HcYut2TYyS5dizg03wEoksHt4GIPsCUnLMtg2cOKJwOLFSP/wh7DTaeDQQ80Dduxw52f16n1E3Cgk0J4e4PzzYd16K+K1mlssTwnEYKXc4mn/+Z8orF2Lnq4uxMZKMrVtl6h6xx3Af/83cMYZXpyHH0Zj82ZU3vteJOkv5LFgWRY6ly1DrK8Pyblz0XHEEcivXw+nUkHvihWY9clPYsu//Av2/uxnmHvssahu24bCH/6Avve8B6/ddBP63/te99TiMOyuLuDv/g444QRYDz2EzEMPARde6G5a2q3dtPaW27hYFnDqqe664b4qeqMlardWGn8d9Hq1WCyG2osvovjXv0LVakgecAA6lixB/YUXUHj5ZahqFan585FZtAjVp55CcWgI6YMPhr10KWqbNyM1ezZiPT3AqlXAgw8Ct9/ubmT0L1+UQmN4GJ3LlqH7+OOx+wc/gN3TA9Tr6DrmGHQceSR233ILYt3dmHrppcj/7newkkkM3XUX5lx/vUtuHR7GwOiZLQCgUinUTz7ZLc3+jW8AJ5wAvPOdr4vNisWie37NlCnNPnq61vHss7AWLgQ6O1Eb5RRlMhlYto1YZycajQaefvppLF++fFwbl+ZiOTCA8tlnI3777bB//3vg/e93N3Z627EDuP12OGeeCWfmzNYX+dHNi/21r7lfy4xyT3xtwwZ3Azl79vgTkG278/mjH7kl+Pv6gOFh4Pe/d0v1r127D2OMsaOUQvaRR1B95RX0rVqFwh//iIGzz4aq1zF0553IPvggyps2YfCii1B4/HEM/epXmPXJT2LX974HK5HA0F13oWPZMsRM5GVqozGAjg6olStRevvbkaJS/u0viNpNa5N+48KrjRIBlL8y0UmhwL73c7ySp/uoqw7LAhqNfY++6NUC3U8p5Rsr4fDr6FEh1V7QZeS60DhJP36dpAvvk7CD9NP7TNiSzqQLl0cay8nQEjbNi4Rj6qMnHKRfs/CXJg+98gmzbdhc27YNVS5j2403ovD444hPmYKZ11yD9MEHY+v116P05z8jMW0aZn3yk1CVCnZ8/euobN7sFkVzb4ADb74ZTleX+zXEKacAhx2GxC23AAceiPr73gckEohZFnpOPRW973oXEjNnorp9O0buuQdz/9f/Qqyvzz05+MUXMbJuHQYvvBCpgw/G9ptvxuB552HoV79Cz8kno3/Jkn3VW/W5OvBA4EMfAu6/H+q//xs46ig02BMfXolV950gf9JxuG35dfV6HbW770YjnXY/YR6t7Eq1M/hc6fM1Xl9WmQwaF18MPPUUrB/9CDjvPDRGi80527dD/fSnwLvfDWfaNDiCn5D8OobPlzs6UDn6aKTWrQPOPbf55U5TnlIJ9iOPoHHmmU2/C/Nl+rdHF7JFowH09wNr1sC57TZg5Uo0HnrI3TitWYOGbcMZ5bTouvC5krBpTh0AUy+5BMN3343sunUYWLsWA+ecA8D9QyL3m99g8IIL0L96NcqbNmHO9dcjPn06plx4IUbuuw/dp54KK5VqVmuV/ESKVQfw5QlTTjfl5bHYVvSd0ftxYrcpd4Tlwajrjgmb24HGRsE25fkoa55p3WklT5jWGG6foDapNy7EsuYl/+n9GTWpTDo3BF0H+I/4lkri8/L8xLDmXwYQO5ozvnm56Wq16htPDGvO+CasIGxJPwk7SD+p5D8VLAvSr1wue0pBA/u+upHY9NzJOfZ4bCvpZ8Im/XTGOpX8l2xLfalUCtbevaht24bM4sXuQWbxOGo7d6IxNITMkiVuXyIBu7sbdjqNjkWL0LNiBfbefjtmXnMN7ClTvF/IdHaiev756Ni4Ec6PfgRr5Up0TJmCkfvvR+XllzH1kktcrsdhh2HkvvtQHxrC4AUXoLRpk/tU5+WX8dr//t+YdsUVyD38MBojI9h9yy2Yff31qMRinsW+VquhUCy6Z96ccQZS99wDfOc7KFxwAaA9DTEdNxD1SAPagOh9Hl92HHfT1Gggf9JJsMplwLJEXyacYrHYvGcrvizFUXW09Li1dCkSANTNN6N68smoT52K5K9/jdqZZ0INDqJWLjcTrz6Wx6rRl486CpUnn4Tzwx+i/r73wUokUKvVUC6VENu4EalMBpUZM1AtlSLblmPzWFW9vUgdfDBSd9yB0llnwZk7FxjdKOi+DMixarJtrVZzC8FlMu5Tlve9DzXHgYrHEYvFMOXSS6Hqdbekv22j4+ijAbgxlFiwANMXLgRGv4gqlUot5QnT0SBBsarbrFAo+Ej80lEVtm378jIV89Ov4+sO5RK+MedfHkZdd4LyYNiaJ8WLCTvIl8PWvLBYHYsv81j9m/iqKJPJoKenp9mXy+V8R9MrpdDV1eWZWNoodGm1LMqjCUk/mp6eUvQKlRx13EbDPX9C7zNhO46Dnp4ez4RRVUF9fLFY9H3RksvlPMfDm7ApoXSxWh2O46C7u9vj0EopjzyUOLgu+XzeVx0ScHkcun5UnVevSUGJVD8+nQKLM9o5dqPRQD6f98kjYSulPPpRH7c3nUmjY+fzeR/rnkhlOna9XkepXEY32bZeR00p9J5+OnpXrED5uefw2k03Yc5nP4veVavQu2IFihs3YtsXvoCDv/c9zPr0p1HdsgW7vvc9TL3sMqTf9jYojBbk0mTMAkiuXIn4o48C3/0u8P73Y+Ccc7DnRz/C9q98BfGBAcz4H/8DViKBPbfdhh1f/SpSc+di2mWXofTss5jxkY+g44gjYKfT2Hv77eg5/XTYHR3oYL4IeH25fs45qL7wAnp+/Wv3K47ly4FMRrQt92UpXgC3/gj/0szny089hfprr6F4ySUeeaRYdRwHyWQSXV1dngqmUqxKvizFkSdWly8HZs9G+oEHUHvsMaTPPRfpUU5LuVyG4zihvixhky9nTj0VeOQR4N57gbPOQiqVQmephJ6HHwb+6Z+Q6uiIFKsmbMmXG+9+N4rHHovuuXObfbVaDeVy2Rer9Xrd5WJpjWOTPGQHy7KARAKbnnwSM2bMwLRp01wOUSKBXC7nlqWPx5uEy2w2i66uLthAk1wqYZdGTwAPy8tSnqBzc6S8HCVPZDIZX16WbAugqV8QtuTLUfVzHAe5XM6nSzab9WHzdUeKFxO2FKuSL0fVj+SZsDwB+GzP26TeuFDTjRGlzzRe+tk0XidbTqQ8rd5vLON5/QLep/9uf9pW6otqH5M8fF481+0b0DxZ13OdQf9EIgE47uF+sG1YxSLi99/v/hXZ1QWVTsOaPx8dS5civWAB7J4eNHI5NHI5dCxejNTBB8NKJrHtS19CI5tFvLcXO7/zHfStXIn8o48iu24dpn/oQ4hPm+aX27ZhnXIKcOSRUOvWITZlCqZ94ANw6nX36HfbBl55BVMvvxyqWoWdyQDxOLqmTGke0NexbBkyS5ZAWRa2bd+OWbNmiaz8pt5KATNnAuecA+vhh4EvfxnquOOAI47w2FEJY8c0f47jFnJ7+GHgPe8R56Hle05EXB50ENQ558AZHgbmzWuW7Y+CEdpv27De+U7gzjuh7r0XGBgAHngA1qmnuhyOiDqb9BPzUzwOZ3SRiXLPsLg02ZtKA/Dxukz6E6tW9QvCjtIXmideh7w8Vv2iyD0eXcL6xjJ+PDKGjTW1N8XGpd3ajZop2AAAlQrwxBNApYLYaP0JJBJN8musUoGdSEAtXeouJAAy6TSWLFniEiZ//nPgkENgr1zpfoWhFFQyCSxZAmdkBHt+8hNUt2xB9dVXkXnb25CcORM7vv51VLdtQ/n559GxeDFinZ3Y/tWvou9d70Jq3jyM3HMPYFkov/ACuoLKm/f1AaeeisKDDyLz858jtnatS7y8/3730fWMGejo6WkSLStaHR8LgJVMolKpYNOmTZg5c2Y0Y86Y4X51tGsX8JvfIP0f/wHrtNOA44/3E1dbaJ7Es3078NhjwHPPARdfDMyaBYQcoPa6NHr6mMnAoSdUQb41Vox3vhP4yU+gtmxx7XzhhROL8Qa0wBhst3Z7Hdqk37hwzgW9V9STI/Xp7/GICKa/KzWqsa8AACAASURBVCPiIa8YSBj6qxR6n6pj8PvRtTo2/aVB7/L4eB1bkkfCkLDpACxJHh07qn4kD/9LXbKtJA/Zm+si8XWoj5Pu6H78nbbjOJ5rqZos/WXXaLjHu8f//Gc0brsNOOYYNEY3LlXt8apTrcJJJoEFC1D6859ReeklqGoV6YULgcMPh1q0yH03u3MnEqefDlgW8uvXQ23YgI4jjsDsz34WI//1X4j192PO5z+P1EEHNfuSM2di2hVXINbTg6mXXorUggVQ9ToGzj4bTq2GjmXLfBUnfb7c2YnKSSch/swzaNx4I2KHHIJGMonqihWo12qIh3CPdJ8nvgAR36S5avb19wPvfS8KxxwDPPww7BtvRPy004DZs9GYMsXzHl/yJ9IFgHt0fbWK2FNPIX7HHXC6ulA95hjgIx9xi6QZ4pL36WTfJo8jwJclefi7eB6rJmziKfBY5RU/o/gyuruBNWsw76abEHv3u1FNJIDROafryHZNXxZ4ExxbIj77sLGv8nJYrErY5DuSbaVY5/7N9TNhkx7cthzblHekXBbVtkSwlXIwv46vO5LvECbXD8CY1h1dl6A1T4qXIP24PFHXPElnXZegdceEbVpXg9qk3rjo5DBq5OSc6cw3CmRgfSxNPn80R9fpDlSv15unWxIGfcqpN3IUfcKojycfPp6cnAcDyUCN5OF24H0StqQfXafrZ8Lm+pHcki6O4/iu43+dEbZkb7ofvbdNJpPNzRkdmU4njNLPjuMWQ6pWq8COHah94hNQfX2o1mqwAM9703KlAqTTiDkOXr3mGvdroOnTMetTn3JJt0ph+I47sONb38LbbrkF5Wefxa7vfhfVbdvQvXw5eleuxOD557u1RywLUAqx2bMx9Yor3J/Jvt3d7mucZBI9K1YAcHkFRPokvcm23JcrS5fCPuggJDdtQuXYY9EYTeLc3gB88yclQz7W5MuNri5U1qyBnc0i9sADUOvXI1Gvo7J6NaxZs4DRM2K4P0Ep1HM5OHv3Qv3mN7B27kRm7lwUL7kE8f5+9zNYpYBRXcn3uDx6n24fvmmWfF6KS8vyfqkixaWETQsw76ONssdmgjx8rNXZiZfOOAOZRYvQwWLYY0fhfiZs0osTWrkuei7Tx+p/DARh8z6yKXFnuC48B3P9JGydfB2ETbksTD8TtkkX27abVdVprP6qi/qItBuETYu93mcimpp8WdKF+7K0KZDiRcKmdYeThaP4jilW+WZN0s+EzX2Zr+9Sm9QbF8tyyZU6EYjItbwkPidxtkLObTQaHvIaEZX0PiLIclKShN1oNNDV1eVxKjoCQB9v27aPnKuUEsm5ADxjTeRcCZvrJ+lMjZNzHcfx6VcsFpFKpTzYrZBzOTZt3rq6uuCUSs0nIbBtdB52GKxYDNUtW1Dbvh3p+fMRHxxEI5tF5YUXkJoxA3Z3N1S1CnXssegcHAQsSyTnQikk4nHUt25Ffffu5mZFuYqi9PTT2P6Vr6AxPAwohfjAAKxkEh2HHoqOxYux+/vfx6xPfQo26W1ZTbKgXjGSDspzL7Ga88UJf0QA5b7c1dXl1m+ZPRtJ7PtiJ4zQWK1WkUwm0dnZ6ZGHbEuNEqHoO52dsLu73dc6lQrUhg3o/tWvYHV2Au9+N9Ts2fvmr9EA9u4FnnkG1UcfRUwpxFascAu3TZuGZD7vi1XC1uc/iJzb0dHhIedKsUokV954HEm+bMoTnJzrOA6gFOxRf7Fs2/XPzk5YjYb7M1Vprdebvx8VHAe+7W3o6+/3HV/S1dXlezLL41eKI8uy/OTc0TjSbdEKOZdjm/JEKpVCJpPx5RSjL2v6mci5PFaD8oTeRwRSLqPjOJFsS2Xq9fmXyLmSflF92UTOjbLumLC5L0vxAshrnomcy+Moqn6SbU2+I2ED/ljlH4jwNqk3LtTGQwKS+sdCkhqvPGO9X5guY5FnPH1hco6XdJd94AFs+fSnYcXj6F6+HHM+9znkH30Uw3ffDVgWart3Y87112Pvz36G4oYN7ufIhx+O8osvYtrll6Nv9WrPfUVdbBv9730velesQGHDBrx2442I9/Vhx//5P+g6/niM3HcfGvk8Um97G2b/y7+g8tJL2H3LLZj6D//QrM1iwSWvSkSyN4LYPdZrjdhKQaVSUIccAhx5JKxnnwVuuw2qr8/9ImdkBNa99wJbtwKLFqF23nlQc+ciTmW7R+/Fn3BOqIwtXDfePGE1Gthz220ob9oEVa+jf80adL397SitX4/he+5xS+JfcAFinZ3YfeutcAoFdCxdCrujA9WtWzHvPe9BjJ35NB79gnwsbLz0c6s5QZ/XifBl6Ul4K+M5dpucK98vTMZWrp0oXw7qM7U3xcal3d4irdFAccMGJGfPhp1KoWPJEkApFJ9+Gv1r1yI9fz5euvJK5B56CE6xiFh3N3pOPBHVV19F93HHoff00yPB2KkUMosWIXXwwYBtY9u//zuG77oL9V27UNuxA9XNm7Hja1/D9A9/GFAKu77zHfSvWYPh//ovjNx3H6Z96EOIv46l89+QNrp5AQAkk+5JvocdBuvJJ5H5xS9c0vPppwOXXuqWoC4WmyRoAPvG/o202s6d2P3978OpVJBZuBCJ6dORf+wx7PzGNzB40UUYue8+vPqFL6DnHe9w+VMvvojatm0o/OlP6Fu9Gjb7C7Pd2q3dxt7eFBsXvgPTd9RB10n9NFbPsVHG8ntMpIxhfWH/DsIOk7/V+4XJPlZdAEA5oyfLrl2L5Lx52P7lLyM+dSpmfPzjaAwPY+sNN6A+NITeFStgZzIoP/88Sn/5C6x0GtOuugrW6ONQklfiJABAo1zGnh//2P0a6Lnn0HXUUZh2+eVQl12G3d//PkrPP4/+970PdiaD1/71XzHw/vcj1tWF2vbtgOOg+soriA8OtuwTUfu4vU3zYuqbSOxmPwDE41BHHYXSwQcj2dXlbljGiDteGSfyflFwaq++ClWroeOII1Dbtg25Rx9Fz0knYcbHPw4rk4GTz8OKx9F5/PEobdqEzrVrActCYvp0TP/wh5Erl9E5ejipCXei/Cnqta3kgfH4Y5ScwGM1qi0m+jr957HYeyJsM155JnK9HC/OeDFMbVJvXJRSKBaLGB4ebvbR+37+3pQTvogAxMl5ALBxYx1PPpnAOedUEIvBRzRSymVh67jUx9nOEnalUkE2m23+bI1yLqrVKkZGRpoTRHrQO1CTfhI26cZJTBwb8OtH1+n6mbCJu6LrVygUUC6XPbpIXxCRvTk+x1ZqtDw3gN4zzkBi1izE+vowdOedyD/2GNILFiAxZQqmf/jD2PyJTyD38MMYPP98VB98EKW//AW9K1Zg+5e/jMH3vx+JQw5BPp9vktI4Sc5xHHQfcID7NdC99yJ5wAGYdtVVSMyeDVWtonPZMszs60Ni2jRY8TimX3UVUvPnQ9VqaGSzsGIxZBYvRrFYRLVaFW1bLpd9tiVOEudX8C+5gnyZs/vpev06Pv/kO3pSIN+J4ssm/XiL6svSlz1EaORfAVUqFeRyOc89o8SqCdtkW47Nv/br6OhAcuZMzPn859G5bBmyDz6Ibf/2b+g97TRklixB/ne/Q/n559FzyilIHXggZv3zP2Po5z9H8amnMHj++Whks0j29qJYLHritVKpYGRkJNTeRHLXfxeUJ6S55gRw6euVKL5McvC8TNwVbm+uX1RflrBb9eUw21Jetm3bl5crlYrPl7l+EnbQuiPpp7cgX46SJ6R4kb5okmJVwm4lVicyT1iW9wszqU3qjYtluZVz9ep7vMqeUqpZoTEq6W7btg5s3Aj8/d+nkcnsqxhITtBo7KvQSH06CUx/F8exlVIYGRnxVW00Vc7lpLtcLodUKuU7mpxjS/qRPFEq5wLwVZHkpDSllKcipm7HVCrl0WUs1UZ1excKBViOg7133AE7nUb3O96Byl//iqmXXoo9t96K+MAAOo8+GqpeR6yvDyP334/sgw9i5ic+gR1f/SrsTAZDd9yBGddei56ensBqo5ZtIzlvHqZefjkcx0GpXEYSbi2U3lWr0Os4UJZb3C0xOOhyWRIJdJ1+enOeM4kE0uk0lPJW6JT0k2wL+Ctimnw5arVRIufq44N8WZ8/ky9H1S9qRUyJTFmr1Zq+rP/FSrro/kjYuj9JVZfz+TzS6bTHb7PZrI+cK2HTokCVji0ApT17UNy4EZ1HHQU7k4Gq15H/wx9Qe/VVDF50EaZffTW2f+UrmHbllcg98ghyjz2GgTVrsPPb30Ysk8GMa65Bavp0z6I7MjLisyPXz7Kspi+TbS3LavoTJ/Fz29IXIN3d3R796KMC/iSC+4QkTzqdbuZlGk95Qrdts3IuO7KDfJnGmsi5Ueaa9ONkUQmbfJnsTZiUl+nJTz6fRyKR8MSqVLG9Xq+jVCr5yKu1Ws3jT7SAj0U/wOzLun5SvBC2UvvIuZZlNWOVfyjAsSV/kuJFsi31cd8pFAqeD1Isy2queX9T5FzLsjyTQz/zPv06Gqf/p99rzRobZ57p1thSal8/JwfpffRvfh3HlmTU5eF9ki58rIRN/9b10+WW7slJUpIuUeSRbGvbNpRSoTrrevONlJVKYfrVV2Popz/F0C9/icHzz0f/mjXoOf107P3xjzF8112Yeskl6Dn5ZBSeeMI9zK2vD4Pnnovsww+jf/VqWImE5/6SnzTtYFkoFgrYuHEjli9f3uyvOc6+ZDi6cNEnoJQg6dG2yT7c3iY/ieI7XBe6H/1Owgiaf2n+Wp3/sejHr9M3UvxaespnWZbny4lWfFkfq+uiL64StjQ2Nm0aqq++im3/+q8oPfMMpl58MTqWLsXORx/Fa1/6EoobN2LKxRejvns3Cn/6E2Zfdx0qmzcDSsGp190vjQz24TKabKZfR/38OAxuC92OdE8qI8AXdX6dZO8gv5Vk5PaW9KN/82NTTNhS7jDlb2n+o+blMN+RZAyK1bCxuj2i6KLbW4oXXb+wPglbklGKF8m2Jv2i2Jb6gtqk37jsjxaLjaswaLvtxxYfGMDUK66AqtWARAKWbSOeSmHalVe6h7nF47BsG90nngi89BKwaxfSxx6LzuOO2/f5aYuNP/YEovMq2u1vv1kAkrNmYdanPoXSM89g4OyzkTn0UFiplNv3l7+4fYsWQdXrmHXddbA7O5GYMQOJqVNhdXRADQxESsjt1m7tFt7eFBsX/khKJwHx3wX9e9+4aES0Vvr4701EpSBdWrnOhBn2O1OfhKP/bFrIpWvDdAmSx7IsdwOSTLqH1dHjWXvfYW5dXV2wazXgnnugTj0V+dEDKC0Bc6zyhPVLugfZVhofNDaKnwTpFzQvQfqHyROkX5DeUh/Nt35/qWKmXpXaFP96n7454PdTSol9dC3Jw2WsVCqw0ml3g6yNq2cy6Dz++H03i8fdmj1KAbaN5Pz5AID169dj0aJFvkfsXEZuB5M8QWNN/mvSTx+v28dk2yCcIHubdJH8wCSjCdd0HbcPl4f/Tn/SIdknyN5BcxUUl2PRhVpQn4QdJI+EHZQ/guZa0i9MnrBquXrb7xsXU4LjjT8ao38XCgUfOTcqoTGMdEcYnDQl9UlEJRM2vVfU+4jMqetiIt1Vq1XfY0Wp5DP9pzcJWyKBcf1M2PQ+XLe3RM4l2/Ly15T0g7BpTrivVCoVHwGxXC678mSzSL30Ekrnn49KqSRW4+TYpJtODCuVSk1Cqx6QUUh3JA8PQJNtObaJ0NgK0ZyTc6vVKrLZrEceIoVTG48vm/SbCHKuRDTP5XIeDhCRLqkF2dtENNf7JGwpT5A/8RN6K5WKj8NVq9U8XB/LsjA0NIRsNuuZQylWibgu+fJY8oREzpVilbB1QqtkW5KD52XJtlSNVvLlicoTQb4s2ZYTdok/xNeYKLEalbxqKvkv+TKPVRN2EDmX83AkX7Zt2+NPQXliLOuOpB9hh/myZb3B5FxSeHh4GHv37sWBBx4I27axe/du/Pa3v4VSCieddBKmTJniGUe/37ZtG1auXIne3t6mQbLZLDKZTCg5lxY9XsFQKeWriJnNZj0YjUYDuVzO0xdEzu3s7PQkVwCeaqoAsGfPHsRiMfT19TX7iKgUhZxboKcK1j5ybqVS8VWv5NjUp+si6SxhS/qRbdPptIc0TRsKnUBaLBZhWZaHQCphS/op5ScGky7d3d2IPfggcNppSPX0YESwt4RNpDt9USGimI5dq9VQKpU8xDLJnyR7m2wrYY/XlwGZnNvT0+N59819WdJPwm5Fv7GSc2nBqlarHgKpUgqpVArd3d0efxwZGfH4neM4Tf2oWZbVxI5CzqU4osSr5wnq02NV3+BybCKac4JlKpVCZ2enh9BKtuV/+es5QsIm/TihUcKW9NNjlf+hqM8r+QS3bTqdRmdnJ/r6+prjJdvyjxQkbMuyPLGqzz/HNpFzOUFWwpb0sywLHR0dsG27qYtlWZ5YJXmikHPJl3VyruRPJEsUXzZhS+RcHi/7w5e5P+mN52+uXyu+rK9/UtvvT1yGh4fx6U9/GslkEl/60pdQLpfxuc99rvl577p163DjjTc2k3KxWMTnPvc5FItFLFy4ELfccguuu+46Dyua/uONk4D4v/n/eZ90XVCffo+x9HFd9EdqpuuCZIuKLd2DnChMRsluYdeNxd6BugwNwXr+eeCDH2zyWsZjW0kek6+Y/K5VXUzyRNGFXyuNleYlyP+DdIyqn/57PalFsRn9WyfnUuOEvzA76th8A29ZMllcv9ayLE88mPSWsPXH9KbYovtLMnJZJGxprAlbt72uX5CMur1N13F5uNwme0eNfwk7SD/TvISRxXW5TDE3Xl34/UiXVnyZ60ItKF5M2FKfhK0TfqWcETTXkn5RbRvlLc3Y2IwttHw+j127djUf+/31r3/Fn/70J1x++eW4+uqr8fjjj2PLli3N67du3YrHHnsMH/nIR3Daaafh/vvvx4svvri/xWy3N0uzbeDRR4HDD3dPNW63dmu3dmu3t1Tb709cZs+ejUWLFmH37t0A3I0MHQ6YTqeb34VTo3fT3d3dGBoaQrlcRi6Xa74To1M/+UmZ9IiOGp2ezN+l8feeSvlPHJX66F2xdComx6axOk6tVms+otf7pNOh6X1xELZ0QqsJO4p+JA9dz+XR9SOekVTcjevHd9sm20rySNhOo4H6hg2oXnghMHq9pDM/OZXuR3jUyNZhJ6DSXOn6Sdgm20rY5Dvcl8vlsuevJvJlblsAoj/p4yXfCTrhlWNH1Y/mn/uydPq15Mu8j3D0U3ujxmoQtpQneBxRnuC25X/JjsWX9XuSPDxWpRN1OTZ9lsqLUkb1ZR6rEnbQXPNcJp2eLOknxRHFKi+IFsW2xLcw5WUpD3J5ODerlVjl2FFjtRVfNmHrvizFC2HzNU+K1ahr3njWHRofNU8EtdflqyJdSHrnTe/e4vE4YrEYduzYAcDlHMTj8WZRosMPPxxbt25FsVhsvv8tFArNSVRKYWBgACMjIx5HSyaTSKVSTaIiveezLPc9m27gwcFB7N692/OYr7+/H3v27Gn2xWKx5mZKT+IcWymFKVOmYO/evR69h4eH0Wg0mhs4pdyCPeTkJGNvby9KpZInucZiMfT09GDv3r1N7EQigUwm4yPTDQ4OYmhoyIM9ODiIPXv2NH+W9JOwSb9sNutxpGKxiJGRkWYgKrXvxO5cLtfUpaurC47jNN9hE/bAwIDH3rZto7e316OfUgr9/f3I5XJNbKUU5jgOdg8NYctLL8HavLlpb10/pVTzHTphK+UWQyI+BbVqtYrt27fr7op4PI7Ozk4PSZK4P5z4yrElf5KwSb98Pu/x5cHBQQwPD3t8mWOTfgA8vuw4DrZu3Yrf/e53Htv29fWNy5ej6Nfd3d18/019PFZN2MlkEul02ufLW7duxeOPP+7hTUT15b6+PhSLRZ8vS3lCxyZfjsViyOfzHl+mBTcsT/BYBYAtW7agUql4+DpRYlXCNuUJKY4SiQQ6OjqavqzUvtPnKVZbsS0AbN++Hbt27Wr6oClWJf2Iy6DnCR6rJj+T9JNiVcI2+TLdi3KAKVYlX5awJ3rdibrmSfEiYUuxasJuJVaj+jJh0yZHilUAeO211xDUrJD3SdE+CTINVgovvfQSrrvuOoyMjODmm2/G3Llz8dGPfhT9/f1oNBrIZrP44he/iK997WuwLAtXXXUVPv3pT6OnpwcLFy7ECy+8gBtuuKEZJBLhTyKG0ZMbnSzqVndV+OMfM3jsMeCjHwVSKZcExivLcqKSVG1UwlbKX70WAF588UVUKhUceuihzb5iseipIgi4T6Q4UUnCJseLUjnXpJ9U3ZVj8+quALBjxw5s3rwZxx57bLOPnlzoxGepIqaEbSI0+rAdB43/+A/EVq0CFi0y6mfCLhQKYkXMJ554AieeeGJzPAWWTviTqte2YlsTtkS6i+LLJnLub3/7W5xyyikeci63rYnQGMWXTfZuhZwrVRvlVaAdx8GDDz6I5cuXN+/Zir1byROmCttRqkBH8WWlFB555BEsXbq02d+KbYOqQOv+FESm1PWTYrUV265fvx6zZs3CzJkzPbbleUIiyE50npBilbA50Vyy7bPPPgvbtrFgwYJmX9RYDaqcGxarkjxU5Voi54b5shQvgL9yLiCvO1HXvFYqtpt8OWzNU0rh3nvvxapVq/zkuNG235+41Go1nHHGGWg0Gs0JveGGG3DPPfcAAFauXInBwUFceOGFANxd2g033IB7770XQ0NDuPLKK9HV1dXcnRGJZ6wkMMsCajUbhQJdZ668qI+l3+t9QcQiXqHRJKM0ll8nYes/c3kk+7RSbTRK5VSTPGE6S9hBJMAmtlJQxSKsXA7WzJnudVYwcS6qbbk8QfbmXymYdJTsHSaPyXckbF1W6ToJR9dFsjfHlvqkSqUmewfJHdWX9fFhVVLDfJnfz4Rtkts0/1F8mWNH7TPZVrouKnlV8p2ovhyUJ6LqwrGlPglb0k8nHEfx5Sjzyq9rdY2Jol+QL49Fl6D5i9JnyhNjXXdMeSKK3CEPUwC8DhuXhQsXNnezpMCcOXNw2WWXefoOOeSQ5pg5c+bgH/7hH7Bx40bPTnEimmUBf/d3wCmnuIfbRrBRu73RjSbp8ceRP+AAdPf2IsaCod3ard3ard3eGm2/blz4LlT6XdBY/Rq+C5N2ZaadGu+3LIW4oLl+Hd9NjgV7ou83kfKMp29/zYuxDwAKBfdrossvd5++TKB+rczNZJ6XyYAt2Xayy2jqn8z2DvLZqPccz1jTvE4WP5no/B3UJ/WPdez+WHdUC/lyIrEnos/UJnXJf6UUyuUy8vl8s48qBvL31IVCwfclBmcmE8Na71fKrRioE9Ucx2lWIaQ+qkqqyyJh0/2I2EetXC77xlcqFdi27SEl0Ttg/V0qyaOPJfY6txfHlvST+kjGer3uKzYHeB9zUrVZXR5iquvER/paQJfTZG/JtsSQt2MxxH/zG2DBAlSSSVj5fKi9JWziqejkXKporGPTa039fuRPenBFtbcJm/TjvpzX9DNh0334F2Dkj0G2DfLlfIhtg/SLxWI+X+axSti5XM7TRxU+uTw0P3qfPlaXR2+ErduR28aETT/rtq1Wq75YlbClPsuymrpwH5X8ls8L+SK3LX2pFITNq9SSfjxWTdiSLvR1lN7fjFVmb66fhE3ycTmj2Jb0k+af//HL9SNdbNtGPp9v+gB9HaXbVtKPYov7Mo9V0ovna0k/Wnf4dZJtuS9L8SJhky/zSr6SbVuJ1TDfMWHTmqdXzuW+wNuk3rhYluWrNlqv15FMJj2LK1UM1RMkJRl9LOBOkN5HE5ZKpTzJvl6ve8hiVKqa369Wq3mwlVLNPt3R4vG4bzwldV4lVzquvtFoeMbSvU3y8MWH61er1Tz6mbC5foD7pQInYlqW5ZNRKffdN9eZ5kXfFPKxhJ1KpRBTCtb27cDixYiPEruC9DNhNxoNJBIJn36cLEaByfXj95Owaf65PCZsyZd1/YKwAfh8gvxJf9dcr9d9+km+zLElXUz2DvJlXT+KI933aGHm5Mx4PO4hoAbFqmRvjk3y8Mq5HJs2PXofLRzclzk2+TKPLbIN9eu2jeLLHJv0k/IEt61SytNHn55y/STbSvLE43EkEgnPeLIDty33ZQkbgJgnODYtmhyX6ydhm2wbj8fFeSXf03Ekf+J+Qn8wcXkARLI314/05tg8L0vxQnbl9qE/lvTrgta8sFglXcLWHRO25MvSydV6m9QbFwAeJUlpfQHQ+/g5Io7jIJFIeBxfKeWbMMLQr7Nt2zOW/prV+yih6NjUxzcusVjMN2G0aEr68aDh2CS7JA93IK4f1XDgYykhSfLotiVd9PFUKZHrR/LoMpdKJY889NcNl6eJvXkzMDQEtWwZYsUiEomEZ6NI1/GnFLo8dB1PSDROx6YnNVw/wFuKWsKmv/J1/QB3MdSxw3xZD1zapHCfCJJH/6qIzxX9RWOyt25bso2uH/cnwE3Ykn7c3uTzHFuKVdu2PeODYlXvk7ClWA3Cdhwn1Jcl7CBfNskT5ssc22RbCZvkHKsvc3vTdVLeovxh0s+ELfmyhF2v1yP7clTbxmIx37ySDYNiNQibrzFR9ZPWHV2XoDVPihcTNo9VE3bUWNXXmLHmCW5viaitt/1eObfd2m1crV4H7r8fOPVUIJFo6T1ou7Vbu7Vbu/3ttUn/xAV4fYhTvP/NTM6lXb/+O87NaBV7PLYdjy4YGYF6+WXgkksA7B/SXZuc25ZR6n+9dWklLt9ocu7r1TfW8W1y7tj63kjsVv4ondQbF6XcstvZbLbZR6Q0fnouf7xE70PDSGBK7Tt+W3caXr6Y3rnyJmFXKhVPhVXAJbRWq1WPLkRU4iQwrp+ELelH4zkRl8uj9/Gx9HiQGhXj0vUrFovNoxjI2UgWnQRGdpaOc9exST8uT7laRfyPf4SzFp3MpwAAIABJREFUYAGcYhGw9h2HHqSfCZv008tQF4tFnzwmwiaVHOc2i2JbKtykv6aQbCv5k4Qt+TK9KjDNP7c3b1F8WYoX0m8ifVmpfcRgvRqvFKsmXx5PnlBKRSI0RvXlSqWCAhWP0vrCYtWELfmyhB3Vl4PyBJ/rcrnsy8smX+Yk7qi+LGEH6efLHaOF1/RX5qa8bNu2Ly9LsaoTSAk7CvG5Ff34MQVkR47NfVmKFxO2FKtR84QpVicyTxCZPahN6o0LEbZ4tVJ+XD1VYoxSOVcp5atg2Gi4x6zrDuQ4jmcsBZreR9fq2HQ/Oi6dGr2/08dbluUjhiqlxOPq+Vg644nbhmMH6UfloPXGSVJcP8CtLJlMJj3VL1upiMmxjbYtFpF46inYF18MjFZqjKKfCRuAjz+klEIikfBg0/kceh99acCrjVI1XT1gSUZuWwk7qi9zbFqwOHGOSrzr75q5L9OCzO3NsUm/KPa2LMv33lzST8KWYpXeo3d0dHjefUf1ZSmOJF+WsImcq+cJKVZb8WUis+pl8qP6MhX24mRqiZzLsalyLtdPqpwr2VaSh8ra8/nilWWlPNhKnuDYxFEMi1W6trOzM9S2ROCV5iuKL0t5YjzrDtfPhM1jVYoXE3aQL4flCUm/Vnw56pqn/1tqk3rjAqBJOALQ3GESEczUB+xj2MdisabhYrEYlFKIxXRyntPE0AOEDMwTiN6nlGpep8tDSVwPWEo+Esk1TBcJm/66keTRsemeun5EpNX7WrEt6aJjk5NL1/FPuzk2AJ+9lVJIPf00YrNnIzZrltun2YETSIlkp9uWcIJ0oes4tqQf10XCpnnh+km2lXyHxvK/7OirAf1+3N5EsNPto/cF6Sdh631R9JNiNchmerzxWKUY1MdL2HRdFF/m9jZh01+n3E+4LhI2IPtykDxhvizZltvGhC3lCXoCMxZfluY1qn4mbPo9zxNBcSTlYKmvVdvqGGG+I2GTP4XFapAvR1ljuIxSvJiwTetllDwoxUureSJMF9I5qL3lyLlKAdks8Ne/vtGStFtYS+zYAev0090fQt7pt1u7tVu7tdtbo73lNi4A8OMfA//0T8DIyBstyVuzNf8CUwoY3V1LjwaLq1fDmTq1uWkBwisut1u7tVu7tdvfdpv0r4qo0qb+M5HnqBEpVCcMUbVRTl5USmH16iqOPhrIZIBaTTVJSPy9uT6WHpFxMpaETWP1RZbG67qQPFw/XmFRwq7VakZ5dGyl/PpRHx8r3Y/6dP0kecjeXBfbtt25Ugqw3EJqXZ2dcPJ5WPE4rHQatm0jbdtQlQpA7z4bDaRTKdE+pDvXhZMAOcmLbCuRBSVdwvQLsrdkR45NvqP7MtePsHnVXXrfz/2JjyeuQBRflrCj+BONBTAmX5bsTTi63vTePCxWTdh0XdQ8wW0bi8U8faY8ESQPH899mWThPsrJuWQbPgdj9WUJO8iXpVjnvsz1M2FLsSphS74sxW8rtpXiyBSrfN0Jyh1hsdqKL0vYnCQrxUuQfgAi+XKUWNVl5Fy/seYJ/tEJb5N646KUapLLaNLIoXRF6WsKbiAiT+nXueQnYMECgIjNUulsPpacQu8zYdN11Efycl0osHgi1f9vwpb0k7Cj6kfykMPxsbwgFvXr80L8FV1u27ZR27YNw7/6FQYvuABWRweGfvELjNxzD+xUCtOuuALxadOw81vfQm3nTnQecQTsri5UX30V0z74QTQ6Ojyym+ytX0MyWpb3/BNJP6rkqesi2VvSz4RtmheOTTLyL4gkX240Gp57SiWxpQWlFV8mO4TZ1mRvyZd5rLbqy9Vq1bdpjuLLpjwhJVJTngjTL6ptLctqzgvHkeZasm3zDwCtj/tTVNuafDmKbfVcJukS5ssSNvmyrp+ETfpye3NZTNhcP8uymrblucwUq9yXOXbUWJXkCcrLHNsUqzxeJOzx+HIr647Jl8PWPIqXoDapNy7ENO8a/aKEGmevExuafy1QrVY9Y4PY3d3d3Z77KaU8fY1GA4VCwdNnwqb76ZOYTqfdpw2aPMVi0cewpmv51wIcmzZB3DYSNtePdudcF8uyfOxuYrnr+pVKJaRSKQ+29LUAADiFAjZ//vMo/PGP6D/rLFRfeAHbb74Zcz7zGRQ2bsTWL3wB/atXo7ZzJ2o7dqC2cydGbr0VUy+5BHZXF2LsSxXHcdDV1eX7pLWrq8ujs/SlgmVZYknsZDLp0aVer6NUKnnsQ5/sSV8v6NiSPwFAPp/3YSul0NHR4fNlrp/E5C+VSgDg8WUqu61/TSH5Mi3qki+H2dakX6FQ8B0DQfLxLzE4thSrjuM0v1yje5piVfJlwB9HreQJ+lqIWrFYdJ8MCl/I8TyRz+d98pAu/NoovixhS74sYdPCOlZflmybSqWQTqd9OYX7sqSfhC3FqoRNTw8mypcB10ds2/bMf9RYjerLUqxGXXdM2NyXpXgB5DVPilXJl6PqR7bV151W8wSP1Tf9V0WAXJQnqM80XvrZNJ76pXuORZ6x3i9Ml7HIM56+MDmbPysFVa9j9w9+gOrWrUAsBlgWEtOmIdbVheG770bllVeQXrgQfWecgcbwMHpOPhmVzZsxeMEFGLzwQjiWhRiTh9sxzGZRrosyN1HtMB55oo4N6xvL+PH6hOm6oC8EJkLG8egShj1R9t4ftg3y2aiyj8WXJ1oXHT9qjgnrG0+eMN0v6DqpPwwj6joxXtu2ktui3jOKPBMVq6b2liTnttv+b0opZB98EHtuuw2pAw5AY3gYuYceQn3XLqhaDXZHB+x0Gk6pBLunB9M++EHUduyAqlaROeQQlJ9/XnROU7C1W7u1W7u121ujTfonLqZ3qZyHQUW69HH8Xbx0PLj+bo8WRSKB6WPp3Z7pfT9h6+9h+fte/m6QE9d0Xfh7fY6tc2b0xrGj6kfyWJble/+o6xdkW8dxmvrFANjpNAbWrkVh/Xo4xSJq27cD1SpUvY4pF1+M0tNPY8fXv47G8DCG7rwTte3b0XPKKdjzk5/AAjDjmmsQnzdP5DNx/fj7XuIy8HfANEa/jtuC5opXoJTeuXNsff7DsGmuo3KKpPfmvI+Pp/fUrfgyLyLF9ZPeZ3PSq65fmC/XajWfL+vkPm5vyZcle3Nsky9zbNKF29a2bQ+GhE0cB8m2OsdFt22YL0vY9BifEzaj+DKPVRN2kG2lvMx9metH2JwDQrFq4lfo8kh5UPLlqLat113iM9eFxuh90roTJU9IsdpKXo6y5knxQth8zZNiNeqaFxSrYesOyR01TwS1Sb1xofecnIDG+8hwuqNJ19E7RD6W+nQH4mOJUMQNSjLynwkrTB66t96ny2LCNsnDsSX9JLuasIMwgubFTiTQtXw5Oo44ArXdu5GYPRudxxyDzOLFKG7ahFe/8AU4hQKmf/SjaIyMwCmXMfPaa1F77TXYiQTszk7YnZ0iAVGfa0k/us6yrFDfoXtFuU7yuyDbcnlMfqs3yZclbJPvED6Nl3xe0lnClnSZCHvrc0gb5aAY1jcaUvxyDLon7+O2kbBJB96n21uyj6SzjqNfq8+NRJKUdJHkke7H+0z25tdJ2LqMXB7pntL86foFjdXtHjTX3E+CfCeqbfV51XUhQrQ+f5ycK/mOpB/3HZN+HEPCpj6uH4+XIN/h9jbp12qsjsfeXOegNqk3LpblLflPhshkMp4jvmu1mo8EWKlUUK1WPeW4yREzGb3UtdMkPvK/mvSxxDTX+yRs6uOlromMxAlxsVisSUoj/dLptO9oco5NZz5weUhnfefL9XMcpykjX3BTqZSnxHq9XvcRw3K5XJMIRuPpLA9eHtpKpTDj6qsx7bLLkJg2DVYmg1nXXYfq1q2wMxkkpk+HchxMv+oqWIkEYn19mP2ZzwDxODBKPuNzzcvSS/ampy1ESiP9qFw5NcfZVyqbdKG/kLh+nFQoYZNtealrjk22lXyZl6Wnc2n4cREko35dIpFAJpPxVM7lvkx/hUm+HGZbk35KudVQw3xZwpZitdFoNMvk0z0lbPqrUDp2QcduNU84juOLVdu2PSRHCZv+ouS2lUr+R/Vljm3yZQmbnmZMlC8rpXwl/1vxZQlb8mUJu16vT6gvAy5p2ra9Jf+jxKoJm/xpLPqZfNlkW92XpXgxYfNYNWFHjdWJzhN0TVCb1BuX/dFcQwHr1gGHHw7MmGG+bqJxJ7pNdhnpEXd66lQPRtlxkJk/HwBgAXAsC5VKBZlEApZtIzYwAMDdIPFNU1QZaTcf9dp2a7c3U2v7bLu9ldtbkpybzQJf/Srw0ENvrBz7K/nwx5Gmvv2Jqzd6+qHv2qkfo48F9XezrbDL3wqtbYd2a7d2a7d97U3xxIUvuvSf9Lugf9P/+/oUvvlNoL8/eGEPwuXX8TH82vH0BWEHycubhCNdw3UwyRj0/yBdospvmuuJtHcQdlB/FHl4C5MnzN6t9En35HJL8rZib6mF2dZ0XZRrw2IwzA4cK8wGY/VbU1+UMVHv2eq9TXrqvwuymYQZxT+i2pHzGlrNJ1HkMsVWFJyxYIeNjerLJl2Crh2rLlHHmv4fFENR5THlFr1N6o2LUgqFQgHDw8PNPmJS86JGRKaiRu/2+RcpSrl/3afTQKkEFIuqWTVR/0ufM7vpnR03qoRNRX/0VxXFYhHVatWjC33Fwxn21WrV815Ywib9OJmOY5MuYfqZsCX9CoUCyuUyRkZGmjKRbfVKjaQfZ6BPpG0l/UzYpBsVhALc4lCVSgXZbLaJTyQ1znLn5LUgeSTbcmz6woX7MtfF5Mt0X/060oXznka0g7nI3rp+hE3EvTD9JHvbtu3RT4pVCdvky5VKBblcrnlPwh4eHo5k71qtFurLEnaQL/MvQ6L4Mo3L5XIevU221fUzYY8nT0j6EfbIyEigbUkOnpej5sFW84Q+nvSL4ssm2+r6AfuK+/E1JkqsBvmyad3h+kXxZVOecBzH16fHiwl7PL7c6rozFl/mviC1Sb1xsSwLnZ2d6O3tbfblcjkfwS6bzYoVMTmh0VQ5d2RkBH19fc0+x3GQy+U8uI2GW722p6fHI6OEDQA9PT2eCduzZw9isZjnnlLl3Hw+76teK2GbKudK2MPDwx79lFLIZrMeWUzYkn6VSgXpdNojj1Q511QRk2O3atvu7m5PwA4PD6O3t9ejs4RdKBSQSCQ8ZFGyv44tVc6V/Imabm+TbSVsyZdHRkZ8+kX15Vqt1tRFJ8lxX5b0A1x782qjkn48XgDZlyX9TLaVKuemUil0d3d7SHtRYpWweTVOyZ+kODJVzuX6tZInqNI074/iyxOdJ0xVrjm25MsUUzwvR43VVvJElLk2+bKELdmWCKX6PaPGatQ8MZ51x4TN84QULybs8fhy1HWnlTwh+TKvrMvbpN64UNO/kCGuhN4HwNNHP9P/9X8rpXy7Zs7B0O+p7/aDrguTJ0qfaayELemn74x1h9a/lgD2fUIbRRdub11uSZ4wnfVPI3XbSvJEmeswGcfqJ1w/aax0T0mXqPJE1SWsz3TPKL4TJqPkiyb9JJ+Iau8gXw6L1VbyBMeXbKjLbZr//enLHFuyjQnbZG9JF44dpAuXxyRjFDtKfdJct5oHo8YWx5bGBuky1jwY1ZdNuug4Jp+QsKU+CZtKHkh5MEzGVvKEqS+ovSXJue3Wbu3Wbu3Wbu325myT/omLUuYCb/Qz/cev4wQh6ToqqKM/maDf8z7T/fR7Shimfq6LqU/C5nhh8phk5LvhKPJIttXtGKSzZG+TPNJc83lp1d6SPPyeQXM9Fv2Cxku+HHWsLr9pfJC9TfoF2bZV/VqJyzBfNsVqFHn0n8eSJ8L6gnJHq3EZBZv6o8ZW1FgNs3dU+0ixahpL14wlT5jyoGkOXo+8HCVWo647+vUT5TtR82CrsRoWG1Ftq9/b1Cb1xkUphVKp5CFjmci5SsmERk5KA/xHfROhUcetVquePscxE0g5NidIAu57XE6S1I9U5/rpBCsJ23GcZkEmSRdJHl0/3kfYtVrNR0rjpLtisYhyuewhtErk1SDSXZi9Tdgme+dyOc9YkoPblhMaiZyby+U8CSYqOZdjB9mWY1P58yi+zLFN5NxqtYp8Pu+RZ6J9WdKPfJmT7kyERh3bRPgjXfR7tuLL48kTSkUnkIbZlsYVCgVPfyu25dhB5FwuTyu+HGZby3KJlcVi0ZPLosZqUJ6QyKtR8rJURr6VvGzbtm+N0Y9nMOkX1ZelWG0lD0b1ZSleTL7MYzVqnggi0reSJ4LWPMuyfGs0b5N642JZbsVHneAjke5GRkbQ1dXV0nH1jgO4NnYnRSdtOY6DbDbrwa3X6ygWiz5ynYQ9PDzsIUgCLjk3Ho977lkoFDyVc036SdjVahWVSsVHSuPY5HRh+hG2XjkXcEl3vAgckXN1IpdUOZcY+7p+Enaj0UA+n/eR0iTsKPqZsKXj6nVyLo2nc1h02xKzn1cb5dhKuaQ0Lo+ELekn+RNVztV9mYJcJ91Vq9UmQU+vnMttOx5fNtlbOq6+FV8OIufqFUw5dpAvR80TPI4kcq4Uq6Y8USgUfL6cTqd95Nzx+LIUq9JcS74sxWortiVyrt4fJVYBOY6KxSIsy/L4ctQ8QX9ocV8eHh72xIHJtkTO1XHy+TwSiYTHl7PZrFg5l2ObYlUp5atey/NEo9FALpfz2VvC5r4sxYsJW4rVqGveeNYdwo6y5ul+LbVJvXGhFoW8pF9nGk+tUrHw7W8DJ50ELF7sv6c0lpOTTNiSjEGyRNFF+ner8kjYYXIH6cLlkOSKqkur8kTBMd3PJIOOEyRjmI9Fnf9WfSeqP7WiSxh2qz4Rpl9U2VuRMSp2kDwm3w2Lu7B7TERcSn3jte14deG/H69+Yb461rzcaszwn8PuF6RDWPxK94yqS6u+04odotzTNP+trB1RfcfU3pLk3GoVePppYNu2N1qSdmu3dmu3dmu3dmulTfonLvx9qOP4T94lco/pZEve19FRx7//O5BKAY2GSwTi1/E+/dRPvfHr9D6JgCSddBvWJ2HT6ZoSNsmv/6zLQ+Qnk9ySvfUm2Zbk4WMB+PSTbCvJE2RvfVcu2VvCJrm5baPMtTRWwjbZlu4nzbXuy3Qd5zNJ/m3STx8fNFcmGYNsG6SfKQajxqXep5P7aLz+M9lMilUTdtB1YXNtsncrvmySJyhWTdhSPonqyxLPpJU8EXWupVg1xaBlWUZ5+NioeVDCjponosRqkL2j5EFJvyBdeJ7gsWFaB6W8bLouzN5Sny6j7js8Vk22Ndk7qE3qjYtSCuVy2UM2NFUMBOBzKu64RFQioxeLbr+J0Kj3EVFJ76OxHJvG6n3lchnVatVD0CNSmk5EIsKmTl6SsCX9TNi1Wg2FQiFQPxpbr9d9HAClvLVvJF24bU36SdhB8nBswuX21vUzYUv6lUqlpn30xZ6Tw8jenATIscNsqxP0JF+W9JOwKcj5AlCr1VAkxzbII+lnwpb8SdKvVquhVquF6teqL1PFaR0nir1NtuX+FCVPEG4UX5b0o3FUaE2Xh9ub62fClnzZZFu+2Sb9uC9Hsa1lWU3iqt4fNVYlbNKPL1xcl/H6Mt1P76tUKrBt26dLlFgNyhOSP41FPxO2KVZ5vJh8mXhlQdgTve5QH/dlIj7rlXP/Jsi5vHIuJ/IAaJmcS412qjoGEZXGSmhUSvlIabt370YsFvOMN1Ub5fo1GnIFQ066k7BJP518KulnwpYqYpbL5UiVc4PIubxCY1RyrmRbrp8J20TOTSaTobaVSIUStlL7SHd6i0rOBeRqoxw7jJwbVjlX8mXAH0cUG7p+PF6A/UfO7erq8pBzo8SqCXssJH5q4/XlVCqFzs5Oj95RYtWEPR5yroloHtWX0+m0Ly9HjdWo5FwJm546RPFlU57gZNFMJuOrnBs1VqP6shSrkn4mXzblCYmcq8cLYSsVnZwbZltJP9JHyhPcl6PmiTY5V+iXSFKm8WMl3UUhROnXjlWXqPLsj7GSPlGJXVHlaYXI1ap+pmuDZAzznf1p74kk2Jmw3wh7tyrjWK4bb55odex45Xk9bBs2Nqrc49VPiruJts/rbe+ouX8s2K3qEmUtakX2VmQMww7Tz9TekuTcdmu3dmu3dmu3dntztjfFExdpBxa1T+qPet3+7gvaYU4WGVuRx7KsN6UurczDG6HLm91P3gwySv2vty76714P275Z52Wy9Un9b1b9JqM8UpvUGxel3Mq5evU9ekfKC3Qp5Sfd8YqKRPip1+uoVAD3NZr5OHdeRVAnMwVhS1UEy+Wy757VatVXRVDST8Im/fhkUyVXSZcg/UzY9L5fqpyrV5slW/OKmKQntSDbcnkk7Cj6mbCpOJReMbJYLPrkkWxL+vEvX0y21f2J5KhWq5731Cb9uD9J2KSfTmJz/dprH8m24/HlIP3G68t6rCq1jyxI95SwW/HlVvKEUl4yJek3Vl+myrm8L4ovV6tVWJbl8+V6ve7xZQl7f/gyVc7VcUy+nM1mx+TLErZJP4nIybFNtqXKuXyNkWJVJ5CasKmaubTuRNFP8mUJm/uyFC8mbClWJexWYnUi8wT3dalN6o2LZVlNUhs1pZTnCGylVJMUykl3puPFq9UMrr0WOPtsYNUqd3xnZ6fHgYicR32UxPQ+CZsSHlVkpEZkI10ey7J85FyunwmbjhfntiF5dIeOop/Jto7j+I5ULxQKSCaTHsJX1OPqKWnp2MRS57bl2FH1M2ED8B1Xr5RCIpEItS19acCJ3ZJtJXkk7CD9ovoyJ+eSLvpJ4Ny25E8m3wnyZZO9x+PLkn6O4yAejyOTyXjIuSZ7R/Hl8dhW0k/CNuWJRCLRrDg7Fttycq5SykcgleZa8mUpVlvx5WQy6dMlqi+3mid0bJN+lmVF8mWeOwCXNG3bto90HxarAJpl6nmeiOJPUfWja3XyqqSfFC8mbMmXg/JEWKy2kpej5glOROZtUm9cAPeIbj0Y6GfeF4vFPMrSZ1uxWKxpuFgsBsdx0NUVxymnAAsXAvG407yn7kCWZXn6dFn0hMSxdRn1ALFt26ML9UljuS4SNv11o+unlGo6hu7QdJ2+mHH9wnThcnNs+qtOuk7vI3mi2pbPNddPlzvI3ibbkg4cu1ar+fTjukjYQfqFzbWus57s6a8RblsAPp+ne+p/vQT5rWRvblvdl8ejH7+nHm88VnVdaLyETddF9eVW8gT3Ez7/EjbZvBV5wnyZY483T0ixGtWX6boweShWJV/m2PT78eQJKQ+G+TLdb6x5WcImfwqLVUk/IrJGyYNcHileTNjSdWHYQbE60XmCPxWV2qTfuOyPlkwCl14KWBbQwmu1dmu3dmu3dmu3dnuD25ti48J5HErJx16byD3+fgX+hVbYWP33UbCjyjh+Xd5Y4hS3T9jYibZjq/eLIk/QPcejS9S+Vnxiov2kFb8dD+54ZZzI+7WCsz/jcqL8Keq1Y42DqLEetY+ekIwltiZDDEry7I+5er11mQicicgTUnvDNy4krPStt1IKxWIRw8PDzT56x8ZJYI7j+N4L8qqR0vHiADwEN8KtVqseXOrj1SYlbOko+FKphGq1ipGRkabO0vHikn4SNhFheellE7mLt0ql4tHPhE3vpHX9CoUCyuWyRxcipHGyqITPsUk/7rgStoksyJuETRUjdf1KpVLznoQv2VbSz4Qt2Za4BpxfIR1Xz/0pyLY6yY0qLuvzL9lWKfdVWFRfHhkZCdWZ/IaKbZF+ki9zbHr8zCu8EnlVv2eUWDVhm/JEvV735Qm6L9dPxw/KE7q9LctqVprV9Y7qy63mCR17on2ZdOF5OWqsRvVlkifMtqSf5MthtqW8bNu2Ly9XKhWfL/NYlbClkv+t6if5cpQ8IcWLtOZJsRp1zZPihbCjrDtR8sQbTs4lRyBn0wk5+g6bEhn9Xn/nl8lkPJX78vk80um05/2cVN01KkmKdond3d2e98K5XM6D22g0UCwWfZVqJWyq0Kk7Wjqdhm3bnvFS5dx8Pu8jKknYFFy8giHHNumnlPJVm5Swc7mcj2BXLpebFVqptUK649hSZWAT9sjIiKcyrKSfCbtQKPhId7Zt+3ShrzV025pIaRyb+rguEnYul/MR/rLZrM93TL4MwKNfrVZDMpn0jHccB/l83iMPkQolX+bYZG+uH7d3sVhEPB736CfFqoRtIueSLnTPqLFK2NyXTXlCqpzL84QUq6Y8IflyKpVCR0eHpz+qL7eSJ6QK2zxPmMi5UfNEKpXy5WXJl7l+JmwpVqU4kvQz+XJU20p5OWqsRvXl8aw7Jmzuy1K8mLCj+jJtlrh+UuXcKOuOCVvyZV4Zn7f9tnGhTcnGjRvxwx/+EPV6HWeffTZOOOEEjyIbN27Erbfeinq9jrPOOsv3eyJj0j2JbBjUB7gLEvXT/WzbhuM4vs8zCUNi8nPCl6mPy8MJdkR+0rGj6iJh0183YfKQfkRCi6JfmDykS5hto45t1bamPkm/KH6i+wu3mb6JDpoXfaPAx0aVJ8jeUh8ATx8daGYaH6RfVNsGxYsUq9znJWwpVqV7jiVWo8w//Rfky/R7vS8Me6J8mWObbBs1T0j6SdimWDXJE9Xekm0BhPqJpN94fFnXcSx5OciXpZw33nUnal6O0sfHStgm/Xi8SGtemH5RfCeo7dfKubt27cL111+P6dOn47DDDsMNN9yALVu2NIUbHh7G9ddfj76+PixYsADXX389du3atT9FGsXe91+7tVu7tVu7tVu7vXnaftu4WJZbg6WnpwcvvPACnn32WXR0dCCdTjd3U3v37sXWrVuxatUqnHLKKSgWi3jhhRf2l0jNphT+f/a+NeaW8ypvzezrdz3HTkydOIkBJ+CEkCiGmIIMhEvaBgkobUQhRSKFkiCUCkRAoBJFwk1DilqpNFEJqaIqVdU/oABSkUAQhSpAQKmJQYQoxjG5Hjf2uXwnDGqHAAAgAElEQVT7vvfsveftj50133rXPGvmnX35zv7sWZLlc94z7zxrrXnWmtkzz7xDf/d3ROojnDs1dAVZdlW5DSx5x2BbuNb8XcWza9t3v/fdv9ou3m43J7aNv+/7uyir8xBmO9W48LOsGzdu0Hg8plarRc1mM3uM5Jzz3j93Lv/p7y996UueOCiKIrp586aHE0VRTtDE4zdu3MiN37r1NL3lLaf0Az8wote/fnUrVQsQrbFbt26VYqO5Tz31FM3nc/rMZz6T80fPRepqCxvlIjQWNKaxEe7Z2RndvHmTPvvZz+b8DLljZmGjPKKYQ2KxcHV8k8mEer1eLhaUW6LVV77X8Sc0txaXEba2xWJB/X6fPve5z+UuVENzG8LlTfJtYRORV6vOOer3+/T5z3/ee969ab6t3KI+sU0u93o9+uIXv+jFvavcomO4TS7fvHmT4thf/TS0Vi1sZJv2iRAuP/300xTHcenXiC3OhnC5aJ/bis+qlyoWes4jyse3bS4PBoPCOTu9cHnyySfpb//2b+md73wnXb16lX7yJ3+SnnjiCfr0pz9Ni8WCnv/851On06Enn3ySTk5OyDlHd911l7eP0WjkCXk6nU7urYRut5stgczGCztJdTIvhtNoJPTLv9yhq1eH1O/Pqdvtegpovlukx9rtdk4Z3ul0ckp3vT+Og08sbK1WK7f8dbvdzinVEXYcrxb30eprhB06hrBRfMPhkKbTqRcLP9+Ubwu0Wq3cxSjCrppbfaxRLAi73W5nb7CwzWazXCxxHFOr1fL8QfFZ2FZuNfamXCYiLz75VpG806a5jOKzsEPjQ1xG8YVy2TmXvSUhRYnb5jLC5j6huazjQ9gWl/mtInm8NsntJn1iUy5Pp1MajUbecQmtVYSNuIywrfg24TILg2X9h9aq1SdCatWKT9eqha3zbdULwkZ8Cj3nbXreCeXybXuryDlHX/mVX0k/9EM/RO95z3uo1WrR93zP99B9991H73//+6nf79PP/MzP0Bve8AZ63/veR91ul1772tfSfffdl+0jiiL66q/+anrRi16U7ZMV1nL5Y1Y0ywPG35s4Pj7OmvhkMiHnnFC0P4/SNKVer0dXr17NtlsulzQYDOjKlSvZ2GKxyBTtUpSksVm7c+XKFU8E9ulPf5pmsxm97GUvy8ZGoxE1Go1MTc/xdbtd7xcAwk6SJHtbQPqjsXlMxodids5l6m75Fger12Vuv/SlL1G73aav//qvz+bz9zSkmn40GlEcx7mlrjX2YrGg4XDo5Rthc75PTk48IRfK93g8piiKMmyOr91uexfCg8GAxuOxF8t8Ps/eFpDxLRYLT02PsFF8jCOxOb7Dw8Mcl2V8ROffWJLY4/GYiCj32YUbN27Qy1/+8mw+4vJ8PqfxeAy5XJZbK77hcEjNZjPHZVmrFjaq1eVySU8//TS97GUvy/Zp1Wq/389xWddR1T6RpmmOy7JWLWyrT5ydndHXfu3X0pUrV7yx09PTUi7rOkK1yti6jpIkoel0ujUuO7d6Rfaee+6h5z3vedlYKJcRtq5VCxvFh2q1Sp9ot9sUxzF9zdd8TTY2HA6p1WoV1ipjIy6H1GroeSf0nIfqhQid8/K1amGH1uo2+oSu1S9+8YtUZDu949JsNulNb3oTfdd3fRctl0u67777qNvt0k/91E9ljeFNb3oTvfa1r6X5fE4vfvGLS2/ZbWro9uom222CuymGNV+OyytySbQq+1sHd1dWxcfQ57sX4fcmtu/+Fdll9l3b7eodFsbtzG0IdhX/Noll2711V3153bkXFctlqtWdXbjwc6t2u00vfelLvX+TH+fqdDp0//3378qNvTF0Er0I4ZR8ZHBRWJfN9t3vffevttpqq+0ibad3XMoabtm/821J+Tl4fvalVwLkFRDZeHU/vk3H2/FVJUM7d35LTOLqubzaoxwrwubbnxwn32Ibj8eZD7PZjOI4Lv3EO8LmT6prf3hRJJnbkPgsbBQfL7LEtyF5O716ZZIkFEVR7hPom+YWxSdXYrSweRVI+bx3Op3mYlkul9mxkri8ABbyUY/pWBD2fD6n6XQKuSzjQ9g8R/5KWiwWufnOuZw/ZflG3CniE/ujdQHsYxmXUa3yOD+CtLAtLiPsKn0CrcTKa5AUYaP4WC8zm828Y2jlW/MJYXMvk3yy+oTmMsdXxmXEnSiKskXIdCyay1atamzE5VDeVu2DMj6OJY5jry9btcqrnxdhM5/K4uN9hvZljW1xWdcLwuaVeOV2oVy2arVKn9DYulajKMrpgbTd9iX/yyyKIrhgEFpsLGS71f9j+pu/Ifq93yP6N//mfDEnqQEhIm8uH3g5hrDPL4yw3xIH+YjmImy5OJDeTo7zIxMUnxyr4o/235qLxoqwNa41XhZfFX/QcUG5RXMR9rb8QfkOGdPzLZ5YeUW5RYtNrRsfwra243/bFpe3PYawq+Z2Ey7rnoewN+Eyz123T6CxUH4X5aIsPrRtWW7X7WXbjA+dd4r2GXre0fss4nLZeaeMO9vsy0W21xcuURRRq9XyRGnz+eotIClUms1m1Ol0cp/ujqLIWzeGaHWADg4OKEmIbt0iajRSIprRwcFBth3/SpFz+SpRjiFsHjs4OPAOBL/logVoWpw7n8+h6E5js6Ic+dPtdj1RGvuj45NjCJvveOll21utFrVaLQ87iiJaLpe5+JA4V2PznQIdi8Z2ztF0OoXx8dLdFjb/otDi3MVikR0DxuZfszq+xWKRW7ZbY6dpmss342hxbpIk3lLX6Pgxts4jNxU5xop/OZ9/Fer4LC6X5daKb7lc5kR3iMsIG9Uq76/T6Xji3E24zLFU6RPy7/oYIGz+Rapzy59DkHwMyTfC5vgQlzU26hNVuIxyy/Uv/UFc1rVahE1EuXzrY436BN/B0fkO7ROtVit3XK1alecdC5v5tE586LyDsNF5B9WLha1r1cIOrVV0ztukTzjncqv6atvrC5dd2rd8C9GrX03UahEFvGq+E7tIMWsVseqmWLXVVltttdW2K7sUFy6hSuvwt10cRRFRu73SuGwDp2xMXp0WjRXtL3TbKDpf0Ef+ytJj68ZijUuMqnNv51iV43A7YtkVT27n2GXwZ59jKeJE6D73JZbL5M8zgTuXzR9ke33hwrf8hmJtfv6ct/7CK691wKYFQETnjwC0wC5JEg+Db1/JMb71NVTfCUDYvD95gcDCNTmfhWFSQIjiQ9j8CEDfRUHYKD49ZmHz4kMyvul0mgkNmWy8gJAWw/Kt4SJsviWN/NHY8/mcRqMRjE+PaezZbEaLxcITuY3H4+wYciwot8wnXVwauyi3Gpv/rLmj40PYzBnJcd6/nF8l3zxWxOWi+BqNRhCX9XxUq1yD4/E426dVq6Fc3qRPbMLlKFqJQJHIfV0uswhT8glhb5vLURRlizbqvkxUXqsIm+PTYtGQ3HJ8+viH9gkWPutYUK3qRxgIu4hPZfGh846FrbmM6sXCRrUaes5D8bE/2+oTUeQv/ohsry9coijKng2zzefz7NMBbEmSZAsJyblE5M11brX2gR5LkoRarZYnkuJnyGz8xoReZwZhz2YzarfbXoE0m83cfH52rfUsOr7lcpk9d5Xb6VgQNhNexscx67kIm3Mji6bZbFKz2cwtLc2fVpd/j6II5ltvp+MjOj/WumD5ubSMT+cbYXN8+jk150dup2NhAVlIvlFu+dmuxi6Lz8Lmxq995Fjks+ZtchnVC++Tj4OOT3NZY1u1GserlUm15krXKsq31Sd0vkP7BKpVhI1qlWi1oqruZbPZLJjLqE9oPlXpE4hPGtviMooFcVnHZ2Fv0idQrRKF9wle6VYfQ6tWJZ9C+8Qm5x0LW9cqqhcLG9WqxeWQWiXarE+g8w4SW0vb6wsXIsoER0SrZHCCpFCJm7UMnP9NJpPvCEhBG1/pdTodTyQ1nU69uSwMsy4KpICUD4xMPhc7Eobq+DT5EDb/QrH8kaK0yWSSiw81KY3t3LmoUC8jjeYvl8tcfHEcw3zr3KL98TGQueUGruPT+dbYspCkP3zXS2LHcQxzS0TeXHSsUXyMo1fjnE6n3oWU3J88ASBs/tUjx4goN58/AyD9mc/nJpd1bq34JJ94n6hWNZcRNm8vx5ijMmehtWpxmWNZp08gLlt9gk8AqC5lflC+Q7nM8WkfNbbVJ6IoynFZYyMuc0/Qx7oKlzU24nJon4jjOLuYkT6G9olms5k7rlatyvOOhc3bh8YXwmWNjc47qF4sbF2rFnZorW67T+i7S8j2/sJlF1bhUdpOrcozvU0xuGFcBFZttdVWW2217cqK78c8g+2znyX6X/+LKCn+llNttdVWW2211bZHtvd3XPQKhvxlSX3rCm2nv0KZpumXH2ks6BOfIPrt3yb67u921Go5Y7vzseVyCb8Oi7B5rhYBW9uVjSFsFrhZ/si7HzzG/vBzTzRXY6OYeV8Sh/3Rc4koF5/GRvm2sHk7HV9IvtlnnduQY43mIuyi3FrHX+sZdHwIG+VWcp7nF9dB9dxa8Vk+ojF0/LWPjCPn899DuWPlG21XdqytfCPuVD3++lhrLlt1FMJlFB/vX3NZY6NjHUVRFnfZsbbiC8mt1Seq9MHQ3CLRtdWXtV7DOv4h8VWtS90ndG1YPU9jb1KXaEz6KLljnTusc4zOT5Ht9YULP99DbxVpASER5UilictCtcViQd/yLUSvehVRp0M0nZa/qcDCKevNlzL1OnqriNX+UkHNSyLrNzE0NorPwg59EwNhs6Jdv1XE8xmfcyuJiuJD2PycE70hpbGtNzHQ8uUhuZ1MJtkbCPJkr1XtnG/Z9BB2UW5ZCMyGuIziQ9iSy3I7/TZFEZe1hXLZiq/RaHhvYqD4inKLuMxvfXEsug6sfM9ms+y5vxzTfCrqE+twGdUqv1Wkl0RHx5qPn7RN+4S+QOH4NJc1NopPviGl35AMqVX09iHHV/bGVhUuW7kNeatoG1wuq9WqXA7pE7peLGzW9cntQrlc5bxjve2luaxr9RnxVtHh4WH2KXgiyj6Brd9oOT4+zp1wkyTxPi8+nU4pTdPsE99Xr55fqUqMNE2p3+97Y/x9htPT05yfGts5R6enpx7Rrl+/To1Gw9vneDz2xLlWfMvl6js1Epu/DXJycuL5orE5PvlpchSfhd3v9+no6Cj3afput+v5w+STn08fj8cUx7G3QiPC5l8T2h/+lLwUU6Lc6vgs7OFwSO122xOLsqisLLf8iiR/INTCdm71yXkdC8JG8RERnZyc5C7MNTZ/c0WuiJkkq9VLZX7SNM0+V89WlcvyU/eoXoiIRqNRTvCH+ISwUa2m6Uoce3x87An5er3e2lxG8YX0CaJqXB4Ohzl/OBYZd0itWtiDwSC3KjHCDuUywra43O12c305tFYRNl/Q6dVmNTbqExaXrT4huUxE2Wqvcp+htRrKZVSrKD6Ly1afkFxG9cLYzjmPy6hWQ895KD6OB/UJzeXQPqHfWtK21xcubPrNDn7lTI7J7az56O9l86U63/KnzMcy7E1iCfVnF3NRPGUxW3+2sMuO9SbxWdsW+VjGnV3mO3Rsnfm3M9+b+BiKvWmfqDp3U38uIrdlc0P93jQ+VHfbzs9F5zu096+DXTWWkHNRFd+r+LhprVr2rBXn1lZbbbXVVlttl8/2/o4LP7fnX/P8zFaLrvjZKRuv8MfbRlGU/TlJ5uQc0XAY08nJMveskp//yjF+tqefvSFsnit/SbAAScbCc/lZoxzTGBqbMa1caEEVEobJ/VnYnEOOj4+BPg68jT5W/CyXt0PY/MwbPS/mD5lViY+xkT+LxcL7BSD9lrg6Pnn8Ub7LcquxZb71/vjjZtofHQsRef5ITvC/I+5IcWYZtuayHNPxRVHkcRnpK+RxkcdA55vzuFzmV4ctq1ULO6RPaB81l7UuIITLsv51LKFclthF+wvJLY9twmU93+rLmk8Im+tindwiPlnYqC/rHmX1CVQvRVzWuVmXOxa25rJVL4g7nJMy7qBzHuITyq0cY0PYqFaZ30W21xcunHB+Rkh0vtS5fE7Nz3HRUt56Lif7D/4gov/xP1r07nfP6OBgQZPJxLtVtVgsaDqdZnOZKHIMYcu58iCyOFP6wyIpLVTTYiqEzQdb7o/jlti8r7L4LGzeTgvDNLY+IfB2moTIHya49mexWGTiuSrxSWxZXHwRJJsZP3PXudXHivmkb/daudX+IOyqXNb7Yzy5nc6PxR0dH8JGXC6Kjxud9lFzWR9rVKsSm/fJJxjNHcsfjb1On2DblMvz+Zxms5m3mCLKrY7PwmY+Sd0DwkbHmuPT+dbYRcda92WORS74hnoH4jKq1dDccnyod2gu83Y6ljiOc/kJqVWEHcqnIi4j7mjsolrVfiMuNxoN+INQ+sPnmCq1Wsbl+XyeO1egWtVvI2nb6wuXKFoJtrQA9eDgIFewVUV3//Afrsae97w2jcepJ0Diq0+JywJZ7QvC5rnygLEITM5H4lwiMsW5cq4lzl0ul3R8fOwRWvuD4rOwnXM5ce54PKZOp5MT/IWIc9kfmW8mKRIaa2wdH8ej842woyjKie6iKMrFwgUcIs7V2Cg+C9s5lxPd8f70heJ8Pg8S57bbbS8/3CB0fOPxGHJZY4fGh0R3RHk+8S9ZiW2Jc9vtNh0dHXniXI2dpqvXOJHQWGOv0yfYLHFuKJc7nQ4dHh564+zPtriMsKsIzUOPdbfbzfXlUC6HCs1D+4TF5eVyWcpljkX35dBaRdhVxLkWl1EfRLnV4lxdLxZ2HMdQnKvrKDQ+nr/NPqFF9dr2+sKFbROhEh6P6AUvIHr96y9OBCbFStbYpqK7TYRc28gt32ot22ab/myyP+1TqNCtKJZd5LuKfyHYm/izjXxv08fQ7dbxZ1v53kVuizgR6vs6XN52LFX8CZ2/bX92wZ1dcnmTsXXm77IPWnYpLly2bTKPATmqrbbaaqutttr2xC7FhQt6PoiuyqwrNTS/6lz9/HWbPm4Sy+0cQ+Nlc7edx6r7C/GnaJ8XcVw25c5FYG+Ku6mP29xfFZxdHv9NuVx123XrAP37Jn7zndp1+sS2cratc0zV3OzCn22fLzfB2UafQLbXFy7OORqPx9Tr9bKg+Hm/fm6apql3S4rFVVpoyvuIotWdlzRdze/1eh72bDajs7Mzz5ckSXICVIQ9m82o3+9nf4+iiCaTCSVJ4sWChGEoPoSN3khA2DxWFp+FzdoVGd9oNKLpdOrFYinsoyjKic2s3GriIuzQ+PhYS2wWFcr4JpNJNp/xUW6ttxdCc8viTK2vQPFpPlm55e3ldjo/KLfOudzbWha2FZ8eq8Jl600x/RbQbDajwWDg7VNzieML5TLqExobvQXC+5L4CBvlm2tgOBx6cSMu6/gs7KI+IbGrcBlhay5zLOPx2Bu3arXX663FZYRdFB/issbW8XFfjuM415dns1mOy4vFIqeZ0djyjb2y+KbTKYwPcVljW7Wq60We89hQrRZxObRWq3C5qE9Ekf+GGbK9vnCJorw4dzgcUrfb9YRKaHVXJGicTqfknKODgwO6do3oYx8jet3rVleJWrzqnMsJw5AIDGH3er2c6A6JwJA4dzgcUqfTyYlzNTYXlxZJaWy+Ci6Lz8IeDAZ0eHiYWzk3RJzLinItaES51SsDW9gh8VnYo9HI+3w6EWWftNeCv+l06uUW8QlhW/4g7MFgkBOa9/v9HHfKuCy3Q+Lc4XCYE91p8TFjIy6HxBfKZYRdJM49Pj72PnePuDwYDIK4bPWJUHGujg9hW1xmca4cD+WytQo06hNohW3dJ1CtVukTnU6HDg4OvHHEZeYO+iG0rT5hcVljW7lFfTm0Vi0uh9RqFS5bfUJyGdWLhR3KZb5YChHnVuFySJ+49OLcKIq8V+yiKKI4jgvHiFYnJB7nxPGrx3HcoEcfJfrAB4geeiilVmuFIROs50ocNKb9aTQaXsFGUeTFIjHKYkHY/OumzB++Ko/jOOdPaCzaH44F5bYoPmtu1dxaYyi+EJ5Ivuic8VjZcZEXCnycEZ/W4XJRHi3Oo/lF8UneFuV2k/gsbN6/HEMxlmGvw2WEzbGi3MqxMuxtcZn/rrfT/oT2CVSrCNuqVZ2LqvnW2CjfoX2iiMuhfWLdvmxxGe1Pj+2Cy1YsZfFZ2KG1is552+iDRbb3Fy67sn/yT4i++ZuJ7ryTSN31rq222mqrrbba9tQuxYWLfj6/qXCKyFGzSfSc5xDxkMawxiwcPccSKq0zJv9e5Fuoj2XbhOTb8ickFgu7bD7KbVHMITyx9lM2XrafkNxuOoZw9PGyYimbr2MJ4U4oBhoP9XHd2i+aX8TddfwrmlM2FjpnG9ihPSYkX0VzQ/yKIizOLTuuofUv66JqHVhjVeofzQ3ZX5E/aLtNY9n2sV6nD1rHXNpeX7g452g0GnmCoVChkly2nY2XKdZLL2vRFBpjQRkSgS2XS88ffq4o/eHPjctYeIlkLbrjlQ01tjygHJ8W52psjgWNaUPYKD4kzuXcStEdxyexinKrCcuLVZXlFo0h7CRJcgJZFuf2+/0MP1R0h7CLcttoNDxRGoqvCpd5e7kdxyL90bwr4rLGDo0vVJyLsC0ua7EhY5+dnW2Nywgb9QlUq6Fc5nmDwcCL28qtjM/C3qRPoFoNzS37oftyaB/cdp+wuGzlVgt2WT+kzzEhtVrE5dDzDsq3FudafULn2xLnbpPLVc8763A5ip4B4tyjoyPvU9shQiUiW3TnXF4k1ev1vM9vs1BJf1Idie4QNhHlRGk3btygRqPh7bOKODdEdIewOT75yXEUn4WN4pvNZtTtdj1/qojutplbvlLXn6tH2Ohz9Zz/MsEfWvETYct8SwsV/CFBY5WVczkW+axZ57tI0KhXliUirzZQvXB8IZ+r59U4Zb4tcW6n06Hj42Nv5dxQLiPsTcW5WiBbhcscix4vq1ULG3HZ6hNo5VwkzkW57ff7udx2u91cX+73+7nVXXV8jI1WztW1iupouVzScDgM4nJobg8ODnJ9edviXGvl3CpcRn1Cr5yr64UIn/NQrVp9IqRWOR7Zd4q4rM95qFYvvTiXiLxkSNEWjxGRN8Z/l//x2Gof8qPYWNwl90F0LjaSYwibx7QIDPlozdXbIWz5/yJ/5FyEUxaLnovyK/0JiRnlFvkTcqzLfCzbDuXR4o6ei/aJjpXlz7qxWPmWuGifZdzheUU+IsEeyk9Rvq3chnK5rFa30Ses7fTx19i74HJoLAjbio+ISrms58vt5Px18l3GZVRHm/TBsvpfpy9bvUPvryi+EC6HxGL5aPkdwuUqtap7h9UnQmPRc7TlzyjPEnv6aaIPfYhI3fmvrbbaaqutttr22Pb+jotzznuGyH/XY2g7+R+Prf6f0p/+KdFv/AbRy1/uqN123rN9ub3UPej9WT7y9mWxhI4hbOQjmi/nybGQufLvyEfkT9lx0X4V+VOEXRRfUSxojP2Sv+xQfEUc0/5orUgVH0PmFuVbblsUi5VvWQdFOQzxMbQui8aKclvEnU39CeWO7hPr+mNxuQp3NHbV+BB30LGWsVb1MYTLCBvFYuWb/w3NDfGnrO9Y+ZZ+h+ZL362zYlmXO0XYRbFUrdVt94ki2+sLF+fOV85ls8S5zvm3l8pEdw89RPSylxF1Oo6mU7zaqMRFQiXGLhM0Ep2Lc+U+L0Kcyz7q+LYhzpWC1k1Ed5xvlFskQEPxadGdJc7V8bE4dzAYeEUeKs7V2ByfXkXSym0olzU2WhGzSJwbymWLO2XxWau7WoLGEC4nSULD4TDbJ2OjfGsrEvGHinO3JSDleaPRyBu3crsul4tyK7nM8Uk+FeVWrwLO4lzJqariXInN8SHxamhf1hcZoX1Crpyrcyu5XFWcWyb2Do3Pwkbx6XqxsHchzq3KZbQKtBTn6lWdte31hUsUrcS5V69ezcb6/T4dHBx44h0kKrQ+L+6cy0Rpz30uX9lhUZrERUIlhM0HWQqViFbi3Gaz6e1zNBpRo9HwRGmDwYA6nY4nDFssFjQajTzhFL8hoz8tr7F5zBLdSVIh7F6vR0dHR54wjMW50p/pdErL5dITpVmCRo2NRHdEWPB3dnZWGh9jR1HkidLKxLk8fz6f02QyyYmPkTg3NLfD4ZBarZYnSkPxIS7PZjOaz+c5LhPZ4lyebwka1+Wyc1h0tytx7snJiSfOPTs7o6tXrxbWqoVt9QldR0ici2rV6hO6Vp1z1O12c+JcxGUdHxGuo9A+gcS5qFaLcquPNYtzdV9GtXpycgIv1nWf0LUa2idQrSJsq08cHh5SHMdeLFat6vOO1SdQrcrzDvuj62i5XNJgMMhxOeSch+rFwka1irCtWg097yAuW+c8XauS18j2+sKFTYuAkHhJbmfNj6Iod5XK8+U+rbnIHwu7bH9oO8sXJP5C/iCcUB8RNsq33leRXwhXi7zK/K5yrEPiC/EH5bsIV+/Hiq/MnyIuVuXTujwJ9Tv0+Fm4Zf5Y+7T4WIZdVgdF40XbFP37OvkJqaOyuWXzy+It4rLsn+tyOSTm0D5R1JdDawaNhfZly5+y+kX7DI1lkz5obRfKndAYy84dobVq2aW4cNmFBeSmttpqq6222mrbM3vWvlVE5Gg6daQe1e3MQq/8t40V+ktw27iXyfbd7333r7aLt5oTtT2bba/vuDjnshUn2ViUpBfo4uekbHr1QiLKhEYr0VFE73jHIX3DNyzota9diZok7nw+98bSNM3ET9IQNs+VFw3T6TSbz7fCkiShOI49IRJ/RlwKpfjvEpvj0/5obN5nWXwWNv9Zi+6SJPHEhixmlUK1JEkoiqKcCFBjs3gM+aOx5/M5jUajXHyj0Sg3V2OzgFAK1Vg0LWPhYy0xFosFLZfL3G1MC1vHgrBRfLy/MmzmjBYB6vkot0VcRrkt4xOPzedzj8sshtVc1hEBGt0AACAASURBVPNRrXKMk8kkVx8hXEbYHJ8W5xb1CTk3juNSLqP4omglPGUhqPZnW1y2csuCSDau1TIuI+5E0UokrPtyaK0ibI5PchlhozGOD/XBstxyLHEce32ZdThltYryzbWqfWFfpVXpy865nDYLnXd0vTCXJTaq1VAuW7W6zT4RRZdcnEtE1Gw2PaHOfD6nZrPpicCSJKFWq5UrGuecN9c5l401GkQve1lE994bUxw3qNVqZUnnA6ZXpVwsFjnRUJIk1Gw2cwI07U+z2aTlcplbEbfRaOQEdq1Wy4sPYaP4EDYTviw+xm42m56PnFsZX7PZpDiOc6sbLpdLb5/8tpUeQ7nVebCwQ+KzsFF8rGbXAlIdCxHl9oewLX8sbB0f4jI/E9bYRL6ILYqiDFsuBDWfz3P5RvFpbI6l3W6XxoeOIcenuayxrVqN49ir/ypcRtiIT2V9oii+Kn2i0Wjketm2uYyw+UJB+6OPQVFutT8olpBatbBRfHyRov3RXLbiC80tf9FY13+r1crVqj7voD7B+y7j07a4LOPT9WJhb8Jlq15039m0T6BFS6Xt9YVLFEWe+plfsWq32xmpZIL0ctOcYEkMVl875+jHfoyIKKZeb/VmCW+3XC5pOp16cxeLRVY0uom32+0Mm8c6nY6XfC52qeReLBbe8sccn15uGmFHUZQVLPJHquknk0lpfDK38kTBhSBzywWs58dxnItPj6VpCnPLRSP3p7GL4mu3216+NbZshNIf/iUtseM4zhqSFpvJuQg7TdPsmOpfHxKb7ybKBoni43Eiyr0FoMeIKDefX5GWsfAvnlDuhMTHjb2Mywibt5dj3OBkzhB2EZclNqpVC1v2CTbEZatPIC7rWDblMsenfdTYfCdjXS5Pp1Mv31yX+ljzRVQIlzU24jI61twvda3yybUql4nOf4TpnoBqVZ53LGzefp34LC5rbHTOQ/ViYetatbBDa1WeY7bRJ/TdJWTPSo3L6jyAldYX68fuFcKMcZFYtdVWW2211bYr2+s7LmzohBg6hsdXotz//b+J7ruP6AUv2BynbKzq61/hsdy+MT0eRdGljKXKcbgdsVx2nlwGH9H4PsdS9urovnK56ti++fNM4M5l8wfZzi9c2Bnr7gbfOrT+bTKZeKsLWqupaoyyFSOnU6IPfrBN3/RNC3r96/EKhnKMnwFqQ9g8V45NJhNKksRboRWtiMnCML0ipsbm54/6YDOGxOaVYYvis7B5MS6Zb7TabJUVMTU23y7U/iDskPgsbBaGyVUbrZVzq6wYqbGtlXM1NlrJtYjLEpvFa1LExmJNmR+UW44PHX+NrVfELIovjuMcl3WtImxUq7zP0WiU22dZrfJ2mstI2M91VLaybCiXuVb1arO8cq72cV0u80Jnkk8IG/UJjreMy4g7/KKB7suhtYqwEZcRdhUuh/QJjiWOY29+aK2GchnFx/sM5XJIn0D1grBRrYae81C9yFjW7ROyVjXXke30wkU+puBncOyY/Hd+Y0L/Oz8Llav+pWlK3W43J/jrdrs50d18PvfmcuPqdrt0eEj07nfH1G43aTxO6ODgwHvGrT/7zoUmxyzsxWJBBwcHHtHa7TY5539enN8y0M+a9bNUhD2fzylJkpw/GpsbcFl8Fnaaptmn39n4s+8yFi6usvis3OqVSi3s5XJZGh/RqpHqZ+lElBPdpWmai4VPWNKfJFktIa9Xv9TYPKZjsbARlzV3EDY3VbkCJT8/lvNZryHnovgsbMbV8el8E+WF9M6tnvXr+DQ24nKaptRsNqnb7XrPvqtwGWFrPiHsTbnsnMv502q1vtx3/OMQwuUqfUJjh8ZXJbeso9DHS+cW9cFQLvM5o6xPWFwOzS1rXvR8zWVUq6F9woovNN8h5zxULxa2FV/IOW+T8w7R6pwewmWtQ9O28zsu4/GYfu/3fo8+97nP0fd93/fRi1/8YiI6vzj5zGc+Q7/zO79D8/mcvvd7v5fuv/9+b75UfPPFjVTT8y8orfjmA9FsNj1xF5+oiIiuXCFK04im09hTP/OvRDmXEy7HEDaPaTV9HMe5t1dms5kZi9zOwuY3C5A/ktA8xv6g+BC2lVv+fLmcz1fi+o0krdiX/qyTWxZsS9Gdjg9h83b6GDCmxCY6F1PL+Jxz3lyEjeJDx78s3/piTWPzLygrt1Kca/lTxp2i+NDbGSg+nW+EzUI+nW89H2EXcdnKt+4TGnuxWFAURaVcrtonLH+2xeXQPoFqNZTL3IPL/Nkml4tyS7Q+l3muPq5FdRnCZXmOKYsvlMtlfRnVi4Wta9XCtuLT9YLOeVafCDnn6buiyHYqzk2ShP7zf/7P9Nu//dv0FV/xFfTwww/T448/njk3GAzo7W9/O127do3m8zn94i/+It26dWuXLn0Ze/WfuttVW2211VZbbbXtue30wuXatWv0wQ9+kBaLBT3yyCP04IMPeh9sunHjBn3yk5+kH/7hH6Yf+IEfoOvXr9Njjz22S5cym8+J/vt/J/rzP78QOGgX8VaT/LVyUVi11VZbbbXVtivb6aOifr9PvV6Pvvu7v5vSNKXf/d3fpe///u/P/p1vWfItL73SpXOO+v0+Xb9+PRtj0ZS8lcR6Fnni5Ft2cn/8zG4ymdB0SvRnf0a0XDr6qq9a0PXr13O3V2/cuOHtj1dplIaw5/N5druZbTAYUJIkXiy8jV55UcfH/khsjk+LmDQ2zy2Lz8LmZ5oyll6vR6PRyJvPt4D5q8Uy33o1To3NY2gFU17Zsiw+nW+EvVgscquXjsdjmk6n8FjL3HJ8UrBX5A/Krca24rO4LLE5vvF47M2dTCZ048aN3LNmmdtNuIz4xPFpLqNaRdioVjnXt27d8m4hh+Z70z6hucyY63J5MpnQrVu3cqua6lhQ70DYRX0CHesyLlfJ7Wg0on6/n1ufp6xWLWzE5dDcFnFZY7P+RPflOI5zfTmkVkO5bMU3n89zqwVbXC7rE6heLGxUq6HnPBQf+1OFy2V9QvdZbTu9cGm1WnTHHXfQAw88QHfccQd94AMfoGvXrmWfVT84OKB2u029Xi87CPKT5UREn//85zMluHOOjo+PaTqdZglwztHJyYm3ZDs/Q22329myzyzWYyV5FEX0xjcSNRpEN2+eUq/X8+5OHB8fZyppfq57eHiYe2MDYZ+enubeDLhx44anxmahLjcVxjk6OspU1ozD4jHGRvFZ2M45unLlihcfEdHJyYmnAmdsVtTL3I7HY09FPhwO6ebNm/R3f/d32Vxe7GkymWRzDw4OMpIXYUdRREdHRzC34/GYlstlts/T01NveW6OT6vzu91u9haCzK2Mj2j1zPX69eteLCxy4yWsOb5ms+kts42wiVafd5f5ZsGkbDbM5clkUhqfxub4iM5FyESrJnXr1i16/PHHS7l8cHDgLdEdmtui+HgBNBmfrlVdR0VcvnnzJj3++OOeJkVjW1zetE/EcZzjsqxVC1vXKtv169ep3W5nxy20VlEdWVzWdcRc7nQ6Xny6VouOtY6PiOipp56i2WyWPdavUquoT+hatbCt+GStVuXy008/TVF0/hZLlVrVdcR8arVaXq3q847FZV2rVbms6wVhW1wOOedVOe+g+Kqc887OzqjIIg7csLVXFGMivutd76JPf/rT1O126ejoiH7pl36J3ve+91Gv16Of//mfp/e85z302GOP0fHxMXU6HfrVX/3VTLH86KOP0p133kkvfOELs/0OBgM6ODjwmlmv16Pj4+Pc0ulJktDx8XE2Np1Os+RJP3u9Hl29ejUbS9OUBoOBdxG1XC5pNBp5j7os7LOzM7py5YpH0ieeeIJmsxm99KUvzcbG47G3ci7R6qKg0+nkrpo1Nl+Fy/gY+/T01PvF3ev1PH/SNKV+v+/FbGH3+306Ojry4nvqqafos5/9LL361a/OxvjVV6k2H4/HFMdxTk2v871cLmk4HOYuWhF2r9ejk5MT7+oc5Zsbo8QeDofeysA89pd/+Zf0bd/2bdkY/+I6OTnx4lssFnR0dOT5qLFRfBa2xWUdH5+gJDbfDZBcTpKEPvKRj9B3fMd3eCI5zeXFYkHj8RhyuSy3Vnyj0Si3GudgMKBut5tbTl1jo1pN05Q+/OEP00MPPeStshlSqxZ2lT6h315BtYrqyOoTH/nIR+iVr3ylNx5Sq4yt66hKn5hOpzkuo7dXQo/1I488Qvfccw/dfffd2Vi/36fDw8NSLqM6QrUa2idQrVrYqE986lOfojiO6SUveUk2xm9NltUqwg6t1apcLjvnoXohwuc8VKuhfQLVC8qtxR1UR6hWf//3f59e97rXmdqDnd5x6XQ69Na3vpUeeeQRWiwW9MADD9CVK1fozW9+My0WC7rzzjvprW99K3384x+n+XxODzzwgJdgNpmMkDFr/vn2/AuVKIrwfN4v2uc6/qD96THnXCFuyPxQf9B2IfsrGy/CqOrPpj5GURSUh5BjHRrLLvMd4l8ItuXPumOh+9uFj3J8m30C/d3i9y78CeEO8ieUK3pu1eMv54fWalF8If4UxVKGve39WduiWIowLjoWa7uq25b5s61atWxnFy58G+j4+Ji+/du/3fu35z73uUR0fotR/tq9KEsSol/7NaJXvpLowQcvHJ6IanFubbXVVltttVW1nd5xKTuRlf27cyvBEC8cR3T+ITEpauJnZlK0xSIuvYrg6hHWlJKEaDQimkzOP0QncfVYmqa5/VnYPFdeNEh/OJb5fJ5bgZD3J8cR9mKxyPko58vchsRnYXO+UW75c+scC3+oS24n73oU5Rb5g7Ct+LRIGWHLZ8RszCUZC4vGNXd0fAjbyi3C5rmay0iIh3LrnMuN6fzIGpIY1vHX2JrLckzHp38psaBc8gnlFtUq51GLLkO5bGFX6RMyt/P5nOI4XovLURRlsWhRagiXETbvT+YcYVvxrctl2cs096y+LP1G2Kwl0WLhkNwWcdnqg7ovx3GcO8ewD3p/Oj6NzYLUslpF8ZX15aJznlUvVp/QtYqwQ2sV5VaOIX/0mDzvcL0U2d5/q0gWKAckRa5yTCeNxzUhV2R19HM/t9p2PPYPuHMuW86ZjdXUcn8WNm/HxtuhWPStMin+KsJG8SFsmUNpOj6EHUVRth2fzLjY9bL4PMb+yP2VYXPR6NxqbDkXNXEdC/+5KLfL5TIXCzdIzR19DDbNreYy7w9xmRsG51ZyWXJCH3+LyyjfIVwuyjfiso6Puaw/VbAul1F88kIhJLfoWDuX/zSAcy6oT1j54YspuW0ZlxF2UZ/Q8634tN9F2DoWPi5ynzymj7WOD2HrWrWw0ckZcbkot6gvc25l35JWxGWUW+u8U5bbIi6H9AlULwhb16qFXaVWdW5RfAhbxqd7f5Ht9YVLFK2WbGchECf34ODAe0VysVjkhGGz2YySJKGjo6Ps4E4mE0rT1BNO8cE+Pj7OtuODI8f4oMj9IWweOzo68hpft9ulKIo8UVMURdRoNLw3DXh5ZykMQ9hJktB0OoX+SGwek7GgmBE2N4qjoyMvtyw0ldj8ppjM7Wg0ojiOPd0Swuai1LFobBmfXBET5Vtj87Pidrud+wyAjoUbno6P/WZD2Cg+3lZic3yHh4celzlm/Y2d+XzuYfPrjXop91arRYeHh97KuWmaev5wM7G4U5RbKz4iyt7w4LmIy4wt56NaXS6X2acYeJ+htVrE5XX7BOKy1Sf4Ebn0p91u08HBQSbk3AWXETbqE5twmXG73W6uL2su6/gsbMTloj6xLS4TUfYGmc5FWa1a2MyndeKzuGz1CcllVC8W9nA49GrVwg6t1Sp9QmNbtapXKNa20wXo9tncl1fPvTi8PFiICGlTLP4zGtsl7mWyffd73/2r7eKt5kRtz2Z71l64EBGNx0SPPHKxFzDSanHufti++73v/tVWW221XaTt9aMi51af2targ2rdBIuh5C1AfgYrV79kAeZKtEn0x38c0b/7dw1673sX1O2eb8e3vuRcftYnx4qw5eJO7Pd8Pvdi4Y+nyed5HJd8Xoiw+Xm55Y9+riy3Q/FZ2GhVQ/nZd/7lx3oCiSsXGSrC5tuKyB+UWyu+Mmx+ji2fYfNjGL3irx5jUaE8fgi7KLcam+PTq6nqVTuZy5o72qRoUj4WDImvCDskPhYPai5LPY6FjbjMOPwlYwu7KN8a26pVjS37hByL43htLnMsegXTUC5rbOaM5BPCRvFtwmXuvagvay7zXCQ0l3O1qNPCrsJlhG315TiOc7GwfqUovtA+IYX/ZfEV9UHdJySXUb1Y2KhWEXZorfL4Jn2C90FEubpF9qy94+Ic0bd9m6P/9t+I7rlH/9vFPdbZtaFHRZfJdn0sLkNeLoOPF2Ws75B/L9p229i7NB3bvmBfpB+7tH3zfd/82baFcgrNK7O9vuMSRRG12+1MWMRXcXKVPb4r0+12c6K7KIro4ODAe1yiV8T8uq9LqddretvxlaYcY2GYHEPYzq1WDD44OPCu9lutFjnnPGznXE6cy/Fpce5yufSw+Re39mc2m1G32/VEaUmS0OHhoRdfkiS5uRqb1fY6t+12m1qtViY4JjoX5+r4kDhXY/OdAu0PHwOUWxkfyrfG5rsdWtAoRW1SlOac88ZYVKjj09goPsbRgj/OreayjI/o/K6QXumUKC/OZeGbFOfq3PIvSsTlstxa8aVpmhPdLRYL6nQ6OXGuxka1ulwus9U9pTgXcVnXqsXlTfoE4jKqI4vLHIvsZVathnCZc6vFuRob9QmLyxobHWsWTuq+jLisa9XCZtPi1ZDcWlwO7ROtViv7TIM8rmW1amGzeHWd+CwuW31CchnVSxE2Eudq7NBaLeoTslYRtlWrskaRPWvvuBDdPm3LOf7uHbjIOy6X9RfEvvu97/7VVltttV2kPWsvXPitopKPUNZWW2211VZbbXtke/2oiE0Kefi9b71ADY/Lv8v/eEzu7+MfJ3rPe4h+6ZccXbmSknORt52cm6Zpbn8Wtva5aLuQsaJYyvyR8+RYyFy5DfKxKLfWXO1XkT8hxxrFVyWW0GNtzUW5rcITtE8tcra2k/ms4k9ZvvX6M2h/ZduF5Ez7YflYhF0Uyya1tS53NvHH4nKVWJA/63LZ6nmhtV6Ubz2mFx0rqsGQfFfJrY4F+W3ForGt3BTlq4zLIXlE9RI6tyiWkGNQhrFunyiyvb5wcc7RaDSiXq+XjfEyx/qLozpBvKCOVIbzAk383LfdJvrKr+xSFM2o1zv/3LlzLrdUMSvadUIRNr9tI8fG4zElSeLFgpa65q9vyufCCBvFZ2HPZjPvc+4oPgubvySrF8SaTqfU7/cznzi3WvkeRVFuWWuNzccE5VZj89LcOj75+XQLG8U3mUyy/MgGg1aq5HHto/50O4/p3DYajVxuEZd1fAib/yzfLloul1ksWrsi/WE+6QYXkluOT/KJ6PztDM1lHV8VLs9mMxoOh9k+ZW61P9r4zbcyLhf1iXW4jOLjeaPRyBvXtYris7Cr9gl5rDk+yaei3ErucL/SfRnlFvUihF2UW8TbbXGZiLI3j/Q5JqRWEbZcWVbHrD+ngPqyrlULm887ekzWi4WNzjuhXC6qVd13iris+4SsVf3WMLK9vnCJotXqpfLT2P1+31s5lyj8c/WTyYScOxfIXr1K9NKXOhoMut4nudM0/7l6fh1Vf65eY/NBlp+rJyK6ceMGNZtNb5+j0cgT5xKtPvGtBY2LxYJGo5H3yfEkSWg2m3mfVEfYPIbi0594R9i9Xi+3ci6LCqU/aOXc8XhMcRx78SHs5TL/uXqi1bHWK52enZ2VxsfYLCJj4xV/ZXz8ifXT01NPlDaZTLxjjVavrZLb4XBIrVbLE1Oi+BCXETa/ZijjS5Iki0WKc3VuN+Gyc6vP1ev4RqNRJg5kQ5+rR9ioVtM0pU6nQycnJ55I8uzsjK5evVpYqxa21Sd0HU2n05w4F9UqOtaoVp1z2UqzHLeVWx2fhR3aJ/i1WR2frtWi3Opj3e12YV9GtXpycpIT56I+oWs1tE+gWkXYVl8+PDykOI69WKxa1eed0D6hzztF8Q0GgxyXQ855qF4sbMQnhG3Vauh5ZxMuyz8j2+sLFzZ5FbdagyXyxvR21nxe12P1/9W/xfH59xHQfDkX+WNhl+0Pbcf703Pl34v8QTihPiJslG+9ryK/EK7cLsTvKsc6JL4Qf1C+i3zW+7G2LfPHOv5F2NZ26/Ik1O/Q42fhlvlj7dPiYxl2WR0UjRdtw2NV810FR4+VcbkMpyzeIi7LuxjrcDkkPgu7yNcQ7JD9oe3KYkH+lOGG9BoLe5M+WOZPyD5DYiw7d4TGZ9mluHDZlaUp0WBwu72orbbaaqutttpCbe8vXJzzVxtN0zT3LJWFPXo7LfjhMd7uox8l+o//kehXfsXRyckyu+JDc/mrlpbwiffJQiP9FUzkY+gYP6NGsYSKIXl7nQd5NWzl0dquKLdlx0XuE8XC8y3soviq5Bb5Y+Ub7W+T3Fpj+vmx5Tf7qmMp421ZvnV8kstybJ34rLos4jeqLc0d7Y91vJA/Ice6KN+aO1X6RAiXEXbVnhdSq6FcRvOL8i3NmhtFUWluq/blsvjk+Dp9uWpurbEQ7pSd81C9VImvSl3qsV30ibK7Lnt94eKco8lkQoPBILv1xCKwRqPhjelbmFKUxv/mC8Mc3X13RP/4H3fo8HBGA3XrJUkSD5eFSuwX4yDsJEloOBxm+4qilRhJ75OX8pZLjLMQS8bH2HIuC8CYIBa2jEWPDYfDXCwam33jJcejKKLJZJLN56bDYlYmbxRF3ucZJBE1tnPOy430J01TDzskPoTNc+fzuXfMZCw6t+ybjE83Piu32h+EjeJDfNLYHBfRufiO6HxBNJ2f2Wy2FpflsQqJrwqXZW65ViWXGWc0GuVEqSH5rtInZB3JPiG5zPEhLkvsIi6zloPHi46VjAVxmXPLMSHsovhkrVrYRbnVfdn6TMJgMIBc1n2CiCrnFtUq43BukT8yFl42X8fCWo6i805In7BqtSp3yrjM+5P1grBRrUpsLRYOOe8wdgiXQ/oE11mR7fWFSxRFdHh46ImxkOiOiILEuVp0d+UK0Vd9laN+v+uJktL0XDjFZgkaEbZzLicCu379OjUaDW+foYLG5XJJo9HIw0aiO4TtXF5MieKzsPv9Pvw0fbfbzYnS+NPmbGXiXBlfqDgX5fbs7AyKczV2kTi3TNCI4kPYnG8tsEPYKD4iopOTk9zbAhq7TJwrV7AcDAZrczk0vosS51pcDhHnovhC+gRRMZcltsVlLc7l3IYKzTU2EjRa4tUQLiNsK7cHBwe5vhwipLewkTgX8ayK0Dy0T/Bqr3KfoUJ6hB0qpEfxWX3Z6hObiHN1raJjHVqrROFcDu0TzzhxLv89VKiExle/eojmc6IvfMHRHXfY85EQqQgb+VjkS9n+Np1fts9N5qLxspitP1vYZcd6k/isbYt81Lc9t+lP6NyysXXm3858b+JjKPYuuFzV7yr+XERu16mD0FiqxIfwtp2fqvtb9xyDYkFzL7JPVDkXhe4T+YNytmmtWvasXTmXiOgjHyF64xuJvvjF2+1JbbXVVltttdUWYpfijgu6AgsdQ+P891e/mujhh4me97zNccrGql5hhsZyO8f0+OpO1uWLpcpxuB2xXHaeXAYf0fg+x1L263RfuVx1bN/8eSZw57L5g2yvL1ycW4lzpWDIWk2VyL+dFbpi5AMPEE0meAVDOcaiQr1iKMLmufK2IYtApfAKrRiJ4nMuv6qhFElJ04I43icSgaFYWCTFhla/5NVmZSxFK2LqFSORCAytxopWhwyJz8JmgaxctRHFwsda5rZoxUiNjWJB2Nbql0SYy2WruyJxLsptVS6HxtdoNEq5jLBRrfI+tTjXWm0UxbLNPhHK5TRNc2Nc46PRKBffulxmLQVa/RQda8llKZDVOdN9Qu8vilaCVt2XWRdUVqsIW4qPi7CrcDkktxyLFOfy3JBaDeWyFB9Lq8LlkD6B6gX1CRbI6pWKLS5Ls2pVr5yL4rOw9XlHcwHZXl+4RFHkfT6daJVM/Wn65XLpfR6eaEWS+XzuzWUl9vkntYn+9m8dxfGC7r///DPdXFj6U+dElPtcOcLmT69LorXbbXLOeQItXm5aCpWcc9Rut3PiXC0WnM/n8PPpGpsbsPwMOYqvCFvHNxwOqdlserFwcZXFZ+VWx8fbyk/Th8ZHtGqkURR52ESrz9jL+NI0pVar5fnNJyzpDy9fL8cQtuUPEVGz2fREZxaXNXcQNjdVKdicz+fZJ+OlOFfnFsWHsHcRH8JGXE7TNItFfu4+lMssVizjMsLelMvOuZw/rVaLut1u7jiEcHnTPhFFUS4+7XdRbrU/LFzVcaNjvS6XETaKz+JyaG5brRY1Gg3vWBOtz+XQ+Kpyueych+rFwrbi09h80VNWqzKWsnwTnb8QIedrLssaRbbXFy5EqwA4IOccNRoNajab3lgcx9RsNr0Dywei2WxmieOr/VarRc4RzWZE73mPo3/wD47o4Ydb1GicFwjvU9410WMIm8darZZXsHEce7EQrRqIFYvcLoqiLG59ArH8kYTmMfYHxYewZb5lbvk7HnI+3wGSfvPVtb5Q2DS3Mj45phukxObt9DFgTInNMer4nHPeXITN8bVaLW9/KLdFY7JwETb/IrFyK5f817mV/hRxp0p8zAnNHZ1vhJ2mKcy3Pl4I2+JylT6hsReLBUVRVMrlqn1C52fbXLawdZ/gH2HrcJlzq/0pyvcmXJbYKD6i9blMRLlY5P7K+jLC5h8K68RXpS9rLqN6sbBRXVp9QtcGqhd0zivqE6F9sMj2/sJll9bpED38sKP5fEJx3CmfUFtttdVWW2213Va7FBcuSPi0LeGUfJJQtE/5byHYIT5edtGlHg8R5+4ij9sYk+NFPl7G41Jl7HbkDnwZzQAAIABJREFUex0ft7m/Kji7PP5Va2NTf8rqclv+hPQEq3fsGnsbY2h8n3r6pufLTXA2xbBsry9cnHM0Ho9zn0/Xn/hGwrAQQeNySfRv/+0x3XVXk37u586I6PxCwvqkuk4uwkZCJRbnyn2iT3yz6G6dz9UjbBkLGpOmPy/O+9Mix/F4TNPplPr9fuYTEoFV+Vy9FoFZ2JYIzPp8ul51lUWkbCzOlbFwvvXS4nKlTAu7KLcaG8WHxNAIm/Ms87ZcLs3jL62Iyxq7SnxxHOe4rGu1qvB5OBxm+6zCZVRH6/YJos24zPPkatHsY1mtWtioVi0xJT8il/GlaerxKTS33K9QXw6pVYSNuByaW4vLoX2C9UMSJ7RWQ7kcGl8Rl1GfQOcdWS8SG4lzkbC77JxXVKshXLb6hOSyFqIj2+sLlyharaaoV4eVq+zxVZ5e3ZULW67QyI2ZhVjOEb3xjRE1Ggs6Pj7xnuM55+j4+Nh77j0ej70xhO3c6rsLx8fHHqm63S5FUeTFMh6Pc0IlFpSi1UYlNlrBEGGzjycnxfER5Vd35bl61cbJZELtdtvDRoK/yWRCURTlRHcam1cGRrmV2FZ8aZp68VnYo9GIWq2WJ0pjAfjR0VE2v8pqo9ofK7cIm2i1mqaMD3G5ysq5rVbLm8+aAs3lyWSS+zR9CJd5OxSfXhGTiODKuZPJpJTLaZpmwny5cq4+1la+NXZRn9hk5VyU2yiKclzmWDjnVbgcugo0wubPTJTVapXcttttry8X1Wool9ftE6hWEbbVlzudDjUaDW9+KJdD+wSqVSu+dbmM6oUof86z4rP6xCbnHYvLZec851xOS6Rtry9ciM6FqUSrgFiAJMdYtCULJI7jbJwTF8dxJi5ybnXhcniYUhStREMywYyLBHZyTGPzGIu+5P60j9ZcvR3C5j/L+ND8NE2zMe0PikXnVudb+m3ltizmImyU76L8yLGifJfxRGLzLxkdHzou+lij+EL9QcfAwmY8azs9ruOzuIPyLePjuTo+7SMfP+03ms/bSX9Qzvi4hNZq6PFHx7oot9JCuRx6/KU/Rbm1+oTG5o/cldUqwrZqVdZMWb7X5XJon9iEy4wtY5HHtCwWhN1oNLLvClWNT2KHxFJ2PtE4RccAYaN6Q/Vi9QmrVkP7YJHt/YXLLi1JiP7Lf4no7ru79HVfR6SOY2211VZbbbXVtmd2KS5c9PNLvlVWtp0e1/9vNIjuvdfRXXetvhaNpus5Fs66PqLt9Jj8+7r+rOs3/x1tV/R/C2PbeSzaX8gxKNuPFXfZfsq4WDQWwomyudvgrfx/UR7Kxjfd1qqFbexP/j3kWIf2mHX8sY5b6P5CsS1fQ2u6io+hNRhF0dbzva06sMaq1H+VXrTu/E3mVslPEU9CarVKLJbt9YWLc45GoxGdnZ1lY6xd0aIkvm3HhgSNLLpj4c9yuXq/vdlcfllEdI6bJImHiwSbFjYSOY7H49w+kTgXCcOqiKQQttw/xzebzTxfLGwkDBuNRjSdTqnX62U+FQkakQhMYnO+NXGRuBMJvlDMlqBxNpsFiXMXi4WXWxZC6xUdNTbHpw1hW/EhLmtBI/9ZYlniXJ3bTbhsxcc1yc/zOWZdq1WFz4PBINsnYyNBI+Iy6hOay0XiXCkQDOUyqlWeNxwOvbit3J6dnUEub6tPoFrl/EhsdKzZD92XLS7ruqwqfJZWlcuoD6K+HMdx7hzTaDQ8LhcJzcu4jPhUFJ/mcmif0PViYXO+5Xah57zQ8w6qVYldxOUoegaIc/Xn09EnsHu9XvDn6p3zhUpvfaujwaCX+5z7YDAI+nx6v9/PicCcy39S/caNG9RoNLx9IqHScDg0xbllnxfngj45OcmJKU9PT3PxyTHG1oI/9En16XRK3W439zl3LfizBI39ft/DZtEdyq3G7vV6MD79+XQk+EPxxXGcfQ6e51cR52psFJ+FPRgMPHEux6e5XEWc2+l0PO4tl0saDodBXNbYiMvOOer1ern4Qj9XH8plFhseHx974lyNjWrVwq7SJ0LFuf1+Pyi3nU6Hjo6OsvGi3Gouh4pzUR3tgsvdbpeOjo68uENq1cK2xKuoT2guo/gYG3FZ55ZXe5X7HA6H2erAbIhPVm7n87nHJxQf4jKKz8LW8aF6sbBRrYae86zzzrb7xDNCnCuTwX/XY3I7nif/4zHnnJhL1Gym1GiwgCqiKDq/AJBzWYwkx+R2RT6iWKz40HYIWwvorPl8VY5wtMCKx8pisXIr/ZLbWTHLBoliQcfayndIbtF2/GctXkTx6blF3ENC07JjXZZvPWbl24pbxxKSbz2GBIlWfFXq0vIHcRnxtmzuOv6UHQOUW6suQ/wp87GsT6A6Co0vlMvyV3VZLMjHUC4jbNnLQvpglfMEihn1S9Q7tD8h8VXhckgsRfFpbOv4a+yqtbqtPqHviiErXlf3WWCTSUR/+qddAne/a6utttpqq622PbNn/YXLJz9J9M53HtCnP33x2GVXldvEuEisy2b77ve++1dbbbXVdpG214+KWDA0Ho+zMfQJ9MVikX2eXI7xYldsLPiR+/varyV673undO+9XeJNnXO5uSxUkmNF2KyxkH7zfL4tx6sISvETxyfFXQh7sVgU+iOxdSwoPsbm7eWYjk9+9p1jYRGXxOX4tNIc5dbyB+UWxacFyByLxGbhohSW8TNpGctyuYT55me+0jR2UW41Ns/VQkUUn8ZG4jXeTs5nIaT0B8XH83klUT1WxCf2W6/kXIXLFkdZhGhhF+VbY1u1qv3ZNpfZj9ls5h3DUC4j7PPVv8/5hLDRseb41uEy917Ul7mWiuJjnsi5s9ksd3Ee2oNZCFulD8ofc1JULnuZrlWuSxlfaJ9AtYris7hc1Cfk4xVUL+ilhyRJcrUamu+i8862+oSuW2TPiDsu+sBU2fb6daLf/M0uSSE32p+FURU7ZHu9TRUMa1/b2EfoeNVtqmLokwfaripu2fZFfoTyJdTHXRz/dbatEvMujjPaRtdQ0bxt+ohqt8pxD4kbxVe033V9ROOh2FXyXbZ9iG3SY1Bu9b9vyud1fLF82sY5Zl3b5NgVxbYOH0Nw9/qOSxRF2TLGROdXhXr54yRJqNvteop2voo/ODjwrrDl2wLOESWJoyeeSGmxiOngYCXO5StpOZe/sSHHELZzq9fAWK3O1mq1yDmXW2a70WhkbwvI+PRS3hqbr+K1P7PZjLrdrqemT5KEDg8Ps+2WyyUlSZKbq7H517p+86XdblOr1fLmT6dTuIx4HMe5twU0Nv9K0f5obJlbHZ/Ot8bmX1Dtdju31LWOhX9x6fgWi0UuPo3N8cl8M47E5vgQl2V8ROd3hSQ2mxybzWbUbDa948+/SHV8FpfLcmvFl6Zphs1zF4sFdTodj8sIG9XqcrnM3j7gfSJsVKsWl9ftEzxfc9nqE8vlMucPv6Uie9kmXObcSi4jbNQnNuEyx6L7MuKyjs/CZpNjCBv1CYvLobltt9sUx7GHHVKrFvZsNsv8rhqfxWWrT0guo3opwpa1amGH1uo2+oSuVVmjyJ4Rd1w2sRe/2NG///dDetGLLh77Iq+kb9dV+2Wwffd73/2rrbbaartIe9ZfuHzykxH99E+f0BNP7BYHCSx3JbrUr59ZY7vEvUy2737vu3+11VZbbRdpe/2oiG/5DYfDbIzFRnoRKV6kiY1vK2phmH7udnpK9NBDRIeHRKPROe58PqcRD9D5rS85xvvU2DxXYs9ms1wss9mM4jj2hEgcnxR0IWy+tYf8kdgcy3A4zI3puQg7SZLcO/98O3Q8Hme55NuKMrc8V4rcrNxa/mhszrc+rjrfCJsXyZMit8lkEpRbvZKuhV2UW43NedZcHo1GOS5rbJ6rhas6PxZ3EJcRdmh8vLDYOlxGtco4k8kk2yfCrsrldfsE1+q6XGYxpTzW+ljJ/eneobGTJMmt5IywEZfRSrMIG8UXRVG2CrTuy1Hkr37LczWfNDbicmgPtrhsYVu51X05pFYRNuJTlfgsLmtszWVULxY2P3pGovmyfKP4iMLOOxa2rtUQce7OL1zQbW4ZnNwO3R1oNBre8644jqnZbHoHkbfRz4X1szI+scqxr/gKRz/2Y0M6PDzxtmMcNl4qXD974zG9MFGz2fTiiOM4Fwsv46zj09tZ2PxcE/kjc1w0pueifOuvovJXQJvNZnYM+S0M7bceQ9hcNJY/6EvHZflG2LwvPab94Qse7Td69hqa2/l8DrE1lxGfEDafxKzcygsXFN9isViLy1Z8i8XC5E4Zl1F8EkdqnPQxRfFZ2KhP8H71PvlZvIwP+V2lT1i9TOaW49NvZ6A+IXPDfqM60lxGtYqwUXz8QyKkT1hc1v6UcVn6HVKrFjbqE6j+UZ9A5x1UR+vUalF87E9Zn0D1YmGjWq1yzgvtg1W4rP0pu8u80wsXPqktl0t67LHH6IUvfKG3VDAR0fXr1+lDH/oQzedz+s7v/E56/vOfn/0bBy6FPEmSZOJQHptOp9Rut2HgnU7HS2aapmJ/RNeuOfqN32jSW97SpLvuOhfnzmYzby5faer9aWznHE0mE+p0Ol7RNJtND5vzosW5HJ8W52ps/sWl/ZlMJtRutz1RGi/RL0Vg0+k0N1dj8x2vTqfj5ZaLo91u5y4WdHxxnF8mXWMvFotsuXotsJPYMrcyPpRvjc2/ALQ4ly8oJDa/sifHmFMyFoSN4uN9asHfbDaDXJbxWdj8C0qORdHq0/Ly+POvQh2fxeWy3FrxcQMv4zLCRrXKtdFqtTxxrsZGtWpxGfUJ/qZNUZ9gHM1lVEd810vvT8dSVKshXE6SJLcsPaoj1Cd4W81ljY3yzSctfawRl3WtsoVwObRPWFwO7RN88pfYIbVqYfP/14nP4rLVJySXUb1Y2LpWLWwUn1UvVp+Q5x2EbdWq5oy2nWtcnHP0h3/4h/TjP/7jdO3aNe/fJpMJ/fIv/zL90R/9ET366KP0C7/wC94tu4uwwYDo4x9vklrS4EKsFufWVltttdVWWzXb2YULn8Qef/xx+vVf/3W6fv269zjIOUdPPfUU/cVf/AX9xE/8BP3oj/4oPfHEE/SpT31qVy5Bm0yIej0iteZTbbXVVltttdW2h7bTR0XXr1+nd73rXfTKV76S/v7v/55u3bqV3fYiOr+tenBwQN1ul5xzOeHdbDbzxljAoz/TjVb81CsYsuhO2t13E/2rf0V0xx0NGo9XzwN5BUo5l8VaaLVJhK0FpCxo07Fo4SX7iER3etVNayVXuYIhvyevRYBoLsJGuZ1Op3DlzDRNc/FFUQRXaJRzUb55n/wFbZ1bvWIkyrfG5tvmUvjFYjYpLOPHKzrf/PVdFIvOLRILa2zOreYyEpBqbJ4j+cy3duV8xB2Lyxq7anyIy/L/FjbislwFlveJsIu4o7GtWkV9QgtIWcQpxxF2kT+TySSnNSirVQuba1ULLEP6FqrVKn0C9TLEZc1FCxtx2TrWoVwO7ROcW+1PSK0WcXnd+Iq4U3TOQ/ViYaNaDeVO0Xlnkz6hzzu3TZzrnKO//uu/ptFoRJ/4xCfo2rVr9P73v58ODw/puc99ricm4mWBoyjKLdzziU98gr7whS9k+7xy5QqNx2PvTYM77riD+v1+Vtj8DK7T6VC/36coWn0VmhfI8dXPRJ/5zP30trc9RT/0Qzcojldfqrx69SrdvHkz267RaNDx8TGdnZ15Bwdh33nnnXTr1i0vjlu3btFyuaSzLy/R65yj4+NjWizOl6bm+JikEvvk5IRu3bqVbddut6nb7WbxSeyzszOPqHfeeSfdvHkz+zuKz7nVZ8n5ooRx7rjjDhoMBh7RRqMR9Xq9jGjOuWwxJFaRO+fo6OiI0jTNLQV9xx13eNhxHNPp6WkWH+/z6tWrNBwOvROXjs85R895znO8+BA2x8dvd0kNwJNPPkkf+9jHsvnNZpMODw+p1+tlc3khtcFg4PmosTnfN27c8LY7OTnJGj7vMzQ+je3c+UKGslksl0u6du0afexjH/OeuW/C5dD4LC7LWkXYRVy+du0aPfLII96Fq8a2uBzaJzQ26hMoPgsbcZmI6Atf+EKmfdkWl2WtImznVovFaS7rWi061rpWiYiefPJJunHjRqZXrMJl1CcODw8znUTVPqFrtUpuiSjj0vXr17PtQmrV4nJore6Cy7pemMtRFGXYVbhcpVbROa9qn+Cl/4mIvvSlL1GRRSW6hLVFCywgGo1G9Fu/9Vv0rne9i37t136NXvOa19C73/1u6vf79LM/+7P0jne8g2azGV29epWuXbtG733ve+nkZPWGz6OPPkp33nknveAFL8j2OxwOc6tf9vt9Oj4+zl3ZJ0lCR0dH2Rh/j8Zf/ZLoF35hRs1mh97xDqJmc3X1ORgM6MqVK2K71fc12DeJfXR05DXXXq9Hp6enHkmfeOIJSpKE7r///myM7yZIgd1wOKROp+OJwBD2fL76NogWOyPsXq/nxeKco36/741Z2IPBgA4PD734nnrqKfrsZz9Lr371q7MxfoVQXnjyLwIZH8Lmuwmnp6eePwi71+vRycmJd6xRzNwEpQBtNBrlBHbD4ZA+/vGP07d+67dmY1xYMrf8S0FfWGtsK7ej0ShbcVTGp1clRlzmb0NpLhNRTlT4kY98hF7zmtd4v8SGw6GX2yIua+zQ+MbjcSbYlrnVtWpxWddqmqb0x3/8x/TQQw95oj2NjWrVwka1irD5ey+yT6BatfoE4vKf/Mmf0Cte8QpvPKRWiXAdWX1CY6M+gWoV+WMd60ceeYTuueceuvvuu7Ox0Fq1+oSuVetYay7zXYZ1uExE9Nhjj1Ecx/TiF784GwutVYRt1ao+74TGZ2Hr+FC9WNhVuBxSqyi3RX0i5Jz3B3/wB/S6173OfLVoZ3dcomi1LHCr1aJXvepV9PDDD9NLXvISOjo6oh/5kR+h+XxOz3nOc+jtb387ffjDH6YkSeinf/qncydiIvJu9/G+9ZjcTvshryr5Tg/bfO7o859vknMRLZcRtds+jryNp8eK/JFjKBbpX9lchC3/r/2ROPL2Mo/xr4ZNYuG52p+ymFEsm+S2zMcynjAnynKL5iJsFEuRP+vEYvlThiPvzOixUH+K4pP+WPlG2NLvEC5bfhfNLavLsmON+L2NPoF81Dih24X2ibJYyvKt51fJN8JGY6F9wuqD7Ocu+3JobtFcK7e6F22DOyH9JLRPyPlFPm6jDxbZztdxaTQa9OCDD9KDDz6Yjd17773Zn++66y76wR/8Qa8gLtJaLUff/u0TajROSFyo1lZbbbXVVltte2g7v3AJvRixtkOrQ2rhTpqmtFwuvSs1/nS23Ja38cWCRLduxTSbpTSfp5Sm5wvV6bmh2LydjIkXtdKx6BUa0RjCXiwWhf5oEeFyufSeP1tzkd+LxSIXn46bMXUsOt8Im/dn+SOx+bggkaT2W2NbudXHGuWW8yfnIuyi3FrHGu1PxoeweZ7FE56PclvE5bLcrhNfGZc5PjnGOHJ+Ve4gfzSfEDbiMuodVXNr5UfqFBCXLezQ3Fpj63A5iqLCXiYN1aqV2yiK1uoTVh+s0ieICPJE3yHRGAibx8pq1YpP9yILW/dfVC9ynyHnnZBzHqoX6eO2+oQ8bsguxZL/UsHMywNrPYtWr8sTNRs3LT8pjr7zO6f0trc16c//fEavehVlB1q/LaDfNLGw9VLe7LeenyQJxXF+yf80Tb1nxQibyaMv+BC2jgXFJ7HRUtf6ObVe8p8LVp4UWGwlj4OVW8sfjc1qehSfHtPYaNn96XSa7ZN9Z3/k/nQTtLCLcqux+c9l8SFsnivHF4tFbn6VfIfktii+bXOZtUZSlFiVy1rPot8qQtjcJySXOb51uMwn5dAl/1Hv0NhFS/6X5RbVapk/MhYWrupeRhTOZd0n2Nequd2Ey+x3HMe5WPjtGe2jvphBb92E1GoVLlt9Ar19KOvFwka1GnrOCz3vbNInomgPlvzfxKJopZORYiUkVGK1sv6WQ5IknmZmOp1SmqZKlOYoihxNJh0i6tDp6fnVpxY0ItEdwk7TNCcC63a7mSqeDQmVBoNB7vPpluhuOp3mRGlpmnqCOL5QOzk58Z4V6/gsbCLKCRonkwl1u10PG4nuuLC06A7lFonSELaOj8d0vhH2cDjMreTKokcZCxLd8bd4tChNY6P4LOx+v0+Hh4c5Luv4kOCP38STojteVVTO54alBY3j8RhyuSy3Vnyj0YiazWYplxE2qtU0TandbtPR0ZH3Jo7GrsLlTfoE4pPVJxCXO50OHR0d5XzXtcr7K+PyYDDI3mApwkZ9YlMud7vdXF8mohyXUa0ibMTl0D5hcTm0T6C+HFqroVwOjc/istUnJJdRvVjYqFYRdmh8PH+bfaJdotvY6wsXNiS6Kxqz5qO/p6mj++8neuc7ib7pm/Lz0T438UeOSWHSurFsy59t5NbSKaGYt+XPJvvTPpX5HhLLLvJdxb8Q7E382Ua+t+lj6Hab9omqczf15yJyuw6Xt82TKv6Ezt+HfF90H6yCXTS2zvxd9kHLdr7k/75bFBE98QTR295G9Fd/ddHYmDi7wLhIrNpqq6222mrble39HZfFYuF9Kn2xWGTPxNhYO6BX4+MVUOUY62bOzWV6mNX25yIwvUqi3p+FzdvJEzk/G9SxpGma2479LMLm1Qctf6QuYLlceouu8Zg1V2OzPkNjy215RUwdXxzH3hjCZnEW8kdj83HROgWdb34Oq7fTgkT2W+eWeabHfO7ksctyi8Y0l3V8CJuPrxyTnJePirQ/RVwuy60VH/InlMvMVznGOFJrVIU7rPfR2KhPoGMdwuWqueU1VfSYrlXEZY2NBJKhfYJzYNVlUb5Zf6D5iLiMahVh8zFep09YfbBKn2g0GjAWnVtUqyG5RbVhxad7kfS76JyH6oWx9TmPx/wnD2HnPFQv0kfNHXnesbBRn7j04lydpCrNHpHcOZdrkC960ZLe8IYlff7zCb385URRhElVdMBCCgT5o+9S8BhSw+s8VCFQ6MlHY/MJQF+4MLa8cNG5RfGtc/LRF4W6OIsuXFDRaGFgyMmn6EIxNLcam7eTmouqXEYck/lBuS27UFz3wkXHF8plFB9rs/SbGFUvwkMvCtEPnG1yGdVrSK1a2Hwy1LlFXEbx6ZNUlQsXtE+rT4RyWddqaG43uQjnMXSsQ2s1pE+gWq3KnTIuo3qR2MgfaagurVpd97zD8/VFie4TzLEi2+sLlyharaYohUDOuZw4d7lc5kScoaI7TnCz2aaPfrRN//SfErVaKwLJuZxILUpC2IvFgo6Pj70Dxp/3lvORONc5B8W5GptFd9ofhL1cLj1xHses5yLsNE1z8Y1Go0xsyFZFnItyy2IzaQibhX26GeqYETYR5UR3PCaxWZyrVxtFgkaNbeUWYTMXNZdDVs61xLks0JN3XHRu+aSHuKyxQ+OLoignukN8QtioVtM0zZarl+JczWVu9iFc3qRPWOLcUC632206ODjIHQfNZd7fOlxG2KhPWFzW2Nax7nQ6uVgQl5k764pzQ3LLAlKrD5b1iU6nQ3Ecw+NVVqsIG/EpND6+64H6IOoTksuoXixsVKsIO7RWeVvEHf3ySGif0C+IaNvrCxe2XYrueP4/+kdE3/iNvHKuPXddf5DAUo9tKrrj+c4578Rlja0bi+WP/lVhbVMllk19DNmuivi1LJZdiO6q+BeCvYk/28j3Nn0M3W4XAstN/N40t0WcCPV9HS7LHrONWKr4Ezp/2/7sgju75PImY+vM32UftOxSXLhchP3WbxF96lNEr3gF1Svo1lZbbbXVVtue2qW4cNFXYPr5o7WdHtf/l/aGNxCdnTnqdPw7LmhOCHaojyHbyW3W9Wddv/nvaLui/xfFsok/Fv46c0P2Y8Vdtp8yLhaNWfmuMncbvJX/L8pD2fim224bu4zLaLvQ47pJXVrHLXR/odiWr6E1vYmPlq9RFG0939uqA2usSv1X6UXrzt/G3JB9FvHE4tQm/iDb6wsX5xyNRiM6OzvLxvh5v35uit7O0cp7JFRazZ/SBz4wp8cfb9B/+k8DajRWwjWJy8InLSxC2PxFTv2cWu+TRZT8pV8rPsaWB5bj0yImhC33z3mdzWaeL4ytBWisXZH+jEYjmk6n1Ov1Mp84t3plWB0fwuZjoonLz8P1sZafsEfxSWyppk+S1YqfejG92WxG/X4/w2dRmhYFI/GbzjfHpw1hW/EhLrNPbNZbPByL9EfndlMuW/mO4zh7ps4xW1xGb2fot2RmsxkNBoNsnyi3RVxGfUJzGdUR6hOhXEa1yvOGw6EXN8ot70+OWX1C1yrCRlxGtYqwUb7ZD92XQ2sV1ZH1VhE61lW4jHiL+nIcx7lzTKPR8LiM4gvlMv9Zi6Gt+DSXQ/uErhfGRlzWtYqwi+IrO+9wfL1ez9suhMtRFOXO0dr2+sIliiI6PDz0Po2NVtnr9Xprr4jpnKNez9HXf32Tut2Irl49pSjKf+LbWqFRY/PV5OnpqUe0GzduUKPR8PZprYi57mqjXNBlq3Gm6So+vYpk6IqR0+mUut2u508VQWO/3/ewl8vVipj6E+gIu9frrb3aaNnKuTw/dLVRxr5y5YqXWx2fhY1WgUZcDhU0Jsn5yrk8H+V2Ey5b+d7VyrnHx8eeOLfX6wVxedt9IpTLKD7nXG7l3KLcSj5Z2IhPCHsXXO52u7m+rGvVOUf9fj+Iy7xUvORyaJ+wVhAP7csHBwcUx7G3z+FwSK1Wy+Nyv9+ng4MDj0/8WQGZ79lsRvP5vFScW6UPhnAZ1QtjO+c8LqNaZewyLlvnHcRlXasWNorv0otzo8j/3DX/XY/J7Xie/E+O6avmKIrod383or/6q4h+4iciOj113vZEqxOc3h/CRj6iWNhCYkHY/O/aH43D8Wkf5X71WFksKLdxHFOapnBNN1rkAAAgAElEQVQ7Kw+yQVq51f7o+MqOf0hudS5QvtHcImy5P8sfKxYr33pM+q+3Q3HrWELyrcf4WIXEV7Uuy2oLYVtc3oY/ZcdA5qesLkP8qcJlHkdcLsvtJlyuEgv7VJZHWYPSQvpEUR+s0stQzGVzrb4cUqtWbqvEsg53rDFUR1VrdVt9Qt8VQ/asXzmX7V/+S6Jbt4j+5m9utye11VZbbbXVVptle3/HhSj/VU3n9BeeKTeGBENSw6D3d++9jg4Pif7kT4i++ZvxXPlfEfa2xxA2ig/Nl/PkWMhcuQ3ysSy31v40tuVPlWO9SW6RP+hYF+VhndxuOxbLn1DuhGAX5cbK7Tr5lvveVSxF+9wklm3kNoQTof6E1KrVJ6xjbc1fh9/OrX5hhx6XkHxXwdaxoLnW/jR26P62HQuql3XyEJLvkPqXf9d3T6r4Y9leX7g4txLnSoFPkiRQqGSJ7srEuc6tRESdzhk9//lH9Ju/2aJ/8S8GdHg4JakrQsI3C7tInCtj2UR0t45ISo9pqyrOlYLWInFumehu09wiEaAlzm00GsHiXC1K0wJZhF2UW41tie50fKGCvyJxruTdJoJGySdpLPjTXK4iaNRcZrGh1E2ECEgZez6fl3K5SJwbKjSXZolzZ7MZDYdDbzykViW25nKVPiHzjeIr6hPyWHMOdF8OrVXGllwu6hOItyFcDs3tZDKhOI5z55iQWq0izrXOOyFcLhLn6jFZLxb2JlwuqlWLO4jL6IUUKc7VwnFte33hEkURHR0d0dWrV7MxJJKyBI1IJOWcA+LcHrXbV+h5z4vo7Izo4OCEOh3yhGqLxYJGo1FOOIVEYERkinNlLKPRiBqNRunn6hE2v6WiV8TV2BwfEt1pESDC7vV6dHR05BXDbDajbrfr+TOdTrPVHNmKRHcS2xKlaWyOT4pPeQwJGjU2Et3xysVSRBYqukP5tnIbIvhzzhY0hgj+WJx7enrqiXNZaC65jASkGjuUT0Sbi3M1l9M0zYTGUpx7dnZGV69e9bij47OwEZcRtiVo1LWKjjWqVedWK4OenJx44lyUWx2fhb1Jn0C1irAtLne73VxfDqlVC7tqnyirVatPnJ2d0ZUrV7y+fHh4SHEce7HsQpyr+ZSmKfV6vSAuh/QJVC8WNuKT1Sc2Oe+sy2XnXG51c217feHChoRhWrwkt7P+HEVR7hcAz7/jjoj+9b+O6D/8B6LJJKKDAyxy0/4gPL196BjvT2+HsK1Y9Viojwgb5Vvvq8gvKxYrF9rvIuyiuaHxWf6gfJfhojys40+VsaKYtR/r5Kyq33J/RbxD4xZ/9D5RfJaPyJ9QLus+UeZf1bq0xor2s27PK4oT+VGWW+TPOvUfOla0z6J8I+xd9A4UQxVfQrgc6ncIdlEs6x4v5LeV7yrxWVaLc4X9v/9H9H//L9Fb3kKk7oTXVltttdVWW217YHt/x8U55z1PYxFP2ViapjnBD4/pubzdd30X0SteEdHzn090eJj/8qreX5k/SLy07ViqCLGkhqNqLFbOynJbZW6IP7w92k7nOzS3ep/IH3T8EDaKr4o/VeYS0Vq5DeVO1fis2lqHyzwm58u/86+zbXA5TdNSLrPIcJO6tOpDb6O5jLC3kVuLO+se6xAuh+Z2Uy7zv2m/L6ovlx0rK74iv4v8QfVSJb7Q3KJ6QblFtVolt/IYIdvrCxfnHE0mE+r3+9mYJc51Li9o1MlgwRRaMXIw6JNzRC94wQH94R+26M1vnlOzeY7rnL26q8ZOkoQGg0H29yhaiZF4nPfBgkYtutPxIew0zQtIef5wOATxDXLbybxa2GiFxvF4nO1TnkDZJzYkIEXYHJ/2x1odUucbxYew5/M5JUniCcNYnCtjQbktEudqbBbISkPYSZLkBI1VuazFufr4o9xyHCFcrhJfFXGuxLYEfxyL1ldJfyzuVOkTIeJVVKsIG41F0Up4OhqNvLi5H5Tl2xLnWn0CHet1uOycyx1r7mW6LyNxLoqvSp/Q2NvmMscSx3GuL4fUKsKuet4J6YOhfQLVC8IO5XJRrerzjn4pgMcQl8vOeVH0DBDnHh4eesKpXaycS3Qu7nzwQaIPftDRn/3ZKX3DN3SIj0PoaqNERGdnZzlx7vXr13Mr51pCpXUFjQhbx0d0LnyTeWVsLfhDq9dWEefGMV5tVGJXWTk3JD4LG602yuLcstU4rdVGNTaP6dyGrkq8jZVztVh43VWgiSgTNOr4ti3ORSvnInGuxi7i8jb7RJE4N4TL3W6Xjo+Pvbg34TKq1dCVZUO5bOWWV87VL02U1aqFbYlziag0t0ggWyW3VVbO1fEhLocK6avkO+SFFFQvjO1c+cq5CDu0VonC8x3aJ55x4lz+e5lQDc1Hf5f7JIron/9zog98wNH5JhFFERYnIWzkY5kvZbGEiqWK/EHYZX6XxYL8KYu5SEwX6k8IjrW/EH+KfCzLQ9V8o7FNhHhVt62a71Af16nLdXwMxd60TxTxO9TvKv5cRG5Da1pj63/fNL6yuiuaH9oHLWxrbN1zTGgfrMrlTfpglX4Sus9QHzetVctqca6yu+4i+pVfiWg4jAl8S6622mqrrbbaaruNdinuuKArsNAxNG5f0TkaDIj+638l+tCHWvTa1xJ94zc60puv40/VK8zQWMrG5C+ATfIY4k8VjE2xtzlW5TjcjlgugicXPXYZ/NnnWMp+ne4rl6uO7Zs/zwTuXDZ/kO31hYtzK3GuFPiwlkJrAIj8j1jx6oUyGSz40eplKaYdDolGozaNRh36P/9nQfffPyHnVs8AteiW6FwQVSZKm0wmuflJklAcx54ojUVuekVMPVevzqj9kdh6ro65CJtFYDI+FrTKlUBZAChzmyQJRZEvtELYVm4RdlF8cowxJTY/X5fCMBYay1iWy2VOHMbxITG0xC7K7Xw+97BRfLPZLHd7dbFY5ARx7J8WOer8OOdyIrmifBNRIZet+BCXUa0ibI5P1irjjEajbJ8I2/Jn0z7hnMtxOY7jtbgcRRElSZJpOeQ+9bFCXEZ1hLgc2icQlxE2ii+KViJh3ZdDaxVhc3zSTyu3mstcq1ZfLusTUpwrY0G1mqapxyeEjbiMarUKlxG25jKqF8Z2zl+pGNVqKJdRvfA+EXe0YDfknKe5jmyvL1yiKKJ2u51b4a/T6eREUt1u1ysaVuLLuXxHQI7xQeWxgwOiN785po9+lOh//s8G/bN/1qUXvOBcLS7nFmF3u13vgLVaLYjdaDRyAjsdH8JeLBa5+BC2c6u3IzqdjjcmY2ZL09Wn0XVuO52OVzS8jRRYsfJd7zOKIm87hM2NDOVWY3MsZflG2GmaUqvV8kRgy+UyFwsXufTHig/l28otwg6N7/+z9+XxdhVVul/tM5977pSZkIkQIgQIBIwQJkEGBZS2BWlEFJUHauPUim372tct0Cqt2G1rq00rkw8UaZFGwG6hGRKQgEwJSSAkkJCXhJDhJvfce+az9673R911bu06q87Z5w7hoqd+v/yS1N21v7VWrbV23V1frW3ek/B0ualstj6eTj6YMWT6oq5LI9va9BuNL1er1RqOfj+aF72ipunLnH42bJs/hc0Tpn4223K+TGNNvfW5Iv1MX6YFQRhf5vIE0NyXOWzbXEej0TpdwsbqaPOEOZbTrxE2l5e5AwS2WOVO7DTzZZs/mde14stmrHLx0gh7pL7MxYsuj/nc4Xw5TJ7Q/YhrE3rhAiCgJCmtOxUFdTQaDSgupaw5IBmOJsKcMMdxatdJCZx+usSyZVX8z//EcO+9cXzmM4DjqN9m9ftx2NRHAaHrYU5YpVKpJQFdP70PGP5NWsemfps8OtvclIeO1tnGcvY2nYr69QcIEGSD09G3RvYmPTh5TGzdtnopb87eJrbNtuVyuQ6bfvtrph+HzelHOKZtyd66L5PO5lsKKWWdT3DymOPpNxldHrKNzd6NbGvTL6wv0+LKxOZi1fRH+q0zHo/XXcfpwtnb9OWweYLzZQ6b3oK0Io9ub7JNM182bWPDpv4wvmxic3NN13F52fRlUz8bNufLtjxh+g79ds7lsjC2jUQidfNqi1VzMWPDNn3Hpp+pS6O8bD7zyN7ky1y82LDNWLVhh41VW54wY5XDbhQbjVqbnGs0IYBMxsd735uHlMCTTwLMjky7tVu7tVu7tVu7vQltwr9xAXji01gTp/R+KYEjjgAOPBCIRiVyOaCrSzYcPxIZ3+qkS7M/DDnX9m9bXytzPdI+cx4ayfhWnJdW+vaHvcfrnmMtz/7WpdXYGK08o4nL/dU30eSZqL4zVn1jfc/RYtjahF64SClRKBTqPp/eSkVMs4KhlMGKmDQ+G/g4kYTjlNHZ6eGXv4zgmGMK+Iu/KCMSqdYZ11ah0SQlETl3YGCgdg/bJ75HUznXVsHQrNBYr3NrlXNLpVJAF1u1USLzNcIm/Ux5uGqcYfSzYVPxJP3VNRGNdV2oYqRZbZQjOnLYNtua2Jx+pVLJ6svNqo16nmetfqo3riKmDTusflzlXC5WW6mcS6Rp856m73DyjHWeCOvLpJ/eR+PMyrmj9WV6la/LY8YRlydIv2a+zOlH+YrLy2FilaucS/qZZFHbXOvN5sthbCuEQLFYhOM4gfgPG6thfZnszVUGDuvLYfIEFy8cNherjXw5bKxms9nQvtzomWf6Atcm9MKFSEBmlb5kMlm3T51Op+uIYZVKJVChkSbbrGBIFV/1PeAjjpC4+eYILr4Y+Pu/T2LNmiiuu65QJwuH7fs+Ojo6Ao5GJCWz+qlJusvn84jH43XEMAABbE4/Dtumn5SyThcOm9OvUCggHo8HsGmBo9uW04/D5vSzYYfRj7BNEhmnH6AIerouruuiVCoF5KHgMqsum9hSqj1gzraxWKyuIqTpy5zvcNgU+CZxLhaLIZ1OB/aaTXtz+tmwqU/Xj7N3oVCo2zfn9HNdF8VisakvE08gnU4H9r7D+jKgiMvNfJnDHq0vFwr1eSIWiyGVStVVBw7ry6PJE+VyOdBHD8JmvkykeVMXIubq/WHzIIfNxSoXR0QqH4kv22xLBF59/sPGqi1PVKvVuucOjdf1a8WXuTyh25uLF8I2n3mFQqFG4tfvF8aXbc8d0qWZvTnsXC5XF6tmjjbbhF64AKgRjgBlDMdxamQe6hNCBPqAYbJRJBKpGS4SicD3/ToHIAydJAUILFkCXHihwLe/HcHrrwNr1yZw6qkR+D7drx6b5IlGo4GAFUIEdKG+MLqQHXRd6C2I3qePN8m5REIj/RqNbWRvksWUh1b23HWmvU1s3RYm4ctmH5NAquvHYdN1pjyEacM2CcTmgtnEtukXxm/1++kPAA6b8Gw+r5NzTV10bE5n3bZ0nUnY1OOlFXtztuVkJB/Vx9titVXfaZYn6E1LM1/msAG7L5v2GY0vc/mEw9bjv1Gs2nyZ850wc83pZ8Omn3N52RZHzXx5pLbVMZr5DodNbyOaxWorvhwmL3PxYsPmcnqzOGoUq3Sd/sxrlCea6WK+SeLahF+4vJktEgE+8hHgzjuBBx5wsHlzCvfdBzz0EBCPA5de+mZL2G7t1m7t1m7t9qfV2guXJm3hQuAnPwEuvxzYvBm49FKBF18E5s0DzjwTML5x2FJrtqp8q7U/Nn3ard3ard3abeK1Cb9wMatDUrVCkzhZrVYDhCH6v07yodeUJsHLvI72V6lv4UJg+vQoXnnFwcqVEoDAmjXAhz4EfPjDDi69NIhN99NrDdArRJ1kS6Q5k7xmEqKo8JKpi9lH11LBMvOeNv0aYXO2JWz9WpoT3ba0xWESGk25Of10O+rYYfSjPlMe7jqS2yS5cvY2fVGX0eSA2GzL9Zm+TNUlG2GT/mYf3ZN+ztmW08+Gbeqn9+mNk4cIxRy5zyQLUq0iauSjXPyb1zWydxhfNrEpLsfal225rJkvc9gcUTxsnuBilcPm9NNzWbO8THGl+xPZv5kvh7WtzZc5bFteNg8/tBKrnG1Ho1+jvNzomWeLF1ueMLdjOOxGedCWO5rlCbJ3o2eeEKLu0InZJvTChZjvpuFoL46aLdlzTmUajRyISq1zuJmMxP/5PxI/+YnEAw8kIQRQrQK//z0wdWoU55xTRVeXAG0ZcpNoe/iYbymoz0wAph0ocXEPEO5B2ki/Rth0XbMHKdmWmyu9tZLsXddlHzTN9CN5ONtKGTzuyy1wOdty/qTr0kweDpvGjtSXAdRhmPLYkn2j5GMS7Eaqny1WOdtyCxdzoc9hN/Id05cbLQq5PMGdxNBbqwsXIjaa8oSxLefLhNcIm7M3PQTNk4tcnrDJY+pCGCafhVu4mA9IitVmebmVhYuJzfkyXWcuCluJ1bALRaD+69Ccfo3islGe4OJF18XU2VwYhH3GNIvVMHnZjCNbrDZqE3rhQkxzk72eSqXqiEUdHR2BiaUjbfrYUqlUY2Pr9/M8D53ang8FiD729NM9HHZYDqtWKWb4DTcAjz4KPPNMEldeKXDRRcDFFwPFIhCPu8hkMoEJo1NF+j05hrWUqjxzmNMCHJvedeuxTf1IZ+4Uj4lN7Hzdtvl8HolEoulJhUKhAMdxWDZ9s9MCNmzXdetOKtD9TPa6iQ2oExHmaYF4PF53UsE8+ULHazk2vY7N+ZMNm3zR9OVMJlN3qsg8qVAsFgEgcFqgUqnUTns1O1Vk+qINO6x+REhv5sscNherVJ0znU7X7mmLVe7kiy2ORponiMTJlaAP48vxeLzuVNFY+zKHzeWJ0fpyIpFgT0iZvky5yDxVZGJzvsxhc/q5rsue4uKwOdvSqSJuvprFKofN+VNY/Wy+bMsTui9z8WLD5mKVww4bqyTPWOaJt/ypIiD8l5VtHAuz31z5Nhqv93V3C7zvfYCUwIwZwLnnCnz1qwL33w9Mn67IvPfcI/HlLwNLlvA4jfpGogs3npjawPBvZFxfM+xW5bGxwUdi77DyjOZ+pkzNZA+jy1jr16p8YbBHI89Y2HssZQx73WjzRKtjRyJPK/o18omwso/El/UcMxa6tCJP2PFjLc94+M54+vJo+kYyfjzzoK29JRYuE60JASxdCkyfLnHrrUB/P3DPPcAddwiUSsD8+TEsXgwIIeH76nrOR2yOM7ayiv2O1W7t1m7t1m7tNl5tXBcutjcKYVdlUqrqlfS6CxjeIzOriNKnyPU+ek1Kjfb/9PsR30O/jl4B632036f3TZ0K3HRTGXfckcY3vqFebTkOsHVrBFu3upgxw8ONNyZwyCES0ajEtGlVlMtF0AsP2rc09yRp20WXx9SF9hr1Pn28bmPa+jD7bGN1bCpgZVYRpWtJduKKmPvZ3NsNzt42eUqlUt3eLn2K3rzO3Es1sUkH/Y0T6WvOtWlv0k/3HQ7bZlviTZj8IXp1bt6PIzSaccDtXZvzz9mW82Ubdiv60baU3uc4TsCfOGwuVnUelv5bvunLNt+h+Tf5USPNEyZXw2aLRratVCqBe9pi1fRlDrsRF66ZbTl/4rA5/YQQtS8gm/5o+jIXqxw2cSPC5OWw9m4lTziOw8ZWs1jlsCk3NovVsM8dG7bpy1y82LC5WLU987jnjtnH2ZaLVRs2F6tvGsdFFyyXy9X2z4QQdYakn3d2dkKIepKW7kD0/0bXAMN7+2Zg63/TWA4jTB8AzJhRxbnn+njqKeDww4HXXgPuuiuJrVsrOO00ie9/Hzj3XIkVK6bjr/+6jN/+1sd55wFz5w7L3QzHpgsnj80++utlmy42eRrZlu7JyaP/rFX9WpmHRjpz141EnmY2M1/jh9UljC9zcnO+rMutP9hb9Z2R6mfzHV2/sPLovqNvd7biyzZ7682GHcZPWskTYeyjjx2JL4f127C5gxtL+Xss83JYO461L7eCHdaXbXLrf7eiXyO5m8VLI+wwvjOa5w4XqzZs0xbkY43auL5x8TwPK1euxN13341sNos/+7M/w7nnnhtgQi9fvhy33347pJQ477zz8N73vrf2G7YQIlBaXkpF+EmlUoFPfFer1TrCbrlcRqVSQTqdrhnTcRz4vl9XWrxarQauo5Wm3kdMbL2PsI89Noq771YclxtvVAXqHnssjieeUF+WvvPOCMrlLlx/PTB5MjAwAFx9tcKPRCI10h3pl0wm6z5NbmJXKhWUSqU6eSqVClKpVKBipGkHTj8OW0q1ajZtOzg4WCthTuNLpVKNMKY3x3ECxDDO3sTEN+UxsZvpZ/5WqmNTYMTj8TpSGpHaCJt+i9H7SqVSHamQw+b0o34dW9fP9GWzdDr9ZqVj0711Amm5XK7Ni14517Qt/RbG+bKO3Yp+UqpqqM18mcPmYtXzvNr96J5hY9Xmy2HzRLFYrMsTQL0v2/IE58uxWAzJZDKQyzhfpvs182XP85BIJAK+zGHT6Y+x8mUpZY24quvC+TLdT/dlDpvz5bB5wubLJrYtT8TjcTiOU/dMaBarNmzyp5HoR29wbHmw0TOPixcbthmrNuywsTrWeYKuadSchj8dZduyZQtuuOEGnH/++TjnnHNw/fXXY/PmzbUV1d69e/Gtb30LS5cuxVlnnYXvfve72LFjx3iKNC5NCKCjQyCRUIXq/u7vSujokDjjDIGvfU1g5kygo0Ni+3aJdeskbrtNFbNrtqoci6b/Zrq/sN5qbaLLPdHla7d2a7d2259tXN+4HHjggbjmmmvQ19eHxx9/HAsXLsTkyZNriTibzaKvrw/Lli1DMpmE7/vYvHkzZs2aNW4yhSWQjpRoGosBH/94CQcemMA736lOH73rXcCrr2ZxzTUe5syZhFWrJP73/wb++Z8FpkwZEUxDGfV+jpzbCpt8pLjj1cZj/iY6qXiiy/en0sY7d7TSzC31/d3CYO+vGGzlxMxEb2OtS5htl7HA2d9NNFFqxL/q0Suun/3sZ1i3bh3e/va347TTTsO0adNqBtq0aRM++MEP4tZbb0UqlcKll16K6667DqeccgoA4Pnnn8fAwAAmT55cu2c8Hq8V1aG+RCJRVxCHPrBFxC96/UTkMv01VzKZrCNtJRKJQJ8QArFYrI5Mx2Gr+5WHxgFSArt378TWrVVMnnwgvvjFadixYxouusjHUUflceqpWwAIVj8bthDqPLxZ9CeZTNZVaAyjXyPbmhVIs9ks9uzZg4MPPjhgb8dxaral1+PkB42wAfXKlrOtjh1WPw6b9KOtE/21+ebNm3HYYYcF7K3bltNvJLbVsW362XzZtC29StVt67ou1q9fj0WLFtW9Djd9pxVfDmtv3/cD+oX1ZfrImunL69atw6GHHhrYKhytL5vFvUxsLk9w+tmwOXsDwPr16zF37tzAds9Y+LLJNeDmeix9GVB5e9KkSejp6QnYdix9OaxtbXnQnpeD99uxYweEEJgxY0bA3qYvc3nQ9OVW9LPJw+XBsM88Ll5M7Ea+HCZP2GJ1rPPE6tWr8eEPf9i6khrXNy6vvfYafvazn2Hp0qWYNm0afvWrX2HZsmXo6+tDpVLB4sWLkclk8Morr6CrqwsAcMABBwTukUqlAnupjuME9sypjytYQ4Y3V5Jm8Rvb1y65r77qX7vksG1jBwdTmDcvirlzO3DrrXF8/vPAjTc6SKej+Ld/y+DEE3n9bNicfmF1adQXxraVSgWJRKKOA2DalmtjbVvb/Wy45kKddDZ14XxHCMW5GqltdexG+pnzzGFzzXVdxGKxus/Lc/e02ZvrC6OfKddY+DJxj/S9/bH2ZQ6b2lj5MqAeCul0usY1GA9ftmHb9BuJL5NduLwc1pdN7EY62r5CHCYPNvNl0kXnuISN1Wb2Hiv9GvmyeZ0ZLzZcTq6weYL6RvrcCZsnmnFcxr2Oy9lnn41sNouvfe1rOOKII3D++efjmWeewcDAAE4++WR8+tOfxs9//nNEo1FcfPHFmDdvXm0srYTnzJkDQCk5ODhYR1TKZrPIZDIs6U6v5seR7nzfRzabRU9PT+06z/MwMDAQ6HNdF/l8Hl1dXYGJMLGllOjv70d3d3fgt17fV98GmTt3PubOlfjMZ4BPfQool1Po7JyHefMEAKUfR841sYmcSyexbNjUp+vC6Uy2NUlSAwMD6OjoCNg2nU7DdV3MmzevNp4j5+bzeZaca2K7rotcLofu7u6APCY26dLV1RUg3XH2NrGllMjlcnXk3MHBQezevTugCx311G1LpEKzirOJzelHOCbhb2BgoO7BnM1m0dnZyZJzzarLNBf6dVu2bMG8efMC5NzBwcGAbavVKgqFAuvLOnYr+uVyuTrSHefLHDYXq57nYdOmTZgzZ06AnBsmVm2+PJo8wfmyLU9wvrx161bMmjUL3d3dAduOxpcTiURdnjCxuTwxGl+WUqKvrw8zZ86s/ZJp82VTPxt2oVCAEGJEeWI0vkzz7zgODjrooFpfmFi1YZM/6RVjuVi1+bIZq43yhO7LXLwAypellAFsM1ZpvOnLYWN1rPOElBLr169HozauC5f58+fjS1/6Enzfx5VXXonu7m5kMhl84hOfqL0iuvDCC3HaaafBdV3MmDGj6UrrrdpoBS8EIKXABRdIABVce62D/v4o9u0Dhl46jRmW/m99tcv9pjbS+4fpn+htoss90eVrt/3fpJRvql+MNfZEv9/+am07hGvjdqpICPVxtVgshng8jgMPPLC2yqbVLF0zY8YMzJ49m32d+cfaUimB97+/it5eD9deK3DhheoYNan/R+pv7dZu7dZu7dZuo2r75fVGo8VIs4WKlDJQRU9KWSP3NOprVDzHHMtdp/9tu18zecw3Hya2EBLLlvlYvdrHY48JKA5yHIWCgzPPlEinfUjZeiEgHUfXT3/70qouYWwWdq5a0cUcT9dz15n2Dusn5j0bFZYyZRkP24YdC2BEth1J0a4w+tliayQy0nU2Xw6ry0j8kZObimuFzTFh7WMrxNUsd9hkbGX+bXYYy7k2x3LYnG0bzUsYe9PPTLnD2nY8njEjeRoQqCkAACAASURBVO40koeLjVbmpZkuYeeAs62Oqz/jW4nLRm1C78tIqcpuDwwM1PoqlQpc163bp5QySPwhxr1Z8hsYLjCmj9cxpFQFdbg+06AcNo3V+0qlEiqVCgYHB2v3qFaruOoqB3fe6WLlyk7cfTfw8MMJuC5wwgkuvvOdHBTZvR7b9/1aYTq9cdjlchmDg4MN9WtkW0os1AqFQu2e+gOUZDLtbbLfbbY15eGwOXub+tmwq9Vqbc+fWrFYrNOFsy2nnw3b9CcbdqVSqftMQqu+bH6GvlKpIJfL1fo425IeYXy5Ff0cx6nTz/Qn3/frTmfQaStzUUi6mJyUML7TSp4wsck25mcuhBB1JyfC+DKNy+fzAb0pHzSzN4dNXwzX+SON5nokviylrLO3EAKlUgmFQiHQT5/OML9qburXSp4IM9ej8WXSxXGcurwcJlY57LF+7tiwbc8dM144bIrVZr7cSqySLmF82cQ2Y1UIUWcrs03ohYsQAul0unbsDkCNyKOTpIioNJLP1dOk6IQo3/drRCVqruvWiEp647CJlKY7Wl9fHyKRSI2cByjSXWdnBIsXJ3HSScDjjwN9faoC74MPRvGjH/XgsMOASy91EYnk0dU1PLZSqaBcLtd9NtzEDqsf2dYk/BExzHx4JJPJgC4cObdQKMBxnAAJjMP2PK9GutMbhx1GPxs2kXN1/SKRCBKJRACbvsWh25a+FWJWGzWxqc+0LYfN6cf5E0fO5T5XT6e9dPv4vl8j/FFr1Zc5/Ux75/P5us/Vc7HKYXOx6vs+EokEOjs7AyRJE7uRL49lnsjn84Eq1zZsmy8nk0lkMpmA3qPxZS5WOezR+LLNtlQBWO8PE6s2bBs5N4xtiUhv+nJY26ZSKTiOE7hnLpdDLBYL+DKnH+fLYWO1FXsPDAzUVe01fZmLF8KWUtb5shmrYZ95XLwA4e0dNk9wpxH1NqEXLtTMpCmEqOvTr7ON5/7P3ZO71jwOZsMOez/9/6efLvCOdwD/8A8S2WwRZ50Vw9/9XRQ//rFARwdw770RnHJKB/7qr4BkcmTycNjN5G6mC2efZjrb/t2KPGFwbPcLI08jGZvZoVV7c32cvcP6UxjsRvI0s3dY/x5JXI5ExrDYo80Tjfw7rNytyLM/bBs2pk1s8+ej1a9Z3I1FXrZh2/pG+owJmwdb9eXR5ME3M3eMNlZt7S2xcPljb0KoE0Xf+AaQy7mIRqO45RaBl14CBgeB3/1O4PHHozjgAOCjHwX27gWMFy3t1m7t1m7t1m5/Em3CL1zM/VDaP9RXcRyBk9tr9DwPUsrA/YgYpFc15AhW3P1oPEeG4vb2bbp4nupzHMBxfMRiHq64wsWKFQ5SKR/5vINEAli5UmDSJOB735P4xjd8HHEETxYlPXX99CqbnH76WE5GvZEunH3Msaa99T6yN8nL4YxEv0bYpn4cNjfX3Pxx2Jw/2bA58hq3b27zHQB1fYSj83Vsc8XZ26zQSX36K2CbfpyMZp8tLhuRBWl82Fi12Xs0eYJ+zvkyN9YWM6YuYX3ZxDZtY8NuZO9mvqzLHGauOSKmrp8Nm8bZfEfPE7a5Gk2eMG3byHd0/cLalstFrfiyLU80ixcbtk2/VnyHI9eGzRM225r2adQm9MJFSolSqRQgtVUqFfi+H1gUUKEc06nMoCHDmI5RrVaRz+cDuDaSo95H8gDBV2mVSqVWdIh+RoV7dF2IqKQTkUi/448v40c/SmLp0hJeeCGORx5xccMNnfjlL4FcDli1qoqFC8vw/eAEm9icfnQdp4vneXXEKVM/IhrrupBD60mBSIUmCZDGjtS2+Xw+0MfpR5g6NpHAdBJgsVisjdcf9lTsihqnnw3bZm8Tm8jHYXzZxOb08zyvNp4aZ1si3Zn25rDN+zXSmUiNus6mfpw8XKzq2CbBOqzv+L4f8OVW8oSZxMmX9VgNmydoXLFYZP22mS9z2ORPHDnXnOux9GUhRI24qt+TDg+Y5FxTv1byBDfXpt+SL5stTJ6gvOw4Tt0zxoxVTj8ujsb6uQOEzxNcvNh82XzuhM0TzWK1kX42bDNWTV/n2oReuAihyLk6OYgq5zYjNLZCzpVSBshZRFTS+zzPq1Wv1RuHLaUMVBsEUPt8vT6+UCjUyKG6fkRU+vCHASCBBQs8lEpV3HEHsG+fuu6HP0xhyZIoFi9O4oEHgBNOAKZNU9idnZ2Bla8pD62uTQIhR5Ki6rVm9ctkMllHSvM8L2BbjlTI2bsROdfEJl3Mh6Fp71bJubouruvWKufq+pmkQg6b08+GbSPn6vNnw25EztXH+35r5FwTO6x+40HOjcfjyGQyAXJumFi1YY8mTzQimofxZfpEhq636ctcrNqwx4OcG3auk8kk0ul0oJ/zZS5Ww/py2Dxh8+WweYLIufr4sLEa1pfD6mfz5TAkfi5ebNiNyLnNbGsj59p8x7T3nzQ5t1mfbTz3/1aJTqOVx0bQajRWSuDccwHXBb70JWBgAFi/PoJPfSqCU08FfvpTgXPOAX74Qwma+1blGQvbSsl/B2Mk9g4rz2juZ8rUKqFxrOUZjS+O9No3w95jKWPY60abJ1odO1p59odtm40djU+M1pffzLzc6liuf3/nwVawG/WNZHwjGYVok3P/pJvjAB/5iFrE5HLA008Dv/sdsGoVUCgA994LXH45sHTpmy1pu7Vbu7Vbu7Xb+LW3xMKFW4GF7eP6w1433n2NVphmnxCqvsull0pICezc6WPTJhcrV8bR0yNRrQLXXw9cfrmDD3xA7BddOH1GMy9vVl8r8zDRdXmzsd+qMnL9+1sX/Wf7w7Y2vIk+LxOtj+t/q+o31vccLYatTeiFi5QShUIB2Wy21kd7pGNVEZPG6xhSSrYvbOVcrtpksVisVSake4StNsphuy4waVIC3d0S116bww03pPHggxGsW9eJXK6Cri6J008vs/JwOtuwbZVzS6VSQBci3TWrNmqzd6VSqZPHVjmXq9DIVXI1sWl/Vuc4UOVcXRfSQycQcqcFbNg225rYXLXRUqlk9eVm1UaJWM1VP9Ub6TcSX7bpNx6Vc8vlMnK5XOCeYWLVhj0elXPD+DKNMyvnjtaXbZVzdWzy2ZH4MqefEMOVc828bPoypx+HTfrpvkzjubnWWyNfbmZbysuO4wTiP2yshvVl8qew+nF5MEye4OKFw+ZilcNuNVaz2WwoX26WJzhfMNuEXrgIIWoVJ/WWTCbrSGDpdLqOdFetVgMkMJpskyTleariKxmdyKs6Lk0UR0oysYnYpztaMpmEEKKuYqRJzqXP1etEJQ47mazin/6pig0bkjj11DQ2bIhg61Zgzx6BK6+MI52W+Nd/jeH883n9fN+v0yWfzyMejwewOf0KhQLi8XhAF46cS0nBJIGZ2K3atqOjI0BoNPUjbPIfXT/66KfeYrFYQBfXdVEqlQLyUHCZxG4T2yaPDdv0ZVM/GzYFvq5ftVpFLBYL+B7ny0Q+Nu1NfsvZu5l+hUIB0Wg0oF8ul6vTj8PmYpXIhul0OvC5+zCxSthmHHH+RCehTF/2fT+QJ7hYbSVPxGIxpFKpOgJyWF8244iLVQ67Wq2iXC4H+rhYtdmWyxPxeLwuL1NebebLtjxhxiodkdXlodMspi+bsdqKbROJBBzHCcx/2Fi15YmxfO7YsM1Y5eLFhh3Wl7lY5eIFQE2XZvYO+8zT/821Cb1wAQDHcWoTJqU6jhaJRAJ9QohAHzC8MoxEIjXDRSIR+L5f5wCEoQcI3VM3OmHrSdzEpr5oNBoIWCFEQBf9fo30s2H7vo/p06tYsAAAorjmGuCTn5S4664K1qyJ4777HDz8MHDBBX5tLMnD6WfThZPHcZw6eWhlz11n2puzLSdPo7mmgNWv0+1tYtt0IUwbtq6fqQuHzfmTba4b2Vt/uHLYhGf6vDle72ukH/VFo9GAbUnGMPpx9m5kMz3ezFglH9XHh43VVvOEKQ+9aTH9xNTFlids8pj2GY0vc/mEwyabNYvVRr4cRpcwsWrDpp83y8tkC1ve4vpata2O0cx3OGzy5Wax2oovh8nLXLzYsLk82CyOdBkb5Y6R5EGbvRs1p+FP2+0t0zo6gIULgSuvLOCmm3x8/OPAb38L/Pa3AlIS/+TNlrLd2q3d2q3d2m10bcK/cQF4ws/+Jk7pPw9LShqr67h/B8cM/9v3gXgcuOIKiSeeAD75SeDsszP45jfVZwVWrQKmTlV/wspj62v0dyu62K61Ydvwws5rK7Zt5DujxW6EMVY+P55+2wh3LK8da+yR5IlG/m37eavyjJU/hb12pHEQNtbD9tFv2COJrbG+Tv//aOJtPHxxLPNJK9ijwRmLPMG1Cb1wkVKRc/v7+2t9tIfYjEAaltAIIEAUItxKpRLApT6z2qSNQGoSlYicm81maxNkIyqZ+nHYRHCzkaRmzRK4+OI4rroqjVtvjeLVV4HeXuCRR4B58wT+4R88LF3aD22r0Wpbs9x0Pp9HqVQK6MKRc8neJgnMZlvTcTlszrbm/Nmw6YvaHDlX14WzLaefDbtUKgX0A4a5BiYPKwwZmiM00r91siKRc02CpWlbjrBpw7bpZzbyGyp4RfqZ/mQjPpuxSvIMDg4G7hkmVm3YreQJuq+uHxFTG2FzhEYal8vlAnpzBEubbU1sjkDaaK5H4stSKsKmrh/Jkc/nA/22QxNmrDbKExzxuVmeaOTLzfKEEKJW3E/HoVg1fZkjmochPnP6cfI08uUweYKLF+6Zx8VqI18OE6ut+HKzPPFHQc5NpVJ1VQ1NotLAwAAymUxgYjkSkY0kJaUMYPi+j1wuF+jzPA+FQiFQgZKwzequ2Wy2rmJgMpmE4ziB8a2Qc01sjnSnYzuOwCmnCCxZAqxbB6xYMXzNmjUCF188CZ/6lMTnPgcccIA6bs1hDw4O1hEa9cq5lETCknOllBgYGKizLVeVmMPm5lpKVS04DDnXJDSSfLptw5JzOWzOnwjbJPxxVaA5/WyEP6CenEvVM/W9ZtOXucrAYW1r0y8sOdfmy2asSilruujkXC5WBwcH6+Sx5QkzVkdLzjWxbb5MlXN1vcm2YXzZjCNbnjCxw5JzOWwuVimmuIrmYWI1LDmXwx5rXwb4yrlhY5XDboWcG+a5Y8M29ePixYZt8+UwzzwbOZd0CZMn/iTIuUQYAoZfKRKZR+/TrwNQ+7iT4zg1YzqOA9/3605NmNdR0/t0bK6Pk9Ek55oyNhpr/iZlYutkLFMe9SeCY44B/uu/JK6/voS1a5P4/e+B448HliwRuOUWge9/H/jv/wbOPx/o7JQ4/3yBmTMVtlqP6LpE6nShn9lsy+nM2bsV2xJWGHuH8RNdfp3QaMrDjeWwbf4UZq5t82/rA2D1eW58I/3C+nIj/bhYDTP/XKySf+vjm9mWi4NmtuWwbX5i9jXCHok8YXOHzbZh8wQXq2HnupEuZh9hmXY0sQlvJHnCdp2JPR55mcPm/CRsHOj2CBOX+j25eAmrnw07bKyOVx5s1Cb8wqXdRtZo3qdOlfjiF4tIJBK4916Bd71LLVIefBDYswd46SWBq69Wxe0efTSGz3zGQbEoccQRAgcfHLznq6+qv+mXN9dV45r4WLu1W7u1W7u125i1t8TCxSRW6SQgG+mK+3ejMWH6TPKRfh2HEZa81KyvEXZzHYBEQqC7G7jkEuKj+Pj85/NYsyaDfF59PqBQAO6/P4knngCqVeCooyRuugmYMkXC8yQ2bZK47DKBKVOAK69UC5ZrrwVOOEHi9NMBgCelNbJZsz7bXI+lvRthN+oPI4/ZmsnD6dyKLuY9uP9zOoXRJYx+ze7d6Low1zaLwWZ2MLGa2WCkfmvrCzMm7D1bvbdNT/1njWzGYYbxj7B2FIIn54aN3zBy2WIrDM5IsJuNDevLNl0aXTtSXcKOtf3dKIbCymPLLXqb0AsXKWUdCcxGVDIrC4Yl3Ukp6ypqUp/eGlVoDFPVkD43bpLAhGhOumulgqGJbdPvrLPKeN/7PORyQD4P7NsncM01aWzZEkWpJLByJfDtb5ewb18KCxa4uO++KNavB7q6JJ5+uheTJqWwcSMwaRJw7rlVfPazBSQSElOnhqs2Ola25fSzYZNddWKYrXJu2GqjNnnMxmG3WgU6bOVcvWIo+TtXETMsOTesvTnSna1yLkf444jmOtmQsPv7+0PZ26ws2yhPhK2cy1Ub1Vsjcu7g4GBDci6nnw17NHmC04+wdUIrpx/JwZFzw+TBVqsS6+NJvzC+bLOtSdjlyLlhYzUsebXRcyeML9vyBNVK0fs4cq6JPRpfbvW5MxJfNn2BaxN64SKEqjSrf2rbRlQySXetkKSy2Sx6enpqfUS6Mz+pzpHuOGwAdeTcvr4+RCKRwD1bIeeGId3ZsPv7+wP6SSlrnzCnbikFfvGLQezalcT69XF8/OMSN9+chJRqK2jSJOA731EfdnzwwTi2b49j2jT15uXmm2N46qlezJsH/OhHiuyr7K1Id4lEPeluNLY1CY39/f3o7u4O6By2ci7Zvxnhj/Mnzt6cfjZszpez2WydfmF9uVqt1nTR95pNX26F0MjpZ8YLwPtyK4TGSqVSV1WWSNM6OTdMrBJ2MpkMxJGNnGvGUalUqlUmbaRfK3kikUggk8nU9Yfx5bHOEzZyronN+TLFlJmXw8ZqK+TcMHNt82UOm7MtVZnW77m/yLmt+HKzPMHFiw17NL4c9rnTSp7gfFn/Odcm9MKFms6cJrKR3gcg0Ef/p7/1f0sp61bNdI1J7tL7ml3XTJ4wfbaxHDann74yNklSeh+tlvWxgITjAPPmqT833STwi19IHHJICffdF8eXvxzBhRcqIu8tt3i4804X3/lOApMmCVx4ocQLLwisXasWOX/+5wKlksScOXE895zARz8q0NkpkMkA+byP7dsdJJMCySTp4Gs6DcszrLNT6+NsZvpEK7a1+Ylpb24sd0/67cscG0aesLo067PdM4zvNJOR80Wbfqbf2bA5ezfy5Wax2kqeMPE5G+py2+ZfzxMjlcc2/yY2Zxsbts3enC4mdiNdTHlsMoaxI9fHzXWreTBsbJnY3NhGujSzLTe2FV+26aLj2HyCw+b6OGyd8GvmwWYytpInbH2N2lti4dJu+7fFYsB55wFnnAFUKmV89rMxTJqk3q7Mng1cccVenHzyVpxyyjHwPODii4F773VxyikSv/hFDA88oO4Tj0dRKAA//7ka9+lPA/fdJ/Cb33TiL/9ScWUmTQpiV6uAlKqInhASxSKQSinsdmu3dmu3dmu39sJlPzVz1WnrG2ss8zeBMLhCqMVDOg24rqgtWobH+ujo8OA4gOMAX/uawCc/6aGnx8WiRXFcfTVQLgMzZrg4/HCB3/42go0bJTwPeOEFoL9f4LrrgPvvl/jBDwTe9jZ1QmlwEPi3f1OLl1NPBQYHE7jzToEzzwTe9z4l13iYbLzmYazaRJev3dqt3dptf7YJvXAhgk8+n6/1EcnIJBtRkSZqruvCdV0UCoW6sSZGtVpFPp8PvJI0x/q+j0qlEuizYVerVRQKhcADp1wuo1KpBHQpl8twHCdAdKLKkDp5jcPm9OOwOf2ojxtrYlcqlbraB6SLPr6nR5HULrkkjxNOUAuRZLKMKVMEjj8+jt27BX784xRmz67iC18YxPe/34PVqx1ccAEwaVIES5Z04vXXgZUr1f2+/33A95PYs0cdw779dvU5g499LIqzzioiHlffXpJSwnWrQyS74e8x0VzrxDmqPqwT50qlUp0tPM+r069ardZV8W1kb9O2HDb5junLRBikRnOtY9MY/bWq67q1e+q+zOlnm38TO4w/kTxmhVaSUfcnDpvzZTWvqhAg3dMWqzZ7m9it5AmOKE41SHQZTWybPNVqFaVSKcBTMOdKv5+ZO0xsklH3Jw6bfML0Zd/3A7mIw27ky1xeFkI09WUOu1wuQ4j6U0VhbBvWl222pfxm6mISbLlY5bApT3DPLE6/ML5syxO6L3PxQthSBk/xcLFqs+1YPnds2NwzzzwEYbYJvXABUPfQpL2wZn1U+MbsMzkutF/IFe0x9wVNjGby6BOmFyYy9/VMGTmcMPrZsE39SOcwunDy0P91Xci2iYSDRYvUdaWSkuNzn3NQqQi8733A5MkC06f7OOss4Pnngc9/HtixA1i3Tt3/ggvUVtUvfwnMnu2ht9fBY4+J2tuW5cs78Fd/VcFpp0ksXgwkEsDWrTHMnBnB448Da9eqe+pzSARjx7EXoOJ8opnvcPa22ZazY1hfts2L/jf92zb/zfRrhm3qZyvE1kxum20byWju7YeJVa5/NHkirJ/oOK3alvpM29pkbJSPGl03Gl/W7RA2TzTDbjb/jfQbSbxxfI2RxKDNl83TPmGfO7rcnM6N5OHixYbNXcdh07iRPHdayRPmXHG8GLNN6IWLEAKxWKzGiKZVmc5AprcyiUQi8NsMHadKJpMBI5ilvH3fR7lcDlxHx0r1Plpp6n0ctpSyVhJfn5xoNArf9wPMeaogSX26fjoznMOmVaopT6lUQiKRCFQhJHka6cdh0zE607axWAzRaBSJRCKwFeV5XsC2nqcCOJFIIZGQOPlkwPcjyGajOOYYB/PnAy++CCxZ4uPZZ0vYuzeN669X208f+AAwa1Yeq1d34Gtfc3DyycDJJwP//u8+vvOdBL73PYGTTgLSaYkXX0xi9mzgiScEEgngrLOAo4/2IYSDVatS2LABuPBCic2bfcyfH8PAQAwzZgg4jrKtYrnrc12tzZWun+u6dScDzLnm/InmMB6P19jyum1NX04mk3UPZw4bQKCvXC7X5kWvqFmtVgPy0G+FnC/r2K3o53keotFonS/H4/GAL3PYXKx6nodIJIJ4PF67Z9hYtfnyaPOE4ziGf/N5wrS3lLL2OQQ9l9liNZFIBHKHia3bVj99wWFzeWI0viylRCwWq8vLnC/T/Ubiyxw2p5/Nl01sW16OxWJ18xomVm3Y9PAeiX70hsPUxZYndF/m4sWGbcaqDTtsrI5FnjBjlavqq7cJvXD5Y29h2NNjhaEz0ccbi2/Dp4Wo9fQorosQEmefXUVHB0Cx9P73AwMDwCGHAIcdBixZogi755yTw9VXd2Llygg2bgS2b1d8mpdfBqZMUdycT31K4rjj4gAEHn9cYudOgd/9Dli+PI0TTgBeew04+mjgPe+RWLhQ4I03Erj6auDcc4GlS02dhqQX9X3mdaZ598P0tlu7tVu7/cm1t8TChXsghu3j+sNeN5Z9+uq0Ud9YyCjE8H6x/luW2TdSXWz9OkaYsYBELAZ4HhCN0qIleG0mo6rzUpsyReJHPwJKJUX2veceYPv2Ep55JonPfU7CdYFPfQr46U+Va0ejQCwm8YtfqPG/+pVaAK1dq/qSyTSq1WNRKABPPSXxk5+oNz6VisATTwC7dgFnnCHx+OPqcwkdHUqWUknA94FiUcmdTMraQmVgQOC114Dly4GPfUxCL8sQPLZIROjWfaeZbcfTl8ei760gz0TWpZFPhL3nRNHlrSTPH4PvvNXk4dqEXrjQK6hcLld7Y2BWDBRC1Eiv5ispndQHDFcR9H0/YKRKpYLBwcEArtlHBFmSpRE2XUdNCFUpUB9PujiOUyNdcfqRPOVyOYBN5DFzsWBic/pxfYRNrxz1Pvq3rospD1WaJduSbYQQAdJVI3ubtqXKmbotyuUKkskcEgklz4c+BJTLxaGiT+qa731P4B//MY6jjy5j6lSgt9fBtdemMX++iwMOcLFgATB3rovbb0/i1VdjmD/fw9KlJaxYkcZJJ0UARCFlB3I5oFJRb3L6+uK48MIYLrqogtdei+HZZwWyWaBYTGDhQokvfCGPVEripZdi+NznOrFtG7BvH7B+vcTVV+fhumUALtatA5YurSCbFbjnnhgcR+Dd7y5gxgyvZrNCIRfwp2pV+bKUMmBb8gPdJ0wCeKu+nMvlGvpyI9+JRCJNfZnD1omQpi9TxelmvsPJY2Lb8oSJTXnCJBA6jlNXbTasPKQLZ9sw9taxKQZd162rNsvNNVUr5WLVxAk713peBsDGKqcfh016mYTMsHm5Wq0GZAlrWz0Hm3lZt60tF9l82XzujEY/8h3Ottxzx4wXDpv8yazka8sTel+jWA373OGeeeZzx3xmmG1CL1yI45JIJAJBF4/H66rkxuPxwMRSsOr76xS8eh+N1/eKpVQMbbOyoO/77FgTm/r0hz1xXHRdKLGafBbikOjYnufVXQegTh7a+zYd2tSP9hX1RrY1Tz6Y+ukcF/3BZ9qH048CxLQtYZu6mPv91GfqN3ny8P3OO0/g7W+vYNo0Nf+uKzBlisCRR5YxZ04EiUQMHR0RXHRRBNu3F7Br1xq85z1LsGKFgyuuALq6gFdfFahWgXe9C1i9Gli4ELjjDoH//M8oBgdF7QOTvp9CPC7xn/+ZwPHHSzz3XAQbNzqYOhWYNQu48UaBXC6BTZsS6OsD9uyJ4IMfFFixAtiwIQYpgXnzYvjKV6K45BK1MHv44ThcV+k8dSpw7LFVRKOizo5SAr4fRyymZCG+Ds2/6xKPKujL9PmCentzcVRp6k90z2g0GuAAcLHKYXO+LOUwL0S/Z5hYpXuaccT5ModNvmzicL5sxhH5st5HJEWTk0K6NLMth83FKodNi7Bm+nHYXKxSLguTl7lYdRyHnS8ATbE5/ey+XD/XtryseHiJwOLD9GW6XzNf5p47o9HPhm3qZ4sXDtv3/Tr9uDgi/Ux/AuqfO6ZtqW8kvsyRes02oRcuAGoBDwy/eSByGPVFIpG6JEU/041Jiw9zEvVkD6D2zQ29z3XdusnhsKnPDJpIJBLQhe6plz/W9TOv44KOFjO6PI7jIBaL1Sae9CMSmk0/DpveeJm2JV1isVhgvOd5dU5OSaGRvc0Hrg2b00+fA93eU6dWIUQE0WgCkYjEpZeqbzLF42rh7Ibi+QAAIABJREFUAgCzZkl0d/tDx1TjOO004De/AdJpDy++WMbatWl8+tPApk1Ad3cVzz/v4pZbUiiX1RbUO98JrF/vIpGI4uab43j1VWDOHB8/+ckgjj66E9kscM01wN13x1Aqqa0hALjxxgjicYkTT3QRjUbw3HMxfPWrqtrwmjXduPXWCDxP2aGnR+LQQ2N473sljj/ewdKlAv39wJYtHt54A/jBDxI49VT15mn2bKC/38Gjj8awcGEEN9wARKMerryyjJdfjiMSETj2WACoYvv2Kg46KI6ODoG+PuC55ySKxQQOOyyOQw5Rtt2zR2LNmgROOimOWMyBEMH5I96SlCqRDi9mAYD8KYpoND7ks+o6SrrDvCfUHgBmDKpkTPERLlZtvmzLEyY2lyc4X9YJkc18ORKJ1OxjytPMl01s0k+/nw3blifMhxSHzcUqXWfmZYpVPS+bsUr9AOrsaPaFzRO6P5l5UH/YN8rL5oO0UqnUFmY2/WzYdP1I9PM8D6VSyZoHGz3z9Hhphq3Hqn6dGUc2/cx44WzL6cdh22LVPLVktgm/cPljbq3s6b0V2kTVRwUOJ9vwg5euW7QIcF2JSZM8vOc9arFx1FEC5bKPKVN8vPe9w0EYiQDZbA6O0413vlPglluAq64Cjj3WQ0+Puu9ddwk8+KDEww+XcMYZUThOFG+8obaRLrusgGQyjaeeiuHb31ZjPS+CAw4AZs4E9u4F+vrUwumf/gkolYATTwT6+iS2bVO/Ie7aJfH73wvccQfwtrdF8dJLR2HLFgcLFqhxUjr4/e/TWLdOyfuVrwArV0awZk0al10GvPvdwHXXAb/+NeB5HVi8GLj5ZmD6dHWs/KGHMrjlFuA971H6kK18Xy1EXnoJeOgh4JJL1BfGX3gBOOggYPJkYM8eBzt3CkyeLHHwwQJ6LvJ9YP16tXiUUmBgwEFHh7q/4v2ov994Q9mC+SWSbaYLTlCXbLd2a7dRtPbCpd3abajpp4KEGCbP6n36G1J6uHZ1ARdeqD6TEI+rCsB0fWen+nbT6ae7SKUcxOOK1Ov76kGfTAKnnw4sWAB89rPA9u0+vvc9B8ceC2zZAmzeLNDdXcGWLVVcd10Gr7yiFjSTJwsAAh/6kHq4/8d/AC+/7KCjYyrmzlXVhz/2MXXi6vbbY5gxA9izB/ibvwGqVQEpo/jpT4F/+Rdg5071DaoXXvCxebODj3wEmDYNePhhJee3vqUWNoCyyXnnOVizRhUGfP55xeNZsSKBfN7B449LHHecwEEHAevWdWD1auDAA4GLLlJvhQCBatXBiy8CX/6yOt0Vi8XQ1xfDIYeo02Nz5gD33KM+uvf00wJXXKEWRq+/DlQqDoxv0AXmA1DFD7NZ9amIfF7NQzo9/MZLX8wIoU616f2qj1/0jMdCKDxOePD2gq3d/pjbhF+4mNVGie9hvpozP7NN+3N6PxEZ9fsRWVevTEoEU3OseT8bNmGYBFubLs36Gulik4fefhAu3cOmnz6Wk0dv9Cqds485FkBdH2dbTp5G9m6kn44TxrZh5pp05nxH+aOPeJz3JwAQwh8i7rlD/x/WRQiBWbOAn/0MyOUGMW1aByIRBwsXKm5NpeLhiCN8nHmmi3JZFdk78kj1Wfje3iRyOeC444B83oPnvYbLL58PxxHo6FCnr446qoIzzkjgmWfUw19KH/m8i1/+Mo5KBTjySOCrXwV6egbx7LMduOoqB6+/rhYV73hHGXfdlcDKlREkEsrmd9zRiVIJiMV8OI5EJiPxwAMOolG1zfb888DDD0eQSklkMj527RL41rcc/PCHAkAEUnagUgESCQ+/+50qENjd7eOxxxzE40A8LuH7EuXyO+C6MWzcCDzzDPDggwKpVCfOOUfZ7+1vVwUIhRDYvl3ZOZtVb3tuuy2B446LYMsWiZkzBb7wBeDRR5NYu1Ztec2fDxx9tMSOHRE89VQCvq8Wne94h8SKFVH4vsRZZ0nk8wJPPikxd65683b//RJLlwokk8DixWqB0NXlob/fgesK9PZ6ACQGByU6OrzawldKH4WCRDrtIhpV4xzHx7ZtEmvXSpx1lodqFahWJapVH3fdpebvtNMkBgeByZN9VCo+9u1zMGWKwgB8eJ47tIVH2wI+fN/Dc89FICVw1FHKNwEP5Lp03eCgj1SKPqQoa2MpjqT0USoBUnrQw1DFlsJ2HAwtxO15mWJVpUNvKBbc2uKKxpmxqu7pgt6MjnUeJBygPkeZeUKP1UbYtjw40ueODZvLT7ZnTJg8GPaZx+V+6tefebY8GPaZ1+zt/YReuND+ns5Wtp0WAFDnVLrjAvxpAQC10sQ6rsmS5vps2GaZZP1UUT6fr8lUrVbrTipQaXjutICOTU5hTrDtswS6fnQdpwsV1WqkH6cLObl5WsB2qmg0tjXZ9Jx+hG2y6YkvRK1YLNbG66RpU2ZOv0bYnL1N7PoTckAsVkahwPtyPK4WRyeeCFQq7hCWi0QC+MQn1HVPPrkRqdR0ABgiEEtcfHEZ8XgVs2ejxlMpl6v4xCcS8Dz1wO7tBYrFCt75TuCBB0StPx4v4bLLXPz2txksWFCF5wHXXhvH4sXA+99fQSrlY/HiCtauFejpkZg5U/Fs7rorg7e9LYeTTnKxZUsCP/tZGk8+qRYVmzcLXHQRcMklBTzxRBKFgsQZZwzi/vt78fzzAjt3An/91xXcffdOZDKzcN99Udx6q1qkHHlkBd/7XgKVijoqrypudqFUIlupt1iVShzPPqtOhUUiwJ13AgMDCZTL6i1UMqnehpXLEeRyEfi+un86DRSLUZTLwE03qfsNDADJZAqZjEAuRx8ABTo7HSxYkMLf/E0O117bgX37HHzgAyVIKbBmTQVXX13Cs88C+bzA9OkefvADF3PnFtDdTT7kYMUKD6tXO7juugJefjmC/v4YOjqKuOWWDOJxieOOq2DfvijOPLOAvj4fDz+cxnnn5bFoURl793pYsKCM115TNYhKJWDDBoFMJodPfzoDAPiLvyhDCIl4PIf3v1+RvX3fw3/9l49f/1qdvPvgByVWrABmzKhi6tQ8DjtMcbj+8AeBf/7nJP78z9XYalX55cCAi127ynCcHJ59VvnjwoUVVKsSQjhwHCVLpVJFsZhHOq2I7r/6FbB7NwBILFuWwzvegSE/HY5VKVWJAbUtWYWUeQih5lCRobk8WAV1+b6aX8dpnifUiR11qkiP/zCx2ihPjOVzx4ZNJzabnSrisLnnju0ZQye2Gumn6xImLzd75v1RnCpKp9Po1t4NDw4OIpVKBQh22WwWmUym7qRRpVJBJpOp9ZVKJfi+j3Q6XetTpzNkAMP3fQwMDAT6PE99f6KrqysgI4ctpURXV1dgElOpFCKRSGB8oVAIkHNJv2QyGSCBcdj07ZPOzs6APFJKdHZ2Bla+pjy0uu423rlz2AMDA+jo6AjoR1USdXnoSJtuW/pWiFnJ0cT2PA+5XK5OHg6bdDHfZpn25rBzuVxdJVeyv66L67ooFosB29IRyQ46c23B5vSzYQ8MDCCdTteRRfX5s2EXi0UAwYqYilSYDIz3fR+Dg4Po6hqWRy3mCpg6tSuwJSJlFp2dGfT2Rmr9/f0SS5Z04phjBIAEfF9iyZJBzJ7dhc5O8tsUDjggHyDnLl2qtsySyQwOOSSGE05QW1KJhIddu4pYtCiDeDyDZcsoVuNYtkxg7161hTZzZhxTp27E0qUzcNVVUTzzDHDggRJz5xZw220JbNyo+DXz5gGvv15FuRxHb6/iw3R2AkccUcUhh6gTXjt3qi+UH3JIFRdcEMXKlQKvvw5s3AiccYYPwEckEsXRR6sH64IFHpYvB557LoJUCli0CNi6VdXmue464IYbFI/HcYD/+Z8EPvrRBLJZtZj55je7ht68AWvWqJNkrgv09h6PXbuS8DwnsOWYTquttC9/Wb3FonydyQAzZgi8+moCe/cCTzwRRzSqHuDf+U4X0mkf5bJAT49aTP3gB2qRtW+fWoCpBQJwzTXdtQ+k/t//qz5eKqXEnXcCxaLAAw8k8POfq0KOqVQnUin1/bDDD1e8qs2bgSeeSGLVKvUdsUoFKJWWoFCIwvOi6OtTfKh3vrOIjg51AnDWLLV1Wa366Opy8IlPKL7Vv/6rWpQAwMEHK05XV5da9KxZIxCNxjA4qDhW1arE0UfHkEymMWmS+gL9QQd5ePllgUKhG8cfjyH/drFmTRFbtnRizhzlE7/+NXDBBTH09KRw5pmiVtTSdSU6OroQjYqhuAIKhWnYsMHBoYd21XhU+XwOsVjzWKVv9ui5o1KpoFqtoKNj+LnDxWrY544NW/nI8HOHyOSZTCbwPOGw8/l8HTmXw7bpZz5XSZ/u7u66PGjmZQ6be+5wp7L0NqEXLtR0Y4Tps43n/t9sfKO+kcjDYY9Gl7GSZyxsKyVfnXck9g4rz2juZ8oUZv6b6TKe9g7b19q1orZtNfx/uq5eHiEkZs70odZ0QtsKoQWQeT/Vl06r7ZlqVW0fqbw0PJ7apEnApEnEAxKIxYC3vU39kRLIZgX+9m/VtTt2AL29PnbuLECV0wd6etTPCgW1uH7Xu9SWieLXFHDwwRl88pMO9u0DduwQWLDAheuWkU53DskiUC5X8aEP+dixowPxuFpY7NhRwp49Do48Mo4zz1QPayEkbrklh3vu6cSFFwpMmQLcfruHD32ogNdfz+CeewRmz1Ynw+6+O4UvfUlg2zal34UXSpRKg+juzqCz08Hllyt7v+tdg0ilOjFlisDpp6uH7d69Jdxwg4OTTorj0EMFHnlE4tFHJSIRgQULgGhU4PnngVWr/KGtqihuu00R0m+5ReK443ysWxfB+vUCN96otvbe/W6JK66IYOVKgW9/G5g7V2LTJgfTpgH//u/qjducOT5uuimHxx7rxG9+I7BrFz2QEpg+XW1lHXusOg13zz0pVCrqe2CK9yWRSjnYtAn4/OcFZsxQC8+DD/YBSGzcGMGVVwpEoxIzZ8axbZuaN99XDhGJAGvXpoe21AR++UtgxowItm/PIJ8HDjmECPcRbNmSxp49QHe3QKUC5HISjz6aRiwGHH648iEhJN7+9igOOAC44AKBUgn4ylckNm+eiR071JuoU04ReOopiUIhioULBTZtUv6QTEoceaR6S+d5yjdfeEH52pQpGNqCo+0sYM0aJUsspha4XPwNb2ENxwER3qVE7VSh46jrtm5V9+ztHeZkFQrKhw86KMjvikRobA3NGvv0ApleTEupx3rwWrP5vhofidCbajVW4eo5dTjOh/PFcD4x7RPmkMdbYuHSbu3WbhOvWdZMoa/j+hv1UT6jhHzggSpZ9vYOL1io0ULKcdTfCxcq/guNnzxZ/VFv1UUdERtQbwWGJEBvr48pU9RDdPZs1ev7Ehdc4OFjH1NbK0IAp58uUS576OwEPv7xYVmPP34tTj75YHR3p2tbH9msh85OCcdR/KaODiAS8dDVJWsLACEE8nkf//IvQDqt+t7xDuAv/7KAeDxROyqezwPPPOOjszOPSKQbS5Youc85pwrXLSGV6sT27cDatQLpdBXHHuuiqyuD448Hli1Ttly9OofFizPYtEk9yGbNAubO9XDBBWorcudOpcumTa/g8MMnY+bMSZg/X20LLV9ewLPPJjB3bhTTpqn5iETy2LMnDSEEZs4EUimBWbOqkNLFunUZfO1ripSeTJaxY4fAwQfH8cQT6m3diScCy5d72LUrgnnz1NfhN29Wb0gXLAD6+9Ubvb17gWOOAb75TfWW5/nnVeXseDyPfD6NFSsEVq9Wb6FefjmDbBa47Talx/r1wPz5JUybBvz93yfR2ws8+STgeUnMm6fI51KqBcvSpWksWxbBG29IvPEGsGqV+qr9gQemh95o0UIkijVrFB8sGgX+7M+Ac85RThCPS+gnGUulCHbvVn555JHA44872L07g8MPV7r4PnDKKcAzz6SxYUMEPT0Sn/60esu4c2cEP/2pwIYN6rMogIO+vqPQ2xuD4wCJhMQJJwAHHOBg9myJWIywJapVB3PmCOzYIbF8uXoL9vTTDoAMrrpK+X1vL7BunUCxGMGcOcDcucCGDRJ79wp4noNEAnj2WYn//m/gwx8GnnyyAzNmCKRSim8npRo7ZYr6heWllwDPk1i9OonubrVg7esTWLoUyGQikFKgWpUYHFS/5GSzwZ0Ns73pC5dGv+0Cw9VA9f9Xq9XAqoz4Hjr/gD6dbX4qm/bydHxzr5K4DHof7e2Ze28cNo3leAqmLgDq+swKixw2fR7eJo9evdGUh9NZl9vEJqxG8hCmqYvv+yOytw2brjMJY5y9TWyyrX4dzR2nSzP9OGybbTlsjqdEuCZJztxzp31mcz/bHE/EtzC+zGG3oh8wMl/m7K2T++ietFdP+/skXyN7642uC5snqlWTKxCB41QC95PSB1DVfmP14HmKd6GuUf29vX0Q4kBIqYoOKjKtP7Tn72HmTKXf4KAHz6vW3jwQtircpvueDynd2nWpFHDCCR6KRR+ZzLA8gDvkK1XMnKm20ioV0rkCxwFOOEFhT5pURiYTx7x5w3Odyyn9jjpqGHnVqn044IAUpk/vrGGffHIZp53mDBG21XW5XBlLlkQNboYL3/dwzDEV/PrXagFXrVbg+wKplHpjEosB0ajEySfnEI93IhpVx/bV24cKjjwygd271eJl0yYXJ55YxpQpHTjvPPWAXLwYKBbLSCajKJcdPPKI2nqrVErYuDGJm24CjjhCPWAvvXQTgAj+8R8PxlNPCXzgAz56eoD770dtgQooXtaTTwKplI9CQWDmTBeFArB+vcC+fT5KJYFKRaCnRy1i4/Eqdu928N3vRvCDH9QX2wMEpOys+UI0qrYJpYwiElELaimBBx8EXDeKzk4f6bSPj388MkSIziCd9tHbW8H69eqOb7wxGem0j66uCrJZB/feG4HjJOoW5Y6TwqJF6gO35TLQ1aWoA9GowGWXqUXnnDnAI49EUK12YP584NhjgRUrgF27YpAyBiHU26WODh8PPeQgk4kgm1Uy046PlJ3o7VV2fvhhpZ/rRmr+4ftqW3fOnDSKRbX47utT24eTJx+Hiy5izDbUxnXhopOdpBwuymO+EqJkwv2cuBzUONIllWc2H1yu69aN5Zp5HbGw9T5KonqfPtYsGFUqleqISpwuJsud9DJZ1yY2p58NmysNzo2lBaH+4KKxJjGM+mkOaQFg6kx4jbAb2dbE5uba1M+Gzemnl/c2ybm6PJx+HHYrtiVfDqOf7/tNfZkewvr4kdjbxOb8idNvPHyZiHuki0ket9mbw+b8yZYnOPKhqV9Y26p8pRZcpk9xeYvzZcdxmvpyWNvafbm5bRVx0q3TpVp1IUQZUjqBPpsvK2IpnUiisvTq7ZPnqX+rE0UluK56q6JOOZXhOBLTpwMzZgALF3ool6uoVEqIRNSbC3VPF75fRjwucPbZ6oFaLBZx6qkSl1yitnEcB9iypYpIxMP3v1/Btm0Ojjyyimq1gi9/ORLg1uVyZTz0UDcOPtjHjh1RnHFGCVL6yOVcbN7ciW3boujvFzj88BJSqSoOO8zBiy/G8cwzEXie0m9gIIbXXlO6AMBLLxWRSKQwf75603PEERIbNpSwbVsK73vf8LxUKmUcdpjErFkSy5en8PvfA0cfXcLxxwNHH10dersocfPN23HCCXOwaJEfwH78cSAajeHQQ4ENG4BXXpF4/XWBj35Uvb1ZtMhFIuHDcYr4j//oRV8f8Ic/ANOn+3j/+yu4//4kHnpILX7OPRd4+mmJI45QW4X/639VsWpVAoceOoiNG7vgusPbTBs2FNHfn8LTT6uF45IlwIknVgA4iESiEAJ47DF1PyHUltdnPwv87ndAf/9GAIfB1sZt4UJBtmrVKvziF7+A67o4//zzsWzZsiHFlIKrV6+u/fwDH/gAli1bpu2xqVoOJgHVJOf6vl9H4myFnOt5XgCDfovT+4gga8ri+34dOZfuZ5JzHccJjOfIuQCs5Fx9rI2cy2Gb+tFvs+ZYDltKWWfbQqFQI4JRa4Wcy9k2l8uxRGMT2/M8ZDKZuodPJpMJ6MxhCyHqCLJCiDpd6DfcMORcE9tmWw5bSllHuiN/MheK6ltMzcm58Xg8MJ6I2Lo89ObH5sumbXV/4uIF4El3QL0/cdhcrPq+qs6ZTqcDVTZN23KxasPmYjVsnuD8yZYnOF8mXcxrx9KXOWwuT4zWlxOJBFKpVF1OMX2Z0y8s0dyWJ9Rv6UFfBgpsHjSxXVf5bVfXsG137kzCcRzMn5/G/PkAkKwR6RMJquQKDAxIXHaZQDRK/t0J13WRyRSwcKFedTcK1/XR0ZHBtGmKDF0qqcVzNBpHuYyhQosSu3eX0NWVQjIJ5HJqe6evr4x4PIVJk4Z1yeXKSCaVbZcuBT75ScD3y+jszMBxkkNvP3wcf/x2nHDCfCQSiQD2Jz4hkUrFkUioNyz79hXh+xHMmJGACq34EIm/hGXL1MJRvT3x0dFRwRe/mAStj9PpKvburWDKlA44DpDJJHD66YrET2UKaP727CkhlUphcFDZMJMRiEarQ9WwVVxefjmwe3cesVgCmUwMvb3AZZcBjzyyGW/KwgVQJ26uu+46HHnkkejt7cU3vvEN3HTTTZg+fTqklOjv78fXv/51HHfccejt7cXXv/513HbbbZg+fXrgPn8M5FxuS2y8yLlSysCDy9Y3Ul1s8rTJueNDzm1FvjDYo5FnLOw9ljKGvW60eaLVsSORpxX9mm2xj5cvj7UurcgTdvxYyTNMSG3Nd1R6DRLXAbUdpB8MiseHTzxlMmpcMjnM1xICta0kwpAS6OyUtW2ZoM0EdLIvYWcyinsCALGYgBCKf0MfqtWvTSbV/zMZtbVTKBARXd23XJaIRiXUOp+zz/C9YjGBTAbQ15S5HMmt/u7qUgTdZFJdDyh+TTrN25la4w8CjKIJIfD6669j8+bNOOecc3DOOeegr68Pr732Ws3Ye/fuxbZt23D22Wfj1FNPRaFQwCuvvDJeIr2prZUkOJZY+turscJtJVm+FdpEl3uiy9du+7+92T4x1vgT/X5j0YQY/sP1q38HFxPcPVrDHL6fic3J0tq9Rz9+pPcb1zcuRHqjD1mZxWvotbPjOIhEIrU91VqTErt37oJ2YgoQQHZf//AlUJMzmB1gZejfu6+ub++evvrxA4OB9aPZV8Puz9Zfp2Hbxu7ZtRvVahVbt/w/Vs4ABncazMCu9XG2aKJLQ/00bHUdMNCfDYiyb98+ZPf1Y9v/21onpm5brtmxBQayA4aMQeyWdAnZisUiBrMD9boYtqW2r2/v2Mlj0U+3gw2bmm5t13WRGxjEtq3b4NBvmrZ7hsAeC/1svmz6FBCMVSklcgODeH3b9uGPy0H5RL08YOXREWr+ZLFtszzBtUbymDiD2QG88fqOmt6t6hKmNdIxnC+Hk6d/7z7EIlG4FY1nxeZGuy6cL3O6hLEtwPky2HxiyrN3Tx+EI7A1kUSzxvmsrZ/zJ92bxlw/Jl5s2FxrKE+zWG0wNqwvmwj5wRx7HbVxXbh0dXWhq6sL27ZtQ7FYRCwWQ1dXF/7whz/A8zzMnDkTiUQCO3bsQGdnJ6SUmDp1KoChPbJ0Bf/6+J1wnOEvfHZ1dalqp24VAgJSSvT09GBwcBCe76sDX1LWPiE/ODg49IpNIpVKQQiBQqEQWJH39Pagf98+0KsvIQS6u7uxb98+NRZANBJBR0cHstls4PUjh93b24tsNltHSgUA8erw2I6ODnieVyM/1vQrqWquAgo7EnGQyWRUYhACEhLxWByJZEI5hiYPh630G05cpn40trOrE+VSGZVqpWbb7p5u5HI5eJ4fCBIAEK//T+3/yWQSkUikVj2R9ryl9FEsDpM7OdtGhvgk/f39AXm6u7uRz+fhel4D20r09PYG9BvGligWizV5Ojs7US6XA6dSJCQgAfHwY7X/x6IxpFIpDAwM1MYmEgnEYjHkcrnA2F4Dm+y9b2/QtpnOjOJTlCu1ew7r5w77cm8PBgYG4PuyprOJTb4MARQLRU0eAFLiZ4+srP3fEQJd3V3o39df851oJBrelyfx+unxIqVEJpNBtVqtkTHZWDWw6X2xHquBX7mkBB57ooYjyLaaPI7mT/p7ah0bUDi6fuQ78ZiBPeTLTsRBIV+o9emxSjgcdsRxkOlUsVqny+7lARnJl32KJwzHqtTG1WHrvlyt1Oyjx5HCCfqyrh/FKsnDYQsB9HT3BG1LumxDQBfdl8nepn4Y8uVoLIp8Ll+TR4/VgDw9PXW2NfWLRqNIp9LD+g3h9PT2YCA7EMAmXw6spennLw+P1X2ZZOzq7kIhXxjWb8iX0x1pDGSHbavHKvXpzx3T3vv27gv4E8Wq6cuFYmHol3qbL6MuXlhsKdGR6YA7RJy2+zITq1y8aL7cn+2vmbMVX66L1aFrL8AHYWvCZM8breEPmzXXdfHjH/8Yjz76KOLxOBYtWoTPfvaz+MlPfoKBgQF84QtfwO23347ly5cjmUzi4IMPxt/+7d8OVd+UqPguCm5pWBmoh8X/Z+/Mw6Ourj7+mT0zk5nJvi9kXyCA7KC8WBSCCoiKtm7UWmtf21qL1lZRXFrErSrUuosKIqAsAiIBkT2EkLCFkI3s+zZZJrNntvePYQZCAqIg4Fu/zzMP5Dfzu/eee+8599xzzzn31NCf/uxMvc7l1vrO+B1nPDvb+xf72UA4Oy19nw1cZn/6Lk67B2rP+ejMV1Z/D1T32fr2fGi5OP3dt+7znzvn37dno+bSjIG7Red6NvD7A/fthdMyUHt+WN+ePy3fl/8v7lw+v769sLl8IbRcaXLi7LS4W/Rd755Pf18q+s5Gy5l1X9hc/rHkYP/2+Mt8z0rgj6q4uFwurFYrVVVVOBwOEhIS8PHxwWw2Y7fbvQpKTU0NNpuNxMS/e2SVAAAgAElEQVREr4b4Xc5nVxIG6kOXyx3KLZFI+uxqz3x2pdB3Zqil53jPg97eXsTivjkZzvzdlUKLB2eb257w0tOjS872zEPf5abtbLR4IlvOTEUuEAjOSt/lpMVDhye0+MzouYGeuVyufvQB3meXix4PLZ5cOQOZ6E/H+dJ8Oeg5/fjebrcjFovPKbc8odenRzUN1A8/BVquZFl9Ln7x0PdT4RcPBpJlZ86dk208a0NFzz333LnqOOeX5wOxWExwcDAhISHeSdDb28uXX37J559/TkdHB+PGjSMqKqpPoz2fKx2eQaiurubYsWPExMTQ29vL+vXrWb58ObW1tSQmJuJ0OlmzZg2rVq2iqamJpKQkpFLpFUWjw+Fg586dLFmyhMLCQuLi4vDx8WHbtm18/PHHFBcXk5CQgFQqJSsri2XLllFeXk5CQoJX4bxS4Im8OHLkCA0NDUREROB0Ojly5AiffPIJBw4cIDo6GpVKxd69e1myZAlHjx4lNjYWpVLp7Yfjx48TFxfXL0T1UtMCUFZWRlFREdHR0QiFQrq7u1m6dCnffPMNISEhBAQEcOTIET744ANycnIICwvD39+f/Px8PvjgA/Ly8oiMjMTf3/+yCuHGxkaWLl3Kli1bkEgkREVFUVNTw/vvv8+2bdtQKBRERERQXl7OBx98wI4dO9BoNISFhVFaWsp7773H7t27CQgI8EYgXmp6PLR0dHSwYsUKNmzYgMViIS4uzuvPt2/fPu8RXGNjIx9++CFZWVmIRCKio6NpaGjggw8+YOvWrfj4+BAVFXVZ5Z5er2ft2rWsWbMGrVZLYmIiJpOJTz/9lDVr1qDX60lMTESn07F06VLWr1+P2WwmPj6erq4uPvroIzZs2IDNZvP2w+WixWKxkJWVxcqVK6mqqiIpKQmn08mmTZv4/PPPqaurIykpCZvNxqpVq/j8889pa2sjKSkJi8XCZ599xurVq+nq6iIhIaGP8nOpcC5+MZvNfPHFF6xfvx6VSkVYWNgVzS+n0+R0Otm/fz9ms5nAwEBaW1v56KOP2LhxI06nk0GDBnn44PmzlfOjKi6nKyCnM+TXX3/N+++/z+zZs3nvvfcIDg4mNTX1J6OsnAmtVsvDDz9MZWUlN954I/v27eOll17il7/8JStWrMDpdNLe3s7ixYu54447+OSTTxCJRAwbNuyKoregoICnnnqKm266icOHD3Pw4EFCQkJ48sknmTVrFrt27aKmpgalUsm8efOYPXs2mzdvpqmpiQkTJvSxxlwJKCkp4cEHH0Qul3PNNdeQn5/P4sWLmTZtGmVlZWzevJnExEQee+wxpkyZwvHjx8nNzSUqKoq//vWvzJgxg7y8PI4dO8a1117bx4JxqdHQ0MCf/vQnWlpamDZtGlarlWeffZa6ujpGjRrFBx98QEJCAk8//TRDhgzBYDCwdu1ahg8fzty5cxk/fjwtLS18/fXXZGZmXhZBDO5IwmeeeYa4uDiCg4NZvHgxV111FYsXL8ZutxMbG8u7777LuHHjWLBgAQqFgqCgIN5//33Gjh3LU089RWRkJHK5nI8++ojMzEwUCsVlocVkMrFw4ULEYjFDhgzh9ddfJzk5mZiYGHJycnjooYcYOXIksbGxvPjiizQ0NHDVVVfxxhtvMGrUKBYtWoTZbCY5OZnFixdz7bXXXjal0m638+abb9LY2MjEiRN56623UKvV7Nmzh127djFz5kzefvttAgMD2bNnDzt27CAzM5M33niDpKQk1q9fz9GjR5k0aRKvv/46w4cPJyIi4rIpyCtWrGDfvn3ccMMNfPbZZ/T09FBYWMjhw4fJzMzkk08+obe3l4aGBj788ENmz57N+++/j0qloqCggNWrVzNr1izeeustwsLCSE5OvmL4ZeTIkXz22Wfs2rWL6667jg8//JDo6Ghee+21K5pfPIpYXl4eDz74IKmpqaSkpLBo0SKKioq4+uqreeONNxg9ejShoaHnVFwu+Upjt9vZtm0b48aNY9q0aYwePZrt27f3yQD5U4BnR2+xWHj//fdpaGjwapPbt29nyJAhTJ06lUmTJrFnzx527tzJsGHDyMzMZOTIkRw8ePCKo1kkEuF0Ouno6PAmFNu/fz+hoaFMnTqVm266iZycHHbu3ElMTAxTp07luuuuIz8/v18q/CsBfn5+BAUFef+OiYnhkUceIT4+HpvNhlQqpaCgALlczrRp05g+fTrHjh1j3759qNVqMjMzuf766zl69Gi/69kvNRQKBZGRkV7mr6qqYtu2beh0OrZv387kyZNpbW1Fr9czbdo0brnlFqqqqti/fz82m43MzExuuukmysrK6Ow8d0THjwm5XM7999/Pddddhye3kFar5fjx40yfPp1bb70Vo9FIdnY21dXV3HDDDdxyyy10dnaSm5tLS0sLmZmZzJw5k+bmZpqbmy8bLRKJhNtvv51bbrnFa10Qi8VUV1fzzjvveIMAOjs7OXLkCJmZmdx8882IRCIOHDhAWVkZ119/PTNnzqS3t5cq961+lxyeccjMzOTee+/Fx8cHl8uFRCJBLBZjNpvRarXe7MH79u3j2muv5aabbiIsLIwDBw5w6NAhJk2axPTp01GpVBQXF182WgDGjh3Ln/70J+RyOWazGbFYzDXXXMPvfvc7lEolTqcToVDInj17GDVqFNOmTSMjI4MDBw6wf/9+Ro8ezQ033EBcXBxHjx7tk/vqUkIul/Pb3/6WzMxMjEYjLpc7/9nGjRsxm81s3bqVsWPH4nA4rmh+Od169M4773gzNPf09HgVzBkzZuDr68uxY8e+s7zLskX2TCTPOfyZKa5/KnA6nXz++ecUFBSQnJxMR0cH1dXV6PV6r2+ESCTyZq/0+IgIhcKzXj9wOeHv749QKOTQoUNUV1cTGhrqjRIRiUSIxWIvLR46PLR8h6/UZUFwcHCfa9oDAwMpKSnhzTffJDIykqefftprJfKM1ekp7j2L0Zn3CV0O+Pv791HCOjo6sFgs3HLLLYwePZq1a9diMBhwOp190g9YLBbvwuS+78Z+2YQwuLPZOhwOFi1aRHl5OQsXLiQqKgqLxYJEIvEqz55rJcRisfeZJzuzx0/Hk17hckEicUfsvPPOO2RnZ/PMM8+QlJTEwoULiY2NxdfXl6qqKtrb27FarV7+9/j+2Ww277PLTYtQKMTf359ly5axfv16/vznPzN16lRCQkJobW0lNzcXk8lEUFBQH1o8R/9Wq9U7Lh7/kMvFMwKBgOTkZGJjY6murkar1RIeHk5QUBDr1q3js88+49577+W2227rI5c9tFgslj6+YJdTVsvlckaMGIFQKKSkpMTrU6TVarnhhhuYMmUKGzdupKOj44rnF71ez8KFCwkKCkKj0VBTU0NLSwsmk8nL+x55+1245IqLQCAgKiqKtrY2TCYT7e3tHrPQpW7KBUEgEGA2mzGbzURFRVFRUUFlZSU5OTkEBwej1WoxGo20t7cTEBBAZGQk7e3tmEwmurq60Gg0VxzN+/fvRyqV8s9//pP//d//5ZtvvkGtVqPX6zEYDLS2tqLRaIiKiqK7uxuj0UhHRwdqtfqyHqOcDR6rmOdz+PBhli9fzoQJE5gxYwYHDx70jqNer0er1aJUKomIiMBoNGI0GtHpdCiVyu90vLzUtCiVSoKCgkhNTWXcuHF9rCjd3d10dnYilUoJDw/Hbrej1+vR6XTI5fJ+afkvFQQCAV1dXbz55puoVCruvfde9Ho9lZWVaDQaWltb6ezsxOVyERYWho+PD1qt1hs6HxYWhlgspru7G71e7w6FPS0t/6WmxWw2ey0rc+bMwcfHh02bNhEaGopOp0Or1ZKdnU1DQwN+fn60tbXR09ODzWYjJCQEpVJJR0cHBoPBG1J+uWix2+188sknVFdXc8899xAVFcW2bdv46quvmD59OgsXLiQpKYns7GyCg4NpbW3FYDBgNBoJDAzE398frVaLyWSit7cXtVp92eSb0+lk3bp1ZGVlMWvWLKZPn86mTZtYuXIlR44c4Ve/+hXp6ens3r2boKAg71qk0+kICAggJCQErVaL2WzGZDJdVlnd0dHBokWLsFqtPPbYY1gsFsrKyggKCiIpKYlx48Zhs9kwGo1XNL+AW9kKDg7GYrF4leGqqiqCg4Npbm5Gp9NhNptRq899MzRcAufcMyEQCAgKCmL16tWUlZVRWVnJ3Llzf5LKi1gs5qqrriI9PZ39+/ejUCj461//SkpKCl999RVFRUUUFhby8MMPM3ToUDZs2EBRUREVFRU89NBDXme8KwUhISHk5OSQn5/Pvn37mDNnDpmZmezatYsjR46Qm5vLAw88wMSJE/n22285duwYhw8f5re//S0pKSlXFC0ul4vdu3ezbt06uru7GTp0KC0tLbS1tZGTk8OSJUswm83cfffdHD16lPz8fPbv38/tt9/OlClTyMnJ4dChQ+Tn53PnnXdy1VVXXVb6Dh8+zIoVK2hpaSE1NZVhw4bR1NTEli1b2L17NxMmTODOO++kurqa3bt3s2/fPiZPnswtt9xCSUkJ2dnZ7N+/n2nTpjFp0qTLomi6XC46Ozs5cOAAnZ2dvPvuu+Tn5/PLX/4SpVLJhg0byM/PJz4+nt/85jfo9XqysrI4cOAAgwcP5u6776atrY1vv/2W/fv3M3LkSKZPn94n8uNS0mIymdizZw+9vb289957bNu2jdmzZ3P33Xfj4+PDnj17uPHGG7njjjtwuVysX7+ew4cP4+/vzwMPPIDT6eTrr78mPz+fqKgo7rzzTnx8fC7LPLPZbOzatQuXy+V1sh0/fjxXX301X3zxBcXFxbS3t/Pwww8TGRnJ2rVrKSwsxGKx8NBDD+Hv78/69es5cuQIIpGI+++//7IpLwKBAL1e7+3v/Px8/vjHP3qP4pYvX87q1atJT09n8uTJrF+/nuPHj1NXV8cf/vAHEhIS2LBhA8eOHUOr1fL73/+ekJCQy0KLUCikqKiIrKwsr6L1hz/8AYFAwLp169i/fz8xMTE88MADGAyGK5ZfADQaDVdffTVKpZLdu3czefJk5syZg1wuZ82aNRQUFCCTybzHeefycflRw6EHLPCkH0hdXR21tbUMGjSImJiYn6xjrkeAlZeX43K5SE1NRSaT0djYSGVlJZGRkcTHxyMQCKivr6empobo6GhiY2OviDBbD06PkigpKcHPz4+UlBQkEgltbW2UlpYSFBREcnIyYrGYlpYWTpw4QWhoKImJiZc9zPZMuFwuGhsbaWhoQCAQkJSU5D277+npoa6uzuvw1tnZSUlJCWq1mpSUFKRSKVqtlrKyMvz8/EhOTr5szO6hpb29nerqalwuF7GxsYSFhWE0Gjl+/DhCoZDBgwejUCjQ6/UUFRUhlUpJS0tDLpej0+koLi5GLpeTmpp62RZHT/imJylgaWkp/v7+xMfH09vbS1FRERaLhcGDB6PRaDCbzRQXF2O320lPT0elUmEymSgqKgIgLS3tskV7eeSYwWBAIpFQVlaGTCYjOTkZkUhEW1sbNTU1BAUFERcXh91up6SkBL1eT2pqKoGBgVitVkpKSjCbzaSlpeF38pKay6GEuVwu9Ho9MpmMiooKHA4HaWlpiEQiKisraWpqIjEx0RudV1FR4Y3CCQsLw263c+LECbq6ukhKSiIkJOSy0OKhB6CpqYnKykrCw8OJi4vDZDIhlUqpqanBZDKRlpaGTCajpqaG+vp6YmNjiYmJweVyUVVVRXNzM3FxcURGRl6W9clDh81mo7S0FL1eT1paGv7+/lit1p8Uv5xOk0eWBQQEEB8fj9Pp9PrepaamepPQCs7R0MuiuJy1MVfQwvd9cCFnuVcSzRd6Jv3/iZaBcLnDoS8mLueCcnqepouBn2m5MPx/ogX+//AL/P+iBc6fnu/K43LJFZefcfHgTa8s6Pv/gb4/9ex0IXXquec3Az+7eMkAB2rTj4VLWdcPxfmO2387Lmaf9OWbs89tl+u7f/PD29C3zP5/g0f8ns6r36cJP6Uknj/jZwyAs07cH/Wuoh8bpzIkuhn6UjCo0+nCYulFLBYhkVy+4xEP7UajFYfDiUolPylkBX2ErdHYi9PpxNfXxyv0jEYrTqfL+8zlAr3eAuB91tvroLfXjtPpQiYTI5NdrKniwuUCm82JRCI8ScspgXwh/ek2efcV7g6HC3AhEl36Y7lTmVVdCIWCk+1xotdbUChkSKVuPxO73f1MqTz1zGZzYDBY8fWVIZG4n/03LECeYwuPad59vOREKBSc7MOL0QcunE4XZnMvPj5SRKKBlRZwYTD0IhYLkcnEOJ0eReBC5+mpf/V6M0AfXnQX7Z7LBoObL1Uqnz7vnj6nTm+Ly+XC4XBitdqRyy/f8ebP+Bk/Ji7IOffHCXcT8H0MPbm5VRw6VEtSUsiA55AXo42nl9na2sOLL2ZRX9/JsGExF7QD7N9Wz/Nzv+f53b59Fbz00hY2bz6O0+kkJSXsZJluwZyTU8k77+xi48YC7HYHCQkh7NtXwbvv7mbjxgLEYiHx8cF8800xr7++ja1bi/DxkRATE8CiRd/yn//s5KuvClAqZaeVfeGorGxn+fJc0tLCEItFrF9/BLPZRkSE5rtfPgccDidffXUMnc5MVJQ/Lhd8/XUhx483kZLyfZy/Bec9rmcbM8+8O3q0nt27y0hLC8dotPLvf+9g2bJcDhyoIjU1HIBFi7azYsUBDh6sYfDgCGw2B6++upUvvsjnyJE6MjIiUSplF9z/p1jh8htSB7ZwuDAYrCxbtp+wMA0qlQ9Wq51PP92PzeYgKsr/vModiOfPrK+6uoP587/Ez0/BoEGBA5ZVUdHG889vZNcu9/gVFjZSVNRMQkJwP+Xluyw37u/6Ptu69Tivv76NLVuKUCikxMefKtfpdLF1axGvv/4NW7cWI5OJT9YroLlZx7JlOSQmhg6onOTn17Bw4dcMGhREaOh3R2hcGDzK049czc/4b8TFz5x7ypnTwPbtJTgcLgIDfWlp6SEnp5KgIF90OjO5uZWo1XLEYhH5+TU0NHRRXt6G1WrH11dGbm4Vra16TpxoxeFw4u+voKPDyNdfFyISCQkIUFJf30V+fjXd3Sby82sICPBFqZRitdpZvPhbNm06xtixcQQF9Xc8cjtaadmypQiJRERQkC9arYFt24rp6jKiUMjYu7cch8NJQICSo0frKSiox253oFLJEYv77tTFYhE7dpRSXNzMjBnDcDicHDhQzf79VQQEKFGpfDCbbRw6VMehQ7X4+ytQKmVYLDby82s4cqTe237oaxp2O8hZ6OmxYDT2YjT2YrXavZYdz28FAujuNjNv3jpGjYplzJh43nxzO9dem4K/vzvcrbm5h4ULN3PXXWNJTAzhlVeyiI0NYsmSbO6//xpCQ9W88cY2MjKiWLhwM9OnDyU6OoAlS/YyYkQsS5ZkY7c7CQ1Vc/vtI/HzU/Rp7w+FywUFBfUUFzcxYUIiXV0mnnrqS5qbuxk9ehAKhZTmZh1ff30MiUREQICSmpoODh2qpavLxIkTrYSEqHE6XRw6VENubhVhYRrkcint7Xrmz99AdXU7Y8bEIRIJ2batGKlUTEZGFDabgwMHqsjJqcTPT4FS6UNJSTPFxU20tPRQVNREWJjmpNVDcMZC48Jmc9DdbcJgsGI09mIy9eJygVQqGnARq63t4H//dxlWq42pU4ewbVsxy5bl8NxzM9m5s4Ta2g60Wj0bNx5l/vzpbNx4lO5uE5WVWnbvLmPevJtYsSIXpxNGjIi5CIqjexff3NxNVtZxbDaHty8LChqoqGijrq6T6motYWEabDYn2dnldHebOHSoFovFRlCQL+3tevbvr0Svt1BY2EhgoC8SiZji4ma+/bYEmUyMWi0nJ6eSY8caUKvlVFdrKSxsJCxMc05L5bFjjfz9718QGOhLWlo4XV1Gtm8vITExlNBQNQcP1lJf30l5eRutrT2oVD7k5FRSX99JeLgGkUiI0+ni+PFGdu8uIzRUg0LRl9cAJBIRS5bswd9fyahRcRiNVrZuLaajQ094uIb2dgOPPLICkUhIcLAalcqHVavy2LGjlPHj4/HzUw4oa3Q6cx/+tdkcJ+cHffi3paWHJ55Yy003DSUmJoAPP9zLlCnpqFRuB/LW1h4ee+wLbrttJNHRAbz77k6mTctAIBDw3HMb2by5kNmzR6JWy/v1oVgs4s03t6HRKGlu1qHRyL0Wm64uE9u2FVFdrSU8XIPLBQcOVKHTmfHzU5CXV01Hh5HgYDV1dZ0cPFhDd7eJsjI337lcLgoLG9m/vwpfXxlqtfySWbt/xn8dzqq4XJD9v6vLxOOPr0UmE2Ey9fKrX40hKMiXp55ay6uv3oFGo+DZZzcyd+4UbrhhCOvWHebrr49x7bWpNDZ28uKLt/HZZwfYt6+Ca65JOrnwzODll7OQy6UsXZrDvHk3YrHYePTRL0hPjyA8XMMXXxzktdfuQKGQotUa6Ogw0NjYTXJy6EkmcrfP7cFs4PHHvyAkRMNnn+3nlVduRyYT88kn+xCLhTz2WCavvfYNjz02lY4OIy++mEVnp4GxY+N54YVb+jGkWCz07n4dDieffrqfrKzjxMQEsnr1QV599XY2bDjKrl1lqNU+bNhwlJdfvo2lS/ezf38lCoWUzZsLefXV2V5h4kFvr53PPsvl0KFa77PY2EAefPB/+u2c2tv11NV1cvXVSURG+vGvf9mpre0gLs6dpCw42JcFC2ah1Rr45psi4uODGTo0ildeuQ2z2caSJXuJiPDDZLLR2Wlg4sQkensdvPvubgoLGwEYPz6BiopW3n9/D08/PR25/MJzmbhcLk6caGXfvnJ+//tJGAwWdDoTjY1ddHQYsVhszJ37ORqNgpUr85g/fwZarZ7HH/+C4cNjMJl6ufnm4Wg0cj7+eB8qlZw9e8p5/vmZ6PUWurtNiMVCtFoDEomYAweqiYry57bbRrB8eS6bNhWQkBDsHav8/BpeeulrJk9Op7fXzvbtJTz//M3I5dJ+ba+oaGPJkmy6u02AW1hnZg7m1ltH9Dtu6Omx8NZbO+ntdSAQuJOOlZe3ER7uR1paBGlpkRw7Vo/ZbCM6OoD09AiGDo2msLARf385iYkhpKWFM3x4DEeO1GOzOZHJLjztUnt7D48/vhqZTMLHH+/j73+fxrhxCezYUcr77+/ippuG0dzcTV5eNb/+9QT+859d1NVpmTp1MG+/vZNHHrmekBAVTz/9JWFhbqXgyJE6rroqhjfe2MaQIZGsWJHL3/9+A+XlrSxevI377pvIsWMNpKWFMWJErFeR6Dsv3HNDq9VjMPRSXa3FbLbR3m5g164yUlPDyciIZMOGo2zYcJgZM4Zz4kQrUqmIQYOCqKhop6CggYceupa9e0/w0ktbiI72Z+vWYl5++TaCgk7lSBEIBEgkImQyMS4XmM29LFy4mcrKNmw2B7NmXcXYsXE0N/fg769k7tzrsdkcvPPOLtrb9TQ36xg0KMh7LOuBydTLBx/spbT0VHbS1NQwHnhgolfx96CxsYvOTiPjx8cjFAp4++0dNDfrCAtzWx07O43odEbGjo3DYrHx/vt7qK3toKioibq6TmQyKSA4eawGpywfgpNWGCFZWYWkpYXz6af7+fe/78LXV8YTT6wBBBiNvezefYK5c6ewalUeJpOVV1+9g1Wr8ujoMPLuu/dSXt7K3LmrGD48BoPBwuzZo5DJxCxdup/QUDWff57H66//kogIvwuelz/jZ3wfXJAkPHy4lvLyFp544gZmzRqOyWQlPj4ImUyMxWJj0KBA1Go5RqP15HFDKOHhvsyfP51nn51JbGwgCQlBxMUF8NxzM5k/fzrV1e3k5lbidDrp7jaxZ0858fHBKBRSZs26iieeuIGqKreQUiplpKWFk54ewfjxCYhEQs40g6tUMqZMGUx3t4miokYOHqwhISGEv/xlCnV1HezefYLrr09n8uRU8vJqsNsdDBsWRU+PuZ8D65no6jKxfv0RbrttJM89N4OuLiN5edVER/uj15uprdWSkBCMTCYhOtqfjg4DDQ2dJCQEIxb33XUKBCAUCoiNDWT48GiGD49m2LBokpJCB/Qv8Zxlu8sQnAzPdJ1cANwCbNeuE6xcmUdqajgvvzybwEAlKpUchUJKWJgGvd6C2dx7MpPqKR+M0FA1r756O088cQN//vP1bNtWTH1950XZVQmFApKSQjGb7djtDqKjA4iLC+bqqxNJTg7h4MFaDh6sweVy0t5uYP/+SlJTw5FKRfzyl2N4+eXZXHttKoMHR5Ka6t6R79hRQktLDxERfiQkBDNuXDypqeFoNHIiI/28ytGqVXncffc45s+fgdVqIzu7nIyMSMRiIQ8++D/8/vf/w549J6ip0Q5o+vb1lZGeHs6wYafGJzxc0++3TqeLZcv2U1WlJTDQlxMnWtmz5wQWi/2kn4T74x4vl9d3wvOu5zeeci9WtkuBQIBK5cOUKek4HE5qarTs3n0CqVTEkCERyOUi/vKX65kzZwJZWYWYzTbCwjSkp0fw5JM3MmFCAqtX5xMTE4hKJeWGG4bw8suzmT59GOvXH2H48Bj+8Y+biYz0Z9u2Yu65Zzxz507lrbe2ctVV0cydO4WAAMVpc9XVr32DB0cSEuLLDTcMITBQSWxsQB8ZkpYWhr+/nMcfn8aMGcOpr+/i4Ycnc/fdY/nyy0P09JjZuLGA9vYenE4Xx47VU1XVfo4+geZmHV9+eRin04XVamfnzlLCwjQkJASTnBxGQICSoCC3BSgjI4pRowZ5/UtOb7tIJCQhIbjP/IiPD+nH66ePs4d/Pbx7Og+f3j8ul4u9e8tZtiyHiAg/tFo9335bTEeHYUAZJRS6uOuuMfztb9MwGKzs3n2CY8caKCpq5tFHpzJ37vV8+20RRqOVxMQQ9HozSqWM5OQwDAZ3JvO0tHCkUjGhJpcAACAASURBVCF33TWWV1+9nUmTUggO9sVud1BW1sygQUH4+PzsR/MzLj0uyOLi6+u2GHR3m0lPj8Bo7EUgEBAYqKKpSUdTk47m5m7sdudJJzsHUqkEtdqHsLAYXC73QunjI0GjkRMSoqKnx4JaLefmm4efPDpS4nC475Xw7NTsdhs2m93ryOdwOCktbSYsTENkZF/tv6amg5UrD3DXXeMoL29CJHLvkkaOjCU2NpD16w/z4Yf3IRaLkMlEdHQYCAhQ8ve/T8PHZyCFwe046XA4EYmEyOVSurqMdHWZsNkcXmvMzJnDcTpdbNxYwD33jEOplDF79kisVjtbtxZx331XD7jzFImEJxWwkwMkHtip1M9PQUiIitLSZiwWG0KhiOBgFTt2lGA09pKREcmyZTkMHx5NVJQfa9ceJixMze7dJ3jkkeu54YYh7NxZissFSqWcsrKWk8djPlitbovM3LlT0GoNyOUSfHwuXuZYu93df6c+DqxWO4cP1yEQQGCgL7fcMoLMzF4iI/2w250IBG4HycREd36IpUtzKCxs4Prr0/n4470IBG6hb7c7sNncZSUkBGO3O73vazRyOjoM6HRmenvtqNU+2O3ucZRIRFgsNnp77fT22r0OoqfDsziJxcKTfzPgxZJ2u5P4+GBEIgFr1x7CarWj11uJiPBj9+4S2tv1NDR0EhnpR2xsICUlzbS366mqaiMuLgiVyoe8vGpaW3uoqGhjxIhYb50XivZ2A59+msuMGcOorGwDTvlg2GwOurpMdHUZkckkyGRiBAK3gq7TmenqMuHnp/Aurh5/KJvNPW90OvfvDAYLCQkhWK02urrMxMSEkJ1dzu23j0KplLFly3FiYwMYMyb+NKdsdzssFhsgQKczc+hQLdHRATgcztNkiBOJROztD7lciljsdl62WntxOJyo1T7ExwczZ8546uu7CAzsm5HWozg5HO7jP7FYiJ+fnOuuSyM2NgCLxX6yTvc89SgS7nccHD/eSFSU/0kr6KmooDPnB5zi3zOdxkNCVPj6yigvd4+Br68ctdqHrKxChEIhyckh+PhIqaxsx2ZzIJEIGTQokLvvHseBA1VYLDa6u80nnc/70uZwuDciHquhw+HEZLKePJ520d1toqvLhFQqRioVo9EoMJnsaLV6KiraTjrle/hGgI+PhKQk963C9fUdTJ06GLXahxUr8mhq0vXr35/xM35sXJBzbkiIGoPBwurVh2ho6GLChETCwjRERPixcmUeJSVN9PbaUShkDB0azaZNBTQ3dzNmTDwhIWp0OhNffnkYrdbI2LHxBAb6EhTkS3e3iX37KnA4nEydOpji4ib27j1BSIgaHx8Ju3eXodEoGTVqEHFxwRw6VMOJE62MGBGDv3/fs2e73UlBQQO1tR3ExgZiMPQyZkwcKpUPCoUMtdqHmTOH43LBF18cpKys2SsIhw2LRioV9xE4bW161q8/gk5n4vrr00lODmXNmsPs2VPO0KFR/OpXY2ho6GLjxgJsNgcTJiRw9dWJVFa289VXBTgcLq65JpFx4+K90SIeCIUCEhJCGDUqllGjBjFq1CDS0yO8SsPpdCkUEuRyGWvWHOLQoRqmTRvC5Mmp7NtXQU2N+8hIIHArQe+/vxu93sp9912Ny+VizZpD7NpVxowZw7jllqsQCgWsWXOQwsJG7rhjNJmZg2lt7WHt2sPs2XOC++67mnHj4i/KWbbD4eSbb4opKmogJSWcIUMiiIjwY9OmY1itDm68MQOdzsy+fRWIRAKmTEnn8OFacnMriYkJYMSIWAQCAQaDhQMHqk8uVHJUKjnDhkUTHe3P118XYjL1kpAQQlZWIT09Zv7nf1IYOjSKlSsPkJ1dQVpaOHfdNZYdO0o5fryBIUOiaGrScfhwDXFxwQweHNlvV61Wyxk2LMo7NqNGDSI6OqCfU7hIJCAxMYS4uCByc6vw8RFz773jSU8Pp7CwiaysIkymXh566BeMGBHD4cN1bNlyHJvNyR/+8AuGD48mN7eK7dtLEAiE/PGPvyAgoL9PxfeFZwEuKWmiulpLRIQGs9nOmDFxtLb2sG7dETo7jRQUNPDAAxMZNiyKb74pprS0hfLyVrq7TTz22FQaG7vZvr0YlUrB+PGJyGRiYmIC2batmG+/LUUul/Db317DypX55OZW8uijmWzeXEBtbSfx8cFs316Cr6+M5ORQhMK+fec5Ps3KOk5YmAaHw8m2bUUoFDKGDYti06ZjNDd3M2LEIHJzq6it1ZKWFuG1rAwfHsuECUkcOFBNSYnbKuCxxp5eT21tB19/XYBAIOS669IIDVWzefNxurtNTJ6chtFoZfPmY4hEQiZOTEYulxATE0h2djl1dZ2MHDkItbpvIj+xWEhyclgf/k1JCevnM+Vy4fVlWbfuMEeP1vPLX45i1KhB7NhRSkeHgQkTEvHxkbJ6tZsvb711BL/61WjS0yMoLW2htVXHnXeOYfDgCKAvXx45Us/OnaVoNApkMgk7d5bi6+vD9OnDcDrd/H/wYA1z5kxg3Lh4oqL8OX68iS1biunpMWO12hg9Oo6KijZyciqIjPRnxIgYhEIBTU061q49RE+PhauuiuEXv0jFx0f6s3Puz/gxcFYflx+cx8UTLmizOWht7UGtdu8Y3N+5fUucTrc1xeFw4eenoLvbSG+vg8BAJVKpO7ywo8OAw+E86eDnXsh7e91l+vsr8PWVYTL10t1tQqGQIpNJ6OoyIpdL8fOTn1zErNjtTjQaeZ/FxkObwWDFYLCi0cgxmXrx81MgEglwONy7E6nU7aPz1FNf0tDQeTLzpZ4PPpjj9eT3wG530NFhxOl0t1ksdltpzGYbISEqb9hkZ6cRq9VOcLAKqVSE0+lCqzWcdIhUXXAotXtn5aK9vcfrRCuRiLDbnTidLsRiodcc7x4fH9RqOQ6Hi7Y2txk9NFSNWCzEbnfS2toDQFiYGpHo1DOhUEBIiMprBbrwxdPtwGg0usdDqZThckFXlxEfHwkKhdvpurW1h8BAJUqlDIPBik5nxtdXhkYj95bT0WFEKBQgk4lxOFyo1T64XNDd7d5N+viIvab0gAAlYrGQjg4jRqOV0FANMpmYnh4zBoMVPz85TqfrpMXPB5XqwrPLeuaKy+UiIECJRCLCaOylo8OAWu3j9XswGq1otUb8/ORe+gwGK1qt2/rn4auLE1XkwmTqpafHjEajwGzuRaGQsnz5AV5/fQsffHAfSUmhBAX5YjL18uCDy7DbHcyfP4OYmAA0GjkWi42uLhMymfi0jYJ7XLu7zSfHTXqSdtBo5HR2uscqIODUzbynLFd9c5fY7e5jYo1GjsPhPGkdEJ2UIe6FNSBAicnUi8Viw89PgdVqw2y24e+vRC6X0NPjPh70OAP3rcctt9x+UCKvQ3traw8ymZiAAF9sNjudnUZEIiGBgb5eudLT4w5PPlNp+SHj4OExgcC9CRSLhdhs7mNBDy+3telx393k5kvP/Dab3XJMoZD2cwy3WGx0dhq9llL3WEkICFDgcLhoadEhFgsJDj7F1yZTL1qtAT8/BRaLDY1Gjt3uQKdzHyGd4ju3/43RaCUkRHVyU3X+UXg/42d8D5x1Vl20BHQDJTb7oZP5+7x/MRJTeQRJdbWWb74pxmZz70JHjoz9Xvk/zpZU6mQLL7id566b8yr/zN9913sXo3+/T4NO//NcdV9ou390us6zzoHCaC9V2zx1W612srKOU1razMyZw0lPDwcEdHUZ+fzzPBwOF7Nnj/QejXz3HLs4ic9+aDkDZYI9Vxke/j8d5xvW/EPRnw/PnYBu4He+X3v68paHXkG/es6fhsuf4O77jvX/F1xptP5I7bkwxcXzm9OdBE+/pO3H6ryBnPfO9t13ff9dbRxIeJ1887LuJk4lMXN6/Sl+qIA5HVfEhPe0y+1AAEJhXyl84dqou1zoX/bPAM417z1WPQdCobCfL8/FUkrOfHYqZPjKGqvT+dBzNHiltfGngO8rl8+nLM+9UZ416UoZl+87Z76rby7GWvBdOBtfOhwOxGLx9352ge0768vn7eNSWFjIkiVL2Lt3Lzk5OUilUiIiIvoMxoXeeTEQkWVlZbS1tREUFNTve6vVSn5+PkqlErlc3q8dLS0tFBcXExoa2m+gz9QQz8d/47u0+rPR/EMG7/Sy6uvrWb58ORKJhPDw8D5lnm+dvb295OXlnbWvzqb0fddY/uCdzumKRV4erF4NtbXQ0AAaDSiV/beW7krOXtaZv9Hp4JNPQKuF+Hi38vIz+sAz78/8ABw9epSPPvoInU5HYmIi1dXV1NfXExoaetr7Zx//c1kga2pqqK6uJizMndiwsbGRvXv3EhMT4xV8Z869gebod9V5Zr19ae9f/kCLx6ks1EbWrFlDVVUViYmJA16SOlB7z0bDfxtO5TeqJTc3t89Yn/mbs/XTmePjdDrZtWsXK1euxM/Pj9DQ0HP2+/nOjzPn9bnG8Fxt7ujo4NNPP8VgMBAbG9vvN2eWXVVVRV1dXR8eOx21tbUsX74cX19f70WW52r3QDR+V9+WlpbS3t5OcHAwer2eL774gnXr1mEymRg0aBAGg4EVK1awYcMGbDYbsbGx6HQ6li9fzqZNm3C5XMTExFyMS4TP6uNy3oqLVqvlhRdeICkpCZVKxeLFixk1ahQikYiOjg5MJhMGgwGl0n2GXVlZidFo9F5tbjQaqaysxG63e2+oNBgMVFRU4HQ6PddY96ncbrfzyiuv0Nrayrhx47DZbFRVVWE0GlGpVDQ1NfHXv/6VcePG9Zmw4J7Qq1ev5t///jeTJk1Co3HnR6irq6OxsRG1Wt1HQMKpgTOZTFRUVGCz2bxtNRqNlJaWIpFIkMvlWCwWKisrMZvNiMVi6uvrcTgcyOVympubaW5uxs/Pr9/guSMj7PT09CAWiwf83ul0Ul1djdlsxtfXF4vFwqJFi+ju7iY8PByZTIZU6okYcFBbW0t7e7u3PoPBQENDAw6Hg9bWVlQqFXV1dTz88MPeG55Pr9disVBfX4/dbqe+vh6ZTIZMJkOn09HY2IjNZqO+vh6VSuXtM89tsE6nOypIJjuZ2fVs9uuBnlutbqXlgw9g1ChoaoI33oBJkyA8HJqb3cqMUglSqVsBqakBkQjMZmhsBJnM/f+DB0EiAZXKXXZ3t/u3n30GdXUwdSqIf9I3XFxytLa2snDhQjIyMsjIyOCdd95hw4YN/OIXv0ChUGC326moqKC3txeVSoXFYqGurg6n00lzczMKhQKxWIxOp+PEiRPI5XJkMhl2u50PP/yQVatWMXnyZORyOQUFBezZs4fx48cjk8no6urixIkTSKVS5HI5BoOB+vp6783yvr6+/fjXA6PR6OXHuro6lEolEokEp9NJY2MjZrMZhUJBc3MzBoMBX19fjEYjDQ0NOJ1OamtrUalUmM1mqqqqvHW5XC42bdrEl19+yciRI3E4HCiVSm+dZWVl3ro6Oztpa2vDZDLR09PjlSP/zYoLuOVyfn4+Bw4cYNy4cVitVq+sOte4emRzZ2cndXV13nVl+/btPPfccwQEBFBRUcHEiRNpbW2lo6MDm82Gj49PPxnrkWe9vb00NjYiFAq9t2C7XC4UCoW3zubmZurr69FoNN5bv+vq6hCJRF65KZfLB7w9XiAQYLfb+eijjygsLPTKXU/53d3dlJeXo1QqkUql2Gw23n77bdatW8fkyZO9PFZVVUVvby9KpRKr1cqLL76IQCDA398fHx+fPmtBRUUFVqsVX193pJfRaKSiosJLl0AgwOFw4HA4cDqdOJ3OPpbOmpoaHnzwQTQaDSNGjGDZsmWsW7eO6667jsWLFxMXF8eWLVvYsWMHEydO5F//+hfp6emsWbOGvLw8xo0bxyuvvMKYMWP6rck/AGdVXM5LkgsEAoKCgtBoNMTHxzN48GBWrlxJc3Mzubm5LFu2jLS0NDo7O3nqqacoLy9n1apVSCQSHnzwQUaPHs0///lPtFotPT09PPXUU8TGxrJgwQJ0Oh16vZ5nn32WoUOH9iNULpeTmpqKwWBg0aJFlJeXYzQa+fWvf83QoUOJiIjwWiFOh9ls5tChQ5SUlLBz507uvPNOtm3bxscff4xIJCIlJYUnnnjCO8Ae9PT0sGDBAtra2tDpdPztb38jMTGRZ555ho6ODvz9/Zk/fz4mk4nHH38cf39/fv/73/PSSy9xzz33EBkZyeuvvw7ATTfdxJw5cxCLxX3oOnz4MJ9++il33nknEyZM6FO/w+FgxYoVbNy4EX9/f2699VauueYaAgIC2LFjBw0NDYhEIp555hmio6PZsGEDS5cuRSgUMmfOHGbOnMmRI0eYN28esbGxGI1GZs2aRUhICBUVFWRlZTF+/Hiio6O9dVZVVfHkk08iFovRaDSIxWLmz5/PsWPHWLBgAampqZjNZoYMGcJjjz2GRCJh9erVvPfee/j7+/P444/3pcNmg56evpYQpRLk/bN84nS6FZbt22HiRJgxw/1+drZbibFa3YrM/ffD+vXw3ntw331uJWTrVnjoIdi1C44dA4UCHn/cbbF54QV3+ZWVbqXoZ3wvCAQCgoODUavVhIWFodfrOXbsGEVFReTm5jJlyhQ++eQTNm/ejFwu589//jMajYZHH30UjUaDw+Fg4sSJTJ8+nQULFtDR0UFCQgLz5s1DLBZTUFBAQUEB2dnZTJ06lezsbKqqqnA4HJSXl7NgwQIsFgs+Pj48/fTTtLS08NRTTzFo0CAcDgfR0dHMmzcPtbp/SvvCwkL+9re/eed4eHg4Tz/9NFKplNdeew2n08mzzz7Lu+++S21tLW+//TZHjx7liSeeICEhAbvdjp+fH2q1moaGBsLDw5k3bx4ajYaIiAiqq6tZtGgROp2Ohx56iPT0dBYsWEBDQwNxcXH8/e9/Z/PmzXz00UckJCSg1+v585//zKRJky71MF5xMJvN7Nmzh6amJhwOB0ePHmX+/PlERkYiEAi846rybEBOQ2lpKS+88AIikYj09HTuvfdetmzZQkNDA/Pnz2fEiBFUV1fz7LPP0trayvXXX89f/vIXr6LgQWtrK/PmzaOnp4ewsDCsVitxcXE0NjZiMBiYN28eQ4cOJTs72yvLr732Wn73u9+xfft2Fi1axO23345AIKCgoIAnn3yStLS0AelVKBSEhoaSlZXFv/71LywWC08++SRSqdS7/qWlpfG3v/0Nu93O0aNHKS4u7sNj33zzDQEBAdxzzz2MGTMGtVrN+vXrKSwsRCqV8vzzzxMcHMyyZcvYsGEDUqmUhx9+mISEBF577TXa2tro7e3l0UcfJSMjgxUrVlBWVuZtY0xMDHPmzMHlcvH6669TVVWFQCDAYrF4FcxZs2bx1VdfkZubS3FxMVdffTU333wza9euJScnh7y8PKZPn87MmTNZvXo1eXl5ZGRk/GiK+veyndvtdlatWsWCBQu8C2pycjIdHR38+te/5q677sJgMLB48WKvhePdd9+ls7OT0tJSdDodcrncq62WlJTQ09Pj1QTPhFgs5o9//COTJk3CZrNRUlKCVqv1KhsRERH84x//ICAgoN+7CoWC0aNHk5yczI033ojJZOI///kPt956Ky+99BLZ2dnk5OT0eUcgEGC1WikpKaG7uxu5XO7VxhMSEoiNjWXHjh1kZWURHx/Pb37zG06cOEF1dTUpKSlcf/31/Oc//8FgMBAWFsZ7771HS0tLv7ZFRUVx00039VEe4JSG/+677/LAAw9wxx13sHnzZsxmM06nk4yMDF5++WV0Oh3r1q07GdkUSHp6Or29vSxevBiDwUB8fDxGo5FRo0bx6KOPEhkZSUpKCrGxscyaNYvIyEhvfQCxsbH4+voSGhrKSy+9RFdXF19++SWJiYl0dXUxZcoUnnnmGbZs2cKRI0doaWnhvffeIzMzk9raWsxmc18CS0rgH/+Ap55yf555BrZtgzMTqclkbqXikUfcSsfbb7stJZ5jnSFD3ArPxx+7lZvbboOhQ93l19bCHXeA0QgbN0JEhNsis3QpLF8OFgs8/zwMGnTKz+Vn/GAEBAQwfPhwRowYweTJk70LfnBwMEajkY8//pjIyEhEIhGJiYk8/vjjJCcnA5CSkkJUVBQbN25kz549+Pn5MWLECIYOHcrUqVNRKBSkpaVRU1ODyWRi+fLl+Pj48NZbb+Hj48Py5ctJSkrCZDIxYcIEnn/+efLy8ti7d++AbY2Li8NsNjNs2DBeeuklCgoK2LVrF3K5nEGDBlFTU4NYLCY9PZ3q6mrsdjuJiYkYDAauvvpqnn/+eQ4ePEhwcDAvvPACeXl57N69G3BbDDQaDU8//TTXXHONd4e8fft2UlNT2blzJ7t27SI9PZ2Ojg7uuOMO7r//fq88/G+HQqEgJSXF2+9paWmYzWYmTpzIc889R25uLtnZ2f3eczgcLFu2DLVazYIFC6ipqaGuro7x48cTFRXF8OHDCQgIYOXKld7ji6ampj6+mB6EhoYSFhaGTCbjhRdeQKFQcPToURYsWEBsbCwffvghNpsNmUzG0KFDkclkvPPOOzQ3N3Prrbfy0EMPsXz5csrLy/nnP/9JSkrKOWl2Op1ERkaycOFCwsPD+eijjwBITU0lPDycNWvWkJOTQ2BgICNHjmTo0KH84he/oK6ujqVLl/LII4+QmZnJ1q1bsdvdOabGjx/PwoULaWtrY/369dTW1vLOO+8QEBCA1WplyZIldHV1UVJS4rUqulwuRCIRUVFRpKSkeD+xsbEAvPfee4hEIgYNGkRTUxNNTU2YzWZEIpH3CMpsNmO1uhMUetZss9mMzWZDIBB4/eEsFssFzZPvwnlZXDyJ3kQiEbNnz2b69On4+/sjkUgQiUSoVCri4+OZOHEiDQ0N2O12Bg0aRGxsLC6XC5VKxS233EJLSwvbt2+npqaGxMREbrvtNrRaLd9++y2VlZVkZGT0qzssLAxwOwPfdtttlJWVceDAAQoKCpgxYwZRUVH93vF0qN1uRyKRYDS6w5c95jaFQoFQKMRkMvV719fXl1tvvZWWlhZ27NhBWVkZ0dHR5ObmkpGRga+vr1eZmTRpEh9//DFvvvkmr7zyCnK5HLPZTHR0NOPGjSM1NXVAxlEqlfj5+Q24q3A4HNjtdpRKJRkZGYSHh3stNuHh4Wg0GiQSCTqdDrvdTnl5OaWlpaSkpHDo0CFv22QyGQkJCVxzzTUIBAKqq6vdAy4W09zcjFqtpqSkhNjYWNRqNSKRyNs3EokEi8WCUCj0CvuAgAAcDgd6vR6ZTIafnx+bNm1iwoQJDBs2rC8RiYnw5JN9n4nF/R1vXS4oL4c1a2D+fHjgAZg3z3181NHh/nfkSCgqcr/v7w9z5sDvfgdXXQV/+IP7iEgodCsucXHufwsL3cdJCoX7iMk9id2f/3JT/fnCw/On/99qtSKVSunq6qKrqwun00lCQgJjxoxBqVTicrkQi8XExMQwduxYAIqLi9m7dy+jR49GoVD0K8szjz3C0el0YjAYkMvlKBQKpFIpVqsVoVCIRCIhLi4OPz8/JBIJXV1dA7ZdKBR6539AQABisZienh4EAoF302Oz2ejp6TmZNdr9jlQqJT4+Hn9/f1QqFcHBwahUKgQCAXq93tsfUqnU6ytmtVq9R7qpqalERkYSHR2NSCTC19eXqKgohg4d+mMP108CHrl8ukx0h8W754xHtnV2dvZ5zzNnLBYLMpmMoKAg/vKXv6BWq2lqavIumJ6TgbKyMmJjY7n//vuRSqV9jkI8dQqFQkJCQvDz88PPz5201GNla21txeVy0dTURF5eHmPHjuXYsWMIBAKkUimDBw9GLpej1WpRKpUDJqE8s/0KhQKFQoFMJqO7uxuDwUB2djbjxo3Dx8enH41dXV1e3tBoNAwePJjU1FSvo29UVBQajQZfX1/a29ux2Wy4XC5iY2OZMGECEomEgIAA7rjjDurq6ti1axfl5eVkZGRQV1fHiRMnvO0zmUxkZGRgNpu97gLZ2dkkJSWh0Wjo7u7GarVisVgIDg72HrF65n5ISAi+vr4YDAbMZjMGg2FAn9SLifO2uFRWVtLV1UXz/7V3L71tVG0Ax/+JHbskqe04tnOlIU1rxykVFWLBpUWotJXaqtCWCLHsirLhAxSBROkiRRQEURd8gUogNqwqlWSDhASrgqk99tjj2HGduM7El8a31FcWrofkTXrjJejNy/lJliI74xnPHM955jnPGScS9PT0YDAYqNfryLJMoVDA5/PRaDRwOBxMTk6iKApzc3OMjo7S1tbG7OwsxWIRl8uFzWajWCzyww8/sLq6yvj4ODabbcM61xYL3rt3j9nZWRYXF9m9e7dW6PSwau2DBw/S3d3N9PQ0iUSCt99+m2vXrnH58mUGBgZ45ZVXNizTWs/du3dxOp309fVRLpcpFAosLS1ht9sJBALkcjmsViunT5/G6XRy4MABduzYwblz50gmk4TDYaxW66bZIJ/Px1dffcXvv/++4bX+/n5OnTrF119/zaeffoqqqqRSKRYWFrTiyNb7p9NplpeXqVQqpNNp9Ho9wWCQaDTKysoKXq+XcrkMgMPh4NixY3zzzTd8//33hMNhpqen+eWXX7Qvw48//sjU1BT5fJ7jx48TiUQoFAp4vV58Ph+5XA5ZlkmlUsTjcQYHB3E4HBsDwM5O6O9v1qkMDDT/ttk2L46t1Zo1KF9+Cd9+Cy+/DC++2Hy+XIZkEkwm8Hq5/2uD8NJL8OqrMDQEhw/D0aPNepZMBoaH4ciRZuDz+efN5+PxZsZGeCKKopDJZAgEAjQaDV577TVUVeXq1at0dnby1ltv4ff7WVhYYHh4mKWlJZaXl5FlmXw+DzSvxgqFAsvLy5hMJmRZplqtcujQIXK5HNPT00QiEXw+H9lslng8zuTkJMFgkIsXLxKJRHjjjTeIRCLk83l8Ph+yLGvrabXvkFNpPgAABm1JREFUtWKxGHfv3sXr9SLLspbxLZVKHD9+HKPRyOXLl7l+/TqFQoFYLKa19dZwWDqdZm5ujvn5ebLZLJIkUSqVsNls6HQ6rly5wvXr15mcnOTkyZMMDQ0RCATI5/M888wzSJLEysoKwWBQ6zj/7fUt0GwPkiSRyWSIxWIoikIul0OSJK0oNBgMbjiuer2eM2fOEAqF+OSTT7hx4wZ6vV5rN9FolFqthiRJ9Pb2Mjg4SKlU2vTnMlRVJRqNsri4SCwW07I3rT6rVaOYzWYpl8vE43HMZjN+v5+ZmRk++ugj3n//fe7cucOFCxeIRqPAnwHW2kdbWxtDQ0OkUimmpqbweDycPXuWcrlMqVQilUphsVjw+/3U63UOHz5MOp3m6tWrGI1GTp48yWeffcYXX3xBKpUimUyiqiqhUIhQKEQ8HicSidDb28ubb76JoijMz8+za9cuqtUqN27coFAo4HQ6GRgYoKuri3PnznHp0iXt8d577zEyMsIHH3zA+fPncTgcuN1uTpw4wenTp/F4PFy8eJFKpcKxY8c4deoUP//8M5cuXaKjo4PXX3+dyclJZmZmmJqaoquri4MHD25pO3rs6dDJZJJgMIjVasXtdqPT6bQi3FYw0cp+lEolPB4PRqOR/fv3o9PpiMfjyLJMX18f4+Pj6PV6YrEYoVCIwcFBnE7nhloQbSPub+PS0hJ+vx+TycTExMSfBaGbbfj9ZeLxOOl0GrfbTb1e59atW6ysrLB//37s9vU3l2s1tsXFRfx+v3YA9Xo98/PzLCwsMDIyQiaTwel0YjQaKRaLFItFLfCqVqtaJ//8889r46trC4BXV1dJpVJYrdZNZ/gUi0U8Hg+dnZ3s27ePQqGAJEkYDAbGxsbw+/0YDAYmJiaoVqtIkoTFYqHRaGhFx7Is09vbi8vl0q5wisUikiQxOjqKyWRCVVVMJhPVapV3332Xnp4e3nnnHUZHR7VUazgcZnBwkKeeeoq5uTn6+vpIJpN8+OGHGI1G8vk8R44c4eOPP940u/RQjUZzyGd1FdJpqFbhwIFmge29e+DxNDMtO3dCLgdOZ7MA99atZkB0f8iLbBZu3mwGSK207W+/NWcV2WzN93c6wWIRGZfH1Bq2VBQFm82mpcNlWaa9vV0buvn111/p6enB7XZrHVBXVxdut3vdxU0ul6O/v18b09fpdFpx99jYGOFwGFVVcblc2O127QQ8OjrK7t27tQ7NbrdjsVhQFAWz2czExMSGKZmqqhIIBLBardjtdkKhEDt37tT+d3FxkUAgwPDwMJlMhj179lCr1ZBlWavlC4fD9Pb24nA4CAQCmM1mxsfHqVQqZDIZbt++zY4dO9i3bx8dHR3E43FCoRDj4+P09fURjUaJx+OMjIxsOpvk36pSqRAIBMhkMto5ubXfLRYL4XAYi8WitZG158Z6vY6iKCQSCZ577jm6u7sJBoOkUilcLhfd3d2cP3+eRCJBe3s7pVKJ7777bl0NZKPR0C60Afbu3atNEBkbG2N+fp5KpaIdV6/Xi8FgWFfOoKoqbrdbC3ZNJhM3b96kUqms+6wmk4mjR4+i1+vJZrNEIhEcDoc2hNq66Hc4HOTzeVwuF+3t7ciyTFtb27rvWGuf5PN5JEmis7OToaEhFEXBYDDw7LPPajVD3d3dTExMoNPpuH37Noqi0N/f/9A+trVvstksPp9Pe4/W9iQSCfbs2cOuXbuo1Wr4/X5UVWXv3r08/fTTVCoVJElieXlZyzzC1k2HfqL7uKxbcJOpg3+HJ5lm/KD/f5zlNlv+r36eJ52a/DBbtU8fdI+ARqNBIBDgypUrOBwOLly4sOkQ1lqZTIZr164xNzeH2Wzm7Nmzf60Qaws+6yOJDuSxbEU73Cp/x3d4q4nApelJj8+jzq1r1et1ZmdnmZmZAeCFF17gzJkzGI3G/2obHuXOnTv89NNP6wKXRqOB2Wzm0KFDmxaQP8hW9av/uY7N/FP9+ZMs/sAXHidwEf5/tbJM5XJZG8OFRzfuWq1GpVJBp9PR0bHxt5QEQRD+SWvPZY1GQ8vIb+V5aW3/+aCLQ3Fe/MtE4CIIgiAIwrbxwMBF3EpUEARBEIRt41HToUWOSxAEQRCE/xki4yIIgiAIwrYhAhdBEARBELYNEbgIgiAIgrBtiMBFEARBEIRtQwQugiAIgiBsGyJwEQRBEARh2/gDKcGXcxcmAwAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1296x720 with 1 Axes>"
]
},
"metadata": {
"tags": [],
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_JTBMYlIn9Jw",
"colab_type": "text"
},
"source": [
"## Check the model performance\n",
"The metrics run on the test images so they may not be fully representative, only indicative"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "MwAVsyrxrwSI",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "63ca21e7-b6f1-45f5-95f8-da1a5f900e67"
},
"source": [
"!./darknet detector map /content/yolotinyv3_medmask_demo/obj.data /content/yolotinyv3_medmask_demo/yolov4-tiny.cfg \"/content/darknet/backup/yolov4-tiny_best.weights\" -points 0"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
" CUDA-version: 10010 (10010), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1 \n",
" CUDNN_HALF=1 \n",
" OpenCV version: 3.2.0\n",
" 0 : compute_capability = 370, cudnn_half = 0, GPU: Tesla K80 \n",
"net.optimized_memory = 0 \n",
"mini_batch = 1, batch = 1, time_steps = 1, train = 0 \n",
" layer filters size/strd(dil) input output\n",
" 0 conv 32 3 x 3/ 2 416 x 416 x 3 -> 208 x 208 x 32 0.075 BF\n",
" 1 conv 64 3 x 3/ 2 208 x 208 x 32 -> 104 x 104 x 64 0.399 BF\n",
" 2 conv 64 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.797 BF\n",
" 3 route 2 \t\t 1/2 -> 104 x 104 x 32 \n",
" 4 conv 32 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 32 0.199 BF\n",
" 5 conv 32 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 32 0.199 BF\n",
" 6 route 5 4 \t -> 104 x 104 x 64 \n",
" 7 conv 64 1 x 1/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.089 BF\n",
" 8 route 2 7 \t -> 104 x 104 x 128 \n",
" 9 max 2x 2/ 2 104 x 104 x 128 -> 52 x 52 x 128 0.001 BF\n",
" 10 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF\n",
" 11 route 10 \t\t 1/2 -> 52 x 52 x 64 \n",
" 12 conv 64 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 64 0.199 BF\n",
" 13 conv 64 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 64 0.199 BF\n",
" 14 route 13 12 \t -> 52 x 52 x 128 \n",
" 15 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF\n",
" 16 route 10 15 \t -> 52 x 52 x 256 \n",
" 17 max 2x 2/ 2 52 x 52 x 256 -> 26 x 26 x 256 0.001 BF\n",
" 18 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF\n",
" 19 route 18 \t\t 1/2 -> 26 x 26 x 128 \n",
" 20 conv 128 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 128 0.199 BF\n",
" 21 conv 128 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 128 0.199 BF\n",
" 22 route 21 20 \t -> 26 x 26 x 256 \n",
" 23 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF\n",
" 24 route 18 23 \t -> 26 x 26 x 512 \n",
" 25 max 2x 2/ 2 26 x 26 x 512 -> 13 x 13 x 512 0.000 BF\n",
" 26 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF\n",
" 27 conv 256 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF\n",
" 28 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF\n",
" 29 conv 21 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 21 0.004 BF\n",
" 30 yolo\n",
"[yolo] params: iou loss: ciou (4), iou_norm: 0.07, cls_norm: 1.00, scale_x_y: 1.05\n",
"nms_kind: greedynms (1), beta = 0.600000 \n",
" 31 route 27 \t\t -> 13 x 13 x 256 \n",
" 32 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF\n",
" 33 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128\n",
" 34 route 33 23 \t -> 26 x 26 x 384 \n",
" 35 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF\n",
" 36 conv 21 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 21 0.007 BF\n",
" 37 yolo\n",
"[yolo] params: iou loss: ciou (4), iou_norm: 0.07, cls_norm: 1.00, scale_x_y: 1.05\n",
"nms_kind: greedynms (1), beta = 0.600000 \n",
"Total BFLOPS 6.789 \n",
"avg_outputs = 299797 \n",
" Allocate additional workspace_size = 12.46 MB \n",
"Loading weights from /content/darknet/backup/yolov4-tiny_best.weights...\n",
" seen 64, trained: 204 K-images (3 Kilo-batches_64) \n",
"Done! Loaded 38 layers from weights-file \n",
"\n",
" calculation mAP (mean average precision)...\n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"40\n",
" detections_count = 424, unique_truth_count = 300 \n",
"class_id = 0, name = mask, ap = 70.52% \t (TP = 166, FP = 8) \n",
"class_id = 1, name = no mask, ap = 47.40% \t (TP = 18, FP = 3) \n",
"\n",
" for conf_thresh = 0.25, precision = 0.94, recall = 0.61, F1-score = 0.74 \n",
" for conf_thresh = 0.25, TP = 184, FP = 11, FN = 116, average IoU = 75.89 % \n",
"\n",
" IoU threshold = 50 %, used Area-Under-Curve for each unique Recall \n",
" mean average precision ([email protected]) = 0.589569, or 58.96 % \n",
"Total Detection Time: 1 Seconds\n",
"\n",
"Set -points flag:\n",
" `-points 101` for MS COCO \n",
" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n",
" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VxIm51pFoUQO",
"colab_type": "text"
},
"source": [
"## Run detection on an image. I choose one of the test images from test.txt"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RRI2S26nsNzM",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "0d1ffa6a-f761-46ca-e34d-2ab4ee60f5de"
},
"source": [
"!./darknet detector test /content/yolotinyv3_medmask_demo/obj.data /content/yolotinyv3_medmask_demo/yolov4-tiny.cfg \"/content/darknet/backup/yolov4-tiny_best.weights\" /content/yolotinyv3_medmask_demo/obj/0633.jpg -ext_output\n",
"imShow('predictions.jpg')"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
" CUDA-version: 10010 (10010), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1 \n",
" CUDNN_HALF=1 \n",
" OpenCV version: 3.2.0\n",
" 0 : compute_capability = 370, cudnn_half = 0, GPU: Tesla K80 \n",
"net.optimized_memory = 0 \n",
"mini_batch = 1, batch = 1, time_steps = 1, train = 0 \n",
" layer filters size/strd(dil) input output\n",
" 0 conv 32 3 x 3/ 2 416 x 416 x 3 -> 208 x 208 x 32 0.075 BF\n",
" 1 conv 64 3 x 3/ 2 208 x 208 x 32 -> 104 x 104 x 64 0.399 BF\n",
" 2 conv 64 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.797 BF\n",
" 3 route 2 \t\t 1/2 -> 104 x 104 x 32 \n",
" 4 conv 32 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 32 0.199 BF\n",
" 5 conv 32 3 x 3/ 1 104 x 104 x 32 -> 104 x 104 x 32 0.199 BF\n",
" 6 route 5 4 \t -> 104 x 104 x 64 \n",
" 7 conv 64 1 x 1/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.089 BF\n",
" 8 route 2 7 \t -> 104 x 104 x 128 \n",
" 9 max 2x 2/ 2 104 x 104 x 128 -> 52 x 52 x 128 0.001 BF\n",
" 10 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF\n",
" 11 route 10 \t\t 1/2 -> 52 x 52 x 64 \n",
" 12 conv 64 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 64 0.199 BF\n",
" 13 conv 64 3 x 3/ 1 52 x 52 x 64 -> 52 x 52 x 64 0.199 BF\n",
" 14 route 13 12 \t -> 52 x 52 x 128 \n",
" 15 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF\n",
" 16 route 10 15 \t -> 52 x 52 x 256 \n",
" 17 max 2x 2/ 2 52 x 52 x 256 -> 26 x 26 x 256 0.001 BF\n",
" 18 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF\n",
" 19 route 18 \t\t 1/2 -> 26 x 26 x 128 \n",
" 20 conv 128 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 128 0.199 BF\n",
" 21 conv 128 3 x 3/ 1 26 x 26 x 128 -> 26 x 26 x 128 0.199 BF\n",
" 22 route 21 20 \t -> 26 x 26 x 256 \n",
" 23 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF\n",
" 24 route 18 23 \t -> 26 x 26 x 512 \n",
" 25 max 2x 2/ 2 26 x 26 x 512 -> 13 x 13 x 512 0.000 BF\n",
" 26 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF\n",
" 27 conv 256 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF\n",
" 28 conv 512 3 x 3/ 1 13 x 13 x 256 -> 13 x 13 x 512 0.399 BF\n",
" 29 conv 21 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 21 0.004 BF\n",
" 30 yolo\n",
"[yolo] params: iou loss: ciou (4), iou_norm: 0.07, cls_norm: 1.00, scale_x_y: 1.05\n",
"nms_kind: greedynms (1), beta = 0.600000 \n",
" 31 route 27 \t\t -> 13 x 13 x 256 \n",
" 32 conv 128 1 x 1/ 1 13 x 13 x 256 -> 13 x 13 x 128 0.011 BF\n",
" 33 upsample 2x 13 x 13 x 128 -> 26 x 26 x 128\n",
" 34 route 33 23 \t -> 26 x 26 x 384 \n",
" 35 conv 256 3 x 3/ 1 26 x 26 x 384 -> 26 x 26 x 256 1.196 BF\n",
" 36 conv 21 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 21 0.007 BF\n",
" 37 yolo\n",
"[yolo] params: iou loss: ciou (4), iou_norm: 0.07, cls_norm: 1.00, scale_x_y: 1.05\n",
"nms_kind: greedynms (1), beta = 0.600000 \n",
"Total BFLOPS 6.789 \n",
"avg_outputs = 299797 \n",
" Allocate additional workspace_size = 12.46 MB \n",
"Loading weights from /content/darknet/backup/yolov4-tiny_best.weights...\n",
" seen 64, trained: 204 K-images (3 Kilo-batches_64) \n",
"Done! Loaded 38 layers from weights-file \n",
" Detection layer: 30 - type = 28 \n",
" Detection layer: 37 - type = 28 \n",
"/content/yolotinyv3_medmask_demo/obj/0633.jpg: Predicted in 15.423000 milli-seconds.\n",
"mask: 100%\t(left_x: 272 top_y: 138 width: 66 height: 58)\n",
"no mask: 48%\t(left_x: 497 top_y: 161 width: 50 height: 34)\n",
"mask: 25%\t(left_x: 578 top_y: 177 width: 41 height: 41)\n",
"mask: 52%\t(left_x: 747 top_y: 218 width: 46 height: 41)\n",
"mask: 99%\t(left_x: 871 top_y: 207 width: 47 height: 56)\n",
"no mask: 74%\t(left_x: 962 top_y: 172 width: 50 height: 54)\n",
"mask: 100%\t(left_x: 1062 top_y: 205 width: 61 height: 61)\n",
"Unable to init server: Could not connect: Connection refused\n",
"\n",
"(predictions:7263): Gtk-\u001b[1;33mWARNING\u001b[0m **: \u001b[34m08:31:19.221\u001b[0m: cannot open display: \n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAIuCAYAAAC2BjchAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9y5IsuXKu97kDiMiqtbr3Jnl4eNkU9coaa6KZxprqZSSjjszEy+a+dNeqzAhcXAMHIpBZubppZyLRrNBWXbXyEhEAHA7/3X93iJnx2T7bZ/tsn+2zfbbP9tk+22f7bP9/b/r/9QN8ts/22T7bZ/tsn+2zfbbP9tk+23+kfYKXz/bZPttn+2yf7bN9ts/22T7bf4r2CV4+22f7bJ/ts322z/bZPttn+2z/KdonePlsn+2zfbbP9tk+22f7bJ/ts/2naJ/g5bN9ts/22T7bZ/tsn+2zfbbP9p+ifYKXz/bZPttn+2yf7bN9ts/22T7bf4oWf+nN/+l//l8shEgIgRASgiA0xBpCxVom5428Xallp9ZGrRVQYoiklIhRCVERbbSWaXum5Bul7JSyk8tGLTutVFozWjNAAEFFCKqICCLiz6GCCCjinzIwIAOtNVprmBlmhoiBGWaVEJT1svLyIrxclJeXF9Z1JcZIiBHTQGuGV45WMDnGwcyOa5dSuN1u5JyPe6WUWNbIy8sLl8uFEAKqiiLUWiml+O9aqXnHWmUuUS0ixzOP11UV1ZWgkRh9LH08x3z4PWpttFao9Uoptc+B9dcNVUGDoep/L8vCZXn9cC2iYAgGNDNag2pKs0Br0CrUyjFH1YyGIAREBQmQYiSqEsQIoojuBG2k0OUhCKpgsmFdhlrdqSWTrxvvbzfev93It8y+Fa5NuFaj5EprDRDMoDbvt0uB4+9G63ICqhBjICZlWSKXl5WXl7XPT+L1BZZ0IS4vxLCgYaFJAgk0XWgSkbiiRDChoZgEKkJtDWkVMR/3Vm60kqlbppZCyTv7dmO73cjbldv1jdvtndv7N67vP3N9v5LfhS1v7DWDggYlpERaVjQtIAkNgSABNQ75d5lQwCD0ddHXR9RK0EYUY4nK15cLL68vvLx+Yb18Yb18Ja2vxGXF5CsiPm61Vmot1LpR9h32DLXStkypO1vd2PaNbd+5bje2baM2Zdt39n2nluLroG6ItUPeRQQJgW9b5u3tG7UIKV6IMZHSgvbnHq3R7nTPeM+XsPFY0l0VlzsxzBrBgJIJWlhT4/VV+fHrC1+/XPjhN1/57V/+Jb/97V/z9Ye/4PWv/o7l9UcgYbaCJBoBA/Z84/r+zs9//hN/+uMfef/zGz///MbtuvH+vrHvha1s1LazrIEffnjh9XUlpAgo1lw/lrzz/u2N//uf/k/+2//1T9yu71zWhdeXC5ouhJhYlhXViBlYs95nPeTcdWE7xmIehw9/CzSgdR1zu72zXa/s+RvX65Vv376x5xsicFlfeH39ypcvX7hcXnl9feWyfiVoRIJSWiXXSrOKtrH27u85z10IwXVkqajqoSvnz8y6dPRv6NXxu9ZKzpmcM9frlW27se1v/Pzzz2z7revxwHpZuVxeeHn5yuXyhS+vX7lcXogaUL2/5+MzPJOlXzouQML5nON68xiMHwzXFa0dr439opRCzpnb7cbtduPbt2/ctiu1el9dLyfW9cLr61e+fvkNL5cvLMtKDEroa/28L5h8fGaTc68c/XR9cT/WXeA+7EHH+9NrGmOfL7u7P/i6q7XQrGFWoRl71wv7vnO7ub4Y/R9jE2Pi9ctXXl9fzz147EOP40/r9zpl/XHOhl4MqmBg2KEvj/kRUPG1pTrmtfU9f/w0avUxiDFyuawsYSVIIATpsjXGIOD7T6A1oeRGVYgxcVkvpLRQSmXbbl2/Fvbie7+LS7mToblfsx1zPP80JwAxxg+frYVjXT1+91GH3MlDfz8m6WNQ2fedt7e3vg4370crfcwqpQpBE1++/MjXLz/w5csPfT4XQgh3dk+t9XieMVdDfEXEdZeANcUaNJt0wbZT9p1WfcxVEiKBhhGCEALEpKQlEiNP1//z9a0fPvcoV25L7eT8jX2/UfKNlndKzex7Zdsr161w2yvvW6EWH8+XJfHbH37gt7/5kd/++Btevryyrhc0RB9zUUTqh7l9/pxDPs7PPNM//mNHf1trhy6e+zd++0rg7jpdiR2vqSqiSptk6tDtnNcOIfh9Maq57FyvV97e3nh/f+d6vd7JaSmFrRRyKWzbxr7vNGsEUV7Sym9+8xt++5vf8psffuDl5YX/9X/73z9uJPwKeBngIcWEagQRpPmiozU3dNvHzUCY7tUNSh8UH5AQAq0NxcLxullDVTDrg9nuDZpxPVXxjQoBM5oZleeT678nQ8nOCTomSYQmiqob5tZBzNyvZwIzNoaheMdPjBEVh3oYWJiMDFWatbv7PyqW89rDGJe+UPVQon5rByWGoLagWjFrvX/NP9sRnqiRknbQEogx9OspGhRkAJcxV+dMCl3x61AO4gItimpEVTtYCA5eVIhBSMmIUUghkGIgBkXEaDhgqWUn5ytluxE1AREkcJUb1TZsK4cB4AoQB1jmQLM/sRt62LEARVzx7LlxvRpvb8qyLnz58sqX15X3FZb1hZRuxLgS04KGFQkR0wU0EWJGNaESkZiQYAwg3zCHbQGarlgMWFyxWqmlkJaVZb2QtwvLupKuF5ZlJS0LaXlnSxW9vSO3K3txZVjN5zFaB3jVMBraN10NATEHloYh1tyCH8ZSaAwNJ63wDQez2154eSlc9kpad0JcabIfMudgtFHLjbrvUCpSDamGWcZaJlRj0YAuFxaNIJF9z+z7Tim5z0+iNTdSRHZadbD5sq7QjLe3K3m/9TnjGEtf792QuJN9X6sOwu/1gCtlUMz9DP5hTKG0Stt2RALrklgXY8+F6/WdZfmJZV0Jt5/dYEpfXf/4/zCEFFfsYpRaHJzddm7bQs6VGCtmQpNG2wplL+Q9k1NA1NdRCIria0BV+N3vfsf1+o1/+ef/hz3vIMZCICGE4IBnAEmzYRiOzePjhjo2p1lnHBuSgARFLLIuC1YbzTIpVZZlp9ZC6QZzzjs5L4Tg/w66I0tAzXw8zWY1eXfv+b7zZvlsY318/uPSDzp6bIDj8yml/rzuuDGr7LmR8+6GaIikmCnBZS6EiCZ8n/qVNo/hLwKX01Z9+tk746Ov0w9GwjCs+74wfsca3YEjBbDD2BuGforF14hO9+1+PePjnutvn7IwxnEGnodBjB26Yh6Hx7k1s+6MfGZk3c+5X/c0enxPiF0fyDG/89+P8jLL8riPWet7mhz39evoOQfa/22+14dhII/3jvG5n0+3O6yDKijFpr4KtRrFKojRzO0EGMbgcJ41WhNyrmxlp9QO0EJCtTsx1Q27Y8wf5+2h32MM57kbYzr61Q4b5fx5/P4MXJ+Bl/k9VUXFqJzge3YwjbkYTgYzpbXqzpLutHZb5f6+j86C4/3aum3owFIw0NNmAnesaXADmub7vHV7xtcahxy2VjELDJvpUT99bMNJ/rwN2/TOQdE/L/0//9wpV8d3ujyq3q+b8YX5Wo/3PJ7ueGbDocZH3fMfaY/66Ph71tNPrnn0+3v3kul1+fj9uR8z6LkPMEwgyboMxtBtUeu2/vfJYb8CXtxjHkNEQ3BDXAI0sFmo2z2KHx05FXcXQBQTQXFha1aoLSBawOaJ7n/3xTMvXB3/DkoQpcNCItCmiTLrxlwHR6IDKJ3XPzaSlCCkPsjdYKp0xd3HoiuT8TzD2wjuBYkaCOrPFMTfVwMNgBnSDERBA5V7T969V21SHAygMu55D1yG9wtrYOHw/qlrg95VjzwJRtDk85mUEAcg8h/RiAG1GdKEimEVqhlivovrwOvixploRGMixNgjbdEjbcHBTIqQghBTIKXhFXWj3GqmtULJG/my0fYrmjZCuhLTDY3fqNcNu+7ujelKszUHqz61vrCtG1xyeF18fL1fUGshZzc0b9eFH76sxFiJy97BSyKllRASGldCXIgxI2FBNRLSiqYVCQ0NiTApIBGh1eCWoxlaCxoX4rKT1lfS5YW4vrC+fGG5vLK8vHO73AjfEvotILd3brd3cinet2LEaIRgiAYsKCYOWGrTPvyK751d4auy10pQIwbBqvc/50bMhVIbuVSWbSOGBOHKMAYOhVILVg1tEEVJGokhsUZfu6JCNaO2RmvKnjN795ps28ZWNnLNqO4ISi6F2hoB4bKstItxfb+R9xu1GTFWIAG+4QzZB06wYsORcG/kDGOD/k0RoYm5jpFIKYX3WyXETEqFS2nseeN2+5nbbSHeFuqaCHEBXenuWhAIGljWC68CpVTKtnPdM/teCKnSUNbg67HUG6W0I1rsOsVXCX3dhr/8C/7+d79j3zf+7V//lVIKWrIbWaF08O/6aajP2Tg7o8H3m/FTo1PooFohpT52+fB25eyG8b5nVG8dQCY3mkMlxnbq2OBeUOk679GRMxvuQ/c/M5jcqLkHWo/GzLxnDK/3AC+tJfb+t5QdgFoGaCzE0sFXSMRpn5jlaW6PRvIjwLozIB48kc8291+79uP+FUIgJQf6ZpVag0dw2xm1zDlTUiGlRrOGGF33Dpmf97KztSdy8dyg4DBe5r6Pv+fvtlIPI+Icq3b8tObP6JGc+7EZzryxns8xiKiG+2f7znh6hGNEZCan2tjXpzEOIgdgOB1ZeozV0U3pIAhxQ7jrbt9vQ7+30mqjdvCi1qMDNvZtB3VmSquQc+WWM6U72UYEJsbuoNDJg37YJffjNa+N4Tmf19owiKEDouYA4DD2lKfzPl/72esn0GtocyflDLbHvJn5XuTGr7jTuJ2RlTG+J8A6+/AB+I81qv78Dqjl0GHHmgkBjYHacAWnQ1Zmw5xpfEZMwe5k5LE9c0TMv0c/WruP4A2w9QhCBmAa9vAZxXtgFLjV/+Hez9bqaeDfO08e9ctsNz/O7ff7aNNX+jNNjyYyvdbHsjVnM4l0B4iOzx5P/BGZP4zp2TlBUIImLEx6f1nREEHUHdXy3wleMHPvnVaG48CsghWstcMr2oYS6yBGmELQB7rqk94aVt3ArdUXoYp+oI2McZ0naICWYcwrcsozj5Op/qxj8Gxssqfgzx4x6eHx1oxSGlXu6RqPXpBZEFSEJUZSiMQQ/Hd0T7kANEOCQTNMK83ulclQ8I+h1aCu5EN04z/G8GEToYfVmSZZVAii2Ai5c0ZvHFyM3yMCExFi99zZce0gHpFpYrR2bhh9CRFECOobVAqh/x2JKbCsiaRCDEpc/LWxaJqBhexRvLCC7lRWFjbgFQkbEl6R9Z24XIkhOdXitrHvmZLdI+h6wTcEDQk1QXQoSqNWD06EoCDGtmVKqezXjZgSMaUzIhJXUnTqVkoX1mVH00pIF6cutYbGBU3WZUU7gFcHLgQEnF4ZEpIWYi6EuCJhIa0X4nIhXt5J6zd0iYQ1ka4L4S3w/vZOLY26Z6QqGgWLhqEQHKSbdDBtERNBzMB8c6itEATMpD+XUFuh1OLG655Z4jsxJSRcwKC2ejgeVJSkiZhWlrBwWV9Yl0hM4huwiq9zg1qFnDPbvnO7Xnl/f0dvAd03pFP5RHb2nMklg8HLZUUw3t7eKEUOuTXzDVJCQB4AVYeHDyrp9BgOn1RQdfAizQ0juVD2nW/XypI2Lq+J9SLkomy3P3G5JerLSosXVC6gS7+uuIEiSlhWLl9fqbevXG8721YIpdKoUHxMSnEAU+uDFwm3dFSV5bLyN3/3t+x54/36ztvbT0guiATCARisU1qG1uPQLf5jT18/NjOGP/jc3PQwkl9cp62nV7+UTM6FbdtZFl8TNRRKyYenUzWAwNh7n23ux1z0SIDBnZ585pj5nkE9923o5JQSzRaWnCg1E2tkOCYGrSSGQkqF1o2oYWz90j3mez0DLcf7uMzPhsAjcJvbPWVZ7iKGszEfY6TWSKmREBzEzJSKQZ1LqXTKtTB4NtINsxl8zE98RkvO+87PPf7+nvE23h+/G3LnpfXXh6e7/8Z4RkMLIbAsCwPEghuE4QkNWr8zpqrh9Hc/GPzjtTHfUcMvztURycRo1hkk5mNqGIPCOYww6+NpDDq79X67A85pgkqtRt4L15xpZtAgh0yrlZeXVy6XSzfiB/DrjpZpvx/O0EcgOY+7HFNhCOEwoF2Om0fsH2yVMebjOvM1B7AY/74DghOTZIzvHAtw+Z4j47ODyRkWd7S96Xmwru+6gdzNs+F9uZs7VSWmRG3QmoB0R3g36kdka4DWGayc4OKJbfnEsJ/HZx6j+fd4QO1gSTrYmiMlrg/PsRpzd9zzDvR8/H3v3PkIPJ9Fku4AyS/0cfqHX2uSLRyTHs25IAxvx2EfDqq2gxkOgGVPnu2ZXhkBDQ0OiFJy3RBiZFkW4rKAKs2MMumyx/aL4KXmDNWopTLCso0KDM5/p4yUgb6drqNdcddaEQXJrdNQCjpoKvUEPLO3Z5Jv9yxMg3CGoIzSnComriso+OfvQtl98N0u6fdtctx7XkxjIuA0Ew4u9wN/exb0cR/fuTtAaR4JOVG40aZ7zt99NsmHIlEQ7cJCpZkbRoMXeobgnOs+vPfumQuItL7p1d437canHhEXX+zWc4cEsebPPOal58/U4rlMgjoa1m5QSenjFeAADkPJBAdfwXM4RkRYUawlsIJoAkkEeQHZgA3kBrIiyfMjUlxIKfHt2zu320bYKtfrjVzLwVGmduqJwhnax71F5mPY1GjVIZ3uO6KZEDdiiqxpJaWFy7KyrjttvRDSTlwdqEtIxMUN6mb9XjGiYUEFShtbrPl7NUFshLQS0kKtO8vlxrK9kNZESMpyWVi/LQQVggSu367st0zNBa3QiiJJPZcoxh5ZEgflItAECR4pa2aYCuRGE4OmTmsbRtG2k2MgxYTo9aQxdLlbwoWwRi4p8np54fXlK+slERchLYtHXprLeq6Qc2HZNjRFTEfk494bX2ulyPAQQozKsiSuu3PlB51RA2jfjGf590f8GHnxv1uPAA/3D5TqzomoAYkLpVbevl1ZViMtmXU18iZc3z2/QPWVpF/Q5YJI6sa3089UAml94esPP/D2duX6vrHtGUwJHk4lJaVZwsjUWllkQcTpF96HgCG8fvnC3/zt3/LzT39m267kPQPiUb0Q/Ttx0Gnvgcpwloy/nxr/4iatdj10OE2Csa4XN+x77kqthevVddq+b2zbxrIsTo+U0HOtxrbw0SM866r5eY5NTuROz/3S9+c2GyvDC9faQm3+fLXVnifpBuIJXnZqvdzREX6tPeracf/H935pI3723Wdtjiy11jpwqeQSjk28VgVOSs6g9ZWykizSOm1EekT9iZ1yPM8MmGbjdN47mV6b27zOjve6w2pE0MY1HYyMtdl8r50A/DD2Rk7LAC8xdnkPkXVd7+iCzyginvOq/TEmGsukK1Q8+nykARlIH9upc4dxdezZ51u4rOthlPXbdTpy6wabdcZIo5Qdax55ybmR98Kt5mHnMejUqZaT/nSMH6ieY31S6dsRrRjyMo/LCQTcaz1/9hEgjtfm3/O8jjU552ghdjcX9wBmUHyl74GDpVI6I+Jkkoxxf8xBvgeTk24Qd0I1FWhnPw9ZVkFrg8LhWAmdXu25vEMcht1zLhDv571MnUBiBgn6dL37nMn0vfkifs95bFu3/wZItXbAl+NriI/js0X8CCbnZ/meo+Wp4+Xh+4+fHStgPA+cwGU4f2W4StoJIJzORe/j6bQba+hxrxbtzk/u13doOqBRl4s+tz0IoBIpDfb83wteau6P6/xOa25EizRohVYzLW9H2Lu1e1qAR166J2Ak9Q3PxhiIMaB3AzcGn258e5aB9cjIObQ4WACHVLV+mOBjIowOwDwZ3YVHXdiHl9Hc+Om29wNdqX1YpGPSWm098VI7/WP02UHFnLjWWlf0TxTKB8+LuPiYdjBRK6UbgmbQWqWU6sZJ8RCuJ7Z1hS90Q7eRUDd2a0NU0OrgyAfGUHHDvtTmkaJmWMmUXNn3Sq3DE+X0P0TQEFmWFUsrVguxRpItTgsUo6QEAtoCVO0KXIHoyp2VpgXRQpOKyUrjRpMIYcVixMJC0xXiiqYX0vVGeL8hErnJzekjeeRdlEN5DvA3wre+ODpvWZSRV9WqUfadzE5KiX1ZWNcb5cWT28O2cSlOAcMqZtnpRstCsAvEhIZE1OAL2X14aDAPw/doYW3JIzYhIJTDU9lKYb+80PZMy5m2F2p2bzhRUAkMMBaCA5gmzamBhK4cOz2i+UoxXOGEKqQo/f1CsQKtYHJ1GcY9Vik4dXJJsK6Ry2Xhy+sry8uKLhDSgoXgkR0RpFZCqYRth7Q45VIijTdP5KygoaJaSVqRaK5LxPj6utDY2LadkoWgUDEwQUPqgg9i3WCn3q2Luw3QLWb3jjdBiB7Va4oQEankfOOnn28si/F6CSwJwpa43n5CwwUJF5Z4QTQCyYts0AtABCFdXvjymx95v+1ct41WGyGknmCvhLB4sZJWaAU0dRoYg9rmz/vDjz/y9//DP/J2feff/vnfPOkz37pnzecwxgWVsYn6vM1JzMPQeAQCA5z7fiyd+iGEpBQp5LiwpEarRl5cZ+S80xps20aMC1FXaurFFjpVQ5qHLmUa+5mLP7dBcx1/z4bZo3575o19NGDNvO9LWimlsO/ZcwlV0ZE0XHZqWyh1I2enjXl+zOn1ffasjzr3l5pMG+wvGRYDaD+OySPV+MwH6UZh8NxDzyE495jSHYIlV2KI5zwjnU49d2b8eqB8tWfFHuzYl8fr947BBxDYPeTj38PL7mDLDiMNum41ENTpqfieHCRgsRu22mmoEy3pmPtuHcrcLTupXMdYQ3cgjL0OrDmldVyD1h1lXf7m3NwP/zeO6BE9Z1RlUEDlNOKo1FaoHUDnXKmlUUpj23bet409FwRlXV9Jcbmj1A9Wg8vAKUsz2HiUmcOwkzmK4fuwHvlQehrLT9bYPG7nuhx0vnndKRpSjy4V4si76rmJpzGvnT3iK6SbwXdgyffhk1Eyy5SqEpAzf7P3Te1AITjt24uoSIOgCYkgxA6kAkJzZ7oIHHRBn9DRdRHr62vI/nido++PYzT/2+mNiaCFKpkqGUHBCl5MxbqDudMoa6XWs2jJAd6wD/d7bN/TieczP9ebp6z4M8wOxNnZdScPM6dhUltD2m38bYDYnXz5V7oDkZ5q4KNOa9LtIHfypbDQIqhEz2ntzzF8KPcYQHohBkWCYDTyyLF/0n4RvAw9MJBns0OVw/DcToJyDtB9+DHGgEgFUYLRPRYeuXFqV/MKXDomRboBMCRwhM8G4O2vH9T4gSIfkrOOv09PSgjRvflpIcbUfxaIeiTqt2oI1ZP17sbjfnGOa5oZFaNYcw+BVv+7b2jVGrk6hae1ykEBmATvccNXVRpd0UsA0V7dS47E7drBhm94HvmSuxwZpZnS2k5tzROGTcG8UsoYUBGhWu2gDg+DZzdyyl7Y90KpnrTooM8N9RCiV9padqRXl1vLgpUdKxfCmljaCtacphXCwWdUGfSmiBDQ0Agpkgg0CUjIWIgQExIvTuGKF0K6IfoN1UiMie22sV1vbJ1v3KxBNQdXNpRylx2TvsEX35hUxt7sXgcrDmb6ppQumVQKtRWWmql1J+WFtK5Yu9Bi7ZWjGrqshwHn4AG/qARfHxVCqB4aTYmcIkuMbD3sLR2eq0C1dnCnPSTdTsPQAiZKEw6jkmGAYM5JZsxjxZpT90wbBPccSq88F0RQfF6cHtZpfkkJKXjE5RIIywopek6ZKtIqrRbCrUAvcIBFsNjBbaAUp1+Ce1Qohon34/V1RYROAdy9+IATwA46aBudeOpBGqryXP/usevjb6fzo1Xh+p75oxaWBDEIMV3ZlzeSXAj6Soyv6BoRPavKAU6bTInXL1/4+sON221zUNnEA40SCWqkEMl1BxNadW+xdu9jELDg4/CXf/XX/N3ff+Ptpzfev33Dcx4KtQZSWjBrPWn13tP63YgLk/GJb9TDneZeekODsizLYRAvy4Vctk6zMl/j2Su/OM2xEFIkiFcR1A6TT177R+A0Ytwy5mJqj+Bh7A/HHE6b8QxgTt3o0akYI0taqGuG3ch55Fw4EMtxI4V095zf81zOY3f/XB/FbFCKfrXJaSgfzquHfs9GXezR1FoDLXjlqBFFNmsHfSzGSFvSSSu0zj1/uL2bEmffnxkt83szF/8EctNnOHXLo7f+zHm538fGjq1BoVdpi+E0MTxK4sDa5H6eD2DzYJyV7M7SZ7Lh1+x7bKvd0Lp3Cj77OUM05+gdzk33iB57sI4VIA1qd4Y1T1L3YiWNkl0Gt/3Gtu2oJndq9CjNoxyM5577/uhZn52jM3Dwfo31Mz7r+nMGCx+iKtN1x1yPdeivn5GhUjLaGqcT9Dte/En4numG2baB0/miPZImfSDOogqP/XJausUB7kHotgvcRd2N05aZ53Xs/ffA4X7+n43P3JTQxyGcRTmGLSpd7/aIBNM8Ptp149KnmN6vz0cdNa/LZ887OxQGyJ3b45zcX4MeLfV9wrpH/M58HvpZpNuNHYSO4gl2dshwvVRbo01MLJ/DyBwEHc82OxRE5KiYedIU7ymwj+1XwMus/J2GIuJ8f2xMmhu9QPdwj0TzvhhmD4sa2hpWBa8StWBUsAohglU8PDuU4UC/U8Kjdn4seHSgQziZvBVjMk+vZU+enbjUKSWWZem/k1eU6sqi5ArshzJ/HAvgDlk3cG5eyX0CmnuLDp5so7TmlZBa9QpSvT/jWYZXbq7K0nDQ8si39I2uugHbjTgPoXqejCdE9rwbpQNEj8Aow6APnaufqbWRRE8vVG3Qsics1kIbSrrSvzO8vYEtLsQQHXikhX3xn21dSZcLaV3Z+jj7hr2i4aWH+of3MWItOFUnRUySVxUKEUJC9IaGBdGFkFbSciGtLyzrN7brleuSCL0MqZfyrYeinL2dTo9z2cm9ZOWo4kb3Yo0ysbkWYt5I+5V1v7DuN8rlxnpZqfWVVDJprYRWofO+hydV+kK2Vn2ht4LVgtUdakFaJVjP1WoVK2p5i6wAACAASURBVO5dCCEQU8Sqm0zFRpW1zRe7WaePxaN4wgBLnTjpyhMYSamtVmoQijaaWi9d3gjmVIs2al60i1MR8Q23WqWMaMCyImnpxr2QulIRyTSLNAtAQnTB1OcsN8h1bJ6e6Ik6zeDS1+Db2zvv71dfqxaIKEsa1Ctfi9aeG5b+2qzou/D2TcHGhqaR2gpv326kPwppWVnTjT29s8rPFL2QQyIh6GoEvQAL4CWypZdY//rjj9xuuxd9eN9O2aIx6FalFUrxvIsQ02GgYEZMga8/BP7+d//It59+4r/90z95Aj3ZFXH0ssl9Cr+rh7/XZPrDNYWB+ea/LCutGTkX1mWl1NXpV815+aO0bQyJmCKhFELPcxr3f+aVPDbG7kGzh/d9Xp4DhF+LeIzoRGuBGFLvQyGXTC7u9Rw0uCOXJ5ajYtevPfMz0PS9gRV+ffyf4ZtnAOpw6LXY86buc3ScNlZQKeS8E5dELgUTDrqiF2np/YEDNLbJ2fY9D/wBPh49wd0B6JuJHP15Zjj5OJ777HFduM+ReDLHwxiaufWzofth/PQetMzg5dFQV87cgMeI0h14ma57/P8AU8OWAOwsEoScxU+t08ZyKT3yUikls2039r2QEowcrNYjaW7LdPqfnALzPTk9x0L69w5XTf/M9PTH9/17tXshH2VvmurjtdneeLS1jtwEfQZguqO3RwtHxPAxz2s24I/7jOI20gsZ9KjBZNVPY+DzoV32MTnsslFY5HysPlZ3BvjpEPfrng5teZDBeb2esns60ETO5wtBCW2yzUQ4qYWtH+VwD+zPZ3xOG3u2XmYbdP7cMyeRyBlo+N7nZmcXvTtndJm7VI3jM9O4tOpO8zMCO4Moo/Y8qPEzy9rs3BnFJ+6iOTICFN0OLyOn+3n7FdrYmfDuFTn0QJvOfZzDmHNY+kSDYxH5eSMcyfmhRUIMhOobVAijoyOpfoCXuUpJOMCLQqd2GTp5umal5RWAPUdAO/fuMUTrBvUEXppgraDaUD3PLZgR9LPyk8UgWnPajoCzdezgZ9dSevJyY+kKPqXE5XI5QNScIOeT6WeP3AnfEJBSuoendMH1Be7lNZ0KJ0Jf4CDqvjnBiH0+nJIzlEY7FK3ZmSvj4VH/3Wr1iEz2fjHK22kg9kjWsgxguBJ78tUBEtPi1b3Cq58foNHfT5cjL0Y0oslBr2Tn30eJ7uEPvYrXkonpwnJZub1/I14W0vtCSpEQlG3bjnMFSrF7yoZ41GhQLOjK1Hr1FAGCGFYaud245Xe27Z3LdqHmF2p5weqGlVesVVJz8K2tuQe1bwbNjFYLtdPZas3kslPyjm0bNe+0nKFVpHszhqeJpB4hIJAtHzQfX06JJE4l9ByTntA6wrriSuCoBihelrK11h1WrhAs+G7cWqW1jLAQw8q+bMS0E+uO1AoFokWipg5CpHspi2/4wQjRjfN0US5VqES2Anux7nk0Qli8alIRWoN19XGqtXK7bT2fxpVvDH6vw/jnmXdqABXrfzak66fWo7TVPHdF40oplZ9+roRw5esa+bLu5Hgjxp8RDeRqLC+F+PIXaFTEglM0zZ0EaV24vL6wvF/Yt0zJpVNgell0FYyNUh3oh+A5PqILWEPNi2785rfKP/7jP/LzTz/xL//yL0cp2X3fnQ4hg6v/0aB53Fjvw/hOJx2/BtEF9Ch3n+JCS421rU65qm2qQLaxpPU0nmMhxHBYbMPQeTRQTsX04ZGBj7Sx77XZeHg0tDxnx415z805jePaHSylnonuc5WkZ4bh/Cz/EWD4rD3rS5v2y9PIt7t5uo8qDSPx7PNJNWndGKjstWDqa9rrvozIixze6+Ekm/e/8ZyPa8dXzyNC7qZI388Pq6PavTFodqzLD/LYGjaBjHl876JB4jRve5CjR69za833e70/A2YGOfPYPtoAc58/ykE43h/vDTrXGaGhHxcxIpunPLWDIlT7mt+7Lh35ZeWg0x/XUgd9Isz1dSZZOY3rE2gpTJGWMUSq2qfppHI6ZunUnAlAPkbiwHik4s0yo6peJKiNggrDSJ/XkysbB82PJXDP/LU5+nNne41S1+7J9VxoOft5GLoMeXPjvLW5uuEAXt0Il+BR67upnuV3KCkBOelIj3vMnZxMNu5Yb+P5753qSpnAy6knh/U+rQWGDc0x14/3P9fCR50/fs+y6/M3KPLy4fMf+qdTBGk4noasjL/H3lpPemHt5bHvPjccCAZnPmLhLOd9rs9DPoiMNI5xjYa5nrNT//3SnvGL4GVsDge373h9TMHxyWmxOfh4LBHHJGSqTiWrNVK7d61pZZyzQg/1jVrew0CeNyP3zrrwtz6QjwlvclBo3IAPMR6e9seNrT86A3z1h75b2OeGWTsPe6eUQsOTwUMN5FbJrbkhLaEn0ntORmtGxI6SzqNs5rqunjQ7GdmAH5zIo6IWYoOihRAqtgxl4Uo+hoR2jnQfdleIUrFWEBpRQYPg2QYVFfOoUWsYjdq8IlEtHdBUj8K0WqmlUo5iCzBcaCOKEjodIsVITCsxLiyLA5dlXUhp9cMKl54vklbWywtLfCXERFiCU/jEkLigJFJYCGknLIvngyw7aUn9sLqVy3VlW1eu68K6JN77AXe3294X0VnKNarL1eBsWhNq5aBgqQX8LBrP6xLz/tdyo5Z36v5CzTfWy8bagUkqGU0F1UCeNlYHT6XTC0Zxix3JV7brO3m/YaUehUC9oISDeEG8ulwQYhkFLir77jIQQiT2KqLaqVzDWGVEYx7K7Urw9eB5GyPJvlGyoPZOCImQLujySiw7oWTiDlwENT+DZ3jZeyAFNSOI51GFaKwXQCLVpFPId5q07mkDiWDZ1+iXr6/dOP0T1y0jZe9GihxGy53ClQcfuBzapweaXPmNr5h0qqskTBZu+84f/njjdTVSXAhhwXRhN0VuO8v1xvK1ES5Q9ULFyLb1CCqkZeFyuZAvGyXn7iCJnpekhlpFaqNkQ9UjMPQD7sA94xdN/Jf/8tf8wz/8jref33h7e+9RkexGmnoEUvTesPq1NuhNh9PnoEyEzh9fWFeXo6UtlHU9qaH9sLAUN0LySnYhhSNH7NT73wMhchhSPk3foZkchuz04rRHPxpQ4LIbQiKGM1pebb3LC8m5EIOf+TLyC7/H934WefnF1uX9e305PvZg4I/2aNQd4zMxAUqJh/Mu9wTVsZ9Va9PBuP0Qv1aPBPV7r+55z2NMeWK8PxWpqaKS2aGLnhlU/vu+MIBf4V4+nkVJYCR7nxS3gyb9kKPj43AeuPfMyPQ/h6E8DkM8PdbDmGcynn2d3BeUOK/3ICfHOHIUJDkAZ3cG+ViVfmWn1Jaa/fyuXu0RBjVrzO7HdTJyM+5BHGByRoqeOHPG+LR2Gv9zfx7B9OjDcW8bjqPzEGTjZCw82l7zuPcBPYz2R2N5PlJiNrgVTlsP0J7fMofkRh6Hj8u40djPBn1x2HNyULrmtShj8vB9c6zm4dx5NvfjbzfIzzwN7VGieTyP8QkBVQihdRbMKUePa9TnjOP9+ff4+1yzXZtPcjF/di5Fz4jKTm2ckfTYrIPXR9Ayg12350Hb+Zk5t12gl2f3Ik8N6weMjoh4ZdBLH3WgOy70eMZW2wRe+nEYD/L02H415+UoS9wP3om9LJ0f1uYGMBgxTiEec66yV35wb6LKELCGScNsVLKIPRnKqeR34FBcQaiC9qTyUVY0DGHFjSjMOfbC/eIZwqsqflBiUjeS+2E4Xn3L+vfOqNH4fsfeDNeU9bBYKYU991PGrVI7bWtLO6k4lSpGX7i1uAIb5QFDbcR2LiKVQIrLoSzGuRpGPAzQA916kSVCEETi4ZUZVb1icvCiEhhnxHBUK+tRApyehxWsR1ZcQXn5VzMjt91L9x5h8dMwOHKDzD0h1oCaeyWQXg0kBmLc+hkqfgbMellY0kJKF5b1gqQLYblQ684eMiElQkno0k+Y18UrluG/0UiIlRh2NKUe2YlHHklaFj+pfl24vi+ofuN6u/kc1dJzdtw1Pc79aWZYrWeFJoPhk9HgBnexSiuFVgo1F2o582JaLbTLhqTCoEwOvd6qHRG3Vh3E1Jwhv7NtN/Lmp9qbtdNopbgEdx5wFCWtidaMvRcn2Lfd11viMDZ0GA7j/4PLKt2hgFGqy1AwIwQI6smGMcD7toFekfiOLi/E5QUNN0LMLKUQSjm0hYhAbU6FaxWh9YM0F+IiEBa+aKJJoFBob0LOb4hBFC84YK0RVfjh6xc/6yc7sCu93xLToXOGSpDu/RjVT4ZRKTI63texnaQYCU43EF0wg61Ufv+nb6wXP0jUdCFWUC1sG57T9DWiq9FUKfQiI81zvJbVAbnZu5/xkqwfBNujYKrUkik503p5c8EjifRSny9ffuBv//4f+Lff/4G3b/9EKfvpvYvJQSQydUzu9OK8GUkHDZ2s2z8/f8f1VohKGlSlFklxYVkKeS/s/eDKbbsRl+gFJrKXfZcYJmNwdlydzhEf948gYRhW3/NszhJ71/rGeETbQ0RD7I6Qi1Mac6XVvevXTCmJcZJ57R5w6wIrkw6FYcB0z6Kcozn69uCWm777C6DHOKMZTzyYx/36lMx988pqDUxpzZ0gTtE8DYrDeOhllcXMDfK+JhRBO513bMPDszp7fY85GP+exjyEQUvzd/wW5nqkP/pJT/kYUVMVJHRDW7uOpee3mq/51g2T0vcRgCZehU048zVx9eVGkVkHsfdMj5mGZWYQuJNDt1PGvE3gh3NMZBrDe8N7TFWjH6qFSuj8fa+GpJROQ7ZOrbGuZ0chnT7rRyJ16PM5nnMGNLMgTkI1PL7DYOZ4+AM0jIfV0O2yJxGQw7Af3nQJTOKKmPVjKPyIBbHz+U7a9WlM++udXncAsvso4xhfrzB36oIBHHRQuI458NJQrl4GzUig9TN1OKucWbc91Jw4L0ckagZWp54asjzW+NmX+/k+Rt5mue6gbtD3Rm6UeJVAFc9tDNJzRvUEyiP2cq5+6TztAUw5jPXxHIeupfWxllMP9N/ejfuKX2MeZDx/78iEUY/WajnOhRr27gAm8zy6vdBB9Vz0Yug1u59zZ5xMNELrNtJdcQ/DLBxA1Z+h+tyrdic6d9d91n4RvMQUD4/XOA06gB9QKJESXNBHJ6DSqmGMRMt0/IxT3VWrc/oVzAqt7jRVWhAfHD0FZ4Al6Yg2Rj/V3BGuhzHNHMWlWhGrmJ48uxnph6CkAcJigBAwDTQ8Md5x6Nj8u1Ix6crJMwyatQ4KtHv+Mrf9yq3sZFxZhyWxlKVzxl1Waa7cVIRVE6QXIn7IrDO0BDWnSIUQIXRj59hw3NtwVO4IgmShVcXMFVZKwYFLjH7mSfBwb/BV5Ytj2qXFqnuKW8FaxmxH8gb5hskCkhArtHLr5ZMLpfZIU9XOJoheEMCMhKNPa0IR5yvmkAm5ePQgwrpHlnVhSSvLfmFZX0n5FcsbedmJZSXUC1pWz22JnvA5KkGFsECAGnaW2BP4w0qQlXJ5JV7eieuF9fpynKWi75FwvbJfbw4eqsurR4mCV8LBJ2PUj2/F6YIm0g+G7IZEEU9Iq1dyruS9R2T2CywbotEPsOxjbM1opbohW6sDn7wj9R0rhZadVgaQQqJFg1X8t3QlR/OU0dgdACJcb05B84Rso4miklDCoRykR9VM6iFHFd8HmgnNhKqGBHqEoVC5YuEbMb6ypishXND1nZATFCWGxQ2cCtIyZhvGjklGY0KqQAtoWFjjK5ZeqXHBwsL7Twr5ZwIBEzsoFvEitB+/UPLOH//4Z/ZrRjEOqqcsJxAZeuygdvg/vXx3P2+ChrTZw9cNnRBAF2qtfNtu/OsffyZeLmRTXpbKmhQJG7r/xGILsSkSVwjufKFB1JUlvpJiJqaNfbuylx1dzaMvIr2ynLHvV6IaSxIITleVEMgN9PKFH/7yr/mb3/0Dv//Dv/P25z/RqlCLUrIXERGNiAlR4dHAP71654YUu4Fea6XbnsDw0vslJAppjdS2YqtRirGncmxYtWXyfiNFpWxKwNDLyxENOw+B8/lx3TSVRmYGCRzvf2giB+99GKKHvp7zHsyj5VpK12kLGgopNFKslNxLbuN7TxnUzJIoNRCq5wDeGSkIjcJBs+uvDiAzBvZ7m+ajh/T8m8MAmTDKASXHGrRuZAyv9MhPDOoR+SVVJAbCkpAldgeddGNZuxNsikj2HD7fBwWxcDrwDKwX57gDlQjDJTCDmnH9MZeqQrW9G95+QU8Oh4PaLVPRBj9N05P1xWjSS8s3z6E7cyOglocxNsEIJHXq8OGwGDnZcsrfkHunfo1rWLdR/D2nqYe7eRqflMN59XB+x5PketEGVGh+sHOsRg1GCo1MIVIxDVgIXGtGg/g5ZOYVUhvQxM+HMnFZtF6gxA3Os8LWodPunBbdgB8G7DRn3S/R/+wGvLlTt/W8l2MQVQ+Q4KbASU0d+kTV59CqggREux7S6PpTxtkyPScx9MisnAbyTA07ZMPuz8YbTxz01FmK9HM/Br1IAHVbCIVaobW+p8nwJ3UivNJGlcY74DLPev9bWi9lf0/HH8885kG1V846gL9XY6v9x2TQmzxtISmYgoSeRxTkKOJU6RTmMce15/tgh113RDNGBbkBYMw8d3Y4MvoQlql88Tymj3TQGYSdy+0ELR/BSzsQ1KiYO6K3Y2yAoxjFnQ7s6QwDqHhyvx+1Qgf37ggY0RqOaw4Qbp1CP5wJ36sWCb8CXo7kwph6vkhErXsau0ei1ohZ7Web9DiM0cGKdgN6hCDHgXe+rK1GSnQPX7lLCjs9Iq7kHXycAMhP6RXxc0ustmNSR57OzLUcSsoPUTy5xkNYZgV252Gbvj+uMUDV8GIMEPOtZRAhtsRuhVD6YUrdCJW+gC00FomspSNfwRMkxZWPBvXNq59Zcp7Ma8eibtUIatQqWPMqHNoPD1LpSehRid3zi+qxgQ5kr2IEc04/1mh183MU8kZYboTtFQk3WohUhRaEbI1SNwcmpedKSOgKthsv0g8rNTw5vfgQaDBuN2FZFl4ufrDcshbWS/EclrWSlp1Y/dRsW3YkLRAXQkygETrfPYRAkBULgRa9XHMt105JWz3fJi1OLVsW3mLiKoGtR2FK9oiBWYRoh9dvyM2Yf6uuDFVPz1ytjVv1BM1939jzzsvLhi5+WnoYC7/2pMnmZ+RYX8i0HjlSSItAjJTWWJKwLIF1T/3cJI96jcQ/5KyXXo0jT8GsedGHGLwa3djQzL09IoOKOWkzPEu/m4693wVsQ+UbMawsy4WQVuR2YVk9Uiki6MUjCdytFzceQxCSBEwSav1AWamEVkgUtnej5neohRCEUhxmvb6+0hrctszb2zf2vHteVu6grUdgwD3PwglOPtIsTm/Z6e0bQ+jewlKEP/98I8U/YyXw4w+BesloyNA2dr1y0Z3lde36phvvEdaL8fVrY9s2SnZZqvGsgIOpn7tTGu/v74SofE0/MqoB0Z0TgvF3f/87/vjvv+f/ePcoTop+2GitBQ15il7PHsLJCH3o/0k14MO/D8rMYrSau9xkp2EdZ4vku0pYIyJwn7B7mON317aJ3v29NjaooVvHepudTB+jM6f3eDxbq17wIed4UIVKKahkUkoP1DEY5UNFuoMMDgAxDO/xLI9tHuPHDdzGQjv69/js3F33WCt2GuNBfX89QIikAwTH6FHlk7ZzJiefIHI8Jz0a450bz61Hbty93Mz9Gv9+XhluAIXzuvQIyTASx20F9ZxR8QdytdMjLr0q5qBP5/2kuBzRgZ53ekcRs/NZ5vdOitIEwuy5DD0WAvDXzs+dn3/8t+sMhr2DOathOgxz2A+eJxIJtTkwa3YcY/Ao437dj4c4jnvfA+ePpaKfrfcRUZnH6nEez/Uqbmk/vtfBpufcTQ6gqfKriOfDlHJvXw1a2xjvIa+Pkdd7gHA/L65rHJS2Rq/62pPjY6O1nqA/znaTAUTtSCGY6VnnOJ774h18epCTMbaP4zWoUc3OiNbQLyL9cEXcjNNcOHOpY9eN7U5nDNrk6PNMLX2c3/nHaVmdyqYzx2iA8wGypmaeYH/qCjvXTf/3SdGi99OOqKh0z8jxDAPwPIzHuFer7f65x7mHnPmvMKqnPi/qYWOgfqX9InjBpmT7EeYG94zinpIQArXOSYiOns8Qp3l05pg0vErY2DRs9iYMoWHq2AQ+RkJ7GGUV1csRS68u9LC5zIboqWgCxzkgAvdJaPft2YbqAjYqe4Uj1NpGZYUqSHGP/Qhl1lJpxQuwtnRhlciaFkotnqg8FqKK17/vlbm8fvi8iTgwKKUn1TOoe92oG8y9nm9vY7wFTyweihdAzD0BrX+hLcRQIOwQ/ABHie+QLshyId6upMsX3r+98/Z2w64OBFqvtjVvyOOEdwcwXRy7sit7pW6lJ97vXPbMesksuVDXlaXssFyQusCeaGkhri9ovCDR+e8qXgXKOh1RQiKUBdWFEBdiWpBOx0gaUJSIR1nEBFovFVt2pId9VeIx5/NcW7d0lO71MPc61w5gSvUD5ZbFDT/f57oyqNVBa/cypRhJ3auqR+RPvBJd8WpQ+57Z9/F7eJcr1YYiD6xrwqyxbf1UdAWR2GmVEz2gK6y7dTE8e52O4Ye8GikIpRRutysif/a
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment