Skip to content

Instantly share code, notes, and snippets.

first_name Recency Frequency Monetary
Jesse 14 311 1547
Frances 175 151 2349
Carl 79 77 7189
Lisa 99 852 8626
Donald 108 318 5224
Clarence 30 171 8048
Pamela 131 350 5507
William 47 363 1024
Lisa 13 151 1440
#add 'node_modules' to .gitignore file
git rm -r --cached node_modules
git commit -m 'Remove the now ignored directory node_modules'
git push origin master
look process:
`lsof -i :<PORT NUMBER>
kill process
`kill -9 <PID>`
@ihsansatriawan
ihsansatriawan / tmux-cheatsheet.markdown
Created February 1, 2017 02:43 — forked from MohamedAlaa/tmux-cheatsheet.markdown
tmux shortcuts & cheatsheet

tmux shortcuts & cheatsheet

start new:

tmux

start new with session name:

tmux new -s myname
git branch -d branch_name #local
git push origin --delete <branch_name>
#!/bin/sh
# Git pre-commit hook to check all staged Ruby (*.rb/haml/coffee) files
# for Pry binding references
#
# Installation
#
# ln -s /path/to/pre-commit.sh /path/to/project/.git/hooks/pre-commit
# chmod +x pre-commit
#
# Based on
class ClusteringQuality:
"""
Instances of this class implement the two measures of clustering quality discussed in the article, namely the davies
bouldin index and the silhouette index. It also implements a number of useful helper methods.
:param solution: the clustering solution of type Clustering
:param minimum: the minimum distance allowable
"""
def __init__(self, solution, minimum):
"""
@ihsansatriawan
ihsansatriawan / DistanceMetrics.py
Created March 21, 2016 07:05 — forked from StuartGordonReid/DistanceMetrics.py
Implementation of various distance metrics in Python
import math
import random
import csv
import cProfile
import numpy as np
import hashlib
memoization = {}
@ihsansatriawan
ihsansatriawan / book_reco.py
Created March 21, 2016 06:34 — forked from mickaellegal/book_reco.py
Python: Blog Pearson correlation coefficient for book reviews
# Importing the libraries
from scipy.stats.stats import pearsonr
import pandas as pd
import numpy as np
import json
data = pd.read_csv("../../Downloads/data_books.csv", sep = ",", header=None,
names=['Reviewer', 'Book', 'Rating'])
# Picking 2 books