-
-
Save jayvdb/a086ebc4bfcc5d16f48340b896246cc2 to your computer and use it in GitHub Desktop.
Grabbed from https://github.com/odewahn/ipynb-examples, converted to v3 for GitHub to render.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Grabbed from https://github.com/odewahn/ipynb-examples.\n", | |
"\n", | |
"The Markdown parser included in IPython is MathJax-aware. This means that you can freely mix in mathematical expressions using the [MathJax subset of Tex and LaTeX](http://docs.mathjax.org/en/latest/tex.html#tex-support). [Some examples from the MathJax site](http://www.mathjax.org/demos/tex-samples/) are reproduced below, as well as the Markdown+TeX source." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Motivating Examples\n", | |
"\n", | |
"---\n", | |
"\n", | |
"## The Lorenz Equations\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{aligned}\n", | |
"\\dot{x} & = \\sigma(y-x) \\\\\n", | |
"\\dot{y} & = \\rho x - y - xz \\\\\n", | |
"\\dot{z} & = -\\beta z + xy\n", | |
"\\end{aligned}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{aligned}\n", | |
"\\dot{x} & = \\sigma(y-x) \\\\\n", | |
"\\dot{y} & = \\rho x - y - xz \\\\\n", | |
"\\dot{z} & = -\\beta z + xy\n", | |
"\\end{aligned}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## The Cauchy-Schwarz Inequality\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{equation*}\n", | |
"\\left( \\sum_{k=1}^n a_k b_k \\right)^2 \\leq \\left( \\sum_{k=1}^n a_k^2 \\right) \\left( \\sum_{k=1}^n b_k^2 \\right)\n", | |
"\\end{equation*}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{equation*}\n", | |
"\\left( \\sum_{k=1}^n a_k b_k \\right)^2 \\leq \\left( \\sum_{k=1}^n a_k^2 \\right) \\left( \\sum_{k=1}^n b_k^2 \\right)\n", | |
"\\end{equation*}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## A Cross Product Formula\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{equation*}\n", | |
"\\mathbf{V}_1 \\times \\mathbf{V}_2 = \\begin{vmatrix}\n", | |
"\\mathbf{i} & \\mathbf{j} & \\mathbf{k} \\\\\n", | |
"\\frac{\\partial X}{\\partial u} & \\frac{\\partial Y}{\\partial u} & 0 \\\\\n", | |
"\\frac{\\partial X}{\\partial v} & \\frac{\\partial Y}{\\partial v} & 0\n", | |
"\\end{vmatrix} \n", | |
"\\end{equation*}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{equation*}\n", | |
"\\mathbf{V}_1 \\times \\mathbf{V}_2 = \\begin{vmatrix}\n", | |
"\\mathbf{i} & \\mathbf{j} & \\mathbf{k} \\\\\n", | |
"\\frac{\\partial X}{\\partial u} & \\frac{\\partial Y}{\\partial u} & 0 \\\\\n", | |
"\\frac{\\partial X}{\\partial v} & \\frac{\\partial Y}{\\partial v} & 0\n", | |
"\\end{vmatrix} \n", | |
"\\end{equation*}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## The probability of getting \\(k\\) heads when flipping \\(n\\) coins is\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{equation*}\n", | |
"P(E) = {n \\choose k} p^k (1-p)^{ n-k} \n", | |
"\\end{equation*}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{equation*}\n", | |
"P(E) = {n \\choose k} p^k (1-p)^{ n-k} \n", | |
"\\end{equation*}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## An Identity of Ramanujan\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{equation*}\n", | |
"\\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} =\n", | |
"1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}}\n", | |
"{1+\\frac{e^{-8\\pi}} {1+\\ldots} } } } \n", | |
"\\end{equation*}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{equation*}\n", | |
"\\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} =\n", | |
"1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}}\n", | |
"{1+\\frac{e^{-8\\pi}} {1+\\ldots} } } } \n", | |
"\\end{equation*}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## A Rogers-Ramanujan Identity\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{equation*}\n", | |
"1 + \\frac{q^2}{(1-q)}+\\frac{q^6}{(1-q)(1-q^2)}+\\cdots =\n", | |
"\\prod_{j=0}^{\\infty}\\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},\n", | |
"\\quad\\quad \\text{for $|q|<1$}. \n", | |
"\\end{equation*}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{equation*}\n", | |
"1 + \\frac{q^2}{(1-q)}+\\frac{q^6}{(1-q)(1-q^2)}+\\cdots =\n", | |
"\\prod_{j=0}^{\\infty}\\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},\n", | |
"\\quad\\quad \\text{for $|q|<1$}. \n", | |
"\\end{equation*}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Maxwell's Equations\n", | |
"\n", | |
"### Source\n", | |
"\n", | |
"```latex\n", | |
"\\begin{aligned}\n", | |
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\ \\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", | |
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", | |
"\\end{aligned}\n", | |
"```\n", | |
"\n", | |
"### Display\n", | |
"\n", | |
"\\begin{aligned}\n", | |
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\ \\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", | |
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", | |
"\\end{aligned}" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Equation Numbering and References\n", | |
"\n", | |
"---\n", | |
"\n", | |
"Equation numbering and referencing will be available in a future version of IPython." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Inline Typesetting (Mixing Markdown and TeX)\n", | |
"\n", | |
"---\n", | |
"\n", | |
"While display equations look good for a page of samples, the ability to mix math and *formatted* **text** in a paragraph is also important.\n", | |
"\n", | |
"## Source\n", | |
"\n", | |
"``` \n", | |
"This expression $\\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a **[Markdown-formatted](http://daringfireball.net/projects/markdown/)** sentence. \n", | |
"```\n", | |
"\n", | |
"## Display\n", | |
"\n", | |
"This expression $\\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a **[Markdown-formatted](http://daringfireball.net/projects/markdown/)** sentence. " | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment