Created
March 14, 2019 04:49
-
-
Save incidunt/8bb86be60e67a3e27b503aaf29613ec9 to your computer and use it in GitHub Desktop.
用Python分析WordPress官网所有插件的开发者信息
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# 首先引入所有需要用的库\n", | |
"\n", | |
"#读取jsonl文件的库\n", | |
"import jsonlines\n", | |
"\n", | |
"# 数据分析的库\n", | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"\n", | |
"# 数据可视化的库\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(54358, 63)" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"authors_names = []\n", | |
"authors_nonames = []\n", | |
"\n", | |
"with jsonlines.open('../output.jsonl') as reader:\n", | |
" for obj in reader:\n", | |
" author = obj['author']\n", | |
" if author.strip()=='': # 对于没有作者名字的插件,有author这个key,但值为空\n", | |
" authors_nonames.append(author)\n", | |
" else:\n", | |
" authors_names.append(author)\n", | |
" \n", | |
"len(authors_names), len(authors_nonames)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAADuCAYAAAAuh+CSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFoZJREFUeJzt3Xm0HGWdxvHv7yZsigRERkDEUgRRZEAIOSoTRUWPQ40g44KIIKg4gCzBtcRhnAGRAhwRUWBEmMgiKpssJYojAgEEAgmLLMIBiiMCUVbZAiH9zh/1hjSXu3Tde7vfWp7POX3SVFdXP5fbt5/3requNuccIiIivRoKHUBEROpFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSyvTQAUT6KUqy1YB1gLWBtYAVgWkUz/1pwFLgeWCJvzwG3A/cn6fx4yEyi1SdOedCZxCZsCjJVgXeBmwBbEBREsuKYh3gZZPY/NPAA/5yv//3XmAhsCBP479PYtsitaXikNqIkmwGRUFs6f/dAtiQMLtcHXAncL2/XEdRJk8EyCIyUCoOqawoyaYDs4EPAdsBGwEWNNTYHPAn4LfA+cBleRovCRtJZOqpOKRSoiRbA/hnirL4ILB62EST8hjwa4oS+ZWOmUhTqDgkuCjJXg3sAuwAbE1x0LpplgDzgPOAn+dpvChwHpEJU3FIEFGSDVHMKD5HMbto0zv8lgAXACcCF+dp3AmcR6QUFYcMVJRkrwQ+D+wNrB84ThXcCxwPnJin8SOhw4j0QsUhAxEl2SbAHIpdUqsEjlNFTwOnAsfkaXxb6DAiY1FxSF9FSbYBcCjwCar9jqiqcMAvgG/kaXxX6DAiI1FxSF9ESbY2cDCwJ7BC4Dh1tITiGMghOpAuVaPikCnlP6T3VeAA4OWB4zTBU8DRwJH6cKFUhYpDpkSUZCsB+wFfB14ZOE4TPQQcBhyXp/FzocNIu6k4ZNKiJJsFzAXeHDhKG/wJ2D1P46tDB5H2UnHIhPlZxiHAl2jmh/aqainwXeDgPI2fDR1G2kfFIRMSJdnbgZPRLCOk2yhmH9eGDiLtouKQUqIkW5ni7bVfRF8EVgVLgaOAb+rYhwyKikN6FiXZFsBPgTeFziIvcQuwa57GC0MHkebTiFF6EiXZJ4ArUGlU1SbAVVGS7Rw6iDSfZhwyJn8ywsOAJHQW6dnhFJ881x+39IWKQ0blv6/7p0AcOouUdj7wKX1oUPpBxSEjipJsQ4rvjtC7purrFmD7PI3vDh1EmkXHOOQloiT7AHAtKo262wS4Nkqy94QOIs2i4pAX8QdXM+r9la2y3JrAxVGSfTJ0EGkOFYe8IEqyPYDTaNe38bXBdOBU//sVmTQVhwAQJdk+wEnoOdFUQ8BJUZL9W+ggUn96kZBlpfFD9EVLTWfACVGS7R06iNSb3lXVclGSfQ74ESqNNnHAZ/M0/t/QQaSeVBwtFiXZrhSnQ9fMs306FJ/zOCN0EKkfFUdLRUm2LXAROhDeZs8DcZ7GF4cOIvWi4mgh/+G+a4A1QmeR4B4DZuVpfGfoIFIf2kXRMv47wc9HpSGF1YHz/ellRHqi4miRKMmmAT8DNg6dRSplY+AMf0JLkXHpidIuRwIfDB1CKmk7IA0dQupBxzhawn9q+OTQOaTyds3T+LTQIaTaVBwtECXZLGAesGLoLFJ5i4F35Wk8P3QQqS4VR8NFSbYKcAOwUegsUht3ApvlafxM6CBSTTrG0XyHodKQcjYEvh06hFSXZhwNFiXZPwGXoQGClNcB3p2n8RWhg0j1qDgaKkqylwE3ARuEziK1pV1WMiKNRJvrCFQaMjnaZSUj0oyjgaIk2wa4BJ3xViZPu6zkJVQcDePfRXUL8PrQWaQxtMtKXkS7qppnDioNmVobAgeGDiHVoRlHg0RJ9krgbmBG6CzSOI8Db8jT+JHQQSQ8zTia5RuoNKQ/ZgBfDx1CqkEzjoaIkmx94A5gpdBZpLEWAxvlafzn0EEkLM04muNQVBrSXysD/xk6hISnGUcDREm2KcX5qDQQkH5bCmyap/FtoYNIOHqhaYbD0e9SBmMaxfnPpMU046i5KMm2BK4LnUNaZ2aexteHDiFhaJRaf3p/vYQwJ3QACUczjhqLkmwd4F5ghdBZpHWeA16Xp/GDoYPI4GnGUW9fQKUhYawI7B06hIShGUdNRUm2AnAf8A+hs0hrLQJem6fxktBBZLA046ivHVFpSFivBrYPHUIGT8VRX58PHUAE2DN0ABk87aqqoSjJNqA41bW+b0NC61Cc/PDe0EFkcDTjqKedUWlINQwBu4UOIYOl4qinHUIHEOmi52PLaFdVzURJ9hrgz2jGIdXhgPXyNL4/dBAZDM046udDqDSkWozieSktoeKoH+0WkCpScbSIdlXVSJRkqwIPoe/dkOpZDKyZp/HToYNI/2nGUS8fRKUh1bQy8IHQIWQwVBz1ok/pSpVpd1VLqDjq5f2hA4iMYbvQAWQwVBw1ESXZesDaoXOIjGFt/zyVhlNx1MeWoQOI9EDP0xZQcdTHzNABRHqg4mgBFUd9qDikDlQcLaDiqA/9QUod6HnaAiqOGoiSbH1grdA5RHrw6ijJ1g0dQvpLxVEP2k0ldaJZR8OpOOph89ABREpQcTSciqMe1g8dQKSE14cOIP2l4qiH14QOIFLCOqEDSH+pOOpBBxulTvR8bTgVRz3oD1HqRDOOhtP3cVRclGSrAPqOA6mblfM0fjZ0COkPzTiqT7MNqSOdkLPBVBzVp+KQOtLztsFUHNWnP0CpIx3naLBJF4eZ/crMVveXfbqWb2NmF052+yM8XmRmn+z6793N7AdT/TgVsnroACIT8KrQAaR/Jl0czrntnHOPUbzA7TPe+lMgAj453kq9MrNpU7WtPlkhdACRCZiS5+0gBqZ+W++cim357R3UdT0ysz+WvP/uZlbpPQ1jFoeZfcXM9vfXjzazS/z195rZ6f56bmavAlJgAzO7wcyO8ptY1czOMrPbzex0M7MRHmNPM5tvZjea2dlm9jK/fK6ZfbRrvSf91RSY7R/nQL9sXTP7tZndaWZHdt1nZzO72cz+aGZHdG/LzP7bzG4E3jEsz6VmdoSZXWtmd5jZbL88MrN5ZrbAX97pl29jZpeZ2XlmdreZpWa2i7//zWa2gV9vLf/zzfeXrcf8zSyn4pA6mpLn7YAGptsAU1YcwEHjrzKm3an4LurxZhzzgNn++kyKIljBL7t82LoJcJdzbnPn3Ff8srcBc4C3AG8ARnqxPMc5t5VzbjPgNuCz42RKgHn+cY72yzYHdgI2BXYys9f6xj4CeK+/fSsz+7Bf/+XANc65zZxzV4zwGNOdc7N89m/6ZX8F3u+c28I/1ve71t8M2At4M7ArsJG//4+B/fw6xwBHO+e2Aj7ib+uFikPqaPp4K/RrYGpm7zOzhX7gdrKZrTRsW5jZTD9IjCj+dg/0257dFREzm2Vmf/Dbu8rM3uSXv2gXuZld6AeRKbCK39bp/uZpZnaimd1iZheb2Sr+Ppub2dVmdpOZnWtma/jB8kzgdL+NVYblqcTAdrxf7vXAlma2GvAssMD/ULOB/ce5L8C1zrn7fLAbKHYzDX+hfquZfYtiRLEq8Jsetjvc75xzj/vHuRV4HbAmcKlz7m9++enAu4BfAkuBs8fY3jn+3+t9ZihewH9gZpv7+2/Utf5859wD/nHuAi72y28G3uOvbwu8xZZPulYzs1Wdc08ytqrvSqs5xxCuM0Sn0/2vFRc3RMcVy5fd1nHT/O1D5li2zN/uptHpGPj7ddy0F7bR6Uyj4wznhsy5aS/cvnw9K7ZD923T7IXrGK4zDccQne518I/vhuiYXx//uH49Bwz281qPulc8DfF4q80DvkQxCJsJrDTOwPStzrnNoXhBpBiYbgLcD1wJbG1m1wFzgfc55+4ws1OAvYHvjRTAOZeb2QnAk86574ywyu3AbOfc82a2LfBtioHfiJxziZnt25UzAjYEdnbO7Wlmv/D3Pw04BdjPOXeZmR0CfNM5N8fM9gW+7Jy7bpSHme6cm2Vm21EMbLdl+cB2sZltCJzB8rNqb0YxqH0EuBv4sb//ARQD2zksH9heYWbrU7wOv3m0n3PM4nDOLTGzeyimTlcBN1G8EL6RYnYwnu4PAC0d5fHmAh92zt1oZrtTTBsBnsfPiMxsCFhxko/TbbFzbmkP2+ve1oHAIopfwhCweJTH73T9d6fr/kPA251z3ffrxVg5ZdKMDjbUYaj88b6JvhYH+cztmAXZGaLDVBbk0t7+f/ZjYPoEcI9z7g6/zk+ALzBKcfRgBvAT/2LsmNgegHucczf469cDkZnNAFZ3zl3WlfPMHrcXfGA77nSSYlTwZeAz/oG+C1zvXvqR8yeAV/SwveFeATzgRxq7AH/xy3OK0zP/Atie5b+wXh/nWuD7fmr6KLAzcOwE8i0zA7jPOdcxs09TfiZwMUW7HwXFNLXryTQWFYdMgYEX5LgvsAMamHZ7YTAKrNzD9gEOBX7vnNvRzx4uHWFb421veM5VRluxR8EHtr08ieZRvCf7D865RT7QvOErOeceBq604kD0UcNvH8PBwDUUU83bu5afCLzblh/AfsovvwlYasXB9AMZhW/YBPg9cCNF2Z1XItdwxwGf9nk27srTq/2BmX5/5q0U+1V7oeKQOnqux/WWDUwv99f3AhZOYmD6J4oR/Rv9f+8KLBvV5yz/rpDu3U1jbXsGywezu3ctz4HNzWzIzF4LzOq6bYkfCI/K71p/tOuYSnfOiQzCZwAPOOc6flsTHdgCxcB2rJXHnXE4535H1+jBObfRsNujruvD3yZ7addt+46y/eOB40dYvgh4e9eir/nlSygOeHeb23W/f+m6fgbFvr7h2151pCz+tm26rj+Enwo65+4E/nGEPJfy4p+z+/4v3Oa3tdNojzuGXv8ARaqk1/NUzQO+QTEwfcrMRh2YmtmVVry19SIgG2ljfh//HsCZZjYdmA+c4G/+L+AkMzuUrr9Z4ALgLDPbgeKYQ/fjH0mxq+rfhz3mlcA9wK0Us6MFXbf9CLjJzBb4n200nwZOsOKdpHcDe/jlc/3yZ4B3OOeeGWMbyxwHnG1muwG/ZmID2x+a2U0UvXA5YwxudZLDiouS7GMUu+tE6uRTeRqfPv5qUkc65Uj1PRg6gMgE6HnbYCqO6tMfoNTRfaEDSP+oOKrvgdABRCbgL+OvInWl4qi4PI2fpPyBLpGQ/u6ft9JQKo560O4qqRPNNhpOxVEP2l0ldaLiaDgVRz1oxiF1ouJoOBVHPdwZOoBICSqOhlNx1MPC0AFESujlPFNSYyqOelgw/ioilTE/dADpLxVHDeRpfBfwWOgcIj14HLhj3LWk1lQc9dHLKdhFQluQp7FOgNdwKo760O4qqQPtpmoBFUd9qDikDlQcLaDiqA+9s0rqQMXRAiqO+rgdHSCXavtbnsb3hg4h/afiqIk8jTvAb0LnEBnDlaEDyGCoOOrlgtABRMZwfugAMhgqjnq5CFgaOoTICJaigU1rqDhqJE/jR4CrQucQGcFVeRo/FDqEDIaKo34uDB1AZAS/DB1ABkfFUT/aHSBVdF7oADI4Ko6aydP4NuCu0DlEuvzRn09NWkLFUU8a3UmV6PnYMiqOepobOoBIl7NCB5DBUnHUUJ7GN6NTO0g1XJensc7c3DIqjvr6cegAIsD/hA4gg6fiqK8zgCdDh5BW+zvF81BaRsVRU3kaPwGcEjqHtNqpeRo/FTqEDJ6Ko96OBfRtaxKCA74fOoSEoeKosTyNbwd+GzqHtFKWp7G+W7ylVBz1993QAaSVjg4dQMIx57Sno+6iJLscmB06h7TG/DyNZ4UOIeFoxtEMXw8dQFrla6EDSFgqjgbI0/hKIAudQ1rhojyNfx86hISl4miOg9A7rKS/Omi2Iag4GiNP45vQh7Gkv071p7uRllNxNMvBwJLQIaSRFlM8v0RUHE2Sp/Hd6BxW0h/H5mn859AhpBpUHM1zMPDX0CGkUR4BDg8dQqpDxdEweRo/DHwhdA5plAPyNH40dAipDn0AsKGiJDsT+GjoHFJ75+Zp/K+hQ0i1aMbRXPsAD4UOIbX2ELBX6BBSPSqOhsrT+G/AfqFzSK3tlaexjpfJS6g4GixP458B54bOIbV0Rp7GZ4cOIdWk4mi+vSneFSPSqweAfUOHkOpScTRcnsaLgN3R6Uikd3vmaazBhoxKxdECeRpfAPxH6BxSC4flaawTZsqYVBwtkafxt4AzQ+eQSjsHnVZEeqDiaJc9gBtDh5BKugHYLU9j7dKUcekDgC0TJVkEzAdeFTiKVMeDwCydi0p6pRlHy+RpnAMfA54PHEWq4VlgR5WGlKHiaKE8jS8F9g+dQyrhc3kaXx06hNSLiqOl8jQ+Hr3Tqu0OydP4tNAhpH50jKPloiQ7HEhC55CBOzJPY30NrEyIikOIkuwYtOuqTY7O0/iLoUNIfWlXlZCn8QHA90LnkIE4RqUhk6XiEADyND4QOCp0Dumrw/M0nhM6hNSfikNekKfxV4Fvhc4hffHveRofFDqENIOOcchLREn2WeA4YMXQWWTSngfm5Gn8w9BBpDlUHDKiKMlmA2cDa4XOIhP2MPDxPI0vCR1EmkXFIaPypyc5H9g0cBQp72ZghzyN7wkdRJpHxzhkVP70JO+kKA+pj7OAd6g0pF9UHDKmPI2fBHYE0tBZZFyO4rToH8/T+KnQYaS5tKtKehYl2UeAE9CZdavocYrTomt2KH2nGYf0LE/js4FNgHNDZ5EXyYBNVBoyKJpxyIRESbYLcCywRugsLfYocECexqeGDiLtouKQCYuSbF3gRGC70Fla6JfA3nkaPxg6iLSPikMmLUqyzwBHA6uFztICDwH75mn889BBpL10jEMmLU/jk4GNgOPRNwv2SweYC7xFpSGhacYhUypKsg2BbwMfDZ2lQc4BDs7T+NbQQURAxSF9EiXZLOBI4N2hs9TY/wEH5Wk8P3QQkW4qDumrKMm2o/jwoE5b0rtrKApD55iSSlJxSN9FSTYEfAg4EM1AxnIF8J08jc8LHURkLCoOGagoyd4GzAF2AlYKHKcKFgNnAMfmabwwdBiRXqg4JIgoydYEdgM+D2wcOE4ItwAnAafkafxw6DAiZag4JLgoyd4FfBzYAVgvcJx++itwHnBynsZXhw4jMlEqDqmUKMm2oCiQHYDNAseZCjcCF/rLtXkadwLnEZk0FYdUlv8iqe0pSmRr6nFM5BngEnxZ5Gl8X+A8IlNOxSG1ECXZChRv6Z3pL1sBbwWmB4z1HMWxioX+sgBYmKfxMwEzifSdikNqK0qylSl2Z82kKJX1gNcA61J8V7pN0UM9CjwIPADcxvKSuCVP4+em6DFEakPFIY0UJdmKwDoUJbKsTFYFVgBW9P8OAUu7Ls8CiyhKYtllkcpB5MVUHCIiUorOjisiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgpKg4RESlFxSEiIqWoOEREpBQVh4iIlKLiEBGRUlQcIiJSiopDRERKUXGIiEgp/w9KgtYfjks3iQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# 用于图表的数据\n", | |
"labels = 'with author name','without authot name'\n", | |
"sizes = [len(authors_names), len(authors_nonames)]\n", | |
" \n", | |
"# 绘制图表\n", | |
"plt.pie(sizes, labels=labels )\n", | |
" \n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"author_profiles=[]\n", | |
"\n", | |
"with jsonlines.open('../output.jsonl') as reader:\n", | |
" for obj in reader:\n", | |
" author_profiles.append(str(obj['author_profile']).replace('https://profiles.wordpress.org/',''))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(['brooksx',\n", | |
" 'miunosoft',\n", | |
" 'ouhinit',\n", | |
" 'mdalby',\n", | |
" 'ouhinit',\n", | |
" 'ouhinit',\n", | |
" 'ouhinit',\n", | |
" 'primestrategy',\n", | |
" 'scheeeli',\n", | |
" 'ouhinit'],\n", | |
" 54421)" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"author_profiles[:10], len(author_profiles)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"54421" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"#convert output to new array, check length\n", | |
"authors_array = np.asarray(author_profiles)\n", | |
"len(authors_array)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>author_name</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>brooksx</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>miunosoft</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>ouhinit</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>mdalby</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>ouhinit</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" author_name\n", | |
"0 brooksx\n", | |
"1 miunosoft\n", | |
"2 ouhinit\n", | |
"3 mdalby\n", | |
"4 ouhinit" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"#convert new array to dataframe\n", | |
"df = pd.DataFrame(data=authors_array, columns=['author_name'])\n", | |
"df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>author_name</th>\n", | |
" <th>counts</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>shawfactor</td>\n", | |
" <td>93</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>coffee2code</td>\n", | |
" <td>74</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>algoritmika</td>\n", | |
" <td>69</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>yithemes</td>\n", | |
" <td>61</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>marcqueralt</td>\n", | |
" <td>54</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" author_name counts\n", | |
"0 shawfactor 93\n", | |
"1 coffee2code 74\n", | |
"2 algoritmika 69\n", | |
"3 yithemes 61\n", | |
"4 marcqueralt 54" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"author_count = df['author_name'].value_counts().rename_axis('author_name').reset_index(name='counts')\n", | |
"author_count.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>counts</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>27289.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>1.994247</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>2.867161</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>2.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>93.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" counts\n", | |
"count 27289.000000\n", | |
"mean 1.994247\n", | |
"std 2.867161\n", | |
"min 1.000000\n", | |
"25% 1.000000\n", | |
"50% 1.000000\n", | |
"75% 2.000000\n", | |
"max 93.000000" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"author_count.describe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAADuCAYAAAA0uwAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8XGW9x/HPM5M9zd60SZeQbnZJaekCFAoUAaGAUERFucBFBcvVq8JFZHFD8crLBRVQuYogAipYoGxSlVLLUigt3Zd0Sbc0SdMmbdZmn5nn/jHpNJNMkmma6WQy3/frFek5c86ZX3wl+c2z/R5jrUVERKKXI9wBiIhIeCkRiIhEOSUCEZEop0QgIhLllAhERKKcEoGISJRTIhARiXJKBCIiUU6JQEQkysWEO4BgDB061Obn54c7DBGRiLJ27drD1trs3q6LiESQn5/PmjVrwh2GiEhEMcYUB3OduoZERKKcEoGISJRTIhARiXJKBCIiUU6JQEQkykXErCGRaOf2WJ56fy8rdh2mYEQqX7lwPEPi9esr/UM/SSIR4Of/2sHv3tkNwNs7KtlxsJ4nbj4zzFHJYKGuIZEI8NqGMr/jZdsrONriClM0MtgoEYhEgJy0BL/jjKQ4EmL06yv9Qz9JIhHg21dMJjXB25Mb53TwvU9OJsapX1/pHxojEIkAs/MzWXnfxWwuq2XCsCFkDYkPd0gyiCgRiESI5PgY5ozNCncYMgipbSkiEuWUCEREopwSgYhIlFMiEBGJckoEIiJRTolARCTKKRGIiEQ5JQIRkSinRCAiEuWUCEREopwSgYhIlFMiEBGJckoEIiJRTolARCTKKRGIiEQ5JQIRkSinRCAiEuWUCEREopwSgYhIlFMiEBGJckoEIiJRLqSJwBjzP8aYrcaYLcaY54wxCcaYMcaYVcaYXcaYvxlj4kIZg4iI9CxkicAYMxL4BjDbWjsVcAKfB34K/MpaOx6oBm4JVQwiItK7UHcNxQCJxpgYIAkoBy4CXmx//WngmhDHICIiPQhZIrDWlgEPAfvxJoBaYC1QY611tV9WCowMdL8xZqExZo0xZk1lZWWowhQRiXqh7BrKABYAY4ARQDIwP9j7rbWPW2tnW2tnZ2dnhyhKEREJZdfQJcBea22ltbYNWAzMBdLbu4oARgFlIYxBRER6EcpEsB+YY4xJMsYY4GKgEFgOfKb9mpuBV0MYg4iI9CKUYwSr8A4KrwM2t7/X48A9wJ3GmF1AFvBkqGIQEZHexfR+Sd9Za+8H7u90eg9wVijfV0REgqeVxSIiUU6JQEQkyikRiIhEOSUCEZEoF9LBYhHpuwM1TXz/1a1sKq3h7LFZ/PDqAjKTVaNR+p8SgcgAdcfzG1i9rwqA1zcewO3x8NgNs8IclQxG6hoSGYBaXR5fEjhmRdHhMEUjg50SgcgAFBfjYMKwIX7nCkakhSkaGeyUCEQGqF9cN50xQ5MBmJybyv9+amqYI5LBSmMEIgPUtFHp/Pub86hrdpGWGBvucGQQU4tAZAAzxigJSMgpEYiIRDklAhGRKKdEICIS5ZQIRE6R+uY29lQeDXcYIl1o1pDIKfDc6v088HohTW1uJuWk8NQXzyQ3LTHcYYkAahGIhFxNYys/eG0rTW1uALYfrOfhpUVhjkrkOCUCkRArq2mixeXxO7fnsLqIZOBQIhAJsUk5qeRlJvmdu3RKTpiiEelKYwQiIeZ0GJ750lk89OYOSqoamT81l1vOGxPusER8lAhEToH8ocn85j9mhjsMkYDUNSQiEuWUCEREopwSgYhIlFMiEBGJckoEIiJRTolARCTKKRGIiEQ5JQIRkSinRCAiEuWUCEREopwSgYhIlFOtIZEQ83gsDy7ZxvMflZCWGMvd8yey4IyR4Q5LxCekLQJjTLox5kVjzHZjzDZjzDnGmExjzFJjTFH7fzNCGYNIuC1aU8ITK/ZytMVFWU0Tdy7aSGl1Y7jDEvEJddfQI8A/rbWTgOnANuBeYJm1dgKwrP1YZNBaU1ztd+z2WNbvrwlTNCJdhSwRGGPSgAuAJwGsta3W2hpgAfB0+2VPA9eEKgaRgWBmnn+j12HgjNHpYYpGpKtQtgjGAJXAU8aY9caYJ4wxycBwa215+zUHgeEhjEEk7D535mi+ODefxFgnuWkJ/OK66YzutGOZSDgZa21oHmzMbOBDYK61dpUx5hGgDvi6tTa9w3XV1tou4wTGmIXAQoC8vLxZxcXFIYlTRGSwMsastdbO7u26ULYISoFSa+2q9uMXgZnAIWNMLkD7fysC3WytfdxaO9taOzs7OzuEYYqIRLeQJQJr7UGgxBgzsf3UxUAh8Bpwc/u5m4FXQxWDiIj0LtTrCL4O/MUYEwfsAb6IN/ksMsbcAhQD14U4BhER6UFIE4G1dgMQqH/q4lC+r4iIBE8lJkREopwSgYhIlFMiEBGJckoEIiJRTolARCTKqQy1RK02t4cfv7GN1zYeIM7poM3tISHWyZfPH8MX5o4Jd3gip4wSgUStP67Yy58+2Nfl/A9eL2RSbipzxmad+qBEwkBdQxK1Vu2t6va1D/ccCfo57+ys5MYnVnHjE6tYviNgxRSRAU2JQKLWtFFp3b42Pcgy0UWH6rnlTx+xYtdhVuw6zK1Pr2H7wbr+ClHklAgqERhjbjfGpBqvJ40x64wxl4Y6OJHu1Da28aulO7nzbxtYWnioT8+47YJxXDV9BE6HITneSXyMg6Q4J1+/aDwfnzgsqGe8ta0Cl+d4BV+3x7Jsm1oFElmCHSP4krX2EWPMZUAGcBPwLPBmyCIT6cHNT61mQ4l3l6/F68t4+HNncM2ME9sHODHOya+vn8Evr5tOjMNw7O+502GCfkZ+Vtd9BU4LcE5kIAu2a+jYb8YVwLPW2q0dzomcUjsP1fuSwDGL1pT0+XmxTgfGGJwOc0JJAODSghwWnDHCd3zV9BHML8jpcywi4RBsi2CtMeZNvLuO3WeMSQE8oQtLpHtpibE4DHTokSEjOS4ssTgdhkc+P4N75k/CAiPTE8MSh8jJCLZFcAveTebPtNY2AnF4S0qLnHLDUxP48vljfcfpSbF87ePjwxgRjEhP7LckUFHfzGsbD7DzUH2/PE+kN8G2CJZaa32lo621R4wxi1A5aQmT+66YzDUzRlJS1cg547JISYgNd0j94oNdh/ninz6ixeVtcN89fyJfvTC8SU4Gvx5bBMaYBGNMJjDUGJNhjMls/8oHTmxkTqSfTc5N5dKCnEGTBAB+9dZOXxIAeHRZEY2trjBGJNGgtxbBbcAdwAhgLccHiOuA34QwLpGoVNvU5nfc4vLQ0uYhKTxDIBIlemwRWGsfsdaOAe6y1o611o5p/5purVUikEGloeXUfPJubHVhrQ342vVn5fkdzy/ICdtAuESPoMYIrLW/NsacC+R3vMda+0yI4hI5ZfYdbuDrz61nc1kt47KTefhzMzi9h1XHfVVZ38LXn1vHh3uqGJmeyE8/PY3zJgz1u+aLc8cwPDWBt3dUMDEnlRvOzuvmaSL9x3T3ycTvImOeBcYBGwB3+2lrrf1GCGPzmT17tl2zZs2peCuJQjc88SHv7zpeW2jCsCEsvXNev7/PnYs2sHhdme84KzmOlfddTFyMKr1IaBhj1lprA+0b7yfYWUOzgSk2mKwhEmG2lPnXBiqqOEpzm5uEWGe/vs/WTu9zpKGV8tomTstK7tf3ETlRwX4U2QJouaQMSueO8y83Peu0jH5PAgDndHqf0ZmJjM5QOQoJv2BbBEOBQmPMaqDl2Elr7dUhiUrkFPrxp07HYQwf7jnCtFFp/OiaqSF5n7vnT6Sp1c2y7RWMH5bMD64uwHGCJS1EQiHYMYKAHabW2nf6PaIANEYgInLi+nWM4FT9wRcRkVMvqERgjKkHjjUd4oBYoMFamxqqwERE5NQItkWQcuzfxhgDLADmhCooERE5dU54ArP1egW4LATxiIjIKRZs19C1HQ4deNcVNIckIpEwqWtuY/WeKsZmJzM2e0i4wxE5ZYKdPnpVh3+7gH14u4dEBoWNJTXc+OQq6pu99YbuuvRjfO2iCWGOSuTUCHaMQJvQyKD2q7d2+pIAwKP/3sVNc/JJSxo8Ja5FuhPUGIExZpQx5mVjTEX710vGmFGhDk7kVKlqaPU7bnV5qG9p6+ZqkcEl2MHip4DX8O5LMAJ4vf2cyKDw2Vn+n2vOGZvFqDCXf3B7VNpLTo1gxwiyrbUd//D/yRhzRygCEgmHm87JJy0pjrcKDzEuewhfOi8/bLG0ujx895XNvLy+jPSkOL7Tvi2nSKgEmwiOGGNuBJ5rP74eONLD9T7GGCewBiiz1n7SGDMGeB7Iwrvr2U3W2taeniFyKlw9fQRXTx8R7jB4ZuU+Fq0pBbx7GNz1wkbmjM0iJy0hvIHJoBVs19CXgOuAg0A58BngC0HeezuwrcPxT4FfWWvHA9XALUE+R8SnsdXF917ZwgU/W87CZ9ZQUtUY7pD6zfqSGr9jl8eypaw2TNFINAg2ETwA3GytzbbWDsObGH7Y203tA8pXAk+0HxvgIuDF9kueBq450aBFHlyyjWc/LGZ/VSNvFh7itmfXhjukfnP2mEy/47gYB2fkpYcpGokGwXYNTbPWVh87sNZWGWNmBHHfw8DdwLESFVlAjbX22Dy9UkCdn3LC3tlZ6XdcWF5HZX0L2SnxJ/Qcj8fypw/28c7OSiblpPDVj48nLTG8U0ZvOPs0SqoaeWFtKVnJcdx3+WRSE2L57fJdrN5bxfTR6Xxl3jgS4/p/zwSJTsEmAocxJuNYMjDGZPZ2rzHmk0CFtXatMebCEw3MGLMQWAiQl6d9W8XfxOGplFQ1+Y6Hp8aT0Yc5/48sK+KRZUWAN7kUltfx7C1n91ucfeF0GL5z5RS+c+UU37nvvbKFZz8sBrxx7jvcwKPXB/NZTKR3wXYN/QJYaYz5kTHmR8AHwM96uWcucLUxZh/eweGLgEeAdGPMsSQyCigLdLO19nFr7Wxr7ezs7Owgw5Ro8f1PTmFyrrf47bCUeB767HRinCe+9+9rGw/4Hb9XdLjLmoKBoHOcb2wu1/RS6TfBrix+xhizBu8fc4BrrbWFvdxzH3AfQHuL4C5r7Q3GmBfwDjY/D9wMvNrH2CWK5WUl8Y/bz6eivpnMpLg+JQGA3LQE9h5u8B2nJMSQHD/wulxy0xKobTq+wG14SjxO7W4m/STo3x5rbaG19jftXz0mgV7cA9xpjNmFd8zgyZN4lkS5YSkJfU4CAPfMn+TrUop1Gr535RTiYwZeIvjulVMYEu/93JYQ6+D7VxWEOSIZTILaqjLctFWlhFJTq5tNpTWMGzaEoUNObLD5VKpvbmPrgTom5aSQnhQX7nAkAvTrVpUig1linJOzx2b12/M2l9bS6vYwMy8d74zp/pGSEMucfoxT5BglApF+4nJ7uPWZNby9wzu1dUZeOn+59WyS4vRrJgNb3ztXRQaAAzVNNLW6wx0GAG9tq/AlAYD1+2t4aV3ASXEiA4o+qkhEOny0hS8/s4b1+2sYEh/D9z45mc+dGd71JpX1XTftq6zTRn4y8KlFIBHp0WVFrN/vrclztMXF917dSnWY5/9fWpDjm9kDEOd0cOW08BexE+mNWgQSkYoOHfU7bnV5WLKlnGc+KGbvkQYuK8hhdEYif1m1n7gYB7dfPIEb55zW4zOXb6/ggb8XcrC2mQVnjOCHCwp6nEpa29jGPS9t4t/bKxg/bAg//tRUXvivc3jq/b20ujzcdE4+E3NSur2/N7WNbdy7eBPLth1//oy8jD4/T6Q7mj4qEekP7+7hx0uOF7UdlhKHy9N1p7GO/v7185g6Mi3ga7VNbcx5cBlNbcfHG3rbt/i+xZt4bnWJ73hEWgLv3XNRvy30um/xZp5bvd93nJuWwIp+fL4Mfpo+KoPaLeeNoanNzRubyhmVkch1s0dz2597rkC6tPAQj729iz2VDVwyeTi3XzKB2PbFaIUH6vySAMCa4upAj/F5t1PhuwO1zRyoaWJ0Zv/sbLa2uMrvuLy2mbLqJvKywrtzmgw+SgQSkRwOwzcunsA3LvZ+Ym9xuclMjuuxRfDSulJKq72F6rYfrMdh4M5LJwIwJTeVxFinXzKY1UM3TGl1I+W1/gPBmcmx5Pbj5jEz8zLY2aELLCc1gRHp2pxG+p8SgQwK8TFOHrthJt97ZQv7jjRwaUEOozIS+euq/cTHOLjx7DweXrbL7563tlX4EkFaUiw/WlDAD/9eSEOLi3PHZbFw3ljAuwnOE+/tZeuBWoalJFDV0EJVYxuda77NHT/0pMpddHbv5ZOobmz1jRE8eO3p/fp8kWOUCGTQmDM2i6V3zvM7d9/lkwFvGYknV+yjvsXle238sCG+f7vcHn69fBf1zd7XV+w6wjs7Krm0IIf/+dsG/rX1UK/vf+64of3xbfikJ8Xx+5t67d4VOWlKBBKxVu4+wjs7K5mcm8Inp43ocRA1Mc7Jg9eeznde3kxds4tJOSncPX+i7/W1xdUUH/Hf7nLxujLOHT+UNwu7TwKm/X8un5rDp2eO6vJ6U6ubl9aVcrC2mctPz6FgRBrLt1ewam8V00amgoFNpXXMGZvJhROH9fj9Hm1x8eiyItYVV3P+hKHcNm8cCbEDr0CeRB4lAolIiz4q4e6XNvmOV+4+wk8+Pa3He66aPoJPTBlOZX1LlwHdoQF2NhuWGk98jIPUhFi/EtAdpSfF8rfbzuFjwwNPE735qdWs3usd9P3dO7u57szR/HXV/i7X/e6d3Xz3ysncev7YgM/xeCxXPvqeL1mtKa7m7Z2VvPzVud1/wyJBUoejRKQ/vr/X7/iFtaXUNfv/sa5tauPl9aW8s7MST3uHfkKsk9GZSew73MCij0ooPFAHwLjsIXzh3HzfvSPTE1l4wVjqmtq4rGA43TU2qhvbWLW3KuBrW8pqfUkAvJvQv7S2tPvvaYX3e9p5qJ6/fbSfD3YfZtFHJWwoqeHl9WVdWizr99ewu/JooEeJnBC1CCQixXYaNHU6DM4OlT6LjzRw7WMfcKR9FtFFk4bxxy+cCcAbm8r5xvPrfTt8Hfsk/oOrC7jh7Dwq6ls4Mz+Toop6Ln/4Pd+4wtxxWcwZl8Uv3tzp997x3QzgxsV0Pd9T91VsjIM/f1jMd1/Z0tu3f/w9NHgs/UA/RRKRvnBuvt+n9C/NHUNyh/IOT72/z5cEAP69vYJ1+73rAh5+a6ffNo+PLCvC5fYAMGF4CnPHDyUuxsHv39njN7j8/u4jXDBhKKMyEn3nxmYnc8W03IAxfmx4CvMLcnzHSXFObj1vDIEqUxsDX/v4eH65dGfXF7tx8eRh/bZmQaKbWgQScf6xuZzvvLIZj4X4GAd3z5/ELeeN8bumsdXV5b7GFnf7a/4Lx1raPLit7fLL0Pk6gBing3/cfj7/3HIQp8Mwf2pOj2Wmf3vDTJZvr6C8tolLpgwnNy2Ry6bmsHpvFdNGpQOwqbSGs8dkMTk3he+/urXX799h4Befmc6CGSN7vVYkGEoEElE8Hsv9r22luc37Cb7F5eHldaVdEsGV03JZvK4Ul/cyJgwbwpyxmbS6PHx65ige/XeR79rPzh7VpaZQc5ubT80Ywb+3H/KtF5iZl07BiLT2e0Z3G2Ory8PRFheZyXE4HYZLpgz3e71gRJrvOQCzTju+cO2Gs/N4YoX/+EdnN805jUsKhuNQqQnpJ0oEElHaPB4OH23xO1dYXsfqvVWcNSaTuuY2vvbX9by7s5LkeCfn5mUwZ1wW/3FWHm9sLucHr22lurGNjw0fwhmj05mdn9ll2ucT7+3hV0t30tjmZs6YTMYPH8Jpmcl8/qzey1y/vvEA3391C9WNbZw9JpP/u3EWmcnBbyv57SsmUzAylfX7a0iKc9LU6mZzWS3r2iutxjgMf129nz+v2s9nZo7iwWtPV+0hOWkaI5CIEh/j5NIpOX7nPBbuemEj1loeW77bVwOoocXNh3uq+Oys0RhjuOelTVQ3emcW7Tx0lKS4GK6bPdrvD+nuyqP8eMk2GlrdWAsr91SRl5HMreeP9SsxHUhdcxt3v3j8PVbtreLht4Lv8wdv6YxPzRjFAwumcu/lk7lmxkhfEgDvzKM2t8XtsfxtTQmvbdTGN3LylAgk4vziuukkdlpItb+qkZqmNl7feMDvfKvbw+7KoxQfafB1Jx1TWF7X5dk7DtbTuSDvtgDXdVZS1cjNT67uUrhubS+F63qzoaSmx9e3ldef1PNFQIlAIlByfAyXn+7fKpiZl85zq/dTVtPkdz4tMYbpo9KZlJNKdqdFY/M+lt3l2WeNySQh1v/XYt7Ertd1dvvz61kf4I/2gZomTqbU+8WThvf4eqDvQeREaYxAItIPri4g1uFgxa7DTB2Zyv1XFXDf4s1drrv1vDEkxnlbD1+/aBw/fmM7rS4PI9ITubZ91o3bY/ndO7tZWniIsUOT+cm103j2w2KqG1u5btYoDtQ0c81v3yc/K4lvXjqxy5TNNrfHr/umo+rGNirrWxiWmsCfPyxm8bpSGlpcGGOYlJPS5Xkf7aviseW7aGx185/n5HPltFx+eu3pPNjeXZWXlURji5sjDS3EOh38elkRyfExnDE6vb/+r5UopI1pZND45dKdPLqsyO/c2Oxklt05j5KqJi58aLlfxdBJOSn8844L+O3yXfz8Xzt85ycMG8Kb/3MBxhj+7+3d/PSf27s8z3RYDLB6bxXX/X5lwJhGpify7t0f55X1ZXzzhY1dXh87NJm37pyHw2E4WNvMvJ8vp8V1vAvr+YVzmDM2y3e8eF0pdy7yf05SrIMV9158QoPSEh20MY1Ena/MG8fTH+zzqwu0p7KB94oOs+9IQ5ey0dsP1nPXovW8W3TE73xRxVEufOhtEmOdtLj8+/z3VDZw27NrefT6Gb6Cb69uCDxgm54Yy/1XTcHpMLxZeDDgNXsON1BUcZSJOSm8s7PCLwkAvLn1ECt3H+HPq4qxFgIsVqaxzcOKXYe5err2R5a+0RiBDBqJcU4uCNBn/o3n13f7afnFdQeoqG/pcr74SCPbD9az93Bjl9feLDzE9X/4EPB2K73ZTYnqmqY2Hvh7IS0uN/lZyQGvSYh1kNO+mU2gawrLa3lkWRFHjrZS1dBKRX3gjXfGdPN8kWAoEcig8q1LJ5KeFOt3rqaxjYO1zcwv6HngtTsxAebpr99fw5riKu5bvJnKo10TyTGl1U18sPsIt80bx/RO/fjxMYb7ryogLdEb79ljs/jPc07zlc64cGK2ryheTxZeMJbTRwXei1kkGBojkEHnD+/u5sdLtvudS0+KZfk3L+RbL27krW0V3d6blhhDbVPX8hSdOQwYY/xqFnXn1f+ey/TR6awtrubzj6+kze2956wxmSy67Zwu11fUNdPi8jA6M4m5P1lGWU1zl2vAuxfCy/89VwPF0q1gxwjUIpBBofBAHa9vPMCRoy1cd2Ye2UP8u4JqGtt4dUMZ37psku8TeGcJsQ4eWFBAfKCO+E5GpCcGTAJZyXGkxB9f43DltFxfS+BPH+zzJQHwDjJvKav1He+uPMqrG8pwW+ubSfSDqwq6jeH8CUO7TIkV6QsNFkvE6zhbKDHWye9vmuVXNfQYh8MwMSeF9++9iHd3VHK4oZnpozJIS4xl+8F6zhqTSWZyHJcV5PKtFzby+qZyv/uvP2s06UlxXD19BA8u2UZp9fE1Cwb42Wem8eSKvWw/eHyR16aSGprb3CTEOgPuaXBs8tHTH+zj/te8BedinYb/u2EWl0wZzicKclj17Yv5w7t7wFg+PXMUz60q4dkPi3m36DDzfracR6+fwRWnB66AKhIMJQKJSDsO1pOeFEtCjJPHOhSQa2pzc9/iTV1WEQNcPGkYew8fpfBAHR+fNMyvamj+UO9ga11TG//cUs6V03LZXFbLvvbNYDISY7jjkgkMT/WWoP7y+WNZufsIrvZWwTUzRjJ1ZJpfEgAoqW7i8Xd389ULx3Pzufn8Y0s5rS7vPeeOz8LjgS1lNfy8wxTVNrfloTd3+IrVDU9N4Pqz84hzOhiVkcjfN5dzrF3h8nivVSKQk6FEIBGlprGVm5/6iI0lNRi8O465OvXQdNenfsfzG/ioveSD0xh+c8MMLp96/A/oX1ft59svH1+UFus0OB3g9kB1k4trH1vJy189l2GpCZw7LotzxmXxXtFhABpaXBys9V/VfMwvlxbxlw/3E+M0tLosTofhrPwMNhRXc9VvVgS859gU2OY2NwufXeurn3T19BFUNfjPHKrrZhtNkWBpjEAiyh/f38fG9lIOFrrU9unJRx3q/rit5b6Xjv/R93gsD/zdfy8Ab3G348dlNU38dvkuAP619ZAvCYB3Sml9i5vk2MC/UofqW3wJyu2xrNxTRWOAVssx47OHAPDy+jJfEgB4rVMtJfCOFYicDCUCiSglVV3n9fdVbVObb8C31e0J2J3U2f6qRppa3Xz/1a7bSS76qATjcGCA2JMsDT2qfbB4fxDf74i0xF6vEelJyBKBMWa0MWa5MabQGLPVGHN7+/lMY8xSY0xR+38zenuWyDGXT83p/aJudN4icnZ+hq8EdUKsk+R4Z4C7/F1xei4/+cc2v20wj1mx6zBHW1xYoK2XaaXx3bQcjr+P9/u8rCAn4CBzR29sLu/5ApFehGwdgTEmF8i11q4zxqQAa4FrgC8AVdbanxhj7gUyrLX39PQsrSOQjl7dUMZzq/eztrjabzpmd+JjDPlZyeyubMDlscQ4DHPHZfGbG2aSkuCdSvrkir08uGRblymhC6bnsGJXFW1uD8YY2twemtvcXcpVnIjctASqGlq7lJMYOiSOhFgnFXUtuK0lMzkOg2VIfCxNbW7KawOPfQAUPnBZj1tmSnQK+zoCa225tXZd+7/rgW3ASGAB8HT7ZU/jTQ4iQVtwxkgm5aQGTAIj0uLJ6lROYsqINHYcOuqb4ePyWHLSEn1JYNm2Q/zo74VdksDE4Sk8cv0sfn39DOqaXdQ2tdHYGnwS6O6D/MH2BWOdzZ+aS2l1E61uD26PpbK+hYr6VvYcbqCmsfsB4Rl56UoCclJOyU+PMSYfmAGsAoZba4+1ZQ8CfVv3L1FZhstJAAAHX0lEQVTt/V2Hu5zLTU3gyS+cSXObm/99YxslVY1ccXou7xVVdrn2hbUl/GNLORnJcQE3uh8SH8OQhBhe23iA7UFsTAPelcLVDa00trr5j7PzGJmeyM//tZ0DNc2+6Z6pCU7qmrsOcA9PjWdPZfebzDS1uVl4/ljeLDzIobqW9hYKzMzL4KHPTg8qPpHuhDwRGGOGAC8Bd1hr6zqW77XWWmNMwM9XxpiFwEKAvLze94qV6FIwIpWiiqN+58rrmjlytJXzJgzlpa+c6zt/5982sLuywe9aj4W6Zhd1zYHLSRxtcbG2uJq1xdX817yxQcW0em8V8wty+N1NswA4VNfMoboWOv6AB0oC3mtbOFTXfc0ih4Fbzx/Dt6+cHFQsIicipLOGjDGxeJPAX6y1i9tPH2ofPzg2jhCw8Iu19nFr7Wxr7ezsbO3CJP6+fcVkxg3tWnHzL6uLff+21rJ4XSkujyUjKXBZic4C/UI8uWJvl5IV3Q0r/3PrQWb+aClPf7CXt3dU+LqjTlas08HdL25iY0k1v12+i2+/vJkPArSKRPoilIPFBu8YQJW19o4O538OHOkwWJxprb27p2dpsFgCWb+/mk899oHfuRiHYcnt5/Ox4Sk89K8d/KZ93n84fPn8Mfzhvb39+kwDvhaGMfD7G2dxaUHfZ1LJ4Bb2wWJgLnATcJExZkP71xXAT4BPGGOKgEvaj0VO2Iy8DOaOy/I75/JYXlpXCsBzq/eHIyyfZ1buIy2xb72vKQmB7+v4sc1aePitnbQGGHgWORGhnDW0wlprrLXTrLVntH8tsdYesdZebK2dYK29xFpbFaoYZPAb274Ct6PU9tlASXGBO3CSepnD319aXNZX0jo3LZ5vXTox4N4GgdR3M3bRWWF5PTc9uYpIKCcvA5dWFktEW1rYdXew4SmxPLpsJ5NHpAS8p6fSDqFSXtvCki3l/TZm0NGqvVWs7VA+Q+REafKxRKyVu49wqK7rIqu7Xuxa/mEg2BrEbmN9FcwGOSLdUYtAItb9r25Bf/7gjNHpnJmfGe4wJIKpRSAR50BNI5/41bs0tARfeXQgiXEYXB5LQoyDT0wZzlvbKmhqc5MY6+TM/Ay2HKilqqHn0tKXTB7G2OwhjB2azIIzRuI4ySJ3Et2UCCTifHPRpohNAoBvnKDZ5WHJloO+bp2mNjfbDtb3mgQSYgy/vG46qYlxeNQlJP1AiUAiTml1/5Wi7i8JsY6gylh31rlvv/po96uLj2l2Wab9cClxTgPGEB/j4KsXjucrF4474fcXAY0RSAS6ZHJoylOdTO9KX5JAQJ1rZfeg1W1pdXmob3bx039uZ80+zcSWvlEikIhz87n5/f5MB5xQaemkWAe5afGkB1m6IpBAawpcHkt6Yt+euXxHwGotIr1SIpCIMzoziYw+rtjtzol+nm9s81Dd2NZjeejedLemoKaPexC/sUkb1EjfKBFIxHE6DLd/4mPhDqPb7qBwzd/Zd6SRyvrexxhEOlMikIi0p1NZ6YEkXPN4nIagq6yKdKREIBEpUGmJaBfErp0iASkRSMTxeCyHg5hmGY1inPqVlhOnnxqJOGv3B7dpfTRqaAmuaqlIR0oEEnESY7vbH0ycKjUhfaBEIBEnP8AWlQJn5meQoCQpfaBEIBFne3noyjlHsok5qeEOQSKUEoFEnCdX9O8+wIPFiqLKcIcgEUqJQCJKY6uLtwoPhjuMAemwFpNJHykRSET5/bu7CcNOkxFhUm7grTlFeqNEIBFl3V7tzdudhDgNFEvfKBFIRNlZeTTcIQxY6QnaXkT6RolAIor6wbu3uaw23CFIhFIikIiiomrdq6hvDXcIEqGUCCSijEhPDHcIA1ZTm4ejKjEhfaBEIBElMU794D1J0spi6QMlAokoB2qawh3CgFbVqO4hOXFKBBJZrKqO9iRZLSbpAyUCiSgH65rDHcKA9u5OlZmQE6dEIBFFq4p7lqxFZdIHSgQig8hpQ5PCHYJEICUCkUGkscUd7hAkAikRiAwi1Y0aQ5ETp0QgMoi8vb0i3CFIBApLIjDGzDfG7DDG7DLG3BuOGEQGo4PVqjckJ+6UJwJjjBP4LXA5MAW43hgz5VTHITIYvbKlJtwhSAQKR4vgLGCXtXaPtbYVeB5YEIY4RAadFXedF+4QJAKFIxGMBEo6HJe2nxPp1ZKvzAp3CAPaqKFp4Q5BItCAXY9ujFkILATIy8sLczQyUEw5LYd9P7ky3GGIDCrhaBGUAaM7HI9qP+fHWvu4tXa2tXZ2dnb2KQtORCTahCMRfARMMMaMMcbEAZ8HXgtDHCIiQhi6hqy1LmPM14B/AU7gj9barac6DhER8QrLGIG1dgmwJBzvLSIi/rSyWEQkyikRiIhEOWMjYMcnY0wlUBzuOEQCGAocDncQIt04zVrb67TLiEgEIgOVMWaNtXZ2uOMQORnqGhIRiXJKBCIiUU6JQOTkPB7uAEROlsYIRESinFoEIiJRTolARCTKKRGIiEQ5JQIRkSinRCAiEuX+HwDJNmjfraqlAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"sns.stripplot(y=author_count['counts'])\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4HeV59/HvfbRL1mJb8iLJG9gs3mTAgVJISgIhhoBJUkIgabYmpbThTWi6QdqmCYU2ad80oYS3LGlC2pQSQiExYLZAgLCE2BjbeMULxpa8yZu8yLa2+/1jRvKxrN1nNEdHv891yT4z88wz95nznLnPPLOZuyMiIgKQiDsAERFJH0oKIiLSQUlBREQ6KCmIiEgHJQUREemgpCAiIh2GTVIws/vN7Lbw9XvNbG0K637SzD4bvv6cmb2cwro/ZWbPpKq+fiz3AjNbZ2YHzewj/Zz3IjOrTVEcd5vZ36WirqHMzG4zs11mtj3uWNKRmU02Mzez7BhjSFm7j1NsKzBO7v5r4PTeypnZN4Cp7v4HvdR3WSriMrPJwDtAjru3hHX/N/Dfqai/n24Fvu/ud8Sw7A7ufkOcy08VM/sc8EV3v3AA804E/hyY5O47Ux2bSLJhs6cQBQtk6jqcBKyMOwgBYCKwu7uEEOevY4mfmWWltEJ3z8g/4CxgCXAA+CnwIHBbOO0ioDap7F8DdWHZtcDFwDygCWgGDgLLwrIvALcDrwCHganhuC+G0z8XTvs+0ACsAS5OWtYm4JKk4W8APwlfbwY8XN5B4PywvpeTyv8usCisexHwu0nTXgD+IVz+AeAZoLyHdfRHwHpgD7AAqAzHbwDawvd3EMjrYt5NwC3AKmAv8CMgv5v16wR7XO3D97d/FuHwXwHbgK3AF5PLJ5dtr5fgV/POcJ7PJ9VzeRjPgfDz/Ite3vvqsOwq4Oxw/JnhetxHkBTnd1q/X0wa7vzZOHADsC6c/y7AwjqPAK3h+tzX13iBS8LPoS2c935gcrisL4Rt5qWw7Pww5n1hrGd2+rz+ElgOHAL+AxgLPBku/5fAyG7WVTnweFjvHuDXQCKcdjNBe2lfjx/ttH5eAb4bzruRoP1+DtgSfoafTSqfB/zf8D3tAO4GCrqJKSssuyus90vhOskOp5eG73FbuG5vC+fJC2OZmVRXRbiOx4TDVwBLw3KvArMH2O57akv3h+/v2XDdvUiwJ9g+/Yxw2h6CbdI1neb9d2Bh+Fle0tU6GvC2M9Ub43T4A3KBd4E/A3KAqwk27ickBYJupC0c2yBOBk4NX3+DcIPdacOwGZhB0P2Ww4lJoSVp2Z8g2ICPSmpU3SWFyckNu/OGBxgVNsRPh8u+LhwenRTbBuA0oCAc/lY36+gDBF+oswm+KHcSbly6irOL+TcBK4AJYVyvdLV+w+FukwJB8t0ers9C4Cf0nBRaCLq2cgg2qo2EGzOCDcB7w9cjCTf0XcT+cYINxXsINtpTCfaMcgiS5NcI2tAHCL6wpyet396SwuNAGcGv+3pgXldl+xlv5/XZ3k7+EygKP+vTCDYQHwzfx1+F7yU36fP6DUEiqCLYIC8h+PGUDzwP/H03y/8ngg1YTvj3XsCS1mUlQa/DJ8IYxnf6LnyeYIN8G8F35y6CNndpuH5HhOW/S/DjZBRQDDwG/FM3Md1A8IOrvf39iuOTwqPAPeH6GQP8FvjjcNoPgduT6voS8FT4+qxw3ZwXxvzZcN3l9afd03tbuj8cfl+4Lu7g2Pe8iGCb9HmC7/lZBN/V6UnzNgAXhOs9P5Xbz0zt+vgdgg/le+7e7O4PE/yq7korwYcy3cxy3H2Tu2/opf773X2lu7e4e3MX03cmLfunBJn+wwN8L8k+DKxz9/8Kl/0/BF+MK5PK/Mjd33b3w8BDwJxu6voU8EN3X+LuRwl+/ZwfHtfoq++7+xZ330Ow93RdP98PwDVhzCvdvZEgSfakGbg1XLcLCX49n540bbqZlbj7Xndf0k0dXwT+2d0XeWC9u79L0G5GECTSJnd/nmAj35/39S133+fumwk2VN2t//7E251vuPuh8LP+BPCEuz8btsn/S5Asfjep/J3uvsPd6wh+7b/u7m+6+xGCjehZPcQ5nuCXbLO7/9rbs6D7z9x9q7u3hW19HXBu0rzvuPuP3L2VYI99AsHnd9TdnyHYG59qZgZcD/yZu+9x9wPAPwLXdhPTNQTfsfb290/tE8xsLMEPhpvC9bOTIOG01/VAp3o/GY4jjOEed3/d3Vvd/cfAUYK20a4v7b4vbekJd38p/P79DcH3bwLBnsqmcL21uPubwP8SJOB2v3D3V8L1fqSbdTQgmZoUKoG69oYberergu6+HriJYGO008weNLPKXurf0sv0rpbdW519UcmJ7+Ndgl9+7ZLPTmkkaJi91uXuB4HdnerqTfJ6GOh7rOxUT2/rdreHB+FDye/x9wk2Bu+a2Ytmdn43dUwg2KPqMhZ3b0sa13n99qav678/8XYneV11/jzbwunJse9Ien24i+HuYv0Xgl+9z5jZRjO7uX2CmX3GzJaa2T4z2wfMJOhu6m6ZuHtXy60g2FN8I6mup8LxXencbpK/F+17fduS6rqHYI8BgmRdaGbnhT+C5hAkxfZ5/7x9vnDeCRzftvvS7vvSljrqCb9/e8L5JgHndYrhU8C4bmJIqUxNCtuAqvDXR7uJ3RV29wc8OCtkEsEu6LfbJ3U3Sy/L72rZW8PXhwgaf7vkD7q3ereGMSabSNAV0l/H1WVmRcDoftY1oVMcW7sp10j373kbUN1Nnf0S/vK/iuDL/3OCPaWubAFO7WL8VmBCp5MHktdvT59dr+GdRLx9qbPz52kE63IgbaNznAfc/c/d/RSC4xZfNbOLzWwScB9wI0EXZhlB14r1UF13dhEkiBnuXhb+lbp7d4lqGye2v3ZbCH7dlyfVVeLuM8L300qwrq8L/x4P90za5709ab4ydy8M98rb9aXd99aWjqvHzEYQdEdtDWN4sVMMI9z9T5Lm7W1bMWCZmhReI+jL/LKZ5ZjZxzh+l7aDmZ1uZh8wszyCg4HtB/Ug+JUzeQBnGI1JWvbHCQ44LQynLQWuDafNJTje0a4+XPYp3dS7EDjNzD5pZtlm9glgOsFuaX/9D/B5M5sTvvd/JOhO2NSPOr5kZtVmNopg9/en3ZRbCnzSzLLMbB7we0nTHgrjONPMCoEBXZNgZrnhNR2lYffJfo59jp39APgLMzsnPINsariBe50ggf1V+PlcRNA192DS+/iYmRWa2VSCA719tQOoNrPcAcTbFw8BHw431jkEB+OPEhwoPSlmdkW4joygL7s1jLWIYONUH5b7PMGeQr+Fv6jvA75rZmPC+qrM7EPdzPIQwXes2sxGEhzwbq9rG8FJFt8xsxIzS5jZqWaW3O4eIOhy+xTHuo4IY7gh3IswMysysw+bWXFSmb60+97aEsDlZnZh2Cb+AfiNu28h+D6fZmafDufNMbP3mNmZPazClMnIpODuTcDHCA507SH48B/ppnge8C2CXyrbCTbot4TTfhb+v9vM+tPf+zowLazzduBqd98dTvs7gl+pe4FvktQgwz7124FXwt3G5H5MwjquIPjC7yY4mHiFu+/qR2ztdf0yjOV/CX51nUr3/bfdeYDgy7eRoDvmtm7KfYXgC9G+G/zzpDieBP6NYJd+PcHBUAg2aP31aWCTme0nOBD5qa4KufvPCNbzAwQH+35OcCJAUxjnZQSf3f8DPuPua8JZv0vQB74D+DH9u37keYIzULabWfvn1ad4+8Ld1wJ/QHDCwK7wfVwZvqeTNY3g7KSDBD+4/p+7/8rdVwHfCcftAGYRHHgdqL8mbAPhOvkl3V9PdB/wNLCM4IB55+/3ZwgO8LafJfQwwXERANz9dYI9v0qCM7Daxy8mODPt++F86wm2I8l6bfd9aEvt9fw9wTbqHILPj3Cv5VKC7+NWgu3Stwm2VZFrP4NApF/MbBPBmTi/THG9ZxJ0QeR1OnYgErtUtXszu5/gTKW/TUVcqZSRewoytJjZR80sL+wG+DbwmBKCSDyUFCQd/DHBabwbCPqr/6Tn4iISFXUfiYhIB+0piIhIByUFERHpMOTurlheXu6TJ0+OOwwRkSHljTfe2OXu3V0h3mHIJYXJkyezePHiuMMQERlSzKzLW/10pu4jERHpoKQgIiIdlBRERKSDkoKIiHRQUhARkQ5KCiIi0kFJQUREOgy56xTW7TjIvO+9BEDybZs86UFEx48/prKsgP/47FxyspQLRUS6MuSSQm52gkmjgyciWtJT/5Iffnnc67DM/iPNvPR2PS+v28X7zxiDiIicaMglhUmjC7nn03P7PV9TSxvvuf2XLFi2VUlBRKQbw6YfJTc7weWzxvHMyu0cbmqNOxwRkbQ0bJICwJU1lRxqauW5NTviDkVEJC0Nq6Rw3pTRjCnOY8HSrXGHIiKSloZVUshKGFfMruSFtfU0HG6OOxwRkbQzrJICwPw5lTS1tvH0yu1xhyIiknaGXVKoqS5l0uhCHlumLiQRkc6GXVIwM+bXVPLK+l3UHzgadzgiImll2CUFgPk1lbQ5PLFcewsiIsmGZVKYNraYM8YVs0BdSCIixxmWSQGCA85LNu9jy57GuEMREUkbwzYpXDm7EoDH1IUkItJh2CaFCaMKOXtimS5kExFJMmyTAsBVc6pYs/0A63YciDsUEZG0MKyTwuWzxpMwdMBZRCQUaVIws3lmttbM1pvZzd2UucbMVpnZSjN7IMp4OqsozuOCqeX8YulWPPnJPCIiw1RkScHMsoC7gMuA6cB1Zja9U5lpwC3ABe4+A7gpqni6c2VNJZv3NLKstmGwFy0iknai3FM4F1jv7hvdvQl4ELiqU5k/Au5y970A7r4zwni69KEZ48jNSuiAs4gI0SaFKmBL0nBtOC7ZacBpZvaKmf3GzOZFGE+XSgtyuOj0Ch5fvpXWNnUhicjwFveB5mxgGnARcB1wn5mVdS5kZteb2WIzW1xfX5/yIObPqWTngaO8/s7ulNctIjKURJkU6oAJScPV4bhktcACd29293eAtwmSxHHc/V53n+vucysqKlIe6MVnjKUoN0t3ThWRYS/KpLAImGZmU8wsF7gWWNCpzM8J9hIws3KC7qSNEcbUpYLcLC6dMY6Fb22nqaVtsBcvIpI2IksK7t4C3Ag8DawGHnL3lWZ2q5nND4s9Dew2s1XAr4C/dPdY+nDm11TScLiZl95OffeUiMhQkR1l5e6+EFjYadzXk1478NXwL1YXTitnZGEOC5Zt5ZLpY+MOR0QkFnEfaE4bOVkJLps1nmdX7aCxqSXucEREYqGkkGR+TSWHm1v55epBv1xCRCQtKCkkOXfyKMaV5OtCNhEZtpQUkiQSxpU143nx7Z3sa2yKOxwRkUGnpNDJ/Joqmludp1ZsjzsUEZFBp6TQycyqEqaUF+l22iIyLCkpdGJmXFlTyWsbd7Nz/5G4wxERGVRKCl2YX1OJOzy+fFvcoYiIDColhS5MHTOC6eNL1IUkIsOOkkI3rppTydIt+9i8uzHuUEREBo2SQjeuqKkEYMGyzjd2FRHJXEoK3agqK+A9k0eqC0lEhhUlhR7Mr6nk7R0HWbN9f9yhiIgMCiWFHlw+azxZCdNtL0Rk2FBS6MHoEXlcMLWcx5ZvJbjLt4hIZlNS6MVVNZVs2XOYN7fsizsUEZHIKSn04tIZY8nLTqgLSUSGBSWFXhTn5/CBM8bw+PJttLTq+c0iktmUFPpgfk0luw4e5Tcb98QdiohIpJQU+uD9Z4xhRF62LmQTkYynpNAH+TlZXDpjLE+u2M7Rlta4wxERiYySQh/Nr6nkwJEWXlxbH3coIiKRiTQpmNk8M1trZuvN7OYupn/OzOrNbGn498Uo4zkZF0wtZ3RRLr/QbS9EJINlR1WxmWUBdwEfBGqBRWa2wN1XdSr6U3e/Mao4UiUnK8Hls8bzsze2cOhoC0V5ka06EZHYRLmncC6w3t03unsT8CBwVYTLi9z8OZUcaW7j2VU74g5FRCQSUSaFKmBL0nBtOK6z3zez5Wb2sJlNiDCek3bOxJFUlubrzqkikrHiPtD8GDDZ3WcDzwI/7qqQmV1vZovNbHF9fXwHehOJ4PnNL71dz95DTbHFISISlSiTQh2Q/Mu/OhzXwd13u/vRcPAHwDldVeTu97r7XHefW1FREUmwfXVlTSUtbc6TK7bHGoeISBSiTAqLgGlmNsXMcoFrgQXJBcxsfNLgfGB1hPGkxIzKEk6tKNKFbCKSkSJLCu7eAtwIPE2wsX/I3Vea2a1mNj8s9mUzW2lmy4AvA5+LKp5UMTPm11Tx+jt72N5wJO5wRERSKtJjCu6+0N1Pc/dT3f32cNzX3X1B+PoWd5/h7jXu/n53XxNlPKkyf04l7vD4ch1wFpHMEveB5iFpSnkRs6pKdRaSiGQcJYUBml9TyfLaBt7ZdSjuUEREUkZJYYCuqBmPGTymvQURySBKCgM0vrSA90wexS+W1un5zSKSMZQUTsJVcyrZUH+IVdv2xx2KiEhKKCmchMtnjic7YTrgLCIZQ0nhJIwsyuW908p5fNk22trUhSQiQ5+SwkmaP6eSun2HWbJ5b9yhiIicNCWFk/TB6ePIy06oC0lEMoKSwkkakZfNJWeO5Ynl22hpbYs7HBGRk6LHh/Xggdc396ncyMIcdh9q4rYnVnPa2OKIo4rHJ8+bGHcIIjIItKeQAqeNLSY/J8Hy2n1xhyIiclKUFFIgOyvBjPGlrNy6n2Z1IYnIEKakkCKzJ5RytKWNtdsPxB2KiMiAKSmkyCnlIyjKy1YXkogMaUoKKZKVMGZVlbJm+wGONLfGHY6IyIAoKaRQTXUpLW3Oat0LSUSGKCWFFJo4qpCRhTksUxeSiAxRSgopZGbMri5j/c6DHDzaEnc4IiL9pqSQYrOrS2lzWFHXEHcoIiL9pqSQYuNK8hlTnKezkERkSFJSSLH2LqRNuxvZ19gUdzgiIv2ipBCBmupSAN5SF5KIDDGRJgUzm2dma81svZnd3EO53zczN7O5UcYzWEaPyKN6ZAHLtqgLSUSGlsiSgpllAXcBlwHTgevMbHoX5YqBrwCvRxVLHGqqy9jacIT6A0fjDkVEpM+i3FM4F1jv7hvdvQl4ELiqi3L/AHwbOBJhLINuVlUpBrpmQUSGlCiTQhWwJWm4NhzXwczOBia4+xM9VWRm15vZYjNbXF9fn/pII1BSkMOU8iKW1+7DXc9vFpGhIbYDzWaWAP4V+PPeyrr7ve4+193nVlRURB9citRUl7HrYBNbGzJqJ0hEMliUSaEOmJA0XB2Oa1cMzAReMLNNwO8ACzLlYDPAjKoSssxYrgPOIjJERJkUFgHTzGyKmeUC1wIL2ie6e4O7l7v7ZHefDPwGmO/uiyOMaVAV5mYzbewIltc10KYuJBEZAiJLCu7eAtwIPA2sBh5y95VmdquZzY9quemmprqMhsPNvLu7Me5QRER6lR1l5e6+EFjYadzXuyl7UZSxxOXM8SXkZBnLavcxpbwo7nBERHqkK5ojlpud4MzxJayoa6C1TV1IIpLelBQGQU11GY1NrazfeTDuUEREeqSkMAimjRlBfk5Cd04VkbTXp6RgZoVm9ndmdl84PM3Mrog2tMyRnZVgZmUpK7ftp7m1Le5wRES61dc9hR8BR4Hzw+E64LZIIspQs6vLaGppY832A3GHIiLSrb4mhVPd/Z+BZgB3bwQssqgy0CkVRRTnZevOqSKS1vqaFJrMrABwADM7lWDPQfooYcas6lLe3nGAI82tcYcjItKlviaFbwBPARPM7L+B54C/jiqoTFVTXUZLm7Ny6/64QxER6VKfLl5z92fM7A2C+xMZ8BV33xVpZBmoemQBo4pyWV67j3MmjYw7HBGRE/T17KPn3H23uz/h7o+7+y4zey7q4DKNmTG7qpQN9Qc5cKQ57nBERE7QY1Iws3wzGwWUm9lIMxsV/k2m07MRpG9mTyijzWGFnt8sImmot+6jPwZuAiqBNzh2xtF+4PsRxpWxxpXkM64kn2W1DZx/annc4YiIHKfHPQV3v8PdpwB/4e6nuPuU8K/G3ZUUBmh2dSmb9zSyt7Ep7lBERI7Tp2MK7n6nmc00s2vM7DPtf1EHl6lmV5cBsLxWXUgikl76eqD574E7w7/3A/8MDJtnIqTaqKJcJows0L2QRCTt9PU6hauBi4Ht7v55oAYojSyqYaBmQhnbGo6wY7+e3ywi6aOvSeGIu7cBLWZWAuzk+OcvSz/NqirFQHsLIpJWek0KZmbAcjMrA+4jOAtpCfBaxLFltOL8HE6pKGJZbQOu5zeLSJroNSl4sMU61933ufvdwAeBz4bdSHISaqrL2HOoibp9h+MORUQE6Hv30RIzew+Au29y9+URxjRszKgsJSthunOqiKSNviaF84DXzGyDmS03s7fMTInhJBXkZnHa2GLeqmugTV1IIpIG+nRDPOBDkUYxjNVUl7J623427TrEKRUj4g5HRIa5vl689m5Xf73NZ2bzzGytma03s5u7mH5DuNex1MxeNrPpA3kTQ9kZ40rIzUqwTBeyiUga6Gv3Ub+ZWRZwF3AZMB24rouN/gPuPsvd5xBcEPevUcWTrnKzE5w5vpgVdQ20tOn5zSISr8iSAnAusN7dN7p7E/AgcFVyAXdPftpMEeGT3YabmgllHG5uZf2Og3GHIiLDXJRJoQrYkjRcSxe32zazL5nZBoI9hS93VZGZXW9mi81scX19fSTBxmnqmBEU5GSxTBeyiUjMokwKfeLud7n7qQSP9/zbbsrc6+5z3X1uRUXF4AY4CLITCWZWlbJ62wGaWtSFJCLxiTIp1HH8rTCqw3HdeRD4SITxpLWa6lKaWttYs13PbxaR+ESZFBYB08xsipnlAtcCC5ILmNm0pMEPA+sijCetTS4voiQ/W2chiUis+nqdQr+5e4uZ3Qg8DWQBP3T3lWZ2K7DY3RcAN5rZJUAzsBf4bFTxpLuEGbOqSvnNxj0cbmqlIDcr7pBEZBiKLCkAuPtCYGGncV9Pev2VKJc/1NRMKOOVDbtZubWBuZNHxR2OiAxDsR9olmOqygoYXZSrs5BEJDZKCmnEzJhdXcbG+kMcONIcdzgiMgwpKaSZmupSHHirTgecRWTwKSmkmTEl+YwvzdfttEUkFkoKaWh2dRlb9h5mz6GmuEMRkWFGSSENza4uBfT8ZhEZfEoKaWhkYS6TRhXqLCQRGXRKCmlq9oQyduw/yvb9R+IORUSGESWFNDWrqpSEwXIdcBaRQaSkkKZG5GVzasUIltc14Hp+s4gMEiWFNDa7uow9h5qo3Xs47lBEZJhQUkhjMypLyE4YS3XAWUQGiZJCGsvPyeK0scWsqG2gTV1IIjIIlBTSXM2EMg4cbWFj/aG4QxGRYUBJIc2dMa6YvOyELmQTkUGhpJDmcrISTB9fwoqtDbS06vnNIhItJYUhYHZ1GUea21i382DcoYhIhlNSGAKmjhlBYW4WS3Uhm4hETElhCMhKGDOrSlmzfT9HW1rjDkdEMpiSwhBRU11Gc6uzetuBuEMRkQympDBETBpdSGlBjs5CEpFIKSkMEQkzZleX8vaOA7pzqohEJtKkYGbzzGytma03s5u7mP5VM1tlZsvN7DkzmxRlPEPde6dVkJ+TxaNLanWFs4hEIrKkYGZZwF3AZcB04Dozm96p2JvAXHefDTwM/HNU8WSCEXnZXDG7ki17D/Paht1xhyMiGSjKPYVzgfXuvtHdm4AHgauSC7j7r9y9MRz8DVAdYTwZoaa6lNPHFvPMqu16hrOIpFyUSaEK2JI0XBuO684XgCcjjCcjmBlXzanEzPj50jo9a0FEUiotDjSb2R8Ac4F/6Wb69Wa22MwW19fXD25waaisMJd5M8axfudBlmzW2UgikjpRJoU6YELScHU47jhmdgnwN8B8dz/aVUXufq+7z3X3uRUVFZEEO9ScO2UUk0YXsvCtbRw40hx3OCKSIaJMCouAaWY2xcxygWuBBckFzOws4B6ChLAzwlgyTsKMj55VRVNrG48t3xZ3OCKSISJLCu7eAtwIPA2sBh5y95VmdquZzQ+L/QswAviZmS01swXdVCddGFOcz8VnjGFFXQOrtjbEHY6IZIDsKCt394XAwk7jvp70+pIolz8cvHdaBW/VNfCLZVuZUj6CgtysuEMSkSEsLQ40y8BlJYJupINHWnhqpbqRROTkKClkgOqRhVw4rZxFm/ayoV7PXBCRgVNSyBAXnzGWUUW5PPpmHU0tekKbiAyMkkKGyM1O8NGzqthzqInn1uyIOxwRGaKUFDLIqRUjeM/kkby8bhd1ew/HHY6IDEFKChlm3ozxjMjP5pE3a2lt0y0wRKR/lBQyTEFuFlfVVLKt4Qi/XqdbgohI/ygpZKDplaXMrCzh+TU7qT/Q5Z1DRES6pKSQoa6sqSQnK8Ejb+qBPCLSd0oKGao4P4fLZ43n3d2N/PadPXGHIyJDhJJCBjt7YhlTx4zgqZXb2deoB/KISO+UFDKYmfGROVW4O79YulUP5BGRXikpZLhRRblcOn0ca3ccYHmt7qQqIj1TUhgGzj91NBNGFvDY8q0cOtoSdzgiksaUFIaBhBkfPbuao81tPPGW7qQqIt1TUhgmxpXk83unV7B0yz7Wbt8fdzgikqaUFIaRi06rYExxHj9fupWjza1xhyMiaUhJYRjJzkrwsbOq2H+4madXbY87HBFJQ0oKw8zE0UWcf+poXt+4h3d3H4o7HBFJM0oKw9AHp4+ltDCHR5bU0dyqB/KIyDFKCsNQXnYWH51TRf3Bo/xq7c64wxGRNKKkMExNG1vM2RPLeOnterY16IE8IhKINCmY2TwzW2tm683s5i6mv8/MlphZi5ldHWUscqLLZ42nIDebR5bU6YE8IgJEmBTMLAu4C7gMmA5cZ2bTOxXbDHwOeCCqOKR7hbnZXDl7PHX7DvPqhl1xhyMiaSDKPYVzgfXuvtHdm4AHgauSC7j7JndfDuhoZ0xmVZVy5rhifrl6B7sP6oE8IsNdlEmhCtiSNFwbjpM0YmbMn1NFwoxHl9bpTqoiw9yQONBsZteb2WIzW1xfr+elbFzpAAAM3klEQVQOp1ppQQ6XzRzPxvpDvPHu3rjDEZEYRZkU6oAJScPV4bh+c/d73X2uu8+tqKhISXByvLmTRzKlvIiFK7ax/3Bz3OGISEyiTAqLgGlmNsXMcoFrgQURLk9OQsKMj55VRUurs2DZ1rjDEZGYRJYU3L0FuBF4GlgNPOTuK83sVjObD2Bm7zGzWuDjwD1mtjKqeKR35SPyuOTMsazatp8VdXogj8hwlB1l5e6+EFjYadzXk14vIuhWkjRxwdRyltftY8GyrZxSUURhbqRNRETSzJA40CyDJythfOysahqbWnjyLd1JVWS4UVKQE1SWFfDeaRW8sXkvSzbv1WmqIsOIkoJ06QNnjGHCyAIefqOW/3ztXbbsaYw7JBEZBEoK0qWcrATXv+9ULp85jnd2HeLS777E3S9u0K22RTKckoJ0KythXDitgpsumcaF08r51pNruPLOl3WBm0gGU1KQXpUV5nLfZ+Zyz6fPoeFwM1ff/Spfe/QtGhp1kZtIplFSkD770IxxPPvV3+MPL5jCg7/dzMX/+gK/0P2SRDKKkoL0y4i8bP7uiuksuPFCKssK+MqDS/nMD3/Lpl163rNIJlBSkAGZWVXKo396Ad+cP4M3N+/j0u+9xPefX0dTiw5EiwxlNtR2/efOneuLFy8elGU98PrmQVnOULf/cDOPv7WNFXUNVBTn8ZE5VUwpL0rpMj553sSU1icy3JjZG+4+t7dy2lOQk1ZSkMMnz53IZ8+fREtrG/f9eiP/+0YtjUdb4g5NRPpJN7aRlDl9XAlfKR/B82t28vL6elZv38/lM8dz1sQyzCzu8ESkD7SnICmVm51g3sxx3Pj+aZSPyOPhJbX84OV32HngSNyhiUgfKClIJMaV5nP9+07hI3Oq2NZwmDufX89jy7eydd/huEMTkR6o+0gikzDj3CmjOHN8MU+t2M5vN+7htQ27GVeSz1kTy5gzoYzi/Jy4wxSRJNpT6MHXHn0r7hD6ZTDj7c+yivNz+PjcCdxy2RlcWVNJdpbx5IrtfPupNXzt0bdYXrtvQPdUmnzzEykv25dyPZUZyLT+jO/LuFQO9/f1rL9/qtvpF3zruRPGfffZtwE45ZYnuiz7iXteA+C0v1l4XPn2/5O1l/3us28fN72rsp3n6aru7z779nHTu9JT3V1N7638ySwrVZQUZNAU5mVz/imj+dOLpnLTxdN477TgedsPLtrCPz25mkffrOXd3Yd0hfQQduBoa7fT6vadeFzpjufWAdDmXZd9/Z09ADS1+nHl2/9P1l72jufWHTe9q7Kd5+mq7jueW3fc9K70VHdX03srfzLLShV1H0ksxpTk86EZ43jx7Xr+8IIpvLl5L0u37GPRpr2MKsrlrIllnD1hJCOLcuMOVWRYUVKQ2E0dM4KpY0Ywv7mSlVv3s2TzXp5bvZPnVu9k8ugizp5YxiVnjmFMSX7coYpkPCUFSRt5OVmcPWkkZ08ayd7GJpZu2ceSd/fyyJt1PPJmHeNK8qmZUMrs6uAgtYiknpKCpKWRhbm8//QxXHRaBXX7DlM+Io9ltftYtmUfT6/c0VHuA995gTnVZcyuLqVmQhlnji8hPycrxshFhjYlBUlrZkb1yEIAzpsymvOmjKaxqYW6vYf50aubyMtK8OyqHTzyZh0AWWaMK81n9IhcSvJzKMnPprggOO31zufWUVKQQ07WsfMrdE8lkeMpKciQU5ibzbSxxQB8+vzJuDv7j7SwZU8jdfsOU7u3kbq9h1l9ZD/NrcdOa/lOeEpfQU4WxfnZlBTksGjTHsoKcxhVmEtZeFD71fW7GFmUy8jCXMoKc7TnIcNKpEnBzOYBdwBZwA/c/VudpucB/wmcA+wGPuHum6KMSTKPmVFakENpVSkzq0o7xrs7R5rb2H+kmTueW8fVZ1ez/0hz8He4hf1Hmnlh7U4am1o5mnTL70/+4PXj6s/NTlCUm0VRXjaFuUGC+IMfvE5RbhbvP2NMsOyCHErCPZKGw80U52WTSOh+TzL0RJYUzCwLuAv4IFALLDKzBe6+KqnYF4C97j7VzK4Fvg18IqqYZHgxMwpysygIN+RnTxrZbdmWtjYam1r51pNr+OKFU2hsauVQUwuNTa00Hm3hUFMrh462cCg8D//1d3bT3Oo8vWrHCXXVfPMZzGBEbjb5uVnk5yTIzw5i+Pjdr5Kfk0XCjKyEkQhvFPgnP3mDvOwExfk5FOdnd1zp/fM362i/l2D7TQWfWrGNwtxsivKCRAWweXcjbe60htd4bKg/SHYiWAbAzgNHSNix5R040kxOVqJjen/oOpLMFuWewrnAenffCGBmDwJXAclJ4SrgG+Hrh4Hvm5m5Wp0MsuxEgpL84FjDKRUjeiz7tUff4pvzZ9LU0kZjUwuHm1s53NzKkaZWfvL6Zi6fNZ7DTa0cbWmludVpaW3ruGJ798EmWtqcNnfcoS1s6m+8u5eWNudIcytHmls7Lua66adLT1j+DT9ZcsK49/3Lr44bvvg7Lx43fO7tzx03POsbzxw3POWWJ8gy69i7mf2Np8kOj73UfPOZjjhPueWJjtjm3vZLCnKDMvO+91JHmQu//XzH/9lhffO+9xIAl9/x644kd+WdLx/3f3IZgI/c9cpx09uHP373qwBcc89rGOAeJHWAq//91Y73dM09r0EY6zV3vwYG7SnQOZbcPn73q1g45Zq7X+uyns6pM3n+rq569o5/jk1v36h1VV9v2reIz6zczqUzxvVz7v6J7CE7ZnY1MM/dvxgOfxo4z91vTCqzIixTGw5vCMvs6lTX9cD14eDpwNqkyaVAQw+hnMz0cmBXN9PSUW/vNR2XdTL19GfevpbtS7meymRSe4LBa1OpXM5A6+rvfKlqU4O1jZrk7hW9lnL3SP6AqwmOI7QPfxr4fqcyK4DqpOENQHk/l3NvVNOBxVGtn4jWeY/vNR2XdTL19GfevpbtS7le2kzGtKdUfs6DuZyB1tXf+VLVptJtGxXlvY/qgAlJw9XhuC7LmFk2QUbc3c/lPBbx9KFkMN9LqpZ1MvX0Z96+lu1LuZ7KZFJ7gsF7P6lczkDr6u98qWpTabWNirL7KBt4G7iYYOO/CPiku69MKvMlYJa73xAeaP6Yu18TSUADYGaLvQ/PNBXpC7UnSbUo2lRkB5rdvcXMbgSeJjgl9YfuvtLMbiXY5VkA/AfwX2a2HtgDXBtVPAN0b9wBSEZRe5JUS3mbimxPQUREhh49T0FERDooKYiISAclBRER6aCk0EdmVmRmPzaz+8zsU3HHI0OfmZ1iZv9hZg/HHYsMfWb2kXD79FMzu3Sg9QzrpGBmPzSzneGV1cnj55nZWjNbb2Y3h6M/Bjzs7n8EzB/0YGVI6E+bcveN7v6FeCKVoaCf7enn4fbpBk7iHnLDOikA9wPzkkck3cjvMmA6cJ2ZTSe4+G5LWKz7p5PLcHc/fW9TIr25n/63p78Npw/IsE4K7v4SwfURyTpu5OfuTUD7jfxqCRIDDPP1Jt3rZ5sS6VF/2pMFvg086e4n3jWxj7RxO1EVx/YIIEgGVcAjwO+b2b+TebcykGh12abMbLSZ3Q2cZWa3xBOaDEHdbaP+D3AJcLWZ3TDQyvXktT5y90PA5+OOQzKHu+8m6P8VOWnu/m/Av51sPdpTOFFfbuQn0h9qU5JKkbYnJYUTLQKmmdkUM8sluB/TgphjkqFNbUpSKdL2NKyTgpn9D/AacLqZ1ZrZF9y9BWi/kd9q4KHkO7uK9ERtSlIpjvakG+KJiEiHYb2nICIix1NSEBGRDkoKIiLSQUlBREQ6KCmIiEgHJQUREemgpCAySMzsJjMrjDsOkZ7oOgWRQWJmm4C57r4r7lhEuqM9BZEkZvYZM1tuZsvM7L/MbLKZPR+Oe87MJobl7jezq5PmOxj+f5GZvWBmD5vZGjP77/CWxl8GKoFfmdmvzCwrrGOFmb1lZn8WzzsWOZ7ukioSMrMZBA8o+V1332Vmo4AfAz929x+b2R8S3IXyI71UdRYwA9gKvAJc4O7/ZmZfBd4f1n0OUOXuM8Nll0X0tkT6RXsKIsd8APhZe/eOu+8BzgceCKf/F3BhH+r5rbvXunsbsBSY3EWZjcApZnanmc0D9p9s8CKpoKQgMjAthN8fM0sAuUnTjia9bqWLPXJ33wvUAC8QPFPhB1EFKtIfSgoixzwPfNzMRgOE3UevEtyaGOBTwK/D15uAc8LX84GcPtR/ACgO6y4HEu7+vwRdVmenIH6Rk6ZjCiIhd19pZrcDL5pZK/AmwSMOf2RmfwnUc+zpe/cBvzCzZcBTwKE+LOJe4Ckz2wrcFNbb/sNMj+OUtKBTUkVEpIO6j0REpIOSgoiIdFBSEBGRDkoKIiLSQUlBREQ6KCmIiEgHJQUREemgpCAiIh3+PxmcfxirhxkyAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# seaborn histogram\n", | |
"g=sns.distplot(author_count['counts'],rug='True')\n", | |
"\n", | |
"# Set the `xscale`\n", | |
"g.set(xscale=\"log\")\n", | |
"\n", | |
"# Add labels\n", | |
"plt.title('distribution of plugins counts from same deveploper')\n", | |
"plt.xlabel('counts')\n", | |
"plt.ylabel('rate')\n", | |
"\n", | |
"# Show plot\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABsIAAAFXCAYAAAAYiFs2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm4ded8N/DvL4kIIqISJKZEKUJfrwqqZulARUMbqlNiqFSLKqq8VcRU1Bj07dsUpdWaYixqjKmphsQckgqSCEkkRSKmiPzeP9Y6snNyznn2ec4+w7N9Pte1r332fa+19m/vvfbK9exv7vuu7g4AAAAAAADMm502uwAAAAAAAABYD4IwAAAAAAAA5pIgDAAAAAAAgLkkCAMAAAAAAGAuCcIAAAAAAACYS4IwAAAAAAAA5pIgDAAAdmBV9Yiq6qo69KfpuXdUVXVCVV242XVsFd6Py6uq86rqc5tdBwAAzAtBGAAA62YMSVZze+AWqPlKVfXoqnpVVX2mqn401vaAbexXVXVEVZ1YVd+tqm9X1fuq6ldW+fwHL/G+XFRVX62q11TVrdf2CncsVXXMovfix+N7+8WqelNVPayq9tzsOmE9uS4AAMD222WzCwAAYK49dYm2P0tytSRHJfn2or5PrXtF23aNJC8Y/z4ryTlJrjPFfn+X5I+SnJbk/yW5SpIHJHlPVT2ou1+5yjq+mORfx7+vmuSXxuMdWlUHd/e7V3m89fDqJO9L8rUNeK43JPn8+PdVk9wgyZ2S3DfJM6vqT7r7dRtQB7P1W0muuNlF7EB2hOsCAABsKYIwAADWTXcfubhtHPV1tSQv6u7TNrikaXwzyT2SfLK7v1FVz0vy2JV2GEd9/VGSk5Lcvru/M7a/MMkJSV5aVe/q7rNXUcd/L37/qur5SR6T5HlJNv0H7+7+di4fZq6X13f3MZMNVXWFJH+c5LlJ/rWqvt/db9ugepiB7j59s2vYwWz56wIAAGw1pkYEAGBLqqoDqupfq+qscQqwM6vqFVW13xLbPm+cKuzAcXrCz1TV96vq7Kr6+6raa9rn7e7vdfe7u/sbqyj3j8f7py6EYOOxTknyDxlGh/3BKo63nL8d729RVVdabqOq2n18P96+TP/CdIN7LWrfuaoeV1WnVNUPx2nXXlBVV1lq3aLl1ghb2Laq9qiqo8bP7odV9d9V9ajtfO2X090/6u4XJ/nzDP+2OWoMxyZrqap6YFV9uKrOr6ofjLU9fnLbqrrx+Fo+stzzVdVHquqSqtp/Ufsdq+otVXXOeK6eXlUvraprTvtaxvf+T6vqE+PUmhdW1X9V1YOX2PYnn29V3aCqXju+59+vqo9V1W+u8Dy/UVXvqapvjp/JF6vqr6tq9yW2Xfgcf6aqXlJVZ1TVxVX152P/1avq6VX1+ar6TlVdMB7vX6rq56d83ZdbI6wunQbwz6vqtlX17vHYF9Yw3ehU0wBW1V7j5/XuRe17jq+jq+q+i/oeN7bff1H79l6PHjS+xu9Ofn+qaqeqekxVnbz4uzbNa1vkcteFye9mVR0ynrsXVNV3Jnesqp8fP6+vja/rrBqmhb3hEq9r3xq+z/9dVd+rqm9V1Req6uVVdb1Fr+2hVXX8xHl5RlW9s6ruM+2LqqrrVdXR474Xjd+v11fV/1pi22lf70Oq6tM1XAfOHj/DvZc6DwEAmB9GhAEAsOVU1Z2S/HuSKyV5c4bpwG6e5EFJDqmqu3b3Z5fY9UlJDkryuiTvSHK3JEckuUtV/eI4gmk93C1JZ+nRGP+e5NFJ7p5h5NJa1MTfvcZjLeUVSQ5LckaGqR4vSXKfJL+Q1f9PdFdK8oEM07e9LUPtv5nkRVW1S3c/f1ZFZ5iK8q+S7JdhqrgPJUMIluQ1SX47w5SVr0/ynSR3TPLsJHeuqnt39yXd/cWq+s8kd6iqG3b3lyefoKp+dtzvQ939lYn2RyR5cZILx9f59SQ3TfInSQ6uqtt19zkrFV9VOyV5Y5JDknwlyd8n2TnD+/Xy8dw9Yoldr5nkoxmmpnxZkr2S3D/JG2uYKvLvFj3P3yR5XJJvjLWem+TWSf5Pkl+rqjt19/cWPceVk3w4ya4ZvlPfT/LVqto5yfuT3CrJRzKc55ckuX6SX0ny3iRLfUdX445JnpHkg0mOTnLDDOfjB6vqFtsaTdbd51XVZ5Lcsap27e6Lxq67Znh/k+F68eaJ3Q7K8N36wELDGq5HT8nwvf+3DFOI7jbR9w9JHpzkqxm+a53h8z5worZprXRdODzJPZO8fXyefSZe132TvHZ8+LYM594NkvxOhnP3Tt39+XHbPZIcn2TfJO9J8pYkVxi3PzTJP4+vJUlelOSRGd6n12T4buyb5HYZPr+3bPMFVd00w3m3d4br6quT7D8+18Hj9/b9S+y60ut9Wob/Rpyb4Vp3YYbRvx/eVj0AAOzgutvNzc3Nzc3Nzc1tw24ZAolOst8y/btMbHPIor6HjO0nLmp/3tj+3SQHLOo7euw7ajvrXTj2A5bpv9bYf9Yy/fuN/V+a8vkOHrd/+xJ9Lxj7Pj3R9oix7dCJtt2XO8bYf8zYv9dE2z0Xjp1k94n2KyX5+Nj3uUXHudxzj+3nje3HJLniRPv1xs/o7CQ15ftxzFLPscR2bx63e9wS9b16UR2VIZTsJA+ZaH/o2HbkEsd/6tj3oIm2/53k4iSfS3LNRdvfe9z+nxe1n5DkwkVtC897XJIrTbTvMR67k/zGEp9vZ/hBvyb6bpLhB/7vJ9l3ifPq/Umuuszn+PRlPse3JdltUd/tl3p9E9/hPaf8fJd6PxZqXerceuzY/jdTHn/hO3OXibaXjO/Ph5N8YaJ91/H8/PSi13Jatu969O0suh6N/b869p+UZI9Fn+sns/R3bXuvCxdPvvaJ/muP58lZSW60qO/WSX6Q5CMTbb+z1Dky9u2W8ZqRITD/fpJTM/Gdm9h2r8Vty3xux43P96hF7b+cIXD9ei77nd7W671Fkh9nCI2vPdG+c5K3jvteOE1tbm5ubm5ubm5uO97N1IgAAGw1B2UYZfDe7n7rZEd3vzzJp5L8QlX9whL7vqzHEQwTnpjhh9nDx5E3s3a18f78ZfoX2vdc5XF/rqqOHG/Pq6qPZhhZdnGSv9iOOrfl8PH+qd39kynCuvv7GUZbrVYneWR3/3DiWF9N8q4M4eEN1lDrUr423u890faoJN9LcsSiOjrDefG9JL83sf3rM5wrh42jyZL8ZGTZYeP2k+uUPTzDD+kP70VTaXb3wiigQ6tq123UvjD94ePG93vhGBeMdSbJHy6x30VJ/nJ8PQv7nJJhhNxuGcKLBQtTUj6kJ6bvHPd5aYbgYvK9mPTo7v7BMn3fX9zQ3Rf3bEZfvrsXrQuXIdhOkttOeYyFUUMHTbQdlOQ/M4xwu2lV7Tu2/2KGEXDvX7Tt9l6PXrLE9SgZRpIlQ+B6wcTxLswwYmklq70uvKa7P7RE+0MyTNn6hO4+ddHrOjHDCK87VtX1F+231Of9g8lrRobv/kUZgqfF2563wmtLklTVTTKM7DwlQ2g5uf/7MgRX+yS51xK7L/d6fz9DSPf8nlirsbt/nOTx26oJAIAdm6kRAQDYahZ+UD52mf5jM4zEuVWSTyzqu9wPoN19blV9PsMohxtm+MF/R3DjDFOrJcOP3OdkCGqe290nrMPz3Wq8/48l+pZq25avd/dZS7QvTJ929QwjbWZlIbgahnwN65/dKENA9hcTudak7yW52cKD7j6/qt6SIUC6Uy6dMu3OGUb2/fOiEOn24/2vVNXdljj+nhkCqf0z/Ki/nFtlGIHz0SX6jp3YZrFTJn/Un/DBDCOnJve5fYbRTg9c5r1Ikv2r6oqToWGSb3b3l5bY9hNJTk7y0Kr6uQyjxo5L8onu/tFyT7BKlzvPu/s7VXV+hvNnGh/O8P05KMmTq2qfDJ/5q3Ppe3tQhuDn7uPjyWvPWq5HH1tmn4VjLhXYfHCZfRas9rqwXA0L5+5tatGad6P9xvubZZgq9b0ZphR8elX9UoapIo9L8pnuvmRhp+6+pKpemyHs+1xVvSHD1JkfXRzArmDh/fng5LEnHJthisVbJXnTor7lXu+y17fuPrmqzssw+hUAgDkkCAMAYKtZGGG1VIgy2b7UCKvl1mJaCAuutkz/WiyM+Fru2Avtqx0h847uPnj7StouV8sw5di5izu6+7tV9d1VHm+513vxeL/adZC2ZWFUz0L91xjvr5NLg4OlXLjo8SszBGGH59IgbGG03KsWbbvwHE/MynZfrqOqdktyxSSnTY7sWjAGP9/NGs73qrpihtE/ycrvxUKtk0HYUkFbuvuHVXXn8Xi/mWRhzbdvV9XLkzxpcnTbdlrpHJrq/Bnfv48nuW1VXTWXhl3vzxBcfTuXBmEHjceeDKjWcj1a8r3Lyt+1C7fxXVvtdWG5GhbO3YdvY//dx7rOq6rbJTkywzSNC6OxzqmqFyd5zji6Kkn+KENIenguHU36o6p6W5LH9jbWdsv6vefJ8t+Zc3Jp+AcAwJwxNSIAAFvNQrB07WX691m03aRrLbPPwrGWm75wu3X3ORl+TL9WVe2xxCY3Hu//e9bPvYKFURTL/Y9vS/2AfEGGfx/svbijqq6SS4OULaeqrpDkDuPD48f7hc/6I91dK9yuuuhw78swiux+VXXlqrpykkMzjGT7wKJtz88wAu0K23iOE5erfZxy8KIsc+6O4c1VsobzfRzh9cMkX91GndXd/7O4xBVqP7e7H9Hd+ya5aZKHJTk9w2i0Fyy33yY4NsN34S4Zwq7zk5wwBjcfSnLQeI7fbmyfHLm0luvRcu/d+Vn+u7Z7ZvtdW6mGJPnZbZwPb/zJgbq/0t2Hj3XfMsljMowyfGaSP5/Y7kfd/TfdffMM78/9M4wg+60k76iqbYWY6/GeL0xBudx3Zrl2AADmgCAMAICt5pPj/V2X6V9oXzwNWTL80H0ZVbV3kgMy/Gj65TXWtpwPZJia79eW6LvneL/c1Goz193fyxB8XG9x37he1c8vsdvC+37HJfqWattK/jjDj/Nfzji94Dhl4OlJbjWGC1MZp2L75yRXTXLfDKOdrpphWsTF07T9V4bP/Q5Zm08mudI44maxhSkXlzrfb1JVS4UFd5047oL/SnK9qtpvO2tcUXef0t1/n2EayR9lmLpuq5hcJ+zuST40MXrp/Umum+ShSa6Qy64PlqzterSchW0vd71a4Xlm7b/G+zutdsfuvqS7P9PdL8wwOixZ5vPu7rO7+w3dfUiGaQtvnmHK0pUsvOd3mVyrb8JK34ltHfNy17KqummSvVZxLAAAdjCCMAAAtpr3ZViT5h5VdY/Jjqp6YIb1Yz7V3Uv9CPqHVXXAorZnZlj75Z+WWW9mFv5uvH/KOIInSVJVN0nyhxlGTfzzOj33cj6e5ICq+klIM/6o/Iwk11xi+38a7588jo5Z2OdKSZ6+noVur6q6QlU9MslzM4yCe1R3XzyxyQsyTO32D5Ofy8T+e1XVLZc49CvH+8PGW3L5aRGT5KgkP07y0qXWWaqq3Sbf/xW8Yrz/m3Eaw4X9r5rh80qSly+x365J/noyLBjPuYdlWHPsNRPbLozQekVVXe7zr6qrVtVtp6h1YfsbV9XlgtYMgcIuGdZf2yr+M8P78btJbpDLhl0LAfX/WfR4wVquR8v5x/H+yMlRpOP3bqO+a0dnuC799VLfgaraparuOvH4f43r7i22MJLqe+N2uy91Ho3n9cL0hN+faN+3qm46+f3s7pMzBNo3yzDN4uRx7pYhdDs7yTuneJ0LXp1htNhjq+ono7+qaqckz1nFcQAA2AFZIwwAgC2luy+uqsMyTKX19qp6U5JTM4wkuHeSbyV54DK7vy/Jx6rqdUm+kWHkwO0yTEv45GlrqKqnJFkINg4c7/944ofw93X3qydqfm9VHZ3kiCSfGWu+SpIHZBhN9OBxhNJGem6G0Q/vGd+PC8bH18oQDPzS5Mbd/Y6q+tcMYcFJVfXmDD8cH5LkzAzv+3oFidO4f1XdYvz7KhnW87lzhlDvm0ke1t1vX7TPSzIEFYdnmP7uvRlCjb2S/GyG9+PFST49uVN3n1JVxyf55bHpo919uaktu/uTVfUnSf5vkpOr6t+TfDFD8Hr9sb5Tc+k5tJyXZTi3D07yuXEtpZ0zjEa7XpJXdPdbl9jvhCT3yHDOvz/Duk+/Pb4/D+/ur0/U+raqekaGNZtOrap3JflKkj0yvJd3yRAsHLqNWhfcLsmrxvfp5AzBxLUyhBSVLRQujOuZHZdhRFgyEYR190lVdXaGafh+kOG7MbnvWq5Hy9Xznqr6xyQPyvB5vynDd+2+Gc7P1a4nuGrd/fWqekCS1yX5xPjd+EKGz+56GUY57pJLR0r9RoaQ/LgM5/h5GULFQzKEwc8bt9szyfFVdXKGUVhnJLlyhvP0xkn+tbvPmCjlxRmmTLxfkmMm2v8wwxp9f1dV987wHd0vw/n5wySHjdOKTvt6P1tVz0ryl0k+W1VvyLA+4D0zBMonZ1hPEACAOSQIAwBgy+nuD42jCv4qQ5h1nyTnZhi19LTuXm6Kw6dn+DH/ERl+dD0/w8iHv+ru1fy4fO8kt17Udufxlgw/oL56Uf/Dkpw43v9xkoszjMp6dne/dxXPPRNj8PHbGX74/b0k38nwY/5vZPjxeSmHJ/lMkock+ZMM7/kbkjx1/PuCZfbbCPcb7y/J8P5/I8lxSd6d5LXdfbn1grq7kzxwDJaOyDB15R5J/ifDtInPyvIj9V6ZIexJlh4NtvAcR1fVCRnWS7pLkl/P8F5/Pcm/5LKjspY7xiVVdd8M5+3hGc6fTnJSkqdl6dFgSXJOhmDgORmCg92TfDbDOffGxRt395Oq6tgkj8xwLt8nQ+hyZpK/Heud1nEZwo+7JLlXhgDknLH9qO5ePMXgZnt/hiDsnO4+aVHfsRkC4P9cKlxZw/VoJQ/N8PkekeHzXviuPSnJadtxvFXr7rdX1f/OsKbbr2SYlvEHSc7KcK2YDKbelmH60TtlCGh3H7f7tyTP7+4Txu3+J8M1527jtntnuG58McN5uux3aVFtn6+qW2d4P+4x1nf+WMczuvtT2/F6n1hVpyX50wzXuPOTvCPJ4zNcqzfz+gYAwDqq4d+GAACw46qq52X4Mfc2Ez/IMiNVdasM6/G8rLsfutn1/LQb1zz7TpJ3dPfB29oeWN445eM5SY7t7l/Z7HoAAJg9a4QBAABJkqraZ3K9qbHtqkmePz5888ZXBbB2VXXNqtp5UduuGdb62ymubwAAc8vUiAAAwIInJrlnVX0kw5pP+yT51QzrJ72xu9+5mcUBrMFhSR4zTg96ZoZpG++a5IZJPprkHzavNAAA1pMgDAAAWPDOJD+XYU2eqyf5UZKTkzw7yUs3sS6AtfqPDOuW3S3JNTKsw3dqkiOTPLe7f7R5pQEAsJ6sEQYAAAAAAMBcskYYAAAAAAAAc2mHnRpxr7326v3222+zywAAAAAAAGCDnXjiied1997b2m6HDcL222+/nHDCCZtdBgAAAAAAABusqk6fZjtTIwIAAAAAADCXBGEAAAAAAADMJUEYAAAAAAAAc0kQBgAAAAAAwFwShAEAAAAAADCXBGEAAAAAAADMJUEYAAAAAAAAc0kQBgAAAAAAwFwShAEAAAAAADCXBGEAAAAAAADMJUEYAAAAAAAAc2mXzS5gM936cf+02SWwxZz43MM2uwQAAAAAAGBGjAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAOaSIAwAAAAAAIC5JAgDAAAAAABgLgnCAAAAAAAAmEuCMAAAAAAAAObShgdhVfXoqjqpqj5XVa+pqt2qav+qOr6qTq2q11XVrhtdFwAAAAAAAPNlQ4OwqrpOkj9NcmB33yLJzkkekOQ5SV7Y3TdK8q0kD9nIugAAAAAAAJg/mzE14i5JrlRVuyS5cpKzktw9yTFj/6uS3GcT6gIAAAAAAGCObGgQ1t1fS/K8JGdkCMDOT3Jikm9398XjZmcmuc5G1gUAAAAAAMD82eipEa+e5JAk+yfZN8lVktxjFfsfUVUnVNUJ55577jpVCQAAAAAAwDzY6KkRfznJV7r73O7+UZI3JblDkj3HqRKT5LpJvrbUzt19dHcf2N0H7r333htTMQAAAAAAADukjQ7Czkjyi1V15aqqJAcl+XySDyQ5dNzm8CRv3eC6AAAAAAAAmDMbvUbY8UmOSfKJJJ8dn//oJI9P8piqOjXJNZK8fCPrAgAAAAAAYP7ssu1NZqu7n5LkKYuav5zkthtdCwAAAAAAAPNro6dGBAAAAAAAgA0hCAMAAAAAAGAuCcIAAAAAAACYS4IwAAAAAAAA5pIgDAAAAAAAgLkkCAMAAAAAAGAuCcIAAAAAAACYS4IwAAAAAAAA5pIgDAAAAAAAgLm03UFYVR1QVb9VVfvOsiAAAAAAAACYhamCsKp6aVX9v4nHv5nk00nekOTzVXWbdaoPAAAAAAAAtsu0I8LumeQ/Jx4/Ncnbk9wyyceSPGXGdQEAAAAAAMCa7DLldvskOS1Jquq6SW6e5CHd/dmqenGSl69PefDT6Yyn/fxml8AWdP0nf3azSwAAAAAA2KFMOyLse0l2H/++S5ILkpwwPr4wyVVnXBcAAAAAAACsybQjwj6R5OFVdUaShyd5b3dfMvbtn+Ss9SgOAAAAAAAAtte0QdgTk7wryaeTfDvJwyb67pNhnTAAAAAAAADYMqYKwrr741V1/SQ3TfLF7r5govvoJF9cj+IAAAAAAABge007Iizd/d0kJy7R/o6ZVgQAAAAAAAAzMHUQVlV7JPn1JNdPstui7u7up8+yMAAAAAAAAFiLqYKwqrpDkn9Lsucym3QSQRgAAAAAAABbxk5TbveiJKcluU2S3bp7p0W3ndetQgAAAAAAANgO006NeLMk9+/uy60RBgAAAAAAAFvRtCPCzkhyxfUsBAAAAAAAAGZp2iDsqUmeUFV7rGcxAAAAAAAAMCvTTo14cJJrJflKVX00yTcX9Xd3Hz7TygAAAAAAAGANpg3C7pikk1yQ5OZL9PfMKgIAAAAAAIAZmCoI6+7917sQALa+O7zkDptdAlvQcY88brNLAAAAAIAlTbtGGAAAAAAAAOxQlh0RVlXXT3JWd/9o/HtF3X3GTCsDAAAAAACANVhpasSvJLl9ko8lOS3bXgds5xnVBAAAAAAAAGu2UhD24CRfmvh7W0EYAAAAAAAAbBnLBmHd/aqJv1+5IdUAAAAAAADAjOy02QUAAAAAAADAelhpasSfqKpXrNB9SZLzk5yY5E3d/YNZFAYAAAAAAABrMVUQluRuSa6WZM8kFyc5L8le4/7fHrd5dJIvVdXduvvMWRcKAAAAAAAAqzHt1Ii/m2HU128l2a27902yW5L7Jbkgyb2T3HZse9Y61AkAAAAAAACrMu2IsBcmeU53v3mhobsvSfLGqrpmkhd2922r6llJnrwOdQIAAAAAAMCqTDsi7JZJvrRM35eS3GL8+/NJrr7WogAAAAAAAGCtpg3Czk5y6DJ990tyzvj3Hkm+tdaiAAAAAAAAYK2mnRrxqCQvqKp9kxyT5BtJrpkhBPv1JH82bnenJJ+cdZEAAAAAAACwWlMFYd39oqq6MMP6X/ea6DozyUO7++Xj479N8v3ZlggAAAAAAACrN+2IsHT3y6rq5Umum2SfJGclObO7e2Kb02ZeIQAAAAAAAGyHqYOwJBlDr6+ONwAAAAAAANiypgrCquqwbW3T3f+09nIAAAAAAABgNqYdEfbKZdp74m9BGAAAAAAAAFvGtEHY/ku0XSPJwUl+N8nvz6wiAAAAAAAAmIGpgrDuPn2J5tOTfKKqKsljMgRiAAAAAAAAsCXsNINjfCTJvabduKr2rKpjqurkqvpCVd2+qn6mqt5bVV8c768+g7oAAAAAAAD4KTbt1Igr+cUkF65i+6OSvKu7D62qXZNcOclfJnl/dz+7qp6Q5AlJHj+D2gCAnxIfuvNdNrsEtqC7fPhDm10CAAAAsImmCsKq6slLNO+a5BYZRoO9dMrjXC3JnZM8MEm6+6IkF1XVIUnuOm72qiQfjCAMAAAAAACANZh2RNiRS7T9MMM6Yc9M8qwpj7N/knOT/GNV3TLJiUkeleRa3X3WuM3ZSa415fEAAAAAAABgSVMFYd09i7XEFp7vF5I8sruPr6qjMkyDOPlcXVW91M5VdUSSI5Lk+te//oxKAgAAAAAAYB7NKuCa1plJzuzu48fHx2QIxs6pqn2SZLz/xlI7d/fR3X1gdx+49957b0jBAAAAAAAA7JiWHRFWVasactXdZ0yxzdlV9dWqukl3n5LkoCSfH2+HJ3n2eP/W1Tw3AAAAAAAALLbS1IinJVlyisJl7Dzldo9M8i9VtWuSLyd5UIaRaa+vqodkWHfs/qt4XgAAAAAAALiclYKwB2d1QdhUuvtTSQ5couugWT8XAAAAAAAAP72WDcK6+5UbWAcAAAAAAADM1EojwlJVeyX5/SQ3SvKtJG8cR3QBAAAAAADAlrZsEFZVN0ny4SR7TzQ/oaoO7e63rntlAAAAAAAAsAY7rdD3jCQ/SHLXJFdJ8vNJPpbkBetfFgAAAAAAAKzNSkHY7ZI8ubs/3N3f7+6TkvxRkv2qau8V9gMAAAAAAIBNt1IQdp0kpyxqOyVJJdl33SoCAAAAAACAGVgpCKskP17UdskU+wEAAAAAAMCm22Ub/U+tqvMmHtd4//Sq+uZEe3f34bMtDQAAAAAAALbfSkHYGUlutkT76UluvqitZ1YRAADki1I2AAAgAElEQVQAAAAAzMCyQVh377eBdQAAAAAAAMBMWesLAAAAAACAubStNcIAAIA1eOlj/22zS2ALesTz773ZJSRJnvn7h252CWwxT3z1MZtdAgAAzJQRYQAAAAAAAMwlQRgAAAAAAABzydSIAAAAwJbyhWceu9klsAXd7Il33+wSAIAd0LIjwqrqTVV1o/Hvw6rqGhtXFgAAAAAAAKzNSlMjHpLkZ8a//zHJz65/OQAAAAAAADAbK02NeE6S2yf5WJJK0htSEQAAAABsQUceeeRml8AW5LwA2NpWGhH2+iQvrKofZwjB/quqfrzM7eKNKRcAAAAAAACms9KIsEcnOS7JAUmekuSVSb62ATUBAAAAAADAmi0bhHV3J3lDklTVA5Mc1d2f3qC6AAAAAAAAYE1WGhH2E929/3oXAgAAAAAAALO00hphl1FV+1TV86rq41X1pfH+b6rq2utZIAAAAAAAAGyPqUaEVdXPJfmPJHtmWDfs1CTXTvKoJIdV1Z26+4vrViUAAAAAAMt6/Rtuu9klsAXd/34f2+wSYNNNFYQleU6S85PctrtPW2isqhskec/Y/5szrw4AAAAAAAC207RTI94tyZMmQ7Ak6e7Tkxw59gMAAAAAAMCWMW0QtmuS7yzT952xHwAAAAAAALaMaYOwTyV5ZFVdZvuqqiR/MvYDAAAAAADAljHtGmFPS/L2JF+oqtclOSvJtZPcL8mNk9xrfcoDAAAAAAB2VLc85t2bXQJb0KcP/bUNe66pgrDufldVHZzkGUmemKSSdJITkxzc3e9ZvxIBAAAAAABg9aYdEZbufleSd1XVlZNcPcm3uvt761YZAAAAAAAArMHUQdiCMfwSgAEAAAAAALCl7bTZBQAAAAAAAMB6EIQBAAAAAAAwlwRhAAAAAAAAzCVBGAAAAAAAAHNpm0FYVe1aVZ+oql/diIIAAAAAAABgFrYZhHX3RUn2T3Lx+pcDAAAAAAAAszHt1IjvTWJEGAAAAAAAADuMXabc7iVJXl1VuyR5S5KzkvTkBt395RnXBgAAAAAAANtt2iDsQ+P9Y5I8epltdl57OQAAAAAAADAb0wZhD1rXKgAAAAAAAGDGpgrCuvtV610IAAAAAAAAzNJOq9m4qnaqqltU1V2q6irrVRQAAAAAAACs1dRBWFU9PMnZST6T5NgkNxnb31JVf7o+5QEAAAAAAMD2mSoIq6qHJjkqyVuS3D9JTXR/JMlvzb40AAAAAAAA2H7Tjgh7TJLnd/cRSd68qO/kjKPDAAAAAAAAYKuYNgjbP8m7l+n7bpI9V/OkVbVzVX2yqt4+Pt6/qo6vqlOr6nVVtetqjgcAAAAAAACLTRuEnZdkv2X6bpLka6t83kcl+cLE4+ckeWF33yjJt5I8ZJXHAwAAAAAAgMuYNgh7e5InV9UNJ9q6qvZK8ugMa4dNpaqum+ReSV42Pq4kd09yzLjJq5LcZ9rjAQAAAAAAwFKmDcL+KskPk3wuyfuSdJIXZxjV9eMkT1vFc74oyV8kuWR8fI0k3+7ui8fHZya5zlI7VtURVXVCVZ1w7rnnruIpAQAAAAAA+GkzVRDW3eclOTDJs5JcIcmXkuyS5KVJbt/d509znKo6OMk3uvvE7Sm2u4/u7gO7+8C99957ew4BAAAAAADAT4ldpt2wu7+T5OnjbXvdIclvVNWvJ9ktyR5JjkqyZ1XtMo4Ku25Wv+YYAAAAAAAAXMa0UyMmSapqj6r6paq6X1Xdvqquupr9u/v/dPd1u3u/JA9Icmx3/16SDyQ5dNzs8CRvXc1xAQAAAAAAYLGpg7CqenKSryb5SJLXJTkuyZlV9VczqOPxSR5TVadmWDPs5TM4JgAAAAAAAD/FppoasaqemuRJSV6W5LVJzklyrSS/k+Sp47SGR67mibv7g0k+OP795SS3Xc3+AAAAAAAAsJJp1wh7aJLnd/fjJtpOSnJsVZ2f5IgkR864NgAAAAAAANhu006NeLUk716m711jPwAAAAAAAGwZ0wZhxye5zTJ9txn7AQAAAAAAYMtYdmrEqpoMyf40yZur6uIkb8ila4TdP8mDkxyynkUCAAAAAADAaq20RtjFSXricSV59njLovbPbONYAAAAAAAAsKFWCq+elssGYQAAAAAAALDDWDYI6+4jN7AOAAAAAAAAmKmdtr0JAAAAAAAA7HimXterqm6W5NAk10uy26Lu7u7DZ1kYAAAAAAAArMVUQVhVHZbkFRnWDPtGkosWbWItMQAAAAAAALaUaUeEPSnJW5M8pLu/vY71AAAAAAAAwExMG4RdO8nDhGAAAAAAAADsKHaacrvjktxsPQsBAAAAAACAWZp2RNgjkrypqv4nyXuSfGvxBt19ySwLAwAAAAAAgLWYNgg7M8knk7x6mf5exbEAAAAAAABg3U0bXv1Dkt9O8pYkJye5aN0qAgAAAAAAgBmYNgg7JMnjuvuo9SwGAAAAAAAAZmWnKbf7bpLPr2chAAAAAAAAMEvTBmH/mOR317MQAAAAAAAAmKVpp0Y8PcnvVNV7k7wrybcWb9Ddr5hlYQAAAAAAALAW0wZhfzfe3yDJQUv0dxJBGAAAAAAAAFvGtEHY/utaBQAAAAAAAMzYVEFYd5++3oUAAAAAAADALO202QUAAAAAAADAephqRFhVfSXDOmDL6u4bzqQiAAAAAAAAmIFp1wj7UC4fhF0jyS8luTDJsbMsCgAAAAAAANZq2jXCHrhUe1XtmeRdSd43w5oAAAAAAABgzda0Rlh3fzvJc5M8eTblAAAAAAAAwGysKQgb/SDJdWdwHAAAAAAAAJiZadcIu5yq2iXJLZIcmeSkWRUEAAAAAAAAszBVEFZVlyTpZbovSHKvmVUEAAAAAAAAMzDtiLCn5fJB2A+SnJ7k37v7/JlWBQAAAAAAAGs0VRDW3Ueucx0AAAAAAAAwUzttdgEAAAAAAACwHpYdEVZVT17Ngbr7aWsvBwAAAAAAAGZjpakRj5xi/8l1wwRhAAAAAAAAbBkrTY14hW3cbpPkPUkqyanrWyYAAAAAAACszrJBWHf/eKlbkhsmeXWS45MckOSI8R4AAAAAAAC2jJWmRryMqrpekqckOSzJt5L8eZL/290XrVNtAAAAAAAAsN22GYRV1d5J/irDyK8fZFgL7IXd/d11rg0AAAAAAAC227JBWFVdLcnjkzwywzpgRyV5Tnd/a4NqAwAAAAAAgO220oiwryS5WpL3JHlGkrOSXL2qrr7Uxt395dmXBwAAAAAAANtnpSBsz/H+15L86hTH2nnt5QAAAAAAAMBsrBSEPWjDqgAAAAAAAIAZWzYI6+5XbWQhAAAAAAAAMEs7bXYBAAAAAAAAsB42NAirqutV1Qeq6vNVdVJVPWps/5mqem9VfXG8v/pG1gUAAAAAAMD82egRYRcneWx3H5DkF5M8vKoOSPKEJO/v7hsnef/4GAAAAAAAALbbhgZh3X1Wd39i/Ps7Sb6Q5DpJDkmysCbZq5LcZyPrAgAAAAAAYP5s2hphVbVfklslOT7Jtbr7rLHr7CTX2qSyAAAAAAAAmBObEoRV1e5J3pjkz7r7gsm+7u4kvcx+R1TVCVV1wrnnnrsBlQIAAAAAALCj2vAgrKqukCEE+5fuftPYfE5V7TP275PkG0vt291Hd/eB3X3g3nvvvTEFAwAAAAAAsEPa0CCsqirJy5N8obtfMNH1tiSHj38fnuStG1kXAAAAAAAA82eXDX6+OyT5gySfrapPjW1/meTZSV5fVQ9JcnqS+29wXQAAAAAAAMyZDQ3Cuvs/ktQy3QdtZC0AAAAAAADMtw1fIwwAAAAAAAA2giAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC4JwgAAAAAAAJhLgjAAAAAAAADmkiAMAAAAAACAuSQIAwAAAAAAYC5tmSCsqu5RVadU1alV9YTNrgcAAAAAAIAd25YIwqpq5yR/m+SeSQ5I8jtVdcDmVgUAAAAAAMCObEsEYUlum+TU7v5yd1+U5LVJDtnkmgAAAAAAANiBbZUg7DpJvjrx+MyxDQAAAAAAALZLdfdm15CqOjTJPbr7D8fHf5Dkdt39iEXbHZHkiPHhTZKcsqGFzre9kpy32UXAEpybbFXOTbYy5ydblXOTrcz5yVbl3GSrcm6ylTk/2aqcm7N1g+7ee1sb7bIRlUzha0muN/H4umPbZXT30UmO3qiifppU1QndfeBm1wGLOTfZqpybbGXOT7Yq5yZbmfOTrcq5yVbl3GQrc36yVTk3N8dWmRrx40luXFX7V9WuSR6Q5G2bXBMAAAAAAAA7sC0xIqy7L66qRyR5d5Kdk7yiu0/a5LIAAAAAAADYgW2JICxJuvudSd652XX8FDPlJFuVc5OtyrnJVub8ZKtybrKVOT/ZqpybbFX/v717j7d8rvc4/nqbwWBcEsqtM1NSVFKcDuUycukq5JaIURE6pOIkpHEpJOqUOiqXcTtTMUg47jNmhxgzY26EGlM5IzmFkHEZn/PH97Ps36z5rT1779lj7728n4/Heqzf+q3f77d+e+3v+vy+95/Tpg1kTp82UDlt9gNFRH+fg5mZmZmZmZmZmZmZmVmfGyj3CDMzMzMzMzMzMzMzMzPrU24IG2QkzZW0Rh8f8wxJsyWd0Yt9j+3Lc7H2IGlNSXdJmiZpa0l7Srpf0oReHGt9SRMk3Zfp9Et9dI5jJe3RF8eyga8vY6ekQyTtn8ujJa3Tw/3XkXR5Zf+z++K8rD00pY9NJX208t4YSUf139mZDXzV30lvYrS99kj6hKRjFrPNKEnXvFrnZNYTkiZK2ry/z8MGr2qM605MHAwkHSlpxf4+D1s6XJ9jfUnSCEmzlvAYoyS9vw/OpU/qiLIudrakeyVtJOnTS3rMduCGMAM4GNgkIo7uxb49aghT4XTX/rYHZkbEeyKiA/gccFBEbNeLY70EfDUiNga2AL4oaeM+PFezbpM0NCLOiYiLctVooEeVrBExLyKcabdaTeljU+CjXW1v1t8kver3HJY0pJubjqaHMdpeeyLi6og4rb/Pw8xsIGiHmJj5hCMBN4QNYq4/tEFmFLDEDWF9aF/g1IjYFHgD4IYw3BA2oElaSdK1kqZLmiVp73zrcElTJc2U9Pbc9n2S7swROHdIeluuv1bSJrk8TdIJuXySpIMkXQ0MB6ZI2lvSzpWRPDdLekNuP1zSBfmZMyTtLuk0YIVsXb40t/tKnussSUfmuhGSHpB0ETALWP/V+xatL0naP///0yVdnP/bW3PdLZLeJGlT4DvALpk2vglsBZynMvpwSD5Pzv2+UDn+0ZX1JwJExKMRMTWXnwbuB9bN7TfIdDo9fxNvyczSGZkGZzZ+N7n+7EyLNwNrVT53M0m3SZoi6QZJa79KX6ktBZKuyv/lbEkH17z/jUwHv5E0Tp0jBzaV9NtMf1dKel2unyjp+5LuAb6kHG2g0gNtc+DSTOsrqIw8OzVf3yPpvZmm/iDpkDxebW8jSR/LOL5Gq1hs7SWvxUdWXn9L0pcyfi0HnATsnempkQfYONPkHElHVPbdT9Ldue1PlA0Fkp5R58jvm1XyC439P5Hb1MZlSWtLmpTHnCVp61fty7GlLmPR71R61D4o6VJJO0i6XdJDmVZa5S9HS7pa0q3ALbnua3ndna6SR2xcX6fn44xG7FNTT0dJ10galcs75WdOlXSZpOG5fq6k0yVNBfZUycdOzmOPV1Ov77oYvdS/VHvV1V3TF3M9/89KTHtfrn8lPebv4Zy8hj8o6eM1n7nQ6Nw81gi1LrtZm1FNXlPShzNuTZfUiIuLlKFzfas4d5rKLBgzJH031+2Z6Wm6pEmLOa9lMg2f0upzJH1Q0lWVfXbM38mQ3LdRhvry0vn2rCdUysdH5PL38rpL/h8vVcnnfS/T4i2S1sz3u4qDp6vkGR9UTd6uJib+QCUPMEeVETiqKbu3ioOqzM4haXNJE3N5jEq9wp0qeY+Dcv0olTzotRnjz1E2iEjaJ9PoLEmnV87nGUlnSpoOHEfpCDNBvZiVxvqPFq0/XFB5bw9JYyub79B8vVbrcs2oTP+Xq+R/L5WkfO+juW5KpvfG6MjaGG5ta2imi/sznayoFnWFko6oXK9/LmkEcAjwZZV85raSHlaxmqQFkrbJfSdJemvGy/MzHk+TtEvlXNbP9PqQSp1qV/F1+9x/Zh5veUmfB/YCTlaprz8N2DrP7bV9fY8IPwboA9gd+Fnl9arAXODwfH0YcG4urwIMzeUdgPG5fAzwxdx3MnBDrp8AvC2Xn6l8xusA5fLngTNz+XTg+9XtavbdDJgJrERpXJsNvAcYAbwMbNHf36kfS5Qe3wE8CKyRr1cHfg0ckK8/C1yVy6OBsyv7TgQ2z+WDgeNzeXngHmAksBPwU0CURvprgG2azmEE8CdglXx9F7BbLg+j9PjaHbgJGELp9fAnYG3gk5X16wBPAnsAywJ3AGvmcfYGzu/v79uPJUqrq+fzCpTM8+szdq4B/Ctwb6aXlYGHgKNy+xnAtrl8UiPmZfr9ceX4Yyr7vJK28/Vc4NBc/l4ec2VgTeCxSjqelcujgbOB3YCOSmytjcV+tNcj08LUXF4G+APlWrpQ+qhsPybj1fKZnv+WMWwjSjxeNrf7MbB/LgfwkVy+Ergx93k3cG+ubxWXvwocl+uHACv393fmR5+nv5eAd2X6mwKcT7kO7wJcRev85WjgkUq8/UimzRXzdWP9DPJaDpzRRdq+htKLcg1gErBSrv8acEIuzwX+o7LP6yvLp9CZPx5DixjtR3s9aHFNp+vr+c9yeZu69AiMBa7P38RbM50Py/R5TXMay9ez8ve0SNmtv78jP5Za2mvOa74B+DMwsun9RcrQreIcJb/6AJ35v9XyeSawbnVdzflMpMycMY7O63arzxHwOzrLPv8N7EzJf9xUOWbtZ/nxqqe1LYDLcrkDuJuSj/sm8AVKPm/ffP+ESizrKg426ng+Ctycy9UY1xwTL8uYuDHw+1xfW3ZvFQfJslgubw5MzOUxwPT8La2Rv6N18nzmA2+m5EFvopTd16GU79cEhgK3ArvmsQLYq/LZr3ymH4PnQVP9IQvXOe4BjK2kzbrrdatyzSjgKWC93OdOSoftYSwcv8dVfgu19aB+tN8j010AH8jX5wNH06KuEJgHLJ/Ljev1GBbOH15PqUf9OKU+/rhMkw/n+98G9mscg1LfuhIlBj9KyRc08hmb18XXSvrdMNddBByZy2OBPXJ5VCNdv9Yfr/pUJtYjM4Ezs5fLNRHRkR0Wrsj3p1Aq96H8AC6U9FbKj3fZXN8BHAE8DFwL7KjSY3ZkRDxQ85nrAb/IVu7lcj8olR+famwUEU/U7LsVcGVEPAsg6Qpga+Bq4I8R8dse/v02sHyQkgn/P4CI+LukLelMgxdTRoItzk7AJpXeZKtSMi475WNarh+e6ydB6Y0DjKcE9X9IWplSKLwyz2d+brcVMC4iFgCPSbqNUlGyTWX9PGVvOuBtwDuBm/L3NYRy0bHB6whJu+Xy+pR01PAB4FeZXuZL+jWApFUpGZjbcrsLKYW+hl/04POvzueZwPAoIxmflvS8pNVqtv8gJWOzU0T8I9e1isXWRiJirqS/SXoPpRJtGqVxqyvXRsTzwPOS/pr7bU+pwJqccWwF4K+5/QuUTDiUNPl8RLwoaSYlww+t4/Jk4HxJy1I6Oty7RH+wDUQPR8RMAEmzgVsiIirpo1X+EkqF6d9zeQfggoj4J7ySR1iNElcbIxgupjSYdWULSkXb7ZmWl6NUVDRUY/E7VUY9rEbJM9zQ/T/b2kTdNX0lur6ejwOIiEmSVmlxXf5lRLwMPCRpDvD2bp7PImW3XvxNNjg05zUPBiZFxMNQYmC+t0gZOkct1MW5pygV/+flaITGPeluB8ZK+iWd9QB1fkJJu9/K17XxNGP8xcB+ki4AtgT2pzQmv1nSDyn1Bjf2/GuxpWAKsJmkVYDngamUcsPWlHqel+m8Nl4CXNGNck21PmlEN87hqoyJ96lzlopWZfcOeh4HfxURzwHPqYzeeh+l0+rdETEHQNI4Sn3Ti5RGtMdz/aWUcv5VlJFD47vxeTbwdbf+sO563apc8wIlTT0CIOleSvp/BpjTiN+UfEJjVpnu1INa+/hzRNyey5dQbgXUqq5wBmXWiaso8adOByU+jQROBQ4CbqOUsaGk1U+oc5aBYcCbcvmmiPgbvFK3vhVwHYu2EbybUp57MPe7kDIY5vu9+wranxvCBrCIeFDSeyk9dU5RTrFAyQBBudA3/ocnAxMiYrcckjkx10+mZJTmUHrRrEH58U1p8bE/BM6KiKtVpqgZ00d/zrN9dBwb/ETptb1QhZWkD1Hmr/3JIjuUStjxwKUR0VUBsLfnMzsituzj41o/yLi1A7BlRPxTZdqNYX1w6J7EsEaMfrmy3Hhdd939A6W344aUHmuw9GKxDTznUnp9vZHS82xxqmmqkQ8QcGFEfL1m+xcjSjcwKmkyIl5W572dauMyQE7h8DFKJdxZ0Xl/PGsPzTGqGr+G0jp/CUuWt3uJhadob8RpUQp++7TYr/qZYym9wKdLGk3p6Wi2OLGY193Zpjb91pXdIuKkJTlZG3ha5DXvpfsNpi3jnMp0ndtTRj38O/DBiDhE0r9RrsVTJG0GfJcy88q8iGjcS/QOYDtJZ2bjcFfx9ALKSPL5lI6OLwFPZIXahyjTO+1FmfHD+lF2XnqYkle8g1L5uh2wAeWWAYvs0o3D1tUndWd7KOmq8dyq7F4XB6txs7ls1irmdideV83PTq82+FXze9X/e3fSTqv6plHUl6PMGprT09O0riv8GKWRa2fgOEnvqtlmEnAoZSTrCZQRZqMoDWRQ0uruzYNU8pq/SNpu0Ubwq27+bZZ8j7ABTNI6wD8j4hLKdDLv7WLzVYH/zeXRjZUR8QJlmOSelJ5mHZQpQ1rNL149zgGV9TdRWpUb5/a6XHwxGynIY++qMo/qSnRO9WXt4VbKPTleDyBpdUpmvNFDZl+69/++ATi0kW4kbZjp5Qbgs+qcI39dSWupdL04D7g/Is5qHCRH2Twiadfcfvkc7dhBuafOEJU50rehTCExqbJ+bUoBAsoUJGvm6DYkLSvpHb36hmwgWBV4Iism3k7pDVt1O7CzpGGZ1j4OEBFPUSoAGvPkf4bSW2dxnqb0oF0Sf6QMc7+okvZaxWJrP1cCH6aMXG1uiOpu+roF2EPSWlDis6R/6cE51MblPMZjEfEzSoNdV/kQa0+1+csaNwEH5nUYSatHxJPAkzlSG0o+oWEusKnK/WzWp/T+Bvgt8AFJG+RxVpK0YYvPXBl4NNPtvi226YsYbQNX3TX9Wbq+njfup7AV8FRe/5vtmWnzLZSOKs2zaMwl42FWSIzM5Z6U3WzwqstrDgO2kdRIC6vntnVl6No4l2l41Yi4DvgyZQpjJL0lIu6KiBOAx4H1I+LAiNi00ggGpbx0HfDL7OjSMp5GxDzKtE7HUxrFULl/0zIRMT7XO/0OHNU6nA5KQ+W07Oi0DKXhFODTwG+WoFzTE63K7q3i4FzK7AVQyj1Vu2Qcfz2lkrgxWuJ9kkaq3Btsb+A3lHL9tir3VB4C7NPF3+Y8QHt4TNJGmQ52a3qv7nrdqr6plQcoo2FH5Ovq/T1b1YNae3pTo16QEk9/S01dYabF9SNiAmXa4VUpo2KbY87dwPuBl7ODyr2UKW0b9fE3AIdnnScqs8Q07Jhl+hWAXSmju+vi6wPAiMa1ntbx3vEwufV7YHsXcIaklylDwA8FLm+x7XcoU9ccT5nKoKoD2D4inpPUQZlyq1WDxRjgMklPUBo+Rub6U4AfqdzkfAFwImVI/U+BGZKmRsS+KjeuvDv3OTciplUuKDaIRcRsSd8CbpO0gDINwuHABZKOphTMDuzGoc4l74uTAf9xSo/uGyVtBNyZ14FngP0oo2Q+A8xUGb4OcGwWEj8D/ETSSZTfyJ6USuUtKXONB+V+In+RdCVlCrr7KPOK35l/1wsqw+Z/oDKNxFDKMOLZvfyqrH9dDxwi6X5KpmChKRUiYrKkqym9KR+jTGPUqAQ7ADgnK3Ln0L30PDb3eY6S7nolIn4naV9K/N2Z1rHY2kzGoAnAkxGxIONfwwTgmIx9p3ZxjPvy+n9jZsxfpBTa/tjN06iNy5TKiKMlvUiJyfv35G+zttBV/vIVEXG9pE2BeyS9QKmMPZYSR8+XFCw8zdbtlClf76P0aJ+ax3lcZXTXOEnL57bHU+bMb/YNyr1CH8/nusLdWCoxOqdesjbRxTW9q+v5fEnTKNN8thrt8idKeWYV4JCImN8Um8cD+6tMJ3oXnemzruxm7acur/k4ZSqtK/I6/FdgR2rK0BFxRYs49zTwK0nDKL3Ev5LvnaEyPa0oHV+mtzqxiDgryzMXUzoI1H1OI71eSrnvSWNU0bqUci+mQXkAAAWsSURBVF2js3TdKHPrHx2Ue8vcGRHPSppPZ33Os5QGo+Mp6a5Rid+bck23dVF234D6OHgiZdrPk1l4dDmUGD6BMnvRyRExLxttJ1PupbxBvn9lzmhwTL4WZcrwViMifgpcL2leRGzXYhsb+I6hTBX7OGX2lOGV9+qu163KNbWynvQwSlp5ls6GWGhdD2rt6QHgi5LOp5RRfkhprGquK3wQuCTXCfhBRDypMkX35ZJ2oYxK7JD0ZzrrpDoojfcz8/XJebwZee19mOyoTUnX4yn195dExD0qs2gtFF8zzR9IqTsaSkm/59T8bTOABZKmU+6z970++L4GpcaNWM3MzF4TJA2PiGeyYDgJODgipvb3edlrU2Z6pwJ7RsRD/X0+ZktLdoy6JiLe2c+nYm2kJ9d0lSnsjoqIe+rez23GUtJpq86HZm1B0tmUUUXn9fe5WO9JeiYihi9+y4FJ0hjgmYj4btP6UZR4/fG6/cz6UiUvIeBHwEOv5YYCs3bmqRHNzOy15qc5wmYqMN6NYNZfJG0M/B64xY1gZma94mu6WQ9JmgJsAlzS3+diZjYAHJR5idmUae4WufedmbUHjwgzMzMzMzMzMzMzMzOztuQRYWZmZmZmZmZmZmZmZtaW3BBmZmZmZmZmZmZmZmZmbckNYWZmZmZmZmZmZmZmZtaW3BBmZmZmZmY2gEkaJWmMpGWa1o+QFJI+31/nZmZmZmZmNtC5IczMzMzMzGxgGwV8E5ffzMzMzMzMeswFKTMzMzMzM6slaVlJ6u/zMDMzMzMz6y03hJmZmZmZmfUhSRtIuljSw5KekzRH0n9Jel3TdhMlTazZf66ksbk8hjIaDODFnAoxmnYZIukkSY9KelLSryWt13TMZSWdksd+IZ9PkbRsZZvGVIuHSfqOpHnA88BqS/qdmJmZmZmZ9Zeh/X0CZmZmZmZmbWYd4M/AkcATwJuBY4HrgC17eKxzgfWAzwFbAQtqtvk6cAfwWWAt4EzgEsqUig0XAnsB3wZ+A7wfOC7P7dNNxzsOmAwcDAwB5vfwnM3MzMzMzAYMN4SZmZmZmZn1oYiYBExqvJZ0B/B7oEPSeyJiWg+O9YikR/LlXRHxUs1mcyPilcYsSWsCZ0haJyLmSXonsA9wYkSMyc1ulPQScLKk0yJiRuV4jwG7RUTzyDMzMzMzM7NBx1MjmpmZmZmZ9SFJy0k6VtLvJD0HvAh05NtvWwofeV3T65n5/KZ83iafL2narvF626b1V7kRzMzMzMzM2oVHhJmZmZmZmfWtU4HDgZMoUxY+TZne8Apg2FL4vL83vX4+nxuftXo+P9q03V+a3qfFdmZmZmZmZoOWG8LMzMzMzMz61qeAiyLilMYKScNrtpsPrFKzvrlhakk1GsreCPyhsv6NTe83eDSYmZmZmZm1DU+NaGZmZmZm1rdWpEyHWHVgzXZ/BDaUtFxjhaRtgJWbtmuM8Fqhl+fTuF/Zp5rW75vPE3t5XDMzMzMzswHPI8LMzMzMzMz61vXAAZJmAr8HPgm8v2a7nwMHA+dLGguMBL4CPNW03X35/FVJ/wMsiIh7unsyETFL0jhgjKShlOkatwS+AYyLiJldHsDMzMzMzGwQc0OYmZmZmZlZ3zocEPCtfH0dsA9wd3WjiJgg6RDgKGB3YBqwHzC+6XjXAD8GDgNOyGOrh+c0GpgDfBY4HpgHnA6c2MPjmJmZmZmZDSqK8PTvZmZmZmZmZmZmZmZm1n58jzAzMzMzMzMzMzMzMzNrS24IMzMzMzMzMzMzMzMzs7bkhjAzMzMzMzMzMzMzMzNrS24IMzMzMzMzMzMzMzMzs7bkhjAzMzMzMzMzMzMzMzNrS24IMzMzMzMzMzMzMzMzs7bkhjAzMzMzMzMzMzMzMzNrS24IMzMzMzMzMzMzMzMzs7bkhjAzMzMzMzMzMzMzMzNrS/8PzoL4GL2RByMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 2160x360 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"\n", | |
"top10 = author_count[:10]\n", | |
"plt.figure(figsize=(30,5))\n", | |
"\n", | |
"sns.barplot(top10.author_name, top10.counts)\n", | |
"\n", | |
"plt.title('Top 10 Plugin Developers in wordPress.org',fontsize=20)\n", | |
"plt.ylabel('Number of Plugins', fontsize=16)\n", | |
"plt.xlabel('author', fontsize=16)\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"下面就是 wordPress.org 上发布的插件数量前10名的作者的链接\n", | |
"\n", | |
"| name |plugins| profile | website |\n", | |
"|----------------|------:|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n", | |
"|Peter Shaw | 93| [https://profiles.wordpress.org/shawfactor](https://profiles.wordpress.org/shawfactor) | [https://shawfactor.com/](https://shawfactor.com/) |\n", | |
"|Scott Reilly | 74| [https://profiles.wordpress.org/coffee2code](https://profiles.wordpress.org/coffee2code) | [http://coffee2code.com/](http://coffee2code.com/) |\n", | |
"|Algoritmika Ltd | 69| [https://profiles.wordpress.org/algoritmika](https://profiles.wordpress.org/algoritmika) | [https://wpfactory.com](https://wpfactory.com) |\n", | |
"|YITH | 61| [https://profiles.wordpress.org/yithemes](https://profiles.wordpress.org/yithemes) | [https://yithemes.com/](https://yithemes.com/) |\n", | |
"|DeMomentSomTres | 54| [https://profiles.wordpress.org/marcqueralt](https://profiles.wordpress.org/marcqueralt) | [http://DeMomentSomTres.com](http://DeMomentSomTres.com) |\n", | |
"|Gopi Ramasamy | 54| [https://profiles.wordpress.org/gopiplus](https://profiles.wordpress.org/gopiplus) | [http://www.gopiplus.com/work/2010/07/18/youtube-with-fancy-zoom/](http://www.gopiplus.com/work/2010/07/18/youtube-with-fancy-zoom/) |\n", | |
"|Access Keys | 53| [https://profiles.wordpress.org/access-keys](https://profiles.wordpress.org/access-keys) | [https://access-keys.com](https://access-keys.com) |\n", | |
"|WP OnlineSupport| 52| [https://profiles.wordpress.org/wponlinesupport](https://profiles.wordpress.org/wponlinesupport) | [https://www.wponlinesupport.com](https://www.wponlinesupport.com) |\n", | |
"|GamiPress | 50| [https://profiles.wordpress.org/rubengc](https://profiles.wordpress.org/rubengc) | [https://gamipress.com/](https://gamipress.com/) |\n", | |
"|BestWebSoft | 48| [https://profiles.wordpress.org/bestwebsoft](https://profiles.wordpress.org/bestwebsoft) | [https://bestwebsoft.com/](https://bestwebsoft.com/) |" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment