Skip to content

Instantly share code, notes, and snippets.

@inoccu
Created February 14, 2017 05:14
Show Gist options
  • Save inoccu/bcdfebf1197604e62697a67ce82a8c8b to your computer and use it in GitHub Desktop.
Save inoccu/bcdfebf1197604e62697a67ce82a8c8b to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"outputs": [],
"metadata": {
"collapsed": true
},
"source": "# The code was removed by DSX for sharing.",
"execution_count": 1
},
{
"cell_type": "code",
"outputs": [
{
"text": "Collecting cloudant\n Downloading cloudant-2.3.1.tar.gz (48kB)\n\u001b[K 100% |\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 51kB 2.7MB/s \n\u001b[?25hRequirement already satisfied (use --upgrade to upgrade): requests<3.0.0,>=2.7.0 in /usr/local/src/conda3_runtime.v4/4.1.1/lib/python3.5/site-packages (from cloudant)\nBuilding wheels for collected packages: cloudant\n Running setup.py bdist_wheel for cloudant ... \u001b[?25l-\b \b\\\b \bdone\n\u001b[?25h Stored in directory: /gpfs/fs01/user/sbcf-fd41f5fdd05671-30a815acdc92/.cache/pip/wheels/40/93/a6/d9913de4cbec6ea134416d49fabedff7899376100a620ad6f7\nSuccessfully built cloudant\nInstalling collected packages: cloudant\nSuccessfully installed cloudant-2.3.1\n",
"output_type": "stream",
"name": "stdout"
}
],
"metadata": {
"scrolled": true,
"collapsed": false
},
"source": "!pip install --user cloudant",
"execution_count": 3
},
{
"cell_type": "code",
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "['_replicator', '_users', '_warehouser', 'nodered', 'sakura_iot']"
},
"metadata": {},
"execution_count": 9
}
],
"metadata": {
"collapsed": false
},
"source": "from cloudant.client import Cloudant\nfrom cloudant.result import Result\n\nclient = Cloudant(credentials_1[\"username\"], credentials_1[\"password\"], url=credentials_1[\"url\"])\nclient.connect()\nclient.all_dbs()",
"execution_count": 9
},
{
"cell_type": "code",
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": " _id _rev \\\n0 01bbc09c49c51ca2af1c2f0077beba1c 1-c2c566f48808c07480ea5dfcc43aa094 \n1 01bbc09c49c51ca2af1c2f0077eb709a 1-8349dcf6ff522970582dcaee397c79a5 \n2 0f31258932e7aafcb9e590e2792c1a73 1-e9d93e0459e4e53385259a215f94e227 \n3 0f31258932e7aafcb9e590e27957193c 1-132eff6caf6b3e7151a36ef63c28d814 \n4 0f31258932e7aafcb9e590e27971db80 1-4901832867318a17569247b3e5a7fd7c \n\n datetime light module temperature \n0 2017-02-14T04:36:57.140104706Z 413 ujCvrJMT5MhW 1.524994 \n1 2017-02-14T04:41:13.952045814Z 401 ujCvrJMT5MhW 0.710113 \n2 2017-02-14T04:48:01.817835267Z 400 ujCvrJMT5MhW 0.607300 \n3 2017-02-14T04:51:03.091761397Z 413 ujCvrJMT5MhW 0.710113 \n4 2017-02-14T04:54:04.378442787Z 412 ujCvrJMT5MhW 1.322510 ",
"text/html": "<div>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>_id</th>\n <th>_rev</th>\n <th>datetime</th>\n <th>light</th>\n <th>module</th>\n <th>temperature</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>01bbc09c49c51ca2af1c2f0077beba1c</td>\n <td>1-c2c566f48808c07480ea5dfcc43aa094</td>\n <td>2017-02-14T04:36:57.140104706Z</td>\n <td>413</td>\n <td>ujCvrJMT5MhW</td>\n <td>1.524994</td>\n </tr>\n <tr>\n <th>1</th>\n <td>01bbc09c49c51ca2af1c2f0077eb709a</td>\n <td>1-8349dcf6ff522970582dcaee397c79a5</td>\n <td>2017-02-14T04:41:13.952045814Z</td>\n <td>401</td>\n <td>ujCvrJMT5MhW</td>\n <td>0.710113</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0f31258932e7aafcb9e590e2792c1a73</td>\n <td>1-e9d93e0459e4e53385259a215f94e227</td>\n <td>2017-02-14T04:48:01.817835267Z</td>\n <td>400</td>\n <td>ujCvrJMT5MhW</td>\n <td>0.607300</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0f31258932e7aafcb9e590e27957193c</td>\n <td>1-132eff6caf6b3e7151a36ef63c28d814</td>\n <td>2017-02-14T04:51:03.091761397Z</td>\n <td>413</td>\n <td>ujCvrJMT5MhW</td>\n <td>0.710113</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0f31258932e7aafcb9e590e27971db80</td>\n <td>1-4901832867318a17569247b3e5a7fd7c</td>\n <td>2017-02-14T04:54:04.378442787Z</td>\n <td>412</td>\n <td>ujCvrJMT5MhW</td>\n <td>1.322510</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"metadata": {},
"execution_count": 10
}
],
"metadata": {
"collapsed": false
},
"source": "import pandas as pd, json\n\ndb = client['sakura_iot']\nresult_collection = Result(db.all_docs, include_docs=True)\ndf = pd.DataFrame([item['doc'] for item in result_collection])\ndf.head()",
"execution_count": 10
},
{
"cell_type": "code",
"outputs": [],
"metadata": {
"collapsed": true
},
"source": "",
"execution_count": null
}
],
"nbformat": 4,
"metadata": {
"kernelspec": {
"display_name": "Python 3.5 (Experimental) with Spark 1.6",
"name": "python3",
"language": "python"
},
"language_info": {
"mimetype": "text/x-python",
"version": "3.5.2",
"file_extension": ".py",
"name": "python",
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"codemirror_mode": {
"version": 3,
"name": "ipython"
}
}
},
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment