Created
February 9, 2025 21:09
-
-
Save ischurov/8181c056ba02bad2ab161dd890693bd9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$$P(A)=1/2$$\n", | |
"$P(B)=p$ unknown\n", | |
"$A$ and $B$ are independent" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"from scipy.stats import chi2_contingency\n", | |
"from tqdm.auto import tqdm" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def p_value(df, correction):\n", | |
" chi2, p, dof, expected = chi2_contingency(df, correction=correction)\n", | |
" return p" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "e31f1ef79ae546628ab9026d4b41bbcd", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/2 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "7af83b53e01d4594a4792c9dcf08fc24", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/3 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "46eba5e423604b69ab20d318d3509267", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "533f52c6a4dc43e98448a699ce4c933a", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "c3ac532b8af4491c928c200db73b3d35", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "77f4aa1fc7d240b8a7c8a3bcb846dd70", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/3 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "b1921634526345108341baf61e7fceb2", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "6b0a30fa806f4c0995c4c248ffa41408", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "13114d4501d54d9d889c7abd870c8230", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
" 0%| | 0/1000 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# A and B are independent\n", | |
"# A is chosen exactly q * samples_size times\n", | |
"# B is chosen randomly with probability p\n", | |
"\n", | |
"sample_size = 100\n", | |
"q = 0.5\n", | |
"n_iterations = 1000\n", | |
"output = []\n", | |
"for correction in tqdm([True, False]):\n", | |
" for p in tqdm([0.3, 0.5, 0.9]):\n", | |
" for it in tqdm(range(n_iterations)):\n", | |
" a = np.array([0] * int(sample_size * q) + [1] * int(sample_size * (1 - q)))\n", | |
" b = np.random.choice([0, 1], p=[1 - p, p], size=sample_size)\n", | |
" null_df = (\n", | |
" pd.DataFrame({\"a\": a, \"b\": b}).groupby([\"a\", \"b\"]).size().unstack()\n", | |
" )\n", | |
" output.append(\n", | |
" {\n", | |
" \"p\": p,\n", | |
" \"correction\": correction,\n", | |
" \"p_value\": p_value(null_df, correction),\n", | |
" }\n", | |
" )\n", | |
"result = pd.DataFrame(output)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th>correction</th>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>p</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0.3</th>\n", | |
" <td>0.056</td>\n", | |
" <td>0.028</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.5</th>\n", | |
" <td>0.051</td>\n", | |
" <td>0.034</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0.9</th>\n", | |
" <td>0.034</td>\n", | |
" <td>0.012</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"correction False True \n", | |
"p \n", | |
"0.3 0.056 0.028\n", | |
"0.5 0.051 0.034\n", | |
"0.9 0.034 0.012" | |
] | |
}, | |
"execution_count": 36, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"false_positive_rates = (\n", | |
" result.assign(is_significant=lambda df: df[\"p_value\"] < 0.05)\n", | |
" .groupby([\"p\", \"correction\"])[\"is_significant\"]\n", | |
" .mean()\n", | |
")\n", | |
"false_positive_rates.unstack()\n" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": ".venv", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.12.8" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment