La raiz cuadrada de 4 es 2
\$sqrt(4) = 2\$
La raiz cuadrada de 4 es 2
L | M | X | J | V | S | D |
---|
function onOpen(e) { | |
var ui = SpreadsheetApp.getUi(); | |
var menu = ui.createAddonMenu() | |
menu.addItem('Historico M30', 'dumpM30'); | |
menu.addItem('Accidentes M30', 'accidentesM30'); | |
menu.addToUi(); | |
} | |
function populateHeader(sheet){ | |
sheet.appendRow([ "Fecha", "Vehiculos","VelocidadMedia","DistanciaMedia","TiempoMedio" ]); |
String.prototype.addQuery = function(obj) { | |
return this + Object.keys(obj).reduce(function(p, e, i) { | |
return p + (i == 0 ? "?" : "&") + | |
(Array.isArray(obj[e]) ? obj[e].reduce(function(str, f, j) { | |
return str + e + "=" + encodeURIComponent(f) + (j != obj[e].length - 1 ? "&" : "") | |
},"") : e + "=" + encodeURIComponent(obj[e])); | |
},""); | |
} | |
function mathml2png( math, format, scale, transparent){ |
var bigInt=function(undefined){"use strict";var BASE=1e7,LOG_BASE=7,MAX_INT=9007199254740992,MAX_INT_ARR=smallToArray(MAX_INT),DEFAULT_ALPHABET="0123456789abcdefghijklmnopqrstuvwxyz";var supportsNativeBigInt=typeof BigInt==="function";function Integer(v,radix,alphabet,caseSensitive){if(typeof v==="undefined")return Integer[0];if(typeof radix!=="undefined")return+radix===10&&!alphabet?parseValue(v):parseBase(v,radix,alphabet,caseSensitive);return parseValue(v)}function BigInteger(value,sign){this.value=value;this.sign=sign;this.isSmall=false}BigInteger.prototype=Object.create(Integer.prototype);function SmallInteger(value){this.value=value;this.sign=value<0;this.isSmall=true}SmallInteger.prototype=Object.create(Integer.prototype);function NativeBigInt(value){this.value=value}NativeBigInt.prototype=Object.create(Integer.prototype);function isPrecise(n){return-MAX_INT<n&&n<MAX_INT}function smallToArray(n){if(n<1e7)return[n];if(n<1e14)return[n%1e7,Math.floor(n/1e7)];return[n%1e7,Math.floor(n/1e7)%1e7,Math.floor(n |
initial=5 | |
depth=15 | |
class Node { | |
String id | |
int depth | |
Boolean isLeft | |
int value | |
Node left | |
Node right |
f(x)= | |
li(x) - \sum{li(x^p)} | |
-\log(2) | |
+\int_{x}^{\infty} | |
{dt \over {t*(t^2-1)*\log(t)} } |
\begin{align} | |
F(x)=\int{f(x) dx} \to F(1)=0.5*(F(0)+F(\infty)) \\ | |
\text{ por ejemplo }\\ | |
f(x)={-1 \over (x+1)^2} \\ | |
\end{align} |
import groovy.grape.Grape | |
new javafx.embed.swing.JFXPanel(); | |
Grape.grab(group:'org.groovyfx',module:'groovyfx',version:'8.0.0',transitive:false) | |
Class.forName('groovyx.javafx.GroovyFX').start { | |
stage(title: 'GroovyFX Hello World', visible: true) { | |
scene(fill: BLACK, width: 500, height: 250) { | |
hbox() { | |
text(text: 'Groovy', font: '80pt sanserif') { | |
fill linearGradient(endX: 0, stops: [PALEGREEN, SEAGREEN]) |