Skip to content

Instantly share code, notes, and snippets.

View ipashchenko's full-sized avatar

Ilya ipashchenko

  • LPI ASC
View GitHub Profile
# place this file in ~/.config/terminator/config
[global_config]
title_transmit_bg_color = "#d30102"
focus = system
[keybindings]
reset_clear = <Ctrl>R
new_tab = <Ctrl>T
split_horiz = <Ctrl><Shift>E
split_vert = <Ctrl>E
close_term = <Ctrl><Shift>W
"""
Functions for converting dates to/from JD and MJD. Assumes dates are historical
dates, including the transition from the Julian calendar to the Gregorian
calendar in 1582. No support for proleptic Gregorian/Julian calendars.
:Author: Matt Davis
:Website: http://github.com/jiffyclub
"""
<?xml version="1.0" encoding="UTF-8"?>
<scheme name="Solarized Dark" version="1" parent_scheme="Default">
<option name="LINE_SPACING" value="1.0" />
<option name="EDITOR_FONT_SIZE" value="14" />
<option name="EDITOR_FONT_NAME" value="Consolas" />
<colors>
<option name="ADDED_LINES_COLOR" value="" />
<option name="ANNOTATIONS_COLOR" value="2b36" />
<option name="ANNOTATIONS_MERGED_COLOR" value="" />
<option name="CARET_COLOR" value="dc322f" />
diff -r 96a023de3ddf make/sun/font/Makefile
--- a/make/sun/font/Makefile Wed Jun 06 18:39:46 2012 -0700
+++ b/make/sun/font/Makefile Fri Jun 08 12:52:01 2012 +0900
@@ -128,7 +128,7 @@
ifeq ($(USING_SYSTEM_FT_LIB), false)
FREETYPE_LIB = $(LIB_LOCATION)/$(LIB_PREFIX)freetype.$(LIBRARY_SUFFIX).6
endif
- OTHER_LDLIBS += -L$(FREETYPE_LIB_PATH) -lfreetype
+ OTHER_LDLIBS += -L$(FREETYPE_LIB_PATH) -lfreetype -lfontconfig
endif
from numpy.fft import fft, ifft, fft2, ifft2, fftshift
import numpy as np
def fft_convolve2d(x,y):
""" 2D convolution, using FFT"""
fr = fft2(x)
fr2 = fft2(np.flipud(np.fliplr(y)))
m,n = fr.shape
cc = np.real(ifft2(fr*fr2))
cc = np.roll(cc, -m/2+1,axis=0)
import numpy as np
import scipy.ndimage as ndimage
# The array you gave above
data = np.array(
[
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
import joblib
import os
cachedir = 'cache'
if not os.path.isdir(cachedir): os.mkdir(cachedir)
mem = joblib.Memory(cachedir=cachedir, verbose=True)
@mem.cache
def my_long_function(i):
return i + i
@ipashchenko
ipashchenko / one-hot.py
Created May 7, 2017 06:03 — forked from ramhiser/one-hot.py
Apply one-hot encoding to a pandas DataFrame
import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
def encode_onehot(df, cols):
"""
One-hot encoding is applied to columns specified in a pandas DataFrame.
Modified from: https://gist.github.com/kljensen/5452382
import matplotlib.pyplot as plt
import numpy as np
import seaborn
from keras.layers import Input, Dense, merge, ELU, Dropout
from keras.models import Model
from keras.regularizers import l2
from keras import backend as K
from keras.optimizers import rmsprop, adam
@ipashchenko
ipashchenko / timeseries_cnn.py
Created November 23, 2017 09:20 — forked from jkleint/timeseries_cnn.py
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
#!/usr/bin/env python
"""
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
"""
from __future__ import print_function, division
import numpy as np
from keras.layers import Convolution1D, Dense, MaxPooling1D, Flatten
from keras.models import Sequential