Created
December 8, 2022 18:42
-
-
Save ischurov/139de5c0e95929bf5fc9317d98030292 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "43bf84e4", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Symmetry group contains 20 elements\n", | |
"Hilbert space dimension is 13\n", | |
"Ground state energy is -18.0617854180\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import lattice_symmetries as ls\n", | |
"\n", | |
"# this is taken from examples/ folder verbatim\n", | |
"\n", | |
"number_spins = 10 # System size\n", | |
"hamming_weight = number_spins // 2 # Hamming weight (i.e. number of spin ups)\n", | |
"\n", | |
"# Constructing symmetries\n", | |
"symmetries = []\n", | |
"sites = np.arange(number_spins)\n", | |
"# Momentum in x direction with eigenvalue π\n", | |
"T = (sites + 1) % number_spins\n", | |
"symmetries.append(ls.Symmetry(T, sector=number_spins // 2))\n", | |
"# Parity with eigenvalue π\n", | |
"P = sites[::-1]\n", | |
"symmetries.append(ls.Symmetry(P, sector=1))\n", | |
"\n", | |
"# Constructing the group\n", | |
"symmetry_group = ls.Group(symmetries)\n", | |
"print(\"Symmetry group contains {} elements\".format(len(symmetry_group)))\n", | |
"\n", | |
"# Constructing the basis\n", | |
"basis = ls.SpinBasis(\n", | |
" symmetry_group, number_spins=number_spins, hamming_weight=hamming_weight, spin_inversion=-1\n", | |
")\n", | |
"basis.build() # Build the list of representatives, we need it since we're doing ED\n", | |
"print(\"Hilbert space dimension is {}\".format(basis.number_states))\n", | |
"\n", | |
"# Heisenberg Hamiltonian\n", | |
"# fmt: off\n", | |
"σ_x = np.array([ [0, 1]\n", | |
" , [1, 0] ])\n", | |
"σ_y = np.array([ [0 , -1j]\n", | |
" , [1j, 0] ])\n", | |
"σ_z = np.array([ [1, 0]\n", | |
" , [0, -1] ])\n", | |
"# fmt: on\n", | |
"σ_p = σ_x + 1j * σ_y\n", | |
"σ_m = σ_x - 1j * σ_y\n", | |
"\n", | |
"matrix = 0.5 * (np.kron(σ_p, σ_m) + np.kron(σ_m, σ_p)) + np.kron(σ_z, σ_z)\n", | |
"edges = [(i, (i + 1) % number_spins) for i in range(number_spins)]\n", | |
"hamiltonian = ls.Operator(basis, [ls.Interaction(matrix, edges)])\n", | |
"\n", | |
"# Diagonalize the Hamiltonian using ARPACK\n", | |
"eigenvalues, eigenstates = ls.diagonalize(hamiltonian, k=1)\n", | |
"print(\"Ground state energy is {:.10f}\".format(eigenvalues[0]))\n", | |
"assert np.isclose(eigenvalues[0], -18.06178542)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 98, | |
"id": "7c052c10", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"basis_nosym = ls.SpinBasis(\n", | |
" ls.Group([]), number_spins=number_spins, hamming_weight=hamming_weight, spin_inversion=-1\n", | |
")\n", | |
"basis_nosym.build() # Build the list of representatives, we need it since we're doing ED\n", | |
"hamiltonian_nosym = ls.Operator(basis_nosym, [ls.Interaction(matrix, edges)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 99, | |
"id": "25f7027a", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Diagonalize the Hamiltonian using ARPACK\n", | |
"eigenvalues_nosym, eigenstates_nosym = ls.diagonalize(hamiltonian_nosym, k=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 107, | |
"id": "fda09896", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"assert np.isclose(eigenvalues_nosym, eigenvalues).all()\n", | |
"# eigenvalues are the same (as expected)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 108, | |
"id": "3d5faae7", | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.00152265],\n", | |
" [-0.01295336],\n", | |
" [ 0.04027096],\n", | |
" [-0.10848156],\n", | |
" [ 0.19194785],\n", | |
" [-0.05008341],\n", | |
" [ 0.08000569],\n", | |
" [-0.20277996],\n", | |
" [-0.15319953],\n", | |
" [ 0.59851874],\n", | |
" [-0.46279111],\n", | |
" [-0.28848702],\n", | |
" [ 0.46954424]])" | |
] | |
}, | |
"execution_count": 108, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"eigenstates" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 109, | |
"id": "9f3ed6bb", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 0.00068095],\n", | |
" [-0.00409621],\n", | |
" [ 0.00900486],\n", | |
" [-0.00900486],\n", | |
" [ 0.00409621],\n", | |
" [-0.00068095],\n", | |
" [ 0.00900486],\n", | |
" [-0.03430488],\n", | |
" [ 0.04292084],\n", | |
" [-0.02239798],\n", | |
" [ 0.00409621],\n", | |
" [ 0.02530002],\n", | |
" [-0.06412465],\n", | |
" [ 0.04292084],\n", | |
" [-0.00900486],\n", | |
" [ 0.02530002],\n", | |
" [-0.03430488],\n", | |
" [ 0.00900486],\n", | |
" [ 0.00900486],\n", | |
" [-0.00409621],\n", | |
" [ 0.00068095],\n", | |
" [-0.00900486],\n", | |
" [ 0.04292084],\n", | |
" [-0.06851291],\n", | |
" [ 0.04292084],\n", | |
" [-0.00900486],\n", | |
" [-0.06412465],\n", | |
" [ 0.18926824],\n", | |
" [-0.1463474 ],\n", | |
" [ 0.03430488],\n", | |
" [-0.09122761],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.04292084],\n", | |
" [-0.04292084],\n", | |
" [ 0.02239798],\n", | |
" [-0.00409621],\n", | |
" [ 0.02530002],\n", | |
" [-0.09122761],\n", | |
" [ 0.09122761],\n", | |
" [-0.02530002],\n", | |
" [ 0.09122761],\n", | |
" [-0.18926824],\n", | |
" [ 0.06412465],\n", | |
" [ 0.06851291],\n", | |
" [-0.04292084],\n", | |
" [ 0.00900486],\n", | |
" [-0.02530002],\n", | |
" [ 0.06412465],\n", | |
" [-0.02530002],\n", | |
" [-0.04292084],\n", | |
" [ 0.03430488],\n", | |
" [-0.00900486],\n", | |
" [ 0.00900486],\n", | |
" [-0.00900486],\n", | |
" [ 0.00409621],\n", | |
" [-0.00068095],\n", | |
" [ 0.00409621],\n", | |
" [-0.02239798],\n", | |
" [ 0.04292084],\n", | |
" [-0.03430488],\n", | |
" [ 0.00900486],\n", | |
" [ 0.04292084],\n", | |
" [-0.1463474 ],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.04292084],\n", | |
" [ 0.09122761],\n", | |
" [-0.18926824],\n", | |
" [ 0.06851291],\n", | |
" [ 0.06412465],\n", | |
" [-0.04292084],\n", | |
" [ 0.00900486],\n", | |
" [-0.03430488],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.18926824],\n", | |
" [ 0.06412465],\n", | |
" [-0.18926824],\n", | |
" [ 0.46954424],\n", | |
" [-0.18926824],\n", | |
" [-0.18926824],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.03430488],\n", | |
" [ 0.06412465],\n", | |
" [-0.18926824],\n", | |
" [ 0.09122761],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.1463474 ],\n", | |
" [ 0.04292084],\n", | |
" [-0.03430488],\n", | |
" [ 0.04292084],\n", | |
" [-0.02239798],\n", | |
" [ 0.00409621],\n", | |
" [ 0.00900486],\n", | |
" [-0.04292084],\n", | |
" [ 0.06412465],\n", | |
" [-0.02530002],\n", | |
" [ 0.06851291],\n", | |
" [-0.18926824],\n", | |
" [ 0.09122761],\n", | |
" [ 0.09122761],\n", | |
" [-0.09122761],\n", | |
" [ 0.02530002],\n", | |
" [-0.04292084],\n", | |
" [ 0.1463474 ],\n", | |
" [-0.09122761],\n", | |
" [-0.1463474 ],\n", | |
" [ 0.18926824],\n", | |
" [-0.06412465],\n", | |
" [ 0.04292084],\n", | |
" [-0.06851291],\n", | |
" [ 0.04292084],\n", | |
" [-0.00900486],\n", | |
" [ 0.00900486],\n", | |
" [-0.03430488],\n", | |
" [ 0.02530002],\n", | |
" [ 0.04292084],\n", | |
" [-0.06412465],\n", | |
" [ 0.02530002],\n", | |
" [-0.02239798],\n", | |
" [ 0.04292084],\n", | |
" [-0.03430488],\n", | |
" [ 0.00900486],\n", | |
" [ 0.00409621],\n", | |
" [-0.00900486],\n", | |
" [ 0.00900486],\n", | |
" [-0.00409621],\n", | |
" [ 0.00068095]])" | |
] | |
}, | |
"execution_count": 109, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"eigenstates_nosym" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 104, | |
"id": "8433c0be", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"eigenstate_recovered = []\n", | |
"for basis_state in basis_nosym.states:\n", | |
" # take a basis state of the full (_nosym) basis, basis_state = σ\n", | |
" representative, character, norm = basis.state_info(basis_state)\n", | |
" # get the corresponding representative (\\tilde σ), character (χ*(g)) and norm sqrt(1/N_{\\tilde σ}) \n", | |
" # using the \"small\" basis\n", | |
" \n", | |
" coeff = eigenstates[basis.index(representative), 0]\n", | |
" # get the coefficient of the corresponding representative in eigenstate in \"small\" basis\n", | |
" # expected to get coefficient for |S_i>\n", | |
" \n", | |
" coeff_adj = coeff * character * norm\n", | |
" # adjust coeff by multiplying on character and norm\n", | |
" \n", | |
" eigenstate_recovered.append(coeff_adj)\n", | |
"eigenstate_recovered = np.real_if_close(np.array(eigenstate_recovered))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 110, | |
"id": "c9a37f4a", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([-0.18926824, -0.18926824, -0.18926824, -0.18926824, -0.18926824,\n", | |
" -0.18926824, -0.18926824, -0.18926824, -0.1463474 , -0.1463474 ,\n", | |
" -0.1463474 , -0.1463474 , -0.09122761, -0.09122761, -0.09122761,\n", | |
" -0.09122761, -0.06851291, -0.06851291, -0.06412465, -0.06412465,\n", | |
" -0.06412465, -0.06412465, -0.04292084, -0.04292084, -0.04292084,\n", | |
" -0.04292084, -0.04292084, -0.04292084, -0.04292084, -0.04292084,\n", | |
" -0.03430488, -0.03430488, -0.03430488, -0.03430488, -0.03430488,\n", | |
" -0.03430488, -0.03430488, -0.03430488, -0.02530002, -0.02530002,\n", | |
" -0.02530002, -0.02530002, -0.02239798, -0.02239798, -0.02239798,\n", | |
" -0.02239798, -0.00900486, -0.00900486, -0.00900486, -0.00900486,\n", | |
" -0.00900486, -0.00900486, -0.00900486, -0.00900486, -0.00409621,\n", | |
" -0.00409621, -0.00409621, -0.00409621, -0.00068095, -0.00068095,\n", | |
" 0.00068095, 0.00068095, 0.00068095, 0.00409621, 0.00409621,\n", | |
" 0.00409621, 0.00409621, 0.00409621, 0.00409621, 0.00900486,\n", | |
" 0.00900486, 0.00900486, 0.00900486, 0.00900486, 0.00900486,\n", | |
" 0.00900486, 0.00900486, 0.00900486, 0.00900486, 0.00900486,\n", | |
" 0.00900486, 0.02239798, 0.02530002, 0.02530002, 0.02530002,\n", | |
" 0.02530002, 0.02530002, 0.02530002, 0.03430488, 0.03430488,\n", | |
" 0.04292084, 0.04292084, 0.04292084, 0.04292084, 0.04292084,\n", | |
" 0.04292084, 0.04292084, 0.04292084, 0.04292084, 0.04292084,\n", | |
" 0.04292084, 0.04292084, 0.06412465, 0.06412465, 0.06412465,\n", | |
" 0.06412465, 0.06412465, 0.06412465, 0.06851291, 0.06851291,\n", | |
" 0.06851291, 0.09122761, 0.09122761, 0.09122761, 0.09122761,\n", | |
" 0.09122761, 0.09122761, 0.1463474 , 0.1463474 , 0.1463474 ,\n", | |
" 0.1463474 , 0.1463474 , 0.1463474 , 0.18926824, 0.18926824,\n", | |
" 0.46954424])" | |
] | |
}, | |
"execution_count": 110, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(np.sort(eigenstates_nosym[:, 0]))\n", | |
"\n", | |
"# make sure that comparison is not failing due to different ordering of basis vectors\n", | |
"# (due to symmetries)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 111, | |
"id": "c693cb51", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([-0.13383286, -0.13383286, -0.13383286, -0.13383286, -0.13383286,\n", | |
" -0.13383286, -0.13383286, -0.13383286, -0.10348324, -0.10348324,\n", | |
" -0.10348324, -0.10348324, -0.06450766, -0.06450766, -0.06450766,\n", | |
" -0.06450766, -0.04844595, -0.04844595, -0.04534298, -0.04534298,\n", | |
" -0.04534298, -0.04534298, -0.03034962, -0.03034962, -0.03034962,\n", | |
" -0.03034962, -0.03034962, -0.03034962, -0.03034962, -0.03034962,\n", | |
" -0.02425722, -0.02425722, -0.02425722, -0.02425722, -0.02425722,\n", | |
" -0.02425722, -0.02425722, -0.02425722, -0.01788982, -0.01788982,\n", | |
" -0.01788982, -0.01788982, -0.01583777, -0.01583777, -0.01583777,\n", | |
" -0.01583777, -0.0063674 , -0.0063674 , -0.0063674 , -0.0063674 ,\n", | |
" -0.0063674 , -0.0063674 , -0.0063674 , -0.0063674 , -0.00289646,\n", | |
" -0.00289646, -0.00289646, -0.00289646, -0.0004815 , -0.0004815 ,\n", | |
" 0.0004815 , 0.0004815 , 0.0004815 , 0.00289646, 0.00289646,\n", | |
" 0.00289646, 0.00289646, 0.00289646, 0.00289646, 0.0063674 ,\n", | |
" 0.0063674 , 0.0063674 , 0.0063674 , 0.0063674 , 0.0063674 ,\n", | |
" 0.0063674 , 0.0063674 , 0.0063674 , 0.0063674 , 0.0063674 ,\n", | |
" 0.0063674 , 0.01583777, 0.01788982, 0.01788982, 0.01788982,\n", | |
" 0.01788982, 0.01788982, 0.01788982, 0.02425722, 0.02425722,\n", | |
" 0.03034962, 0.03034962, 0.03034962, 0.03034962, 0.03034962,\n", | |
" 0.03034962, 0.03034962, 0.03034962, 0.03034962, 0.03034962,\n", | |
" 0.03034962, 0.03034962, 0.04534298, 0.04534298, 0.04534298,\n", | |
" 0.04534298, 0.04534298, 0.04534298, 0.04844595, 0.04844595,\n", | |
" 0.04844595, 0.06450766, 0.06450766, 0.06450766, 0.06450766,\n", | |
" 0.06450766, 0.06450766, 0.10348324, 0.10348324, 0.10348324,\n", | |
" 0.10348324, 0.10348324, 0.10348324, 0.13383286, 0.13383286,\n", | |
" 0.33201791])" | |
] | |
}, | |
"execution_count": 111, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.sort(eigenstate_recovered)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 112, | |
"id": "042ee432", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# nothing common!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 113, | |
"id": "97b02bc9", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# moreover:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 114, | |
"id": "078b439c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.5000000000000001" | |
] | |
}, | |
"execution_count": 114, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(eigenstate_recovered ** 2).sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 115, | |
"id": "0d0fd4a1", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1.0" | |
] | |
}, | |
"execution_count": 115, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(eigenstates ** 2).sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "e751a4e5", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "LatSym", | |
"language": "python", | |
"name": "latsym" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.15" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment