Skip to content

Instantly share code, notes, and snippets.

View igorbrigadir's full-sized avatar

Igor Brigadir igorbrigadir

View GitHub Profile
@gd3kr
gd3kr / embeddings.py
Created February 15, 2024 20:35
compute embeddings for tweets in tweets.json
"""
a simple script that reads tweets inside a json file, uses openai to compute embeddings and creates two files, metadata.tsv and output.tsv, which cam be used to visualise the tweets and their embeddings in TensorFlow Projector (https://projector.tensorflow.org/)
"""
# obtain tweets.json from https://gist.github.com/gd3kr/948296cf675469f5028911f8eb276dbc
import pandas as pd
import json
from openai import OpenAI

Learning LLMs in 2025

So you know how the transformer works, and you know basic ML/DL, and you want to learn more about LLMs. One way to go is looking into the various "algorithmic" stuff (optimization algorithms, RL, DPO, etc). Lot's of materials on that. But the interesting stuff is (in my opinion at least) not there.

This is an attempt to collect a list of academic (or academic-like) materials that explore LLMs from other directions, and focus on the non-ML-algorithmic aspects.

Courses

  • David Chiang's Theory of Neural Networks course.
  • This is not primarily LLMs, but does have substantial section on Transformers. Formal/Theory. More of a book than a course.