This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
label = conll04_eval | |
model_type = spert | |
model_path = data/models/ade | |
tokenizer_path = data/models/ade | |
dataset_path = data/datasets/ade/ade_split_0_test.json | |
types_path = data/datasets/ade/ade_types.json | |
eval_batch_size = 1 | |
rel_filter_threshold = 0.4 | |
size_embedding = 25 | |
prop_drop = 0.1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
_column_definition = [ | |
('id', DataTypes.REAL_VALUED, InputTypes.ID), | |
('hours_from_start', DataTypes.REAL_VALUED, InputTypes.TIME), | |
('power_usage', DataTypes.REAL_VALUED, InputTypes.TARGET), | |
('hour', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT), | |
('day_of_week', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT), | |
('hours_from_start', DataTypes.REAL_VALUED, InputTypes.KNOWN_INPUT), | |
('categorical_id', DataTypes.CATEGORICAL, InputTypes.STATIC_INPUT), | |
] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model = model_class.from_pretrained(self.args.model_path, | |
config=config, | |
# SpERT model parameters | |
cls_token=self._tokenizer.convert_tokens_to_ids('[CLS]'), | |
relation_types=input_reader.relation_type_count - 1, | |
entity_types=input_reader.entity_type_count, | |
max_pairs=self.args.max_pairs, | |
prop_drop=self.args.prop_drop, | |
size_embedding=self.args.size_embedding, | |
freeze_transformer=self.args.freeze_transformer) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
class TransformerXCBasic(torch.nn.Module): | |
""" Transformer model """ | |
def __init__(self, n_time_series, out_seq_len, device, d_model=128, dropout=.5, n_head=8): | |
super(TransformerXCBasic, self).__init__() | |
self.input_dim = n_time_series | |
self.n_head = n_head |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
wandb_version: 1 | |
GCS: | |
desc: null | |
value: true | |
_wandb: | |
desc: null | |
value: | |
cli_version: 0.10.17 | |
framework: torch |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"model_name": "Crossformer", | |
"use_decoder": true, | |
"model_type": "PyTorch", | |
"model_params": { | |
"n_time_series": 4, | |
"forecast_history":6, | |
"forecast_length": 4, | |
"seg_len": 6 | |
}, |
OlderNewer