Created
October 3, 2020 14:04
-
-
Save immuntasir/15aa310d3e5245aae2e98b17ba2face1 to your computer and use it in GitHub Desktop.
Finding the most frequently used functions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import os\n", | |
"import re\n", | |
"from collections import defaultdict" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"REPO_DIR_PARENT = '../../data/package_popularity/numpy/clones/'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_lines_from_file (filename):\n", | |
" lines = []\n", | |
" with open(filename, \"r\") as f:\n", | |
" for line in f:\n", | |
" lines.append(line.rstrip())\n", | |
" return lines" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# This function will return the (shorthand, full_form) pairs \n", | |
"def parse_import_statement (statement):\n", | |
" statement = statement.rstrip()\n", | |
" if \" as \" in statement:\n", | |
" splitted = statement.split(\" as \")\n", | |
" statement = splitted[0].rstrip()\n", | |
" shorthand = splitted[1].rstrip()\n", | |
" else: \n", | |
" shorthand = None\n", | |
" \n", | |
" words = statement.split()\n", | |
" \n", | |
" if len(words) == 4 and words[0] == 'from' and words[2] == 'import':\n", | |
" return shorthand, '.'.join([words[1], words[3]])\n", | |
" elif len(words) == 2 and words[0] == 'import':\n", | |
" return shorthand, words[1]\n", | |
" else:\n", | |
" return None, None" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_imported_instances (lines):\n", | |
" # This dictionary will keep track of all the imported instances and the shorthands\n", | |
" # If we have a statement like this -> from numpy import abc as def\n", | |
" # We will add a key-value pair like ret_dict['def'] = numpy.abc\n", | |
" # So, when we encounter def in our code, we will know that this means numpy.abc\n", | |
" ret_dict = dict()\n", | |
" \n", | |
" for line in lines:\n", | |
" if \"import\" in line:\n", | |
" shorthand, inst = parse_import_statement(line)\n", | |
" if inst != None and inst.split('.')[0] == 'numpy' and '(' not in inst:\n", | |
" if shorthand == None:\n", | |
" shorthand = inst\n", | |
" ret_dict[shorthand] = inst\n", | |
" \n", | |
" return ret_dict" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"function_count = defaultdict(lambda: 0)\n", | |
"\n", | |
"for subdir in os.listdir(REPO_DIR_PARENT):\n", | |
" # I am excluding the numpy codebase from my search\n", | |
" if subdir == 'numpy_numpy':\n", | |
" continue\n", | |
" \n", | |
" for file in os.listdir(os.path.join(REPO_DIR_PARENT, subdir)):\n", | |
" filename = os.path.join(REPO_DIR_PARENT, subdir, file)\n", | |
" all_lines = get_lines_from_file(filename)\n", | |
" instances = get_imported_instances(all_lines)\n", | |
" \n", | |
" for line in all_lines:\n", | |
" for shorthand in instances.keys():\n", | |
" search_str = shorthand + '.*?\\('\n", | |
" full_form = instances[shorthand]\n", | |
" \n", | |
" regex_res = re.search(search_str, line)\n", | |
"\n", | |
" if regex_res is not None:\n", | |
" function_full_form = (regex_res[0] + ')').replace(shorthand, full_form)\n", | |
" function_count[function_full_form] += 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Count</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>numpy.array()</th>\n", | |
" <td>10114</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.arange()</th>\n", | |
" <td>4889</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.zeros()</th>\n", | |
" <td>3280</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.ones()</th>\n", | |
" <td>1966</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.testing.assert_array_equal()</th>\n", | |
" <td>1759</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.dtype()</th>\n", | |
" <td>1468</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.random.uniform()</th>\n", | |
" <td>1246</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.asarray()</th>\n", | |
" <td>1230</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.empty()</th>\n", | |
" <td>1226</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.testing.assert_equal()</th>\n", | |
" <td>1209</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.linspace()</th>\n", | |
" <td>1149</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.all()</th>\n", | |
" <td>1102</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.sum()</th>\n", | |
" <td>1096</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.random.randint()</th>\n", | |
" <td>1069</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.random.rand()</th>\n", | |
" <td>1063</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.allclose()</th>\n", | |
" <td>1038</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.random.random()</th>\n", | |
" <td>939</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.testing.assert_almost_equal()</th>\n", | |
" <td>900</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.dot()</th>\n", | |
" <td>868</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>numpy.testing.assert_allclose()</th>\n", | |
" <td>857</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Count\n", | |
"numpy.array() 10114\n", | |
"numpy.arange() 4889\n", | |
"numpy.zeros() 3280\n", | |
"numpy.ones() 1966\n", | |
"numpy.testing.assert_array_equal() 1759\n", | |
"numpy.dtype() 1468\n", | |
"numpy.random.uniform() 1246\n", | |
"numpy.asarray() 1230\n", | |
"numpy.empty() 1226\n", | |
"numpy.testing.assert_equal() 1209\n", | |
"numpy.linspace() 1149\n", | |
"numpy.all() 1102\n", | |
"numpy.sum() 1096\n", | |
"numpy.random.randint() 1069\n", | |
"numpy.random.rand() 1063\n", | |
"numpy.allclose() 1038\n", | |
"numpy.random.random() 939\n", | |
"numpy.testing.assert_almost_equal() 900\n", | |
"numpy.dot() 868\n", | |
"numpy.testing.assert_allclose() 857" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Display the 20 functions with the highest count\n", | |
"pd.DataFrame(function_count, index=['Count']).transpose().sort_values(by='Count', ascending=False).head(20)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment