Created
October 14, 2013 00:00
-
-
Save iskandr/6968728 to your computer and use it in GitHub Desktop.
cudatree getting suboptimal accuracy on covtype
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Random Forest accuracy" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from sklearn.ensemble import RandomForestClassifier as SklearnRF" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from cudatree import RandomForestClassifier as CudaRF" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"/usr/lib/python2.7/dist-packages/nose/util.py:14: DeprecationWarning: The compiler package is deprecated and removed in Python 3.x.\n", | |
" from compiler.consts import CO_GENERATOR\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import sklearn.datasets" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"d = sklearn.datasets.fetch_covtype(); x = d['data']; y = d['target']" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print x.shape, y.shape" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"(581012, 54) (581012,)\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"n = x.shape[0] / 2; xtrain = x[:n]; ytrain = y[:n]; xtest = x[n:]; ytest = y[n:]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"skrf = SklearnRF(n_estimators = 21, n_jobs = 4)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 19 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cudarf = CudaRF()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"time skrf.fit(xtrain, ytrain)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"CPU times: user 0.35 s, sys: 0.66 s, total: 1.01 s\n", | |
"Wall time: 19.40 s\n" | |
] | |
}, | |
{ | |
"output_type": "pyout", | |
"prompt_number": 21, | |
"text": [ | |
"RandomForestClassifier(bootstrap=True, compute_importances=None,\n", | |
" criterion='gini', max_depth=None, max_features='auto',\n", | |
" min_density=None, min_samples_leaf=1, min_samples_split=2,\n", | |
" n_estimators=21, n_jobs=4, oob_score=False, random_state=None,\n", | |
" verbose=0)" | |
] | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"time cudarf.fit(xtrain, ytrain, n_trees = 21, bootstrap=False)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"CPU times: user 13.90 s, sys: 0.24 s, total: 14.14 s\n", | |
"Wall time: 14.15 s\n" | |
] | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print \"sklearn accuracy\", np.mean(skrf.predict(xtest) == ytest)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"sklearn accuracy" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
" 0.724614982135\n" | |
] | |
} | |
], | |
"prompt_number": 28 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"print \"cudatree accuracy\", np.mean(cudarf.predict(xtest) == ytest)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"cudatree accuracy " | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"0.633735619918\n" | |
] | |
} | |
], | |
"prompt_number": 29 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cudarf.predict(xtest)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 25, | |
"text": [ | |
"array([2, 2, 1, ..., 3, 3, 3], dtype=int32)" | |
] | |
} | |
], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"skrf.predict(xtest)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 26, | |
"text": [ | |
"array([1, 1, 1, ..., 3, 3, 3], dtype=int32)" | |
] | |
} | |
], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment