Created
June 17, 2021 15:05
-
-
Save jbusecke/f1e5c5eb1e64acd47cb046e464e0aad1 to your computer and use it in GitHub Desktop.
CMIP6 Demo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "egyptian-encyclopedia", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import intake\n", | |
"# for Google Cloud:\n", | |
"col = intake.open_esm_datastore(\"https://storage.googleapis.com/cmip6/pangeo-cmip6.json\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "prerequisite-blogger", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<p><strong>pangeo-cmip6 catalog with 7403 dataset(s) from 501656 asset(s)</strong>:</p> <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>unique</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>activity_id</th>\n", | |
" <td>17</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>institution_id</th>\n", | |
" <td>36</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>source_id</th>\n", | |
" <td>86</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>experiment_id</th>\n", | |
" <td>168</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>member_id</th>\n", | |
" <td>650</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>table_id</th>\n", | |
" <td>37</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>variable_id</th>\n", | |
" <td>709</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>grid_label</th>\n", | |
" <td>10</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>zstore</th>\n", | |
" <td>501656</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>dcpp_init_year</th>\n", | |
" <td>60</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>version</th>\n", | |
" <td>660</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"col" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "aware-benchmark", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array(['CMCC-CM2-HR4', 'EC-Earth3P-HR', 'HadGEM3-GC31-MM',\n", | |
" 'HadGEM3-GC31-HM', 'HadGEM3-GC31-LM', 'EC-Earth3P', 'ECMWF-IFS-HR',\n", | |
" 'ECMWF-IFS-LR', 'HadGEM3-GC31-LL', 'CMCC-CM2-VHR4', 'GFDL-CM4',\n", | |
" 'GFDL-AM4', 'IPSL-CM6A-LR', 'E3SM-1-0', 'CNRM-CM6-1', 'GFDL-ESM4',\n", | |
" 'GFDL-ESM2M', 'GFDL-CM4C192', 'GFDL-OM4p5B', 'GISS-E2-1-G',\n", | |
" 'GISS-E2-1-H', 'CNRM-ESM2-1', 'BCC-CSM2-MR', 'BCC-ESM1', 'MIROC6',\n", | |
" 'AWI-CM-1-1-MR', 'EC-Earth3-LR', 'IPSL-CM6A-ATM-HR', 'CESM2',\n", | |
" 'CESM2-WACCM', 'CNRM-CM6-1-HR', 'MRI-ESM2-0', 'CanESM5',\n", | |
" 'SAM0-UNICON', 'GISS-E2-1-G-CC', 'UKESM1-0-LL', 'EC-Earth3',\n", | |
" 'EC-Earth3-Veg', 'FGOALS-f3-L', 'CanESM5-CanOE', 'INM-CM4-8',\n", | |
" 'INM-CM5-0', 'NESM3', 'MPI-ESM-1-2-HAM', 'CAMS-CSM1-0',\n", | |
" 'MPI-ESM1-2-LR', 'MPI-ESM1-2-HR', 'MRI-AGCM3-2-S', 'MRI-AGCM3-2-H',\n", | |
" 'MCM-UA-1-0', 'INM-CM5-H', 'KACE-1-0-G', 'NorESM2-LM',\n", | |
" 'FGOALS-f3-H', 'FGOALS-g3', 'MIROC-ES2L', 'FIO-ESM-2-0', 'NorCPM1',\n", | |
" 'NorESM1-F', 'MPI-ESM1-2-XR', 'CESM1-1-CAM5-CMIP5', 'E3SM-1-1',\n", | |
" 'KIOST-ESM', 'NorESM2-MM', 'ACCESS-CM2', 'ACCESS-ESM1-5',\n", | |
" 'CESM2-WACCM-FV2', 'CESM2-FV2', 'GISS-E2-2-G', 'IITM-ESM', 'CIESM',\n", | |
" 'E3SM-1-1-ECA', 'TaiESM1', 'AWI-ESM-1-1-LR', 'EC-Earth3-Veg-LR',\n", | |
" 'CMCC-ESM2', 'CAS-ESM2-0', 'CMCC-CM2-SR5', 'EC-Earth3-AerChem',\n", | |
" 'IPSL-CM5A2-INCA', 'BCC-CSM2-HR', 'EC-Earth3P-VHR',\n", | |
" 'CESM1-WACCM-SC', 'EC-Earth3-CC', 'IPSL-CM6A-LR-INCA',\n", | |
" 'MIROC-ES2H'], dtype=object)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"col.df['source_id'].unique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"id": "incorporated-commerce", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array(['GFDL-ESM4', 'GFDL-CM4', 'CNRM-ESM2-1', 'IPSL-CM6A-LR', 'CESM2',\n", | |
" 'CESM2-WACCM', 'CanESM5-CanOE', 'CanESM5', 'MPI-ESM-1-2-HAM',\n", | |
" 'MPI-ESM1-2-LR', 'MPI-ESM1-2-HR', 'GISS-E2-1-G-CC', 'GISS-E2-1-G',\n", | |
" 'MIROC-ES2L', 'NorESM1-F', 'CESM2-WACCM-FV2', 'CESM2-FV2',\n", | |
" 'ACCESS-ESM1-5', 'UKESM1-0-LL', 'MRI-ESM2-0', 'KIOST-ESM',\n", | |
" 'NorESM2-LM', 'CMCC-ESM2', 'IPSL-CM5A2-INCA'], dtype=object)" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cat = col.search(variable_id='dissic', experiment_id='piControl')\n", | |
"cat.df['source_id'].unique()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"id": "thermal-uganda", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# exclude two models that dont work quite right\n", | |
"source_ids = [m for m in cat.df['source_id'].unique() if m not in ['CMCC-ESM2', 'KIOST-ESM']]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"id": "operational-promise", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"--> The keys in the returned dictionary of datasets are constructed as follows:\n", | |
"\t'activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.zstore.dcpp_init_year.version'\n", | |
"CESM2-WACCM-FV2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" <style>\n", | |
" /* Turns off some styling */\n", | |
" progress {\n", | |
" /* gets rid of default border in Firefox and Opera. */\n", | |
" border: none;\n", | |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", | |
" background-size: auto;\n", | |
" }\n", | |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", | |
" background: #F44336;\n", | |
" }\n", | |
" </style>\n", | |
" <progress value='50' class='' max='50' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" 100.00% [50/50 00:10<00:00]\n", | |
" </div>\n", | |
" " | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2-WACCM-FV2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2-WACCM: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"MIROC-ES2L: No units found\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2-WACCM: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"MIROC-ES2L: No units found\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2-FV2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CESM2-FV2: Unexpected unit (centimeters) for coordinate `lev` detected.\n", | |
"\t Converted to `m`\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/cmip6_preprocessing/preprocessing.py:766: UserWarning: No input dictionary entry for source_id: `IPSL-CM5A2-INCA`. Please add values to https://github.com/jbusecke/cmip6_preprocessing/blob/master/cmip6_preprocessing/preprocessing.py\n", | |
" warnings.warn(msg, UserWarning)\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n", | |
"/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/indexing.py:1369: PerformanceWarning: Slicing is producing a large chunk. To accept the large\n", | |
"chunk and silence this warning, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n", | |
" ... array[indexer]\n", | |
"\n", | |
"To avoid creating the large chunks, set the option\n", | |
" >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n", | |
" ... array[indexer]\n", | |
" return self.array[key]\n" | |
] | |
} | |
], | |
"source": [ | |
"from cmip6_preprocessing.preprocessing import combined_preprocessing\n", | |
"\n", | |
"ddict = cat.search(source_id=source_ids).to_dataset_dict(\n", | |
" zarr_kwargs={'consolidated': True, 'use_cftime':True},\n", | |
" storage_options={'token': 'anon'},\n", | |
" preprocess=combined_preprocessing,\n", | |
" aggregate=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"id": "blank-worthy", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", | |
"Dimensions: (bnds: 2, lev: 45, time: 6012, vertex: 4, x: 360, y: 291)\n", | |
"Coordinates:\n", | |
" * x (x) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", | |
" * y (y) float64 -78.39 -78.19 -77.98 -77.77 ... 71.57 71.62 71.65\n", | |
" lat (y, x) float64 dask.array<chunksize=(291, 360), meta=np.ndarray>\n", | |
" * lev (lev) float64 3.047 9.454 16.36 ... 5.375e+03 5.625e+03\n", | |
" lev_bounds (lev, bnds) float64 dask.array<chunksize=(45, 2), meta=np.ndarray>\n", | |
" lon (y, x) float64 dask.array<chunksize=(291, 360), meta=np.ndarray>\n", | |
" * time (time) object 5550-01-16 12:00:00 ... 6050-12-16 12:00:00\n", | |
" time_bnds (time, bnds) object dask.array<chunksize=(6012, 2), meta=np.ndarray>\n", | |
" lat_bounds (y, x, vertex) float64 dask.array<chunksize=(291, 360, 4), meta=np.ndarray>\n", | |
" lon_bounds (y, x, vertex) float64 dask.array<chunksize=(291, 360, 4), meta=np.ndarray>\n", | |
" * bnds (bnds) int64 0 1\n", | |
" * vertex (vertex) int64 0 1 2 3\n", | |
"Data variables:\n", | |
" dissic (time, lev, y, x) float32 dask.array<chunksize=(7, 45, 291, 360), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" CCCma_model_hash: 932b659de600c6a0e94f619abaf9cc79eabcd337\n", | |
" CCCma_parent_runid: canoecpl-007\n", | |
" CCCma_pycmor_hash: 3ecdc18eb7c1f7fbce0346850f41adf815d9fb66\n", | |
" CCCma_runid: c2-pictrl\n", | |
" Conventions: CF-1.7 CMIP-6.2\n", | |
" YMDH_branch_time_in_child: 5550:01:01:00\n", | |
" YMDH_branch_time_in_parent: 5550:01:01:00\n", | |
" activity_id: CMIP\n", | |
" branch_method: Spin-up documentation\n", | |
" branch_time_in_child: 1350500.0\n", | |
" branch_time_in_parent: 1350500.0\n", | |
" cmor_version: 3.5.0\n", | |
" contact: [email protected]\n", | |
" creation_date: 2019-12-11T20:52:35Z\n", | |
" data_specs_version: 01.00.31\n", | |
" experiment: pre-industrial control\n", | |
" experiment_id: piControl\n", | |
" external_variables: areacello volcello\n", | |
" forcing_index: 1\n", | |
" frequency: mon\n", | |
" further_info_url: https://furtherinfo.es-doc.org/CMIP6.CCCma.C...\n", | |
" grid: ORCA1 tripolar grid, 1 deg with refinement t...\n", | |
" grid_label: gn\n", | |
" history: 2019-12-11T20:52:35Z ;rewrote data to be con...\n", | |
" initialization_index: 1\n", | |
" institution: Canadian Centre for Climate Modelling and An...\n", | |
" institution_id: CCCma\n", | |
" license: CMIP6 model data produced by The Government ...\n", | |
" mip_era: CMIP6\n", | |
" netcdf_tracking_ids: hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed50...\n", | |
" nominal_resolution: 100 km\n", | |
" parent_activity_id: CMIP\n", | |
" parent_experiment_id: piControl-spinup\n", | |
" parent_mip_era: CMIP6\n", | |
" parent_source_id: CanESM5-CanOE\n", | |
" parent_time_units: days since 1850-01-01 0:0:0.0\n", | |
" parent_variant_label: r1i1p2f1\n", | |
" physics_index: 2\n", | |
" product: model-output\n", | |
" realization_index: 1\n", | |
" realm: ocnBgchem\n", | |
" references: Geoscientific Model Development Special issu...\n", | |
" source: CanESM5-CanOE (2019): \\naerosol: interactive...\n", | |
" source_id: CanESM5-CanOE\n", | |
" source_type: AOGCM\n", | |
" status: 2021-02-14;created; by [email protected]\n", | |
" sub_experiment: none\n", | |
" sub_experiment_id: none\n", | |
" table_id: Omon\n", | |
" table_info: Creation Date:(24 July 2019) MD5:c93735846d6...\n", | |
" title: CanESM5-CanOE output prepared for CMIP6\n", | |
" tracking_id: hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed50...\n", | |
" variable_id: dissic\n", | |
" variant_label: r1i1p2f1\n", | |
" version: v20190429\n", | |
" version_id: v20190429\n", | |
" intake_esm_varname: None\n", | |
" intake_esm_dataset_key: CMIP.CCCma.CanESM5-CanOE.piControl.r1i1p2f1....</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-463cd66d-b292-45b5-9026-f9290d2c26c6' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-463cd66d-b292-45b5-9026-f9290d2c26c6' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>bnds</span>: 2</li><li><span class='xr-has-index'>lev</span>: 45</li><li><span class='xr-has-index'>time</span>: 6012</li><li><span class='xr-has-index'>vertex</span>: 4</li><li><span class='xr-has-index'>x</span>: 360</li><li><span class='xr-has-index'>y</span>: 291</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-94ef8853-935d-4ea5-8eab-a72b5ac1520b' class='xr-section-summary-in' type='checkbox' checked><label for='section-94ef8853-935d-4ea5-8eab-a72b5ac1520b' class='xr-section-summary' >Coordinates: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.5 1.5 2.5 ... 357.5 358.5 359.5</div><input id='attrs-9dfbe360-fa65-4f91-b21f-ab14100d637b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9dfbe360-fa65-4f91-b21f-ab14100d637b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8255d65a-8cac-4eee-b9ff-fd3003e141d9' class='xr-var-data-in' type='checkbox'><label for='data-8255d65a-8cac-4eee-b9ff-fd3003e141d9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 0.5, 1.5, 2.5, ..., 357.5, 358.5, 359.5])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>y</span></div><div class='xr-var-dims'>(y)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-78.39 -78.19 ... 71.62 71.65</div><input id='attrs-73935a31-e97e-43db-9e79-899ad00e7698' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-73935a31-e97e-43db-9e79-899ad00e7698' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-36a2ac85-5c1a-4e61-884a-78a60c526383' class='xr-var-data-in' type='checkbox'><label for='data-36a2ac85-5c1a-4e61-884a-78a60c526383' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([-78.393501, -78.190582, -77.984169, ..., 71.569529, 71.618454,\n", | |
" 71.650577])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat</span></div><div class='xr-var-dims'>(y, x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(291, 360), meta=np.ndarray></div><input id='attrs-1fd5e113-2099-4f31-9e9a-34abd309731f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1fd5e113-2099-4f31-9e9a-34abd309731f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-59ecd25b-3754-4a06-a7a6-fb13913f42d9' class='xr-var-data-in' type='checkbox'><label for='data-59ecd25b-3754-4a06-a7a6-fb13913f42d9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>bounds :</span></dt><dd>vertices_latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 838.08 kB </td> <td> 838.08 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (291, 360) </td> <td> (291, 360) </td></tr>\n", | |
" <tr><th> Count </th><td> 6 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"170\" height=\"147\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"97\" x2=\"120\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,97.0 0.0,97.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"117.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >360</text>\n", | |
" <text x=\"140.000000\" y=\"48.500000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,48.500000)\">291</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>3.047 9.454 ... 5.375e+03 5.625e+03</div><input id='attrs-013bee47-b7c9-4332-a2bc-3d5bfdca6aed' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-013bee47-b7c9-4332-a2bc-3d5bfdca6aed' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7300c7e4-c3ac-4aad-9d1c-c2cba11ae75c' class='xr-var-data-in' type='checkbox'><label for='data-7300c7e4-c3ac-4aad-9d1c-c2cba11ae75c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>bounds :</span></dt><dd>lev_bnds</dd><dt><span>long_name :</span></dt><dd>ocean depth coordinate</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>depth</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([3.046773e+00, 9.454049e+00, 1.636397e+01, 2.389871e+01, 3.220929e+01,\n", | |
" 4.148185e+01, 5.194513e+01, 6.387905e+01, 7.762451e+01, 9.359412e+01,\n", | |
" 1.122835e+02, 1.342823e+02, 1.602840e+02, 1.910925e+02, 2.276233e+02,\n", | |
" 2.708962e+02, 3.220169e+02, 3.821444e+02, 4.524429e+02, 5.340197e+02,\n", | |
" 6.278525e+02, 7.347150e+02, 8.551112e+02, 9.892289e+02, 1.136922e+03,\n", | |
" 1.297724e+03, 1.470893e+03, 1.655472e+03, 1.850365e+03, 2.054414e+03,\n", | |
" 2.266454e+03, 2.485371e+03, 2.710133e+03, 2.939812e+03, 3.173588e+03,\n", | |
" 3.410756e+03, 3.650712e+03, 3.892950e+03, 4.137047e+03, 4.382654e+03,\n", | |
" 4.629485e+03, 4.877303e+03, 5.125919e+03, 5.375177e+03, 5.624952e+03])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lev_bounds</span></div><div class='xr-var-dims'>(lev, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(45, 2), meta=np.ndarray></div><input id='attrs-1dcdad28-0833-4770-9195-b194d89bf7b8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1dcdad28-0833-4770-9195-b194d89bf7b8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-002f074d-a76c-4bb5-a540-6a7666d0b7fe' class='xr-var-data-in' type='checkbox'><label for='data-002f074d-a76c-4bb5-a540-6a7666d0b7fe' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 720 B </td> <td> 720 B </td></tr>\n", | |
" <tr><th> Shape </th><td> (45, 2) </td> <td> (45, 2) </td></tr>\n", | |
" <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"83\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"33\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"33\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 33.77915408816314,0.0 33.77915408816314,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"16.889577\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", | |
" <text x=\"53.779154\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,53.779154,60.000000)\">45</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon</span></div><div class='xr-var-dims'>(y, x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(291, 360), meta=np.ndarray></div><input id='attrs-a37dad89-b766-4a9e-a182-fc0f99cacd72' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a37dad89-b766-4a9e-a182-fc0f99cacd72' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1c14c142-7768-48f6-adbf-ca1287fc084b' class='xr-var-data-in' type='checkbox'><label for='data-1c14c142-7768-48f6-adbf-ca1287fc084b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 838.08 kB </td> <td> 838.08 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (291, 360) </td> <td> (291, 360) </td></tr>\n", | |
" <tr><th> Count </th><td> 9 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"170\" height=\"147\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"97\" x2=\"120\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"97\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,97.0 0.0,97.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"117.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >360</text>\n", | |
" <text x=\"140.000000\" y=\"48.500000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,48.500000)\">291</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>5550-01-16 12:00:00 ... 6050-12-...</div><input id='attrs-977b4cb6-9a8c-4cb1-8c48-06e5f8ea3ac6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-977b4cb6-9a8c-4cb1-8c48-06e5f8ea3ac6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7afcfb01-a68b-445f-8c0d-3b74fa3c4082' class='xr-var-data-in' type='checkbox'><label for='data-7afcfb01-a68b-445f-8c0d-3b74fa3c4082' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeNoLeap(5550, 1, 16, 12, 0, 0, 0),\n", | |
" cftime.DatetimeNoLeap(5550, 2, 15, 0, 0, 0, 0),\n", | |
" cftime.DatetimeNoLeap(5550, 3, 16, 12, 0, 0, 0), ...,\n", | |
" cftime.DatetimeNoLeap(6050, 10, 16, 12, 0, 0, 0),\n", | |
" cftime.DatetimeNoLeap(6050, 11, 16, 0, 0, 0, 0),\n", | |
" cftime.DatetimeNoLeap(6050, 12, 16, 12, 0, 0, 0)], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(6012, 2), meta=np.ndarray></div><input id='attrs-d7acd978-a0dc-443a-8b42-d329b72887d1' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d7acd978-a0dc-443a-8b42-d329b72887d1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9cf13673-999d-475d-afb9-f272b374790e' class='xr-var-data-in' type='checkbox'><label for='data-9cf13673-999d-475d-afb9-f272b374790e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 96.19 kB </td> <td> 96.19 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (6012, 2) </td> <td> (6012, 2) </td></tr>\n", | |
" <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> object </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"12.706308\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", | |
" <text x=\"45.412617\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.412617,60.000000)\">6012</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat_bounds</span></div><div class='xr-var-dims'>(y, x, vertex)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(291, 360, 4), meta=np.ndarray></div><input id='attrs-f529e7bc-855f-48b7-a89e-d79f6f86784d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f529e7bc-855f-48b7-a89e-d79f6f86784d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e3ac7e82-b754-43a2-a483-ba68a6ebb68a' class='xr-var-data-in' type='checkbox'><label for='data-e3ac7e82-b754-43a2-a483-ba68a6ebb68a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 3.35 MB </td> <td> 3.35 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (291, 360, 4) </td> <td> (291, 360, 4) </td></tr>\n", | |
" <tr><th> Count </th><td> 6 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"142\" height=\"227\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"67\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"120\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 67.05882352941177,57.05882352941177 67.05882352941177,177.05882352941177 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"67\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"35\" y1=\"0\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 35.924160051965714,0.0 92.98298358137748,57.05882352941177 67.05882352941177,57.05882352941177\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"177\" x2=\"92\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"92\" y1=\"57\" x2=\"92\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"67.05882352941177,57.05882352941177 92.98298358137748,57.05882352941177 92.98298358137748,177.05882352941177 67.05882352941177,177.05882352941177\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"80.020904\" y=\"197.058824\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >4</text>\n", | |
" <text x=\"112.982984\" y=\"117.058824\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,112.982984,117.058824)\">360</text>\n", | |
" <text x=\"28.529412\" y=\"168.529412\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,28.529412,168.529412)\">291</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bounds</span></div><div class='xr-var-dims'>(y, x, vertex)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(291, 360, 4), meta=np.ndarray></div><input id='attrs-a6b9def7-f70c-4ff7-9768-c80637c53f80' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a6b9def7-f70c-4ff7-9768-c80637c53f80' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a80ed2bd-dcfa-499d-b958-31195ddcabb5' class='xr-var-data-in' type='checkbox'><label for='data-a80ed2bd-dcfa-499d-b958-31195ddcabb5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>degrees_east</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 3.35 MB </td> <td> 3.35 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (291, 360, 4) </td> <td> (291, 360, 4) </td></tr>\n", | |
" <tr><th> Count </th><td> 6 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"142\" height=\"227\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"67\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"120\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 67.05882352941177,57.05882352941177 67.05882352941177,177.05882352941177 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"67\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"35\" y1=\"0\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 35.924160051965714,0.0 92.98298358137748,57.05882352941177 67.05882352941177,57.05882352941177\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"92\" y2=\"57\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"67\" y1=\"177\" x2=\"92\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"67\" y1=\"57\" x2=\"67\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"92\" y1=\"57\" x2=\"92\" y2=\"177\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"67.05882352941177,57.05882352941177 92.98298358137748,57.05882352941177 92.98298358137748,177.05882352941177 67.05882352941177,177.05882352941177\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"80.020904\" y=\"197.058824\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >4</text>\n", | |
" <text x=\"112.982984\" y=\"117.058824\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,112.982984,117.058824)\">360</text>\n", | |
" <text x=\"28.529412\" y=\"168.529412\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,28.529412,168.529412)\">291</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>bnds</span></div><div class='xr-var-dims'>(bnds)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>0 1</div><input id='attrs-8ab7d77a-ed78-44b4-9499-b36152651b2c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8ab7d77a-ed78-44b4-9499-b36152651b2c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6b9ad122-1c3d-4ebc-8240-63ce8930e5ca' class='xr-var-data-in' type='checkbox'><label for='data-6b9ad122-1c3d-4ebc-8240-63ce8930e5ca' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>vertex</span></div><div class='xr-var-dims'>(vertex)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>0 1 2 3</div><input id='attrs-923796d0-6b6b-4c83-9314-9cf4caffe5e4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-923796d0-6b6b-4c83-9314-9cf4caffe5e4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-db244ab7-4616-4afc-a53c-0afeabd4e0ac' class='xr-var-data-in' type='checkbox'><label for='data-db244ab7-4616-4afc-a53c-0afeabd4e0ac' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 1, 2, 3])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2f8a107e-cf59-418d-a409-4a6577743325' class='xr-section-summary-in' type='checkbox' checked><label for='section-2f8a107e-cf59-418d-a409-4a6577743325' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>dissic</span></div><div class='xr-var-dims'>(time, lev, y, x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(7, 45, 291, 360), meta=np.ndarray></div><input id='attrs-9298fb5b-4114-48dc-afa7-1bc973fbeced' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9298fb5b-4114-48dc-afa7-1bc973fbeced' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8c14c14c-ca56-46f4-9de4-944a0714d45a' class='xr-var-data-in' type='checkbox'><label for='data-8c14c14c-ca56-46f4-9de4-944a0714d45a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacello volume: volcello</dd><dt><span>cell_methods :</span></dt><dd>area: mean where sea time: mean</dd><dt><span>comment :</span></dt><dd>Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration</dd><dt><span>history :</span></dt><dd>mltby1em3</dd><dt><span>long_name :</span></dt><dd>Dissolved Inorganic Carbon Concentration</dd><dt><span>original_name :</span></dt><dd>DIC</dd><dt><span>standard_name :</span></dt><dd>mole_concentration_of_dissolved_inorganic_carbon_in_sea_water</dd><dt><span>units :</span></dt><dd>mol m-3</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 113.37 GB </td> <td> 132.00 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (6012, 45, 291, 360) </td> <td> (7, 45, 291, 360) </td></tr>\n", | |
" <tr><th> Count </th><td> 1719 Tasks </td><td> 859 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"480\" height=\"99\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", | |
" <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", | |
" <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", | |
" <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", | |
" <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", | |
" <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", | |
" <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"41\" y1=\"0\" x2=\"41\" y2=\"25\" />\n", | |
" <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"25\" />\n", | |
" <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"25\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"52\" y2=\"25\" />\n", | |
" <line x1=\"56\" y1=\"0\" x2=\"56\" y2=\"25\" />\n", | |
" <line x1=\"59\" y1=\"0\" x2=\"59\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n", | |
" <line x1=\"71\" y1=\"0\" x2=\"71\" y2=\"25\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"74\" y2=\"25\" />\n", | |
" <line x1=\"78\" y1=\"0\" x2=\"78\" y2=\"25\" />\n", | |
" <line x1=\"82\" y1=\"0\" x2=\"82\" y2=\"25\" />\n", | |
" <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n", | |
" <line x1=\"89\" y1=\"0\" x2=\"89\" y2=\"25\" />\n", | |
" <line x1=\"93\" y1=\"0\" x2=\"93\" y2=\"25\" />\n", | |
" <line x1=\"97\" y1=\"0\" x2=\"97\" y2=\"25\" />\n", | |
" <line x1=\"101\" y1=\"0\" x2=\"101\" y2=\"25\" />\n", | |
" <line x1=\"104\" y1=\"0\" x2=\"104\" y2=\"25\" />\n", | |
" <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"116\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >6012</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n", | |
"\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"190\" y1=\"34\" x2=\"204\" y2=\"49\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"34\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"49\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"190.0,0.0 204.9485979497544,14.948597949754406 204.9485979497544,49.25079830746743 190.0,34.30220035771302\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"225\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"204\" y1=\"14\" x2=\"240\" y2=\"14\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"204\" y2=\"14\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"225\" y1=\"0\" x2=\"240\" y2=\"14\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"190.0,0.0 225.60051057044302,0.0 240.54910852019742,14.948597949754406 204.9485979497544,14.948597949754406\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"204\" y1=\"14\" x2=\"240\" y2=\"14\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"204\" y1=\"49\" x2=\"240\" y2=\"49\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"204\" y1=\"14\" x2=\"204\" y2=\"49\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"240\" y1=\"14\" x2=\"240\" y2=\"49\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"204.9485979497544,14.948597949754406 240.54910852019742,14.948597949754406 240.54910852019742,49.25079830746743 204.9485979497544,49.25079830746743\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"222.748853\" y=\"69.250798\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >360</text>\n", | |
" <text x=\"260.549109\" y=\"32.099698\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,260.549109,32.099698)\">291</text>\n", | |
" <text x=\"187.474299\" y=\"61.776499\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,187.474299,61.776499)\">45</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-0436b04b-d7dd-4989-8806-66f8288da0fb' class='xr-section-summary-in' type='checkbox' ><label for='section-0436b04b-d7dd-4989-8806-66f8288da0fb' class='xr-section-summary' >Attributes: <span>(58)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CCCma_model_hash :</span></dt><dd>932b659de600c6a0e94f619abaf9cc79eabcd337</dd><dt><span>CCCma_parent_runid :</span></dt><dd>canoecpl-007</dd><dt><span>CCCma_pycmor_hash :</span></dt><dd>3ecdc18eb7c1f7fbce0346850f41adf815d9fb66</dd><dt><span>CCCma_runid :</span></dt><dd>c2-pictrl</dd><dt><span>Conventions :</span></dt><dd>CF-1.7 CMIP-6.2</dd><dt><span>YMDH_branch_time_in_child :</span></dt><dd>5550:01:01:00</dd><dt><span>YMDH_branch_time_in_parent :</span></dt><dd>5550:01:01:00</dd><dt><span>activity_id :</span></dt><dd>CMIP</dd><dt><span>branch_method :</span></dt><dd>Spin-up documentation</dd><dt><span>branch_time_in_child :</span></dt><dd>1350500.0</dd><dt><span>branch_time_in_parent :</span></dt><dd>1350500.0</dd><dt><span>cmor_version :</span></dt><dd>3.5.0</dd><dt><span>contact :</span></dt><dd>[email protected]</dd><dt><span>creation_date :</span></dt><dd>2019-12-11T20:52:35Z</dd><dt><span>data_specs_version :</span></dt><dd>01.00.31</dd><dt><span>experiment :</span></dt><dd>pre-industrial control</dd><dt><span>experiment_id :</span></dt><dd>piControl</dd><dt><span>external_variables :</span></dt><dd>areacello volcello</dd><dt><span>forcing_index :</span></dt><dd>1</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>https://furtherinfo.es-doc.org/CMIP6.CCCma.CanESM5-CanOE.piControl.none.r1i1p2f1</dd><dt><span>grid :</span></dt><dd>ORCA1 tripolar grid, 1 deg with refinement to 1/3 deg within 20 degrees of the equator; 361 x 290 longitude/latitude; 45 vertical levels; top grid cell 0-6.19 m</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>history :</span></dt><dd>2019-12-11T20:52:35Z ;rewrote data to be consistent with CMIP for variable dissic found in table Omon.</dd><dt><span>initialization_index :</span></dt><dd>1</dd><dt><span>institution :</span></dt><dd>Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC V8P 5C2, Canada</dd><dt><span>institution_id :</span></dt><dd>CCCma</dd><dt><span>license :</span></dt><dd>CMIP6 model data produced by The Government of Canada (Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada) is licensed under a Creative Commons Attribution ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and at https:///pcmdi.llnl.gov/. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>netcdf_tracking_ids :</span></dt><dd>hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed5070d80\n", | |
"hdl:21.14100/f1af039f-313d-45d7-a3b6-e2fef8e64348\n", | |
"hdl:21.14100/dd16c370-35d4-4fb7-a27a-f67bd308d5f1\n", | |
"hdl:21.14100/3ddfb63f-6c9a-4d4c-8b9f-8fc33bc27199\n", | |
"hdl:21.14100/0e28f693-30e0-465d-8140-0ed1c5b84d19\n", | |
"hdl:21.14100/3cddd841-25ec-49bc-8a0c-2054dfda3ff9\n", | |
"hdl:21.14100/29321de0-08a4-4b67-b8a6-fada5b18ea68\n", | |
"hdl:21.14100/33371916-11d1-4ae1-84ad-06bd879ee8b0\n", | |
"hdl:21.14100/739fa39b-5a1d-47ed-9235-b8f9f24b73b6\n", | |
"hdl:21.14100/28239060-e519-449a-b3c6-48640c9bb436\n", | |
"hdl:21.14100/397f7bba-8f9b-483a-b055-ea4756579495\n", | |
"hdl:21.14100/ee5c3ae8-c021-4567-9352-688a6eba947a\n", | |
"hdl:21.14100/53386943-1c34-42da-bfb2-0a239d1ad9cb\n", | |
"hdl:21.14100/657a51db-1f4a-4785-8fe2-a126f70a4723\n", | |
"hdl:21.14100/c11bc7df-4c64-4722-a27e-e9c9a454b442\n", | |
"hdl:21.14100/cfc1926b-b5e1-4973-b61e-defe270ced3b\n", | |
"hdl:21.14100/abe4ecad-784c-4582-9405-9e71c50211b7\n", | |
"hdl:21.14100/39bc7ff8-3a25-4e48-ab25-c8051f603b3b\n", | |
"hdl:21.14100/eca1146f-a088-42be-814a-1fa104165cf9\n", | |
"hdl:21.14100/633c7bda-5ad9-4f93-80b4-bc4fa67dc71f\n", | |
"hdl:21.14100/1c810cac-c26b-4678-926b-96207b859d8d\n", | |
"hdl:21.14100/646088dd-19eb-4a90-9814-9c190f48b719\n", | |
"hdl:21.14100/e26ddd3a-ba3b-4615-8db7-ae8c7382f05c\n", | |
"hdl:21.14100/37a0c2ee-bf2a-4f1a-b3e5-f0d8ab81b44f\n", | |
"hdl:21.14100/d0234686-2b2a-484e-a1f9-952b3b933906\n", | |
"hdl:21.14100/233a7f92-59de-4def-a1cd-812e4981f472\n", | |
"hdl:21.14100/6f4d8101-96c5-48ac-8bad-0592163b68ee\n", | |
"hdl:21.14100/75f122ef-8781-4ba2-8e31-6b32fd1e5227\n", | |
"hdl:21.14100/eee16faf-b84a-44d7-8e1c-14e8b8f61bca\n", | |
"hdl:21.14100/238442a7-8bd5-46d4-b636-019fe64faf20\n", | |
"hdl:21.14100/1e4c87df-90bd-4174-be30-e089c6574a28\n", | |
"hdl:21.14100/ba75b8b0-d84d-4d93-bfa5-7e59b5c1046b\n", | |
"hdl:21.14100/6463a269-879b-45d6-b8bb-c969300008e9\n", | |
"hdl:21.14100/d45c94eb-65d9-4a25-ad34-6f9c162fe5ec\n", | |
"hdl:21.14100/fdd0f5fb-90b5-4d71-83e0-efb820b00e05\n", | |
"hdl:21.14100/97066b80-2376-4a16-88bb-b21ddb97a0fc\n", | |
"hdl:21.14100/4da4c29f-4c81-4693-a6ab-c13c93d6249f\n", | |
"hdl:21.14100/4411dd3b-21a0-4d60-800d-b59ec688cb7a\n", | |
"hdl:21.14100/d2eaa216-1a61-4534-bf88-52599969993e\n", | |
"hdl:21.14100/2d38b482-d22d-4ac4-9da0-12a84e418032\n", | |
"hdl:21.14100/efb081b1-590f-443d-9526-0a54cb3bf8a5\n", | |
"hdl:21.14100/47f541c5-3832-4256-9b4f-2f01c60f4565\n", | |
"hdl:21.14100/ff02ada6-5473-4586-a93d-6172947c4018\n", | |
"hdl:21.14100/2a835f5d-04e0-446e-b40c-0d5f4077ba73\n", | |
"hdl:21.14100/d400aaba-6893-4942-abf9-c92ff0b85370\n", | |
"hdl:21.14100/80780aa7-374f-4589-9d46-70de36b8ee0f\n", | |
"hdl:21.14100/bedccb0d-d4d1-4104-8239-8951e75d45ce\n", | |
"hdl:21.14100/b1f544e4-d992-4a64-9314-ceb0f81f2e74\n", | |
"hdl:21.14100/bd8d6e03-090a-427d-874a-2e111ccc7b32\n", | |
"hdl:21.14100/49f3b817-8047-4faa-9074-98c296e4b2f9</dd><dt><span>nominal_resolution :</span></dt><dd>100 km</dd><dt><span>parent_activity_id :</span></dt><dd>CMIP</dd><dt><span>parent_experiment_id :</span></dt><dd>piControl-spinup</dd><dt><span>parent_mip_era :</span></dt><dd>CMIP6</dd><dt><span>parent_source_id :</span></dt><dd>CanESM5-CanOE</dd><dt><span>parent_time_units :</span></dt><dd>days since 1850-01-01 0:0:0.0</dd><dt><span>parent_variant_label :</span></dt><dd>r1i1p2f1</dd><dt><span>physics_index :</span></dt><dd>2</dd><dt><span>product :</span></dt><dd>model-output</dd><dt><span>realization_index :</span></dt><dd>1</dd><dt><span>realm :</span></dt><dd>ocnBgchem</dd><dt><span>references :</span></dt><dd>Geoscientific Model Development Special issue on CanESM5 (https://www.geosci-model-dev.net/special_issue989.html)</dd><dt><span>source :</span></dt><dd>CanESM5-CanOE (2019): \n", | |
"aerosol: interactive\n", | |
"atmos: CanAM5 (T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa)\n", | |
"atmosChem: specified oxidants for aerosols\n", | |
"land: CLASS3.6/CTEM1.2\n", | |
"landIce: specified ice sheets\n", | |
"ocean: NEMO3.4.1 (ORCA1 tripolar grid, 1 deg with refinement to 1/3 deg within 20 degrees of the equator; 361 x 290 longitude/latitude; 45 vertical levels; top grid cell 0-6.19 m)\n", | |
"ocnBgchem: Canadian Ocean Ecosystem (CanOE) with OMIP prescribed carbon chemistry\n", | |
"seaIce: LIM2</dd><dt><span>source_id :</span></dt><dd>CanESM5-CanOE</dd><dt><span>source_type :</span></dt><dd>AOGCM</dd><dt><span>status :</span></dt><dd>2021-02-14;created; by [email protected]</dd><dt><span>sub_experiment :</span></dt><dd>none</dd><dt><span>sub_experiment_id :</span></dt><dd>none</dd><dt><span>table_id :</span></dt><dd>Omon</dd><dt><span>table_info :</span></dt><dd>Creation Date:(24 July 2019) MD5:c93735846d66458966fc81f390b2d714</dd><dt><span>title :</span></dt><dd>CanESM5-CanOE output prepared for CMIP6</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed5070d80</dd><dt><span>variable_id :</span></dt><dd>dissic</dd><dt><span>variant_label :</span></dt><dd>r1i1p2f1</dd><dt><span>version :</span></dt><dd>v20190429</dd><dt><span>version_id :</span></dt><dd>v20190429</dd><dt><span>intake_esm_varname :</span></dt><dd>None</dd><dt><span>intake_esm_dataset_key :</span></dt><dd>CMIP.CCCma.CanESM5-CanOE.piControl.r1i1p2f1.Omon.dissic.gn.gs://cmip6/CMIP6/CMIP/CCCma/CanESM5-CanOE/piControl/r1i1p2f1/Omon/dissic/gn/v20190429/.nan.20190429</dd></dl></div></li></ul></div></div>" | |
], | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (bnds: 2, lev: 45, time: 6012, vertex: 4, x: 360, y: 291)\n", | |
"Coordinates:\n", | |
" * x (x) float64 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", | |
" * y (y) float64 -78.39 -78.19 -77.98 -77.77 ... 71.57 71.62 71.65\n", | |
" lat (y, x) float64 dask.array<chunksize=(291, 360), meta=np.ndarray>\n", | |
" * lev (lev) float64 3.047 9.454 16.36 ... 5.375e+03 5.625e+03\n", | |
" lev_bounds (lev, bnds) float64 dask.array<chunksize=(45, 2), meta=np.ndarray>\n", | |
" lon (y, x) float64 dask.array<chunksize=(291, 360), meta=np.ndarray>\n", | |
" * time (time) object 5550-01-16 12:00:00 ... 6050-12-16 12:00:00\n", | |
" time_bnds (time, bnds) object dask.array<chunksize=(6012, 2), meta=np.ndarray>\n", | |
" lat_bounds (y, x, vertex) float64 dask.array<chunksize=(291, 360, 4), meta=np.ndarray>\n", | |
" lon_bounds (y, x, vertex) float64 dask.array<chunksize=(291, 360, 4), meta=np.ndarray>\n", | |
" * bnds (bnds) int64 0 1\n", | |
" * vertex (vertex) int64 0 1 2 3\n", | |
"Data variables:\n", | |
" dissic (time, lev, y, x) float32 dask.array<chunksize=(7, 45, 291, 360), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" CCCma_model_hash: 932b659de600c6a0e94f619abaf9cc79eabcd337\n", | |
" CCCma_parent_runid: canoecpl-007\n", | |
" CCCma_pycmor_hash: 3ecdc18eb7c1f7fbce0346850f41adf815d9fb66\n", | |
" CCCma_runid: c2-pictrl\n", | |
" Conventions: CF-1.7 CMIP-6.2\n", | |
" YMDH_branch_time_in_child: 5550:01:01:00\n", | |
" YMDH_branch_time_in_parent: 5550:01:01:00\n", | |
" activity_id: CMIP\n", | |
" branch_method: Spin-up documentation\n", | |
" branch_time_in_child: 1350500.0\n", | |
" branch_time_in_parent: 1350500.0\n", | |
" cmor_version: 3.5.0\n", | |
" contact: [email protected]\n", | |
" creation_date: 2019-12-11T20:52:35Z\n", | |
" data_specs_version: 01.00.31\n", | |
" experiment: pre-industrial control\n", | |
" experiment_id: piControl\n", | |
" external_variables: areacello volcello\n", | |
" forcing_index: 1\n", | |
" frequency: mon\n", | |
" further_info_url: https://furtherinfo.es-doc.org/CMIP6.CCCma.C...\n", | |
" grid: ORCA1 tripolar grid, 1 deg with refinement t...\n", | |
" grid_label: gn\n", | |
" history: 2019-12-11T20:52:35Z ;rewrote data to be con...\n", | |
" initialization_index: 1\n", | |
" institution: Canadian Centre for Climate Modelling and An...\n", | |
" institution_id: CCCma\n", | |
" license: CMIP6 model data produced by The Government ...\n", | |
" mip_era: CMIP6\n", | |
" netcdf_tracking_ids: hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed50...\n", | |
" nominal_resolution: 100 km\n", | |
" parent_activity_id: CMIP\n", | |
" parent_experiment_id: piControl-spinup\n", | |
" parent_mip_era: CMIP6\n", | |
" parent_source_id: CanESM5-CanOE\n", | |
" parent_time_units: days since 1850-01-01 0:0:0.0\n", | |
" parent_variant_label: r1i1p2f1\n", | |
" physics_index: 2\n", | |
" product: model-output\n", | |
" realization_index: 1\n", | |
" realm: ocnBgchem\n", | |
" references: Geoscientific Model Development Special issu...\n", | |
" source: CanESM5-CanOE (2019): \\naerosol: interactive...\n", | |
" source_id: CanESM5-CanOE\n", | |
" source_type: AOGCM\n", | |
" status: 2021-02-14;created; by [email protected]\n", | |
" sub_experiment: none\n", | |
" sub_experiment_id: none\n", | |
" table_id: Omon\n", | |
" table_info: Creation Date:(24 July 2019) MD5:c93735846d6...\n", | |
" title: CanESM5-CanOE output prepared for CMIP6\n", | |
" tracking_id: hdl:21.14100/cec35884-6bb7-4faf-9da4-089ed50...\n", | |
" variable_id: dissic\n", | |
" variant_label: r1i1p2f1\n", | |
" version: v20190429\n", | |
" version_id: v20190429\n", | |
" intake_esm_varname: None\n", | |
" intake_esm_dataset_key: CMIP.CCCma.CanESM5-CanOE.piControl.r1i1p2f1...." | |
] | |
}, | |
"execution_count": 25, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ddict['CMIP.CCCma.CanESM5-CanOE.piControl.r1i1p2f1.Omon.dissic.gn.gs://cmip6/CMIP6/CMIP/CCCma/CanESM5-CanOE/piControl/r1i1p2f1/Omon/dissic/gn/v20190429/.nan.20190429']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"id": "dental-guyana", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", | |
"Dimensions: (bnds: 2, lev: 75, time: 3000, vertex: 4, x: 362, y: 332)\n", | |
"Coordinates:\n", | |
" lat_bounds (y, x, vertex) float32 dask.array<chunksize=(332, 362, 4), meta=np.ndarray>\n", | |
" lon_bounds (y, x, vertex) float32 dask.array<chunksize=(332, 362, 4), meta=np.ndarray>\n", | |
" lat (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" lon (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" * lev (lev) float32 0.5058 1.556 2.668 ... 5.698e+03 5.902e+03\n", | |
" lev_bounds (lev, bnds) float32 dask.array<chunksize=(75, 2), meta=np.ndarray>\n", | |
" * time (time) object 1850-01-16 12:00:00 ... 2099-12-16 12:00:00\n", | |
" time_bounds (time, bnds) object dask.array<chunksize=(3000, 2), meta=np.ndarray>\n", | |
" * bnds (bnds) int64 0 1\n", | |
" * vertex (vertex) int64 0 1 2 3\n", | |
" * x (x) float32 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", | |
" * y (y) float32 -83.55 -83.45 -83.34 -83.23 ... 71.5 71.53 71.53\n", | |
"Data variables:\n", | |
" area (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" dissic (time, lev, y, x) float32 dask.array<chunksize=(5, 75, 332, 362), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" CMIP6_CV_version: cv=6.2.15.1\n", | |
" Conventions: CF-1.7 CMIP-6.2\n", | |
" EXPID: piControl\n", | |
" activity_id: CMIP\n", | |
" branch_method: standard\n", | |
" branch_time_in_child: 0.0\n", | |
" branch_time_in_parent: 36524.0\n", | |
" contact: [email protected]\n", | |
" creation_date: 2019-02-11T10:52:07Z\n", | |
" data_specs_version: 01.00.28\n", | |
" description: DECK: control\n", | |
" dr2xml_md5sum: c2dce418e78ca835be1e2ff817c2c403\n", | |
" dr2xml_version: 1.16\n", | |
" experiment: pre-industrial control\n", | |
" experiment_id: piControl\n", | |
" external_variables: areacello volcello\n", | |
" forcing_index: 1\n", | |
" frequency: mon\n", | |
" further_info_url: https://furtherinfo.es-doc.org/CMIP6.IPSL.IPSL-C...\n", | |
" grid: native ocean tri-polar grid with 105 k ocean cells\n", | |
" grid_label: gn\n", | |
" history: none\n", | |
" initialization_index: 2\n", | |
" institution: Institut Pierre Simon Laplace, Paris 75252, France\n", | |
" institution_id: IPSL\n", | |
" license: CMIP6 model data produced by IPSL is licensed un...\n", | |
" mip_era: CMIP6\n", | |
" model_version: 6.1.8\n", | |
" name: /ccc/work/cont003/gencmip6/lebasn/IGCM_OUT/IPSLC...\n", | |
" nominal_resolution: 100 km\n", | |
" parent_activity_id: CMIP\n", | |
" parent_experiment_id: piControl-spinup\n", | |
" parent_mip_era: CMIP6\n", | |
" parent_source_id: IPSL-CM6A-LR\n", | |
" parent_time_units: days since 1750-01-01 00:00:00\n", | |
" parent_variant_label: r1i2p1f1\n", | |
" physics_index: 1\n", | |
" product: model-output\n", | |
" realization_index: 1\n", | |
" realm: ocnBgchem\n", | |
" source: IPSL-CM6A-LR (2017): atmos: LMDZ (NPv6, N96; 14...\n", | |
" source_id: IPSL-CM6A-LR\n", | |
" source_type: AOGCM BGC\n", | |
" sub_experiment: none\n", | |
" sub_experiment_id: none\n", | |
" table_id: Omon\n", | |
" title: IPSL-CM6A-LR model output prepared for CMIP6 / C...\n", | |
" tracking_id: hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e929...\n", | |
" variable_id: dissic\n", | |
" variant_info: Equivalent to r1i1p1f1 but started on a differen...\n", | |
" variant_label: r1i2p1f1\n", | |
" status: 2019-11-03;created;by [email protected]\n", | |
" netcdf_tracking_ids: hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e929...\n", | |
" version_id: v20190319\n", | |
" intake_esm_varname: None\n", | |
" intake_esm_dataset_key: CMIP.IPSL.IPSL-CM6A-LR.piControl.r1i2p1f1.Omon.d...</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-29523d11-8216-427f-bedf-c3a8acb5b2ca' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-29523d11-8216-427f-bedf-c3a8acb5b2ca' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>bnds</span>: 2</li><li><span class='xr-has-index'>lev</span>: 75</li><li><span class='xr-has-index'>time</span>: 3000</li><li><span class='xr-has-index'>vertex</span>: 4</li><li><span class='xr-has-index'>x</span>: 362</li><li><span class='xr-has-index'>y</span>: 332</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-0aa93426-5a9f-4427-8c8f-23365a4a0787' class='xr-section-summary-in' type='checkbox' checked><label for='section-0aa93426-5a9f-4427-8c8f-23365a4a0787' class='xr-section-summary' >Coordinates: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>lat_bounds</span></div><div class='xr-var-dims'>(y, x, vertex)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(332, 362, 4), meta=np.ndarray></div><input id='attrs-a5c938b6-7f4c-426e-aca4-2b7e8c52765d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a5c938b6-7f4c-426e-aca4-2b7e8c52765d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5daa787f-a15c-4e2d-8407-a9fe08c268af' class='xr-var-data-in' type='checkbox'><label for='data-5daa787f-a15c-4e2d-8407-a9fe08c268af' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 1.92 MB </td> <td> 1.92 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (332, 362, 4) </td> <td> (332, 362, 4) </td></tr>\n", | |
" <tr><th> Count </th><td> 7 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"150\" height=\"234\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"120\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 74.73838154046149,64.73838154046149 74.73838154046149,184.7383815404615 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"35\" y1=\"0\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 35.89690899898957,0.0 100.63529053945106,64.73838154046149 74.73838154046149,64.73838154046149\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"184\" x2=\"100\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"100\" y1=\"64\" x2=\"100\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"74.73838154046149,64.73838154046149 100.63529053945106,64.73838154046149 100.63529053945106,184.7383815404615 74.73838154046149,184.7383815404615\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"87.686836\" y=\"204.738382\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >4</text>\n", | |
" <text x=\"120.635291\" y=\"124.738382\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,120.635291,124.738382)\">362</text>\n", | |
" <text x=\"32.369191\" y=\"172.369191\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,32.369191,172.369191)\">332</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bounds</span></div><div class='xr-var-dims'>(y, x, vertex)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(332, 362, 4), meta=np.ndarray></div><input id='attrs-9f93fcbe-0dba-4d1c-a555-05c93a2b6f1e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9f93fcbe-0dba-4d1c-a555-05c93a2b6f1e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-80a6f0e2-bc09-437a-9ec0-a92f24f52d18' class='xr-var-data-in' type='checkbox'><label for='data-80a6f0e2-bc09-437a-9ec0-a92f24f52d18' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 1.92 MB </td> <td> 1.92 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (332, 362, 4) </td> <td> (332, 362, 4) </td></tr>\n", | |
" <tr><th> Count </th><td> 7 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"150\" height=\"234\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"120\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 74.73838154046149,64.73838154046149 74.73838154046149,184.7383815404615 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"35\" y1=\"0\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 35.89690899898957,0.0 100.63529053945106,64.73838154046149 74.73838154046149,64.73838154046149\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"100\" y2=\"64\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"74\" y1=\"184\" x2=\"100\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"74\" y1=\"64\" x2=\"74\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"100\" y1=\"64\" x2=\"100\" y2=\"184\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"74.73838154046149,64.73838154046149 100.63529053945106,64.73838154046149 100.63529053945106,184.7383815404615 74.73838154046149,184.7383815404615\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"87.686836\" y=\"204.738382\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >4</text>\n", | |
" <text x=\"120.635291\" y=\"124.738382\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,120.635291,124.738382)\">362</text>\n", | |
" <text x=\"32.369191\" y=\"172.369191\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,32.369191,172.369191)\">332</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lat</span></div><div class='xr-var-dims'>(y, x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(332, 362), meta=np.ndarray></div><input id='attrs-00d7c948-8c0d-4d01-9854-3158e6fd23fa' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-00d7c948-8c0d-4d01-9854-3158e6fd23fa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb006aee-24ba-48e6-bd01-60bd15e098dc' class='xr-var-data-in' type='checkbox'><label for='data-bb006aee-24ba-48e6-bd01-60bd15e098dc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>bounds :</span></dt><dd>bounds_nav_lat</dd><dt><span>long_name :</span></dt><dd>Latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 480.74 kB </td> <td> 480.74 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (332, 362) </td> <td> (332, 362) </td></tr>\n", | |
" <tr><th> Count </th><td> 7 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"170\" height=\"160\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"110\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,110.05524861878452 0.0,110.05524861878452\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"130.055249\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >362</text>\n", | |
" <text x=\"140.000000\" y=\"55.027624\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,55.027624)\">332</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lon</span></div><div class='xr-var-dims'>(y, x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(332, 362), meta=np.ndarray></div><input id='attrs-d2060521-5047-4abe-80aa-252a203e0474' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d2060521-5047-4abe-80aa-252a203e0474' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5168bd0e-be7b-4f11-9492-9795e33ff233' class='xr-var-data-in' type='checkbox'><label for='data-5168bd0e-be7b-4f11-9492-9795e33ff233' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 480.74 kB </td> <td> 480.74 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (332, 362) </td> <td> (332, 362) </td></tr>\n", | |
" <tr><th> Count </th><td> 10 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"170\" height=\"160\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"110\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,110.05524861878452 0.0,110.05524861878452\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"130.055249\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >362</text>\n", | |
" <text x=\"140.000000\" y=\"55.027624\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,55.027624)\">332</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.5058 1.556 ... 5.902e+03</div><input id='attrs-a7d32a09-139f-4d83-8104-f5c689108421' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a7d32a09-139f-4d83-8104-f5c689108421' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-24018ee2-ed0b-4bac-9214-f121253eb4e0' class='xr-var-data-in' type='checkbox'><label for='data-24018ee2-ed0b-4bac-9214-f121253eb4e0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>bounds :</span></dt><dd>olevel_bounds</dd><dt><span>long_name :</span></dt><dd>Vertical T levels</dd><dt><span>name :</span></dt><dd>olevel</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([5.057600e-01, 1.555855e+00, 2.667682e+00, 3.856280e+00, 5.140361e+00,\n", | |
" 6.543034e+00, 8.092519e+00, 9.822750e+00, 1.177368e+01, 1.399104e+01,\n", | |
" 1.652532e+01, 1.942980e+01, 2.275762e+01, 2.655830e+01, 3.087456e+01,\n", | |
" 3.574020e+01, 4.118002e+01, 4.721189e+01, 5.385064e+01, 6.111284e+01,\n", | |
" 6.902168e+01, 7.761116e+01, 8.692943e+01, 9.704131e+01, 1.080303e+02,\n", | |
" 1.200000e+02, 1.330758e+02, 1.474062e+02, 1.631645e+02, 1.805499e+02,\n", | |
" 1.997900e+02, 2.211412e+02, 2.448906e+02, 2.713564e+02, 3.008875e+02,\n", | |
" 3.338628e+02, 3.706885e+02, 4.117939e+02, 4.576256e+02, 5.086399e+02,\n", | |
" 5.652923e+02, 6.280260e+02, 6.972587e+02, 7.733683e+02, 8.566790e+02,\n", | |
" 9.474479e+02, 1.045854e+03, 1.151991e+03, 1.265861e+03, 1.387377e+03,\n", | |
" 1.516364e+03, 1.652568e+03, 1.795671e+03, 1.945296e+03, 2.101027e+03,\n", | |
" 2.262422e+03, 2.429025e+03, 2.600380e+03, 2.776039e+03, 2.955570e+03,\n", | |
" 3.138565e+03, 3.324641e+03, 3.513446e+03, 3.704657e+03, 3.897982e+03,\n", | |
" 4.093159e+03, 4.289953e+03, 4.488155e+03, 4.687581e+03, 4.888070e+03,\n", | |
" 5.089479e+03, 5.291683e+03, 5.494575e+03, 5.698061e+03, 5.902058e+03],\n", | |
" dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lev_bounds</span></div><div class='xr-var-dims'>(lev, bnds)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(75, 2), meta=np.ndarray></div><input id='attrs-0181dcc8-8b2b-4572-b526-a7bf37576268' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0181dcc8-8b2b-4572-b526-a7bf37576268' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c4e58ceb-bee5-42cc-b62a-989676024e5d' class='xr-var-data-in' type='checkbox'><label for='data-c4e58ceb-bee5-42cc-b62a-989676024e5d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 600 B </td> <td> 600 B </td></tr>\n", | |
" <tr><th> Shape </th><td> (75, 2) </td> <td> (75, 2) </td></tr>\n", | |
" <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"80\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"30\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"30\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 30.690372229553788,0.0 30.690372229553788,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"15.345186\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", | |
" <text x=\"50.690372\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,50.690372,60.000000)\">75</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>1850-01-16 12:00:00 ... 2099-12-...</div><input id='attrs-1f1a8036-aea8-4fbc-81e7-e47a1dcc2afd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1f1a8036-aea8-4fbc-81e7-e47a1dcc2afd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-714838ac-936a-43ae-98ef-7660dc2c725d' class='xr-var-data-in' type='checkbox'><label for='data-714838ac-936a-43ae-98ef-7660dc2c725d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd><dt><span>bounds :</span></dt><dd>time_bounds</dd><dt><span>long_name :</span></dt><dd>Time axis</dd><dt><span>standard_name :</span></dt><dd>time</dd><dt><span>time_origin :</span></dt><dd>1850-01-01 00:00:00</dd></dl></div><div class='xr-var-data'><pre>array([cftime.DatetimeGregorian(1850, 1, 16, 12, 0, 0, 0),\n", | |
" cftime.DatetimeGregorian(1850, 2, 15, 0, 0, 0, 0),\n", | |
" cftime.DatetimeGregorian(1850, 3, 16, 12, 0, 0, 0), ...,\n", | |
" cftime.DatetimeGregorian(2099, 10, 16, 12, 0, 0, 0),\n", | |
" cftime.DatetimeGregorian(2099, 11, 16, 0, 0, 0, 0),\n", | |
" cftime.DatetimeGregorian(2099, 12, 16, 12, 0, 0, 0)], dtype=object)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bounds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(3000, 2), meta=np.ndarray></div><input id='attrs-b21a3c84-0fa5-4c1f-9e14-c0d250f1a67c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b21a3c84-0fa5-4c1f-9e14-c0d250f1a67c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-da784c6b-a0cc-43de-8e5d-856a1e017796' class='xr-var-data-in' type='checkbox'><label for='data-da784c6b-a0cc-43de-8e5d-856a1e017796' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 48.00 kB </td> <td> 48.00 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (3000, 2) </td> <td> (3000, 2) </td></tr>\n", | |
" <tr><th> Count </th><td> 5 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> object </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 25.412616514582485,0.0 25.412616514582485,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"12.706308\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", | |
" <text x=\"45.412617\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.412617,60.000000)\">3000</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>bnds</span></div><div class='xr-var-dims'>(bnds)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>0 1</div><input id='attrs-5637e1f2-6589-48cd-8e6d-badf71eddc91' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5637e1f2-6589-48cd-8e6d-badf71eddc91' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7cad4d87-2305-436f-a8c1-1cd2ac4c93e1' class='xr-var-data-in' type='checkbox'><label for='data-7cad4d87-2305-436f-a8c1-1cd2ac4c93e1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 1])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>vertex</span></div><div class='xr-var-dims'>(vertex)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>0 1 2 3</div><input id='attrs-656e5009-dfe3-4b40-8ef2-7b0179845869' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-656e5009-dfe3-4b40-8ef2-7b0179845869' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8f1a9841-fa78-45eb-9e1e-1b4310a2468d' class='xr-var-data-in' type='checkbox'><label for='data-8f1a9841-fa78-45eb-9e1e-1b4310a2468d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0, 1, 2, 3])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.5 1.5 2.5 ... 357.5 358.5 359.5</div><input id='attrs-4e065fb9-33d8-483d-bb63-60db85bb19cd' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4e065fb9-33d8-483d-bb63-60db85bb19cd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f3cba3c1-34ad-4cc0-a9ca-399569ca6329' class='xr-var-data-in' type='checkbox'><label for='data-f3cba3c1-34ad-4cc0-a9ca-399569ca6329' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([ 0.5, 1.5, 2.5, ..., 357.5, 358.5, 359.5], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>y</span></div><div class='xr-var-dims'>(y)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>-83.55 -83.45 ... 71.53 71.53</div><input id='attrs-9de02a05-fcdb-4b83-84ae-bc7a04f728d5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9de02a05-fcdb-4b83-84ae-bc7a04f728d5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-04aa1413-7b89-4648-98bc-66a336fe5aea' class='xr-var-data-in' type='checkbox'><label for='data-04aa1413-7b89-4648-98bc-66a336fe5aea' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([-83.554344, -83.44901 , -83.3419 , ..., 71.49904 , 71.53102 ,\n", | |
" 71.53102 ], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-8b75c57f-a71a-4e42-b13c-73baa214dc4a' class='xr-section-summary-in' type='checkbox' checked><label for='section-8b75c57f-a71a-4e42-b13c-73baa214dc4a' class='xr-section-summary' >Data variables: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>area</span></div><div class='xr-var-dims'>(y, x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(332, 362), meta=np.ndarray></div><input id='attrs-768f3230-be19-48d1-9fe4-d22ee6525a2a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-768f3230-be19-48d1-9fe4-d22ee6525a2a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5ff9580d-2ff5-45e1-8af6-6dca0df76ac2' class='xr-var-data-in' type='checkbox'><label for='data-5ff9580d-2ff5-45e1-8af6-6dca0df76ac2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>cell_area</dd><dt><span>units :</span></dt><dd>m2</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 480.74 kB </td> <td> 480.74 kB </td></tr>\n", | |
" <tr><th> Shape </th><td> (332, 362) </td> <td> (332, 362) </td></tr>\n", | |
" <tr><th> Count </th><td> 7 Tasks </td><td> 1 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"170\" height=\"160\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"110\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"110\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,110.05524861878452 0.0,110.05524861878452\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"130.055249\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >362</text>\n", | |
" <text x=\"140.000000\" y=\"55.027624\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,55.027624)\">332</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dissic</span></div><div class='xr-var-dims'>(time, lev, y, x)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(5, 75, 332, 362), meta=np.ndarray></div><input id='attrs-b170c6ca-876f-4a27-8ad2-797449ac84f2' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b170c6ca-876f-4a27-8ad2-797449ac84f2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cf16f9b8-1092-4aaf-9e95-5ad3d789b379' class='xr-var-data-in' type='checkbox'><label for='data-cf16f9b8-1092-4aaf-9e95-5ad3d789b379' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacello volume: volcello</dd><dt><span>cell_methods :</span></dt><dd>area: mean where sea time: mean</dd><dt><span>description :</span></dt><dd>Dissolved inorganic carbon (CO3+HCO3+H2CO3) concentration</dd><dt><span>history :</span></dt><dd>none</dd><dt><span>interval_operation :</span></dt><dd>2700 s</dd><dt><span>interval_write :</span></dt><dd>1 month</dd><dt><span>long_name :</span></dt><dd>Dissolved Inorganic Carbon Concentration</dd><dt><span>online_operation :</span></dt><dd>average</dd><dt><span>standard_name :</span></dt><dd>mole_concentration_of_dissolved_inorganic_carbon_in_sea_water</dd><dt><span>units :</span></dt><dd>mol m-3</dd></dl></div><div class='xr-var-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 108.17 GB </td> <td> 180.28 MB </td></tr>\n", | |
" <tr><th> Shape </th><td> (3000, 75, 332, 362) </td> <td> (5, 75, 332, 362) </td></tr>\n", | |
" <tr><th> Count </th><td> 1801 Tasks </td><td> 600 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"487\" height=\"106\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", | |
" <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", | |
" <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", | |
" <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", | |
" <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", | |
" <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", | |
" <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", | |
" <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", | |
" <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", | |
" <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", | |
" <line x1=\"41\" y1=\"0\" x2=\"41\" y2=\"25\" />\n", | |
" <line x1=\"45\" y1=\"0\" x2=\"45\" y2=\"25\" />\n", | |
" <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"25\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"52\" y2=\"25\" />\n", | |
" <line x1=\"56\" y1=\"0\" x2=\"56\" y2=\"25\" />\n", | |
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"63\" y2=\"25\" />\n", | |
" <line x1=\"67\" y1=\"0\" x2=\"67\" y2=\"25\" />\n", | |
" <line x1=\"71\" y1=\"0\" x2=\"71\" y2=\"25\" />\n", | |
" <line x1=\"75\" y1=\"0\" x2=\"75\" y2=\"25\" />\n", | |
" <line x1=\"78\" y1=\"0\" x2=\"78\" y2=\"25\" />\n", | |
" <line x1=\"82\" y1=\"0\" x2=\"82\" y2=\"25\" />\n", | |
" <line x1=\"86\" y1=\"0\" x2=\"86\" y2=\"25\" />\n", | |
" <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n", | |
" <line x1=\"93\" y1=\"0\" x2=\"93\" y2=\"25\" />\n", | |
" <line x1=\"97\" y1=\"0\" x2=\"97\" y2=\"25\" />\n", | |
" <line x1=\"101\" y1=\"0\" x2=\"101\" y2=\"25\" />\n", | |
" <line x1=\"105\" y1=\"0\" x2=\"105\" y2=\"25\" />\n", | |
" <line x1=\"108\" y1=\"0\" x2=\"108\" y2=\"25\" />\n", | |
" <line x1=\"112\" y1=\"0\" x2=\"112\" y2=\"25\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"116\" y2=\"25\" />\n", | |
" <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >3000</text>\n", | |
" <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n", | |
"\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"207\" y2=\"17\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"190\" y1=\"39\" x2=\"207\" y2=\"56\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"190\" y2=\"39\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"207\" y1=\"17\" x2=\"207\" y2=\"56\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"190.0,0.0 207.830235108037,17.830235108036987 207.830235108037,56.98094532522612 190.0,39.150710217189136\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"229\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"207\" y1=\"17\" x2=\"247\" y2=\"17\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"190\" y1=\"0\" x2=\"207\" y2=\"17\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"229\" y1=\"0\" x2=\"247\" y2=\"17\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"190.0,0.0 229.61024001482963,0.0 247.44047512286662,17.830235108036987 207.830235108037,17.830235108036987\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"207\" y1=\"17\" x2=\"247\" y2=\"17\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"207\" y1=\"56\" x2=\"247\" y2=\"56\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"207\" y1=\"17\" x2=\"207\" y2=\"56\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"247\" y1=\"17\" x2=\"247\" y2=\"56\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"207.830235108037,17.830235108036987 247.44047512286662,17.830235108036987 247.44047512286662,56.98094532522612 207.830235108037,56.98094532522612\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"227.635355\" y=\"76.980945\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >362</text>\n", | |
" <text x=\"267.440475\" y=\"37.405590\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,267.440475,37.405590)\">332</text>\n", | |
" <text x=\"188.915118\" y=\"68.065828\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,188.915118,68.065828)\">75</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-7ee7fee5-7931-4e25-b7b5-3592fb7107ff' class='xr-section-summary-in' type='checkbox' ><label for='section-7ee7fee5-7931-4e25-b7b5-3592fb7107ff' class='xr-section-summary' >Attributes: <span>(56)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CMIP6_CV_version :</span></dt><dd>cv=6.2.15.1</dd><dt><span>Conventions :</span></dt><dd>CF-1.7 CMIP-6.2</dd><dt><span>EXPID :</span></dt><dd>piControl</dd><dt><span>activity_id :</span></dt><dd>CMIP</dd><dt><span>branch_method :</span></dt><dd>standard</dd><dt><span>branch_time_in_child :</span></dt><dd>0.0</dd><dt><span>branch_time_in_parent :</span></dt><dd>36524.0</dd><dt><span>contact :</span></dt><dd>[email protected]</dd><dt><span>creation_date :</span></dt><dd>2019-02-11T10:52:07Z</dd><dt><span>data_specs_version :</span></dt><dd>01.00.28</dd><dt><span>description :</span></dt><dd>DECK: control</dd><dt><span>dr2xml_md5sum :</span></dt><dd>c2dce418e78ca835be1e2ff817c2c403</dd><dt><span>dr2xml_version :</span></dt><dd>1.16</dd><dt><span>experiment :</span></dt><dd>pre-industrial control</dd><dt><span>experiment_id :</span></dt><dd>piControl</dd><dt><span>external_variables :</span></dt><dd>areacello volcello</dd><dt><span>forcing_index :</span></dt><dd>1</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>further_info_url :</span></dt><dd>https://furtherinfo.es-doc.org/CMIP6.IPSL.IPSL-CM6A-LR.piControl.none.r1i2p1f1</dd><dt><span>grid :</span></dt><dd>native ocean tri-polar grid with 105 k ocean cells</dd><dt><span>grid_label :</span></dt><dd>gn</dd><dt><span>history :</span></dt><dd>none</dd><dt><span>initialization_index :</span></dt><dd>2</dd><dt><span>institution :</span></dt><dd>Institut Pierre Simon Laplace, Paris 75252, France</dd><dt><span>institution_id :</span></dt><dd>IPSL</dd><dt><span>license :</span></dt><dd>CMIP6 model data produced by IPSL is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses). Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and at https://cmc.ipsl.fr/. The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose. All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law.</dd><dt><span>mip_era :</span></dt><dd>CMIP6</dd><dt><span>model_version :</span></dt><dd>6.1.8</dd><dt><span>name :</span></dt><dd>/ccc/work/cont003/gencmip6/lebasn/IGCM_OUT/IPSLCM6/PROD/piControl/CM61-LR-pi-i2/CMIP6/OCE/dissic_Omon_IPSL-CM6A-LR_piControl_r1i2p1f1_gn_%start_date%-%end_date%</dd><dt><span>nominal_resolution :</span></dt><dd>100 km</dd><dt><span>parent_activity_id :</span></dt><dd>CMIP</dd><dt><span>parent_experiment_id :</span></dt><dd>piControl-spinup</dd><dt><span>parent_mip_era :</span></dt><dd>CMIP6</dd><dt><span>parent_source_id :</span></dt><dd>IPSL-CM6A-LR</dd><dt><span>parent_time_units :</span></dt><dd>days since 1750-01-01 00:00:00</dd><dt><span>parent_variant_label :</span></dt><dd>r1i2p1f1</dd><dt><span>physics_index :</span></dt><dd>1</dd><dt><span>product :</span></dt><dd>model-output</dd><dt><span>realization_index :</span></dt><dd>1</dd><dt><span>realm :</span></dt><dd>ocnBgchem</dd><dt><span>source :</span></dt><dd>IPSL-CM6A-LR (2017): atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 40000 m) land: ORCHIDEE (v2.0, Water/Carbon/Energy mode) ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m) ocnBgchem: NEMO-PISCES seaIce: NEMO-LIM3</dd><dt><span>source_id :</span></dt><dd>IPSL-CM6A-LR</dd><dt><span>source_type :</span></dt><dd>AOGCM BGC</dd><dt><span>sub_experiment :</span></dt><dd>none</dd><dt><span>sub_experiment_id :</span></dt><dd>none</dd><dt><span>table_id :</span></dt><dd>Omon</dd><dt><span>title :</span></dt><dd>IPSL-CM6A-LR model output prepared for CMIP6 / CMIP piControl</dd><dt><span>tracking_id :</span></dt><dd>hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e9290\n", | |
"hdl:21.14100/088c8bf8-6548-4668-9712-c19a0949ccef\n", | |
"hdl:21.14100/478c7d22-9460-4c5c-a45c-1cb45d57b5e3\n", | |
"hdl:21.14100/0e502fc7-1d15-414e-9f48-b03157773fdb</dd><dt><span>variable_id :</span></dt><dd>dissic</dd><dt><span>variant_info :</span></dt><dd>Equivalent to r1i1p1f1 but started on a different machine. Information provided by this attribute may in some cases be flawed. Users can find more comprehensive and up-to-date documentation via the further_info_url global attribute.</dd><dt><span>variant_label :</span></dt><dd>r1i2p1f1</dd><dt><span>status :</span></dt><dd>2019-11-03;created;by [email protected]</dd><dt><span>netcdf_tracking_ids :</span></dt><dd>hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e9290\n", | |
"hdl:21.14100/088c8bf8-6548-4668-9712-c19a0949ccef\n", | |
"hdl:21.14100/478c7d22-9460-4c5c-a45c-1cb45d57b5e3\n", | |
"hdl:21.14100/0e502fc7-1d15-414e-9f48-b03157773fdb</dd><dt><span>version_id :</span></dt><dd>v20190319</dd><dt><span>intake_esm_varname :</span></dt><dd>None</dd><dt><span>intake_esm_dataset_key :</span></dt><dd>CMIP.IPSL.IPSL-CM6A-LR.piControl.r1i2p1f1.Omon.dissic.gn.gs://cmip6/CMIP6/CMIP/IPSL/IPSL-CM6A-LR/piControl/r1i2p1f1/Omon/dissic/gn/v20190319/.nan.20190319</dd></dl></div></li></ul></div></div>" | |
], | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (bnds: 2, lev: 75, time: 3000, vertex: 4, x: 362, y: 332)\n", | |
"Coordinates:\n", | |
" lat_bounds (y, x, vertex) float32 dask.array<chunksize=(332, 362, 4), meta=np.ndarray>\n", | |
" lon_bounds (y, x, vertex) float32 dask.array<chunksize=(332, 362, 4), meta=np.ndarray>\n", | |
" lat (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" lon (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" * lev (lev) float32 0.5058 1.556 2.668 ... 5.698e+03 5.902e+03\n", | |
" lev_bounds (lev, bnds) float32 dask.array<chunksize=(75, 2), meta=np.ndarray>\n", | |
" * time (time) object 1850-01-16 12:00:00 ... 2099-12-16 12:00:00\n", | |
" time_bounds (time, bnds) object dask.array<chunksize=(3000, 2), meta=np.ndarray>\n", | |
" * bnds (bnds) int64 0 1\n", | |
" * vertex (vertex) int64 0 1 2 3\n", | |
" * x (x) float32 0.5 1.5 2.5 3.5 4.5 ... 356.5 357.5 358.5 359.5\n", | |
" * y (y) float32 -83.55 -83.45 -83.34 -83.23 ... 71.5 71.53 71.53\n", | |
"Data variables:\n", | |
" area (y, x) float32 dask.array<chunksize=(332, 362), meta=np.ndarray>\n", | |
" dissic (time, lev, y, x) float32 dask.array<chunksize=(5, 75, 332, 362), meta=np.ndarray>\n", | |
"Attributes:\n", | |
" CMIP6_CV_version: cv=6.2.15.1\n", | |
" Conventions: CF-1.7 CMIP-6.2\n", | |
" EXPID: piControl\n", | |
" activity_id: CMIP\n", | |
" branch_method: standard\n", | |
" branch_time_in_child: 0.0\n", | |
" branch_time_in_parent: 36524.0\n", | |
" contact: [email protected]\n", | |
" creation_date: 2019-02-11T10:52:07Z\n", | |
" data_specs_version: 01.00.28\n", | |
" description: DECK: control\n", | |
" dr2xml_md5sum: c2dce418e78ca835be1e2ff817c2c403\n", | |
" dr2xml_version: 1.16\n", | |
" experiment: pre-industrial control\n", | |
" experiment_id: piControl\n", | |
" external_variables: areacello volcello\n", | |
" forcing_index: 1\n", | |
" frequency: mon\n", | |
" further_info_url: https://furtherinfo.es-doc.org/CMIP6.IPSL.IPSL-C...\n", | |
" grid: native ocean tri-polar grid with 105 k ocean cells\n", | |
" grid_label: gn\n", | |
" history: none\n", | |
" initialization_index: 2\n", | |
" institution: Institut Pierre Simon Laplace, Paris 75252, France\n", | |
" institution_id: IPSL\n", | |
" license: CMIP6 model data produced by IPSL is licensed un...\n", | |
" mip_era: CMIP6\n", | |
" model_version: 6.1.8\n", | |
" name: /ccc/work/cont003/gencmip6/lebasn/IGCM_OUT/IPSLC...\n", | |
" nominal_resolution: 100 km\n", | |
" parent_activity_id: CMIP\n", | |
" parent_experiment_id: piControl-spinup\n", | |
" parent_mip_era: CMIP6\n", | |
" parent_source_id: IPSL-CM6A-LR\n", | |
" parent_time_units: days since 1750-01-01 00:00:00\n", | |
" parent_variant_label: r1i2p1f1\n", | |
" physics_index: 1\n", | |
" product: model-output\n", | |
" realization_index: 1\n", | |
" realm: ocnBgchem\n", | |
" source: IPSL-CM6A-LR (2017): atmos: LMDZ (NPv6, N96; 14...\n", | |
" source_id: IPSL-CM6A-LR\n", | |
" source_type: AOGCM BGC\n", | |
" sub_experiment: none\n", | |
" sub_experiment_id: none\n", | |
" table_id: Omon\n", | |
" title: IPSL-CM6A-LR model output prepared for CMIP6 / C...\n", | |
" tracking_id: hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e929...\n", | |
" variable_id: dissic\n", | |
" variant_info: Equivalent to r1i1p1f1 but started on a differen...\n", | |
" variant_label: r1i2p1f1\n", | |
" status: 2019-11-03;created;by [email protected]\n", | |
" netcdf_tracking_ids: hdl:21.14100/c3ce3710-d7de-4930-ad70-beaecc4e929...\n", | |
" version_id: v20190319\n", | |
" intake_esm_varname: None\n", | |
" intake_esm_dataset_key: CMIP.IPSL.IPSL-CM6A-LR.piControl.r1i2p1f1.Omon.d..." | |
] | |
}, | |
"execution_count": 26, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ddict['CMIP.IPSL.IPSL-CM6A-LR.piControl.r1i2p1f1.Omon.dissic.gn.gs://cmip6/CMIP6/CMIP/IPSL/IPSL-CM6A-LR/piControl/r1i2p1f1/Omon/dissic/gn/v20190319/.nan.20190319']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"id": "included-torture", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"id": "looking-renaissance", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "ValueError", | |
"evalue": "dimensions {'lev'} do not exist. Expected one or more of Frozen(SortedKeysDict({'rho': 53, 'y': 385, 'x': 360, 'bnds': 2, 'vertex': 4}))", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-32-231191763212>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mddict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlev\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdissic\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrobust\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mattrs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'source_id'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/dataset.py\u001b[0m in \u001b[0;36minterp\u001b[0;34m(self, coords, method, assume_sorted, kwargs, **coords_kwargs)\u001b[0m\n\u001b[1;32m 2793\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2794\u001b[0m \u001b[0mcoords\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0meither_dict_or_kwargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcoords\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoords_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"interp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2795\u001b[0;31m \u001b[0mindexers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_interp_indexers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcoords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2796\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2797\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcoords\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/dataset.py\u001b[0m in \u001b[0;36m_validate_interp_indexers\u001b[0;34m(self, indexers)\u001b[0m\n\u001b[1;32m 1920\u001b[0m ) -> Iterator[Tuple[Hashable, Variable]]:\n\u001b[1;32m 1921\u001b[0m \u001b[0;34m\"\"\"Variant of _validate_indexers to be used for interpolation\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1922\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_indexers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1923\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mVariable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1924\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/dataset.py\u001b[0m in \u001b[0;36m_validate_indexers\u001b[0;34m(self, indexers, missing_dims)\u001b[0m\n\u001b[1;32m 1885\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdataarray\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDataArray\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1886\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1887\u001b[0;31m \u001b[0mindexers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrop_dims_from_indexers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdims\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmissing_dims\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1888\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1889\u001b[0m \u001b[0;31m# all indexers should be int, slice, np.ndarrays, or Variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/srv/conda/envs/notebook/lib/python3.8/site-packages/xarray/core/utils.py\u001b[0m in \u001b[0;36mdrop_dims_from_indexers\u001b[0;34m(indexers, dims, missing_dims)\u001b[0m\n\u001b[1;32m 766\u001b[0m \u001b[0minvalid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindexers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdims\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 767\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minvalid\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 768\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 769\u001b[0m \u001b[0;34mf\"dimensions {invalid} do not exist. Expected one or more of {dims}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 770\u001b[0m )\n", | |
"\u001b[0;31mValueError\u001b[0m: dimensions {'lev'} do not exist. Expected one or more of Frozen(SortedKeysDict({'rho': 53, 'y': 385, 'x': 360, 'bnds': 2, 'vertex': 4}))" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACyM0lEQVR4nOy9d7wtVXn//37W7H3upYq9IAg2FA0IghGJ2AsmkagxdonRoMZCs1fUGAvCjb9EY7AkGnsBxUSaFf3GBoiioIiAimIMsdHuvWfPen5/rDJr1pS9zzn7lHvu/rxec86emTVr1rT1WU9doqrMMMMMM8wwwzRgVrsBM8wwwwwzrB/MSGWGGWaYYYapYUYqM8wwwwwzTA0zUplhhhlmmGFqmJHKDDPMMMMMU8OMVGaYYYYZZpgaZqQywwwzzDDD1DAjle0YIvJkETlPRK4TkatF5AwR+RMROUFE5v32sPwuOe4IEblQRP4gIteIyBdEZC+/7wQRURF5YXauY/z2E/z6fUXkHBH5jYj8r4h8QkRu29HOJ4nIxdm2czq2vSxZ/2t/zr9qqfOu/pzXiMjvReR7InKciBR+/5y/lh+LyPUicqWIvC+5zi/7uvfP6v203/7AjmvZy+9P7+13ReQQf55dWo75jog837f5M/5+/UZEzhKRfdrOM8MMq4UZqWynEJHjgH8E/gG4NbAn8E7gCF/kY6q6c7Ls5o+7M/AB4HjgJsDe/jibVH8pcGR2yqf77QE3BU4B9gLuAFwL/FtHc78C3F1EbunbMAD2B3bMth0CnJscdyTwm7wtInIn4JvAz4E/UtWbAI8HDgJCp/5J4NHAk/117g+cDzwku86nJ/XeHLgv8L8d15Fit+Te7q+qXweuAh6XtfWewL7AR4DdgNOBfXDP7FvAZyY41wwzrBxUdbZsZwuuk7wOeHzH/hOAD3bs+0vgwp66TwA+CFwC3MNvu4df/yBwQsdxBwLX9tT7E+Bx/vd9gC8B78+23QDM+fU74IjuccAIuHVS1weB/+o510OBG4E9esp8GXgNjggKv+35wL/4bQ/sOG4vQIFBy75XAF/Mtr0VOLWjrpv5um6+2u/UbJktYZlJKtsnDgE2Aqct4tgLgLuJyCYReZCI7NxR7j+oRvFH4qSbPhwG/KBn/7m+TCj7VeBr2bZvqOpWv/504DxV/RSO0J6S1PVQnCTShYcC31LVn49p8y+Bi4GHJ+ccd519+A/g/iKyJ4CIGJyk1FXnYcCvVPX/lnDOGWaYKmaksn3i5sA1qjrqKfNXIvK7ZPkSgKpeDjwQ2B34OHCNiPx7C7l8EHiSiAyBJ/r1VojIfrhR/4t72vMVKgK5P45Uvppt+0pS/unAh/3vD1NXgd0cuLrnXOP2p/gA8HRv29hNnRprElyT3NsXAXgS+wrwVF/mITjy/6/8YBG5PfAO4LgJzzfDDCuCGalsn/g/4BbeDtGFj6vqbsnyoLBDVb+hqn+lqrfEdeaHAa9MD1bVnwGX4Ww2P+4a9XsbzRnA0ar6Vb9tz9SQ7YueC+wnIjfF2S2+rqo/BG7rt/2JL4OIHIqz9XzUH/th4I9E5F7J9bc6BUy4P8WpwIOBF+Akjfz6UoP8nsmuWyT39m3J9vdTSXhPAz6sqvNZnbcEzgbeqaofmbCdM8ywIpiRyvaJrwObgb9YakWq+m1cx3rPlt3BoN+qvhGROwCfB96gqrFDVtWfaeIk4LddjlM3HQX8TFUD2Xzdb9sZ+IbfdiQgwIUi8iucUR6qzvrzZAbxDJ8H7uOlgV6o6g04UnwuLaSidWeHn42rD3cvdxeRBwGPJbt3nkDPBk5X1TdOUN8MM6woZqSyHUJVf49TN71DRP5CRHYUkaGIHC4ib+071rsc/62I3Mqv3w3nJfWNluIfw9kbPt5Sz+7AF4F3qOq7Jmz6V3Hqnq8m277mt52nqjeKyEbgr3BEc69keQHwFC+dvRa4n4icKCK38e25s4h8UER2U9XPA+cAp4nIvUVkICK7iMhzRORvWtr1CuABqnrlhNfRCVW9Hmfv+Tfgp6p6XtgnIrsCZwH/T1Vf1lHFDDOsKmaksp1CVU/GdcavwrnA/hznvfRpX+QJmermOk8kv8ORyEVeNXUmzuDfICNVvVFVP6+qN7Y04VnAHYHXtqi6uvAV4FY4Ign4qt8WXIn/Aue59QFV/VVYgPcCBfBIVf0JzllhL+AHIvJ74FPAeTjXZnBebp/DEePvge/jXI4/33Kdv1TVr+Xbl4D347zXcgnvMcDBwDN61GozzLCqENXZJF0zzDDDDDNMBzNJZYYZZphhhqlhRiozzDDDDDNMDTNSmWGGGWaYYWqYkcoMM8wwwwxTQ1/w2zaDOdmgG9lptZsxwziITK+qJR5/lwP3nko7VgM/vuCK5sb8hozzvwnls3JxNXHgueu97zh549YILj3/8s591/Lba3zg7tTwnCN30wceugNPPOrq6b3k2yjWhffXrnIz/WN5yPiCawDn2E8s6riHmcdPpwGydOFUzBS+mym0w1Uz/W/4rM0fmnqdax0PHz4Rtb4vUNvYv9j3drXwsOIJ7kfLtXxeP3m+qh40rXOJyH6HHrzxuzduVi64aMtwTPqjdY8ZqSwDVvoDjB/QIrAcnXLLSZa5+uW5hu2RXFYbfYOnpXxX6TfyefvxqZLK4/5sFz322bvx2bOv5x77zPH05/9qu5ZW1oX6C3AdV8uoZLmxFkZw55Qfa2zrIpqpd8DLTBj9p17eb/cROzyNs25sZF6ZYcoYK4VP4R07p/zYkgZfXRCR/R7+wB2538E7cJe9hzzqyb/kyBfIYHuWVtYPqUD18i0zuawFIhmHNqJ5+PCJk1ewimSRY0WkKXeilTnPNo4uEljodzEpmYTn//C5J3P21g/3HdGL5SCWx/7pzt899tm7AXDLWwx46AN25Oijdptn6Wa/bRbr5iuqdTxiJlu2M5w9/9G4AKt2b8TIgpZlbMjYa37EDk9bvvOvM0zN7gcNQgGmMliUolhyHbEukf2uu95yv4N3iNuOe/Zu/OO//i7MRLpdYl1deHgBo8Fx/AH4A5apRWsXgVgePvfkZT3PikkZC8ECSXOmBqswjjgeZh4/kcSyIAJKntdCiWs5tQqplBIQpJVjnr39Sivrg1REajaVcR1Zg3T8S9umMlrvyNUJXSSzJskhxzJKWI/Y6emcdf1SJnXcfhA6/q4OvZcYkmcY37k1OOhLbSk5jn/Obhz+pMlsKyKyBy5x6G1w01+foqpvz8o8EPgMEHzJT1XV1/t9V+KSoJbAaJoOCIvFuiCV2N1N2KmcUy5eL7vekZLMIzY+pafkKmClVJYdBDojloVhUqklRySTRJOgVhdFLnkbzt76YUSWPq9Zm5QSsEBpZQQcr6oXiMguwPkico6qXpyV+6qq/llHHQ9S1WsW0v7lxLoxLGwTI+ltDGvCpXalbGBGqqUHj9jp6Txip6f3lpmhwsPM42uSycTqq7bnPcm7sAIDjzZbSo7jnzOZbUVVr1bVC/zva4FLcFN1b7NYF6RylwP3rnWAOcEsu8F3HWNZiGVSR4pFdBBn3fgfdYKYdJlhWZGTSyvEuO+0xUgvRYEUBWY4wAwHyGBYLWHf3Fy1b4oG+Rb8xTOetGtvgVveYsDd7jIH8BoROS9Zjuo6RkT2Ag6gmqk0xSEi8l0ROUNE7pFsV+BsETm/r+6VxLoglYCzt364lVDS30txSdxeMVViWeaR5ExFtT4QvttAMmLEEYUfbIT1sMRBSFEgnliWs3kbN4wfiGzcKODsHwclyymtFYrsjJso7hhV/UO2+wLgDqq6P/BPVBPpARyqqgcChwPPE5HDFnw1U8a6sKmkWBMqm3WIcF8XY2dZzDOZ2JW3Q8o46/oPTEdNNcV8ZesB59hPTNd1OEeQVvxvABmG9fRZpAb9AdjM3lLIshJLqSXzY+Ib7YQ2IBEZ4gjlQ6p6ar4/JRlV/ZyIvFNEbqGq16jqL/32X4vIacB9qGZBXRWsO1KZYXlx1uYPTUwsSyH43IW3RjLLGrsyI5E1gSDR9jxrMab1t5YlTBpWsEhYwI7J2jlJC0REcFNdX+Kn+G4rcxvgf1RVReQ+OEb9PxHZCTCqeq3//XDg9Qu4jGXBjFRmWDBWQxrsihNJpZFc7ZWuP2LnI6fTjuveP5V6tmUsu7SSwmpFLGmeQqlLL2f+/n1x1yN2PhK09McsjzuyYrGMq3siYjsUeBpwkYhc6Le9AtgTQFXfBfwl8FwRGQE3Ak/0BHNr4DTHSwyAD6vqmQu9lmljRiozbNOY1H4SyGAp5DIjlFVCm9QRBBNVGAx45M3+FoAzf/PuOvksE0Yo82MIa5wkA6CqX2OM27Gq/jPwzy3bLwf2H3uSFcaMVGbYrjAjhulg6tJK7sCRdNh5sLIz0s9BUfSqK7Usl01SsSjlFNRf6xEzUplhhhnWBNrc/muEorYinxYyOfM3746S6GKDJSeFMh2bynrEunIpnmGGGVYOy52tuzZpWCCIlCgSYjnzN+/mkTf5m2pXEu+yHChVmR+z2HUwV9ViMJNUZphhhkUjJZZpqcMa0knLfgkdtpduDr/lcwDnBabWSTRmbm4q7WlDOVN/dWImqcwwwwxTwdQlly71VbJdxCDR/dhU0osRtCydXWUZYBXKMcuMVFYBIrKbiHxSRH4oIpeIyCEicjMROUdEfuz/33Q12zjDDDOsIIKqq8dQj3hpJCUNI1AYMMbFrIggc8Nly6DhbCr9y4xUVgdvB85U1bvhXOMuAV4GfEFV7wJ8wa/PMMMM6xxt8yCFbY19qo5QcmlExBFKUSyrp1+pwvyYZe0l7F8ZrJpNRUR2BQ4D/hpAVbcCW0XkCOCBvtj7gS8DL135Fs4wwwwLxaJdjb1korZ7nKtWnQFeLTrvU6SYEQwGYATZsIEzfvFPi2n2glEilGOy2uv2OUfXqkoqdwT+F/g3EfmOiLzHpxq4tapeDS4tNHCrtoNF5KiQ+fN///d/V67VM8www/IhU32NK+dch700s2XLMjeugqUilq5lpv5aeQyAA4F/UdUDgOtZgKpLVU8JmT9vectbLlcbZ5hhhgViKgb7FmLpnL5CpG6wXwGUGOa1f7E6k1RWGlcBV6lqmDvgkziS+R8RuS2A///rVWrfDDPMsBrI5tLpmw9JjCDDoTPSFyvXnVmEEtO7zGwqKwxV/ZWI/FxE9lHVHwEPAS72y5HAm/3/z6xWG2eYoQ1nXbFv/P2IvfNZX2dYEjJpo5VMxFSSjHg34qKAouDwO74IgDMuf9uyNtOqTCCJbJ+SymoHP74A+JCIzAGXA8/ASU8fF5FnAj8DVigd6gwz9OOzl++HxbAx6SvOueLu8ffD9r5kFVq1NrGU3GA1IulSaaXbVaEsYW5ZJ+aqIdhU+rC92lRWlVRU9ULgoJZdD1nhpswww8QwHd3FOVfcfUYs00Km/krR5nq8EpmJU5RaMK/93add9YiN1cFqSyozzLBofPHKfQAotfp4N8o899/rsqmf6xM/uTdzYtjF3EiBxlFqem6YEcuSkM76GDc1pQExUieWdNbH5ZzALYGdwKV4e7WpbJ9UOsM2j0AoAIW4z3ejzAPw1SvvPNVznfqTA9jJbOE2xe/ZxWxho8zXljkpYxugrhLbnjGRF1gwyqfqrDAHfUgKme/vg1WwGm0rywWLUKrpXXTm/TXDDGsb51xxd7545T41QgkoxNbUDV+58q5TOecnfnJvAG5urmejjJijxIhS4BexrX4+M2JxOMd+Ii4NtBnlW+ao7y2fI9m2nMQywjBP0bvYCQz1IrKHiHzJp6n6gYgc3VLmgSLyexG50C+vSfY9UkR+JCKXiciayD4yI5UZ1jzOueLuNY+rgNix+yV07oFcvnjlPksil89cfi8Abllcy0YZYUT9eW3y2xFL/J9ILG3kt73i4cMn1jeMI4gxkkksnx6n2pgl8vC9j1tQOyeFHSOllGomjagfAcer6t2B+wLPE5Hmyw5fVdV7+eX1ACJSAO8ADgf2BZ7UceyKYkYqM2wTGErJRplnSBnVTkMZ1ZbQqRvcEmwfi+ncA6HsPvgtNy9uZCh1aSQQS5BahjJiSNlKLjN4JKqsoN7K1Vy1eVCMNJeiqOoZDJDBAIaDeobiAFtCaTl89xdM/VIUoXrT2pdJSEVVr1bVC/zva3H5D3efsBn3AS5T1ct9mquPAkcs8pKmhpmhfoY1j0IsG2XeSSOivfEBJUIhllINBktJAVR2ltDZ3+8OlzeO/dwV9+R6u4GdzBZgwC2LP7CL2Rrr7YIRn+dcrPcjNbH8F6/ch8065FF7f3/hF74O8PC5J483vnsSmWhiLREoJGYipigcsRRFe3mfbPLwPY7mjJ+/fVHX0IaRGrZqxzk9/Hv6WBF5T7L5FFU9pa28iOwFHAB8s2X3ISLyXeCXwItU9Qc48vl5UuYq4I8nvYblwoxUZljzcMbxUVzPPW/KVOAO2o8gKbR4mhYtG0/9yQFsNE4C2Um2YmQzu5itUdqx2nNOKmIppKTEMgQ265DN6mIn/vund2wlsu0FUhQg7W6/DRtKXBe/2aW6F2N8kKPx9XnJxfho+oYNRty+ZYDFYLW/bi+pnKqqr+ktCIjIzsCngGNU9Q/Z7guAO6jqdSLyKODTwF1oj65c9fCYGanMsKZxzhV351ZFyZy3l5SI+5T8p1MiFHFf9ZEHMsjVUAUaCSqouJwtpnBqtcKp1oLNJBBKipxQcoRzDykZJp5h65lYHnmLo+LvM69pHYg3XIF7De3ipZH0d0hr71VfYT0u4fjUriISY1gOv/0LOeOq/2/xF5kgpGnpw6S9u4gMcYTyIVU9tVFPQjKq+jkReaeI3AInmeyRFL09TpJZVcxIZYY1D2e7aNhgxyKNJwkI65+9fD9Sk+LNi+udXYZgJ7E1MhkXkxDaGY4p0EpaSrDeiOXwWz4HnSSrsE+t0p0UMnUpTkgEnLRhrfufTMblJJGMULoQiGWPhnPVomBVKMe4DE9iUxERAd4LXKKqJ3eUuQ3wP6qqInIf3Iv7f8DvgLuIyN7AL4AnAk9ewGUsC2akMsOK4nNX3JPNdshGMz/WzvDFK/fBUjCHZb6hfqqrokJnnnf+QdUVtl9vN/A7dgRgN3ODM+iLZSg2Sjxt50jPlaLNvhOknBB539W2bR2H3/q59Q2e9R9502dx5m/fwyN2eJpTUwWMs5eYaoItp9aSeubhQCCDAQyKprqsD7kRf4ko1YyPqJ8sTuVQ4GnARSJyod/2CmBPAFV9F/CXwHNFZATcCDxRVRUYicjzgbOAAnift7WsKmakMsOq4StX3pUH7HXp2HJhfoq65NDsoNo67dDB/6HcGLdtlHkK0Zqaq6/eNvR1GFalVm8qwZRq1p20UoNWxAI0O/wucdNU9hOMqcgoEEmwj8T/pptMFiPWLhAWGRuHMqH319cYk3lSVf8Z+OeOfZ8DPjf2RCuIGanMsKLYbIcMpWQn2dpb7pwr7o6lYDdzY41Qukb7pY9wBnzSx3m2akGpJhrLAeakrKm56nUsnVByROlHTC1n2LZKLIfvcXSVwNFDxLSrwFKDe8jNlRKB1fp6II/CdJMJ1PfnSHOAiWG5kqVYTCNFT6Mpy3LmtY91TSpvuvhRALx83zVF5Ns1Hnun7/CZy+8VU6pc9PPbA/BHe1wVy7i4EsNu5kZ2MVuZ18pFN3T8ub2jVFOLqA9EYrDsZLZENVhOJH1k1eYl1lU2PyZIKyWGgkq1NknOqLWKw2//wrqdQ9Vp9606YjHW9eG+Y5fMzVdt1sEXuauxQebmnGoreHepepVXUbkNSwuh5AkljXDGZSe2XofI0o31Tv01zqV4+wwDXHekEohkhrWLrVo4r6ik0/7uz/Zg/z1/Xis3FDcazgmlDYWPEWnz9oLxZNI66hwTwFiqaZzPeaM1JaDcXrOt4fA9j2nfIdJNLEVRS/YoiXtvdBGu1eNdgwOhpOQR5k0JZVcZ0/T+WgmIyGOBt+CmZxe/qKruOu1zrTtSmTbsr7rTfJjbjLcHzNDE4+90Phf8bE+gLnH890/vyPV2A5aCXcxmhmJbCSVXP4VOvJCSNnQFTOYqs1g+uChPMNLMyxS+zQVas61Mqlpb08g79VSSCN6/NiEWaMaJeJLJpRiSYMZ4TLCNhGj6NlIJEkqqYlsBuEm6JopTWSt4K/DnqrrsKbTXFalMW0rpI5Swf0Ysi0dKGJvtgGt1I0NKdjGb2UnmsSpspWhVUXWpptrOUWpdGsnnuWi6HRcLOkeAwUbpJSUWaEpK2xxMGNziOvogRYSOPPy3FqFobg9IDOipHUbESynDEH8SWaqSUoILcVrPCpNJgJtPZYz6a22Ryv+sBKHAOiOVLmy65OHx97F3P3uqdc+IZXK880cPYq+5/2VIyc2T73GOkjlTMqelV41Z7/FlapHsNanAJ3EMCJ14gyAyIuna34oF5O8qUCymRiwB2yqhxJiOYDwHb0cJHTt1aSWUDUiIJiK5F5JKj1FKSby+AGzH81kBD68+TDbz45oilfNE5GO4aPwtYWNbsOVSsV2QSoq3//ChHH23z692M7ZrFGLZnPj4h469EMuclMyrYbMOmKc+EqwRQGI/CeQyH8qlMSyRVMbbZWptxGI7RqL5zI+TJI9MvcDGBc2tBdSM8sHOkaOrU089wVIpwmbSS81TyxNXkT2fIiOtULZNOllJ9dckaVrW1lhiV+AG4OHJNgVmpNKHl+/7uYYKLM0ZZZaQOTZII+NUYjN0Y7fiBsB19NfrBsC5+AYUOAllXgds1eZ8FDkhzGvhj2l+vTmJTGIfie0Q2zhXami3SOeUwjlCdL6rQ2m3+qwtHH7nF7sfQ++K3eW+G7y3Gr2nJyCrVQSG2oogyFRY4Rwm8e4KaCOUPvg6z7j8bf3llggXUb/t2FRU9Rkrda5VJxU/J8B5wC9U9c9E5GbAx4C9gCuBv1LV346r540/+DNgsuDaf/7hgzlwhyvjele8QJtay9zm0hmxTIhH3Pu12A2uYzrnv1/FUEbuQxRiNPINSpyid14HnlQKypY4gKjCCqlQRCnpTjOfuxl3SQhFGqjo1VfVvra8YraXWMIxqdorOhNgY5/6zZ/uzR/f4YrWOlYdxts3YPyQuyteJHUZ1oxIAsnEOjpiT4JUkpPLGBy+93GccUVr1pOpYCKX4jVEKiJye+CfcBH8CnwNOFpVr+o9cBFYdVIBjsbNIRBc214GfEFV3+xnMnsZ8NK+Cq6+8TLgNkDdN9wkBtOAabh2zmwo4/HI/V8NA4PZMh+3Pf5O5/OZy+8Vn9Hvyh1dVDtu1saQSjzsD664ZQcxFF4KMEmKlbqXmGlsg+Y7UEZJokqVH4gm1FGb3VHaicUkBOcmDqvsPpFgFPDXtGZtLcagN9mp6tAtSOjYF4pc5WXC78ydOP3f2S5pruf1Q139tkywLYlGG1hbas5/Az4MPN6vP9Vve1heUETyLMmNIsDVqto6ul5VP0fPnn8KpPMNHAG83/9+P/AXi62/6lQkrpeYmkqkVDP1Oc23dzxy/1e7H0lm2YAj7nghR9zxQn4xf1NKPyfFtXYHrrcb2GyH3GA3xJTx81rE/2FJJ0Ga14KtWjCvg7hYn5PJST3GR9VLfaH+HqTkUybSUEpgucdYH6qklHVCaYviX4vQDYPGc9M8I/CkS+oO3LrfNMv2tU3EtSVHrjLrIMDXf//Ri7onOUKcSt+yliQV4Jaq+m+qOvLLvwO37Cj7E1XdtWfZBbi+60SrLan8I/ASYJdk261V9Wpws6KJyK3aDhSRo4CjAG5y2x1a4wXA6d3ziPqvXnnnBenYZ5gMj9zvVe6HCBoirjO8/vuPZqOZZ0cj1Tzei+xnDeo/3iqeJcAmA4eAqCZLR7LBdTVmEakkowJbU7UF7672tnRsTwilDRf8bE8O3PNnHVe4ikilB+OkldbOvK+KVGWVfm4xhqWjvtxtOG9T+D1GcspT3Z/w/SOmNoou1TAao/5aSzYV4BoReSrwEb/+JFym4zY8boL6OsusGqmIyJ8Bv1bV80XkgQs93s+edgrAbe9xU91iB7xxv4U7MoTOZ9LkhjO045F/9Mr40WsIXivrH/2rL3oMQ3FEf4N1hnqTeXC1OVO0qSxr9gpPEmHGxy6EkaMJpCHWxdZhG+QCRNtHIJcikzJMMj99qC9NnV+bxz6tOM4QufbwyHu8Egam3mmLRNt7Den+dD3stnUSkLC/6Ols0zoi6ThJppXUjFQR/CLEGzvyMz7e9nmccfU7AJi342NLJsVEqe/X1jP+G1xSyk1+/f/5bQ2o6tikdH1lVlNSORR4tJ/JbCOwq4h8EPgfEbmtl1JuC/x6XEW773CnRRHKDNPBI+/xymokmnYeCV72vb+MhGJ9JLubT96rJgOptKSut5gG2QS+craNwuXZGid9hmaJm0E8tMHi5voofK6uWK82z9uFlFDy9ufrXTE1awbjvK1yMsnLpvaTgDGSjvQRVEooXTkiAwkacbYMY2B+vlZkiw6n5s6tE9hU1hKnqOrPgIl0fyJyNxz5WOCFwKtxZohLgSPHBVGuGqmo6suBlwN4SeVFqvpUETkROBJ4s///mZVum0toWMeD9/rRSjdj24IFFzxCp6fOfDTEu/QlFsHEjt2rnrQezZ5uTzvk6rQthnSPVMIxOWF4I3saqJhKI335usY5e6QG+vRa0vVU376WVGCyZSs63CHbKI1OvhP5s28jmIA0nCUfjCRBldqmQkvLBIN9jKvxc63MDWvF37b/xwD4Rz7W3f4JodtYmhYRuSPwduC+OL77OnBsh8RxCnAisDPwRZyj1DOAP8NJOw/pO9daNCy8GXiYiPwY55nw5mmfIDX2pvjKlTNX4YXi8H1fgagi8yNkVCLzJTKyVRS1N8JusQNuLIfcWA65wc45w7stakb4LXbIvB0wbwdstsO4bLHBaD+I/9MlHpsa9DODvdsmMb7AuRtLlJrC+5Ab6LuQqr4MdbVXQEomwQZtxG0fZhkB1gIO3/MY2LK16sSlUjupMXFZmKHe1I3xtX3UeqBghE/Pr6FcUT+u1kaonAHC+QbTUXN1YaTCvJreZZIpEkRkDxH5kohcIiI/EJGje8oeLCKliPxlsu1KEblIRC4UkfN6TvVh4OPAbYHbAZ+gsq/k2EVVP6uqHwHmVfWj6vBZ4Kbjrmm1DfUAqOqXgS/73//HGCZcTnzxyn0a6T9mGINRWXnchAA2S3QfPfO7b+Do7zzJbVaDkdJ9cH6K2bp7aYsUME6tFQ3wXmpJElG6/FsmGuCDi3LRkk6lD7k9pbdsj5SSbi9FQdfYO+alhT5VVbqvoerssK+0Si8BLY83t8d0taPVGSDYWIzhjEvf0n4RS4TqBBH1kz3XEXC8ql4gIrsA54vIOap6cVrIx/O9BTfLY44Hqeo1Y84jqvofyfoH/ayRbUgZOQ/2mRtznrVBKmsFfR93KsXMDPoJts5Xc2t06Nhf9N0nMDQwb4MLr0QjeEkgFrrtIuJSpoyNYvej/9QWUiV2rIjFZHHtzgNtPMGkcShLQdDWBDXYmpFYrK0CHgO6+s3A49kzb9hGUvTty+E9zjA0CanFIy2SS3KOM340dSVHhGU6wY3e0zV4u14rIpcAuwMXZ0VfAHwKOHgh9ftgcoAv+bi/j+LUX08A/qvjsHeIyM6qep2qvjOp687A2BxXM1JJ0PZxr5kPfo3ijMtO5PC7v9x1SMH7y3v3nHnh6wFHKjcfXsvPN7v329laKzIJnldly63Oc3A1DOEZ4eQ2GFd/JckYsVFKWmwgbEP1JbbRrnHxKEYAddKKVeGin9++NlHZqmB+HnbZqU4kXQRg2q9Pke7JFlMC6Eq/khKPaKXyakNRlY+SjVePnfmDN3Y0Yjoovfq2D1799VgRSePwTvGeqw2IyF7AAcA3s+27A48BHkyTVBQ4W0QU+NeWus/3ZcJNfHZ27Bvydqjqv7a1T1UvA45p25diRioebZMrzTAhtsxXyQBFkFI54+J/iLv/b+uO/G5+B3Yw88z7NC1AjPvoSw/fSACpmfE9Gvqb0kbbM7UdEknbtjRSf7lQoPF+tE1UtlI4/NbPhcGgcgcfJ0107Q+zQbYhkW7So2vqtJZzNKSR9FzRWF8/x3LD6vhppb3661RVfc24+kRkZ5wkcoyq5hHt/wi8VFVLad73Q1X1lz6e7xwR+aGqnhvboLq3iBjgEFX9f+Pa0dO+C1T1wEnKbvekkqqygtdXH7nMVF9NjEved69dfs7Pt9ycG8ohw2xUnzpL9GUyD95dwX24SMgI6kSRuwIvxDUYqvQv6XqQSIr4XxseZwsloCitJO6pF/98dwD23eMXC6prKrjJLuhcM5p+QciPS+0nuWRhmscomadZWlU1GnG/Eg+xyqa3uGYvFOqdPPrLTAYRGeII5UMdqegPAj7qCeUWwKNEZKSqn1bVXwKo6q9F5DTgPsC56cGqakXkbcAhEzaptZmTFtwuSaWLGB6814/4ypV3rcURzFyJl46dzBa2lAOsd9ktRFuDCfvQF82+XHAE0t/GSW0sYQLDHEagUH9PVtNgv2GDU1sWdUJZVBR9bUOP+iz34Oo6pmHY16juatS+QhGHpRpGY9RfOpn3lwDvBS5R1dYMmKq6d1L+34H/VNVPi8hOgPG2mJ1wae1f33Gqs0XkcTjJaTE3qcv+0sB2SSp9mEkiS8M///DBMV/XRhnx4xtvxc2Ht3CSQjCWx5kYJ+uw+jr2pebSSj3A+lKwBCmlzVlgEm8v6CaWNP4mHP+jn9+Offb45UIuZWkYDAjT+E5MJC2BiGMDHFPpoitKPj+u9dyVxNMw0q8AVCcJfpzoPh4KPA24SEQu9NteAezpzqPv6jn21sBpXoIZAB9W1TM7yh4H7ASMRGQzTD5HvYjsCpwcjP6q+pu+8jNSmWFZsIvZzG9GO7NzsYWrt9wEg7LBuLltJvHfD+gjjZgGZQkeWfmxtczH0lRxwfSdN4IaLPxelQkNh4naa5wKKSWCScJBgsordrIdEkrX4blKzCaBkqKOo4KXhwhnfu/vJ6p3KZjE+2uSx6iqX2MBqiVV/evk9+XA/hMet8v4UnWIyLNxks+N+Hk+cZd1x77jZqQyw9Rw7IVP5C47KIUqm9VFM4co+tzG0YfFTKYWPLLajk/X2+oe56o8DTfigD41mDP+Tu1UC8Ni5kxJD+9yLe45tiGltBUL1aQR9y3qLx0IZ53XpfmZPiZK07LG/H5E5KbAXXBpsQBIjfoteBFwjwliYGqYkcoMU8V15UZusHNxEiOr1ZwjpffQGoc+w3qQThYqpYyTLsbZa3IjfFf53OOs3QOtn1gmmWhuobj3326qdfTnvee4eoH5eVQ2NiPVM0yqGhtbLt3dVzaR4lTEO8cKIs4wr7ayAT38vq/n7G+MdbSaCkprGNkxwY9raD4VEXkWbu6q2wMX4tK1fB3nptyFn+CmIF4QZqQyw1Rw6k8O4OCd5zjnt/tSiDKXqbqsGjcSb5kVMaCv40878Um9rFzqlHSirOrcbXW0TfpVb0Pday0nljRfWAjwbMtX5vYn9Ur772ng3kdtmkwPUxTt3liTSBPZMX2ojSlajsn7Yfea1GNYxPqf6lR1YqcnSU4KZWKX4rWCo3ExLt9Q1Qf5pJGvG3PMy4H/FpFvAlvCRlV9Yd9BM1KZYck49ScHAHDB9XsxsgVFMfJ5tnwEfUw5rwt2703RFvgY6q3K1FPp56i7Crcb3mNdi/Q2ayORSeKg0szFS7XbHPjsTSzEh0F38hqRMAPAJGTSRgoT2mMa/XGnZBR+pN5igPqY1mT72V9/9ZiTTw/TdCleIWxW1c0igohsUNUfikgzc24d/4pLKHkRC4gAmpHKDFNBmHM+dPw5oYTfMfK9J+AxYBqzJLbN05JLIUu1mZSkKr6QX8xnQU7IZKEBtj//xW3ZY/erF9yeA5+9acHHnPndN7gZO41BBz2EknX+nSQyTgpJCWISxIh7V49Y0AKkdBkczvnaKyesaDoorWxT6i/gKhHZDfg0Lkjyt8A498KRqh43pkwDazFL8QzbGHYrbuArf9iHqzfvGl2GQ6bWdBpfCHN7T26ozz2wmraNyrYSVF1B7WUSw71LR29rtphUSklVX10IBJnGk4RcZTZxMa2mKfZZkZF4TPo7RZzoy7d/6Iv86he362zPRFBnNBerbujsl4Oe2QyJkK0j5IatyQaqTj8JiFTjlzRzcHARNn4RqsVvC2matTBu20DQolrswDSXYX1dB+44OzDuODORmW7qCM+2b1lLkoqqPkZVf6eqJ+DmR3kv46dq/5KIHCUitxWRm4Vl3LlmpDLDkvDWiw/neruBkS1qKq+Fos3ukSJdN6I16SKXNFIVWN3zq8WOswQppW/e+kZ6GTIy6hiip9ngh0vQydcuVX0aLaVXJXbGJW9q7xEyMkm3ATUCiftqCyBUae39RcZU94F0QjmTLMk6CUFFItpQ8PlzV1ZKgcr7q5dU1gCr+HT5h6fbVPUr/ucfjTn8yXi7Ci6H2PlAX3p9YKb+WnHs/59O7/vdP2vkcdvm8J5L7w/szPdu3NPl9PIIxJJLHJDbP6rReVq+kiYyG0qHlFLtbw9CLDJJZ5ouwuCllZghWWL7qwzJMpEqL9zBQqBYJKEc+JxE9aV1116xXnXkN93nSCetfOv9iYbDBxE6s4X02lLG2kWS1Ugm4Xeyv1Utlm0XzdatLjjaf5pwWWHGnX9NqL9OBP66ZfvFuMm4Or2/0kj+hWBGKquE/T7rXB/Di3nRo8c5YqwNHPC8TZR+RoUXPtfFoVx6/a3ZXA4ZmCqlfJQWMjKpe2B1k0lQeaWeWqmE0haX0iahpMdOgtSRIPXwCraSkLiymvelmk2yjUS6iKW6dt9e6mTi1t3v3/1yD3a73c8Z/erOAAxuc9lE19KAJt1c1+1QReZLtCiQoiKWXEKpSSUBkSRSd7ZkW04iIhmhUHN/S/fFcBX/Qy2tU++sFEo1jMZI5dNIjT8F3FxVr8w3quplInLz5TjhTP21ClhjBrxF45dbb8oVN96CrbZwNoyEJEKOL5icUMIxpoUIxhFKapPIMY1ULpOWCWotZ0upb1soDMLQ1/GHX+4ZtwdymQShM1fjO+TYO7eXP/OiNyIj69x0Q5R6Ng9Kg1AS28tEhBJTtCTHFt7eEu0w1b78d7Dn2KHw5TNeMvG9mDZUpXdZI0aVHXr27bQcJ5xJKiuMnFDEd3h/dPpr17y08rAvH8teT96KEeX2O/yWi/6wOxZhzowY+OzDQy+ttBEJ1FVduZrLpIb0DunElbcNMmmLR0kN82mdKULurzKbY8VJJmWUVsokZb+bHSqkiE8klthh908V3CWlBAQpxaIUCEMxbmoxtRQy2TgwzoOmrlM//93Hct+nnlyTOmpqL+CwR5/oDtprV3a88g+IWCyDmGRS8ySQuXorND5dz8ikIiQiibSVi7/9vrXRP1dIHTO6sEba/HkReSPwqjSRpIi8DucuPHXMSGWV0Cat3OMzJ/CDI05Y+cZMgAd+4UUMkzxP12zdma22YM6UGNG6VNHixguLI5S0zkaero7zTIrUxTmg9OQQvNgK0RqxFFE15l2GFzAlcYr2xJL1jSZ4jKkLyjATJdqiytDkf59/yrHutyqS9NCHPPkkvx2+/pHja1XcsNeu7PjTa5GyRP0U0cGNN8eiCCVuT37jDPGNMvG61o6Eb9VQbhsuxccD7wEuSxJW7o8zuD+r7QAR6Z03RVUv6Nu/aqQiInsAHwBugwusOUVV3+5d1j4G7AVcCfyVqv52tdo5bXzvz1/PH53+2sb2hSRZXC3MlwVX3XgTCqPMDUbceofr2FjMe1KpSxMpcUCTAIoaYTRdhrtcf9M6xqExVXHs9aiRA0EK0Waq+5hJWapjU4klEIuTWFKpxu9jcTNMGtrfB7MAjbUKXPCvx8Z1UVAUsVKptJLLPff0F3PYESdGb7Eb99iFHX5+LVDGybsEoBAUrSb0SprUaztJbCZRxZXt75RUTPV7TUBZE95d46Cq1wNPEpE7Avfwm3/gk1F24aS+KulP7bKqksoIOF5VLxCRXYDzReQcnKfCF1T1zX5O5ZcBL13Fdk4V9/jMCXGU2uYVtO+nT+Divzhh5RvWgSO/9UxuGM0hsiNbywGDwqIqDE1ZM8z3IVcFLdXGUc03n88/X1+vH1O/18EGUpvcK5CQmEg8MZgxkVpyUhqXkLIL4yPspZNc7K/uirlNc5qGC951rPMA6+h8A7HkuN8TTkJKRQaCmXf7ZaRsvu3ObPj19c7GIuJuD1QBkhMQivtPjVBoIZw2iSbaU9rqXEVMlqV49dsZ4Emkj0jSsg9ayrlWzVCvqlcHMUpVrwUuAXYHjgDe74u9n/EBOtskqpxYlW52LY98tpYD5kun+9hhuJWNhc/tFf316xH0LtdXFfwXELanQZHWKb+icbskOVaNOwfCvBaUatw2v4RgQpe80iWxDOtuGTCvA0qqBJeujDtPSHwZ6nblC7ZqwfV2gz9HKFtdR+m3p9dcIr2xK4tBIUIhsiAJZRxivIrTqsWlKuA68y+f8RLmfreFMEU0pTojfmkxI/eyxliT3BU4McaroTLCh3gTCTEnwfge7DZOxaYD/9/vs2mQZAF24JbFZA+YBoL6q29Zy9/zJBCRoYi8UEQ+6Zfn+1kqe7EmbCoishdwAPBN4NaqejU44vFzL7cdcxRwFMCee+7ZVmTNYpyq6+6nvY5LHtNUkXXhz7/6gtr6Z+//T4tqV4qjv/Mkn7Z+AyM1bB2FFPaV/WRkCwamxCIMsFgtsF4VVogmOgvnihvdbLWgiPOH2EqKEBMTLdbzhUk8d4mTEmxIqZ/Gx0QVXEJiQe0WyI4wURjeRdhNT4wS68YThpNUnHprKKNKnSZ1432R2VviuTPpKMx8OQ6FSJRSApkYpGGk75NWWpGcOja1pTm2EL526osAl0/rEQedANYS5kdXjKN5NY1Ylob6KjXIZ9KIIxip21aK9joa/41r52ohzF7cW2aCerrMAB1lDwa+ATxBVT/ptz0SeDtuZpv3qOqbJ72GCfAvwBB4p19/mt/WaosJWHVSEZGdcfMzH6Oqf5AJRVtVPQUXvMNBBx20TY4J0hx51baFfSg5oYRtSyGWF333CQQhNnT6AeH3KEgQQUKJAQT4Y23V2Xh1VI1M/c9SC6+yAlJ1WrRh2PpvQv2hXNKRt7n+hv1RknJfSdqG+jnqx5Rq2GjmExVbnVjA2W4Mk6kCU7TlAkuvIMSpdKnAoJtYJoKXWNpeuYc8+E1eklHYaY7iui3uhTUGUe3uUHNCidsz9Vau6oIYQd9QgbUQiy7H/AALgU7wrU72LbeaAVT14rSQiBTAW4Czsm3vAB4GXAV8W0ROz4/1Ze+Ls6Vc69d3AfZV1W/2tO1gVd0/Wf+iiHx33AWtapyKF6U+BXxIVU/1m/9HRG7r998W+PVqtW/a2PfTJ8QRTrSTZv8D7nbq65d0rjaymQSvvugxAAyNZYMZscGM2FiMIvkF0X4UFh8ENrKFW5L1+bCoYYsdMNKiWmy1bLGDWGaLHbht5YB5m2zTgi1+muKwWJV4jjh/S031VTBvB1Et1rbYROUVVGNbdVCLTSm9Wm5eB5FEg9ou5v5CvEqsvh3w6rN6BzNuMi5DnVAK71Y8Dbjsvl4NZjUGFA6vt5h5ZXhdkyDtDnPYDUN0YNCBQUY2DsVjbElq+wg2lCT2JLefxN9FXdVVS9OSLVENFolpKrdkwRgXo6I6We6vHjNAjhfg+sq0P7wPcJmqXq6qW4GP4swHbfgX4Lpk/Xq/rQ+liNwprHhj/9jR02p6fwkuqdklqppmtzsdOBJ4s///mVVo3lRxt1Nfj4h22hcrYpHa/3H403Nf2HBNnTQlSB82iPPoCrM22uGN7H2T33D5726GEcUiiNaztFpx5zXJ+aMHmBoMyig5R+oxBt4o7W/EyB/rJBw3k6T1dZUUcXQfVWSilTpLKzUd4P1gq3YWYpnXItZfk2QyySXMSR8N+OAllEyKUlrdikvvvptG10eSCNKZdBv6w3nGxabYX93VlV+ExOLsKcrghhI1giS2ElGtpXUJ2wF0buCkGKiJ221eXrQRihHnntyqEqNDUpFaIORqwqpQ2v5G+Nf5sSLynmTzKV7L0kBmBki37w48Bud1dXCya3fg58n6VcAfdzRH0jgVVbUiMq7/fzEuqeTluDt+B+AZY45ZVfXXoTgd3UWJ//QrcGTycRF5JvAz4PGr07zpIJU4AllIT6e/EEIJyG00S3FPtipxLnlwZOGklXmgaruquDQV1nWagcyMaNVJejLJCQScrcSkarWkTCGK1cLbU5ytxCAUqg0bjDtP1eFDIJcwwq97aAXbh1WnvDJBBRVJrFJxbWVQD4YUC2opAqkIkVjKoPJL3ItD6hanUvNtU613iKpYwZfRzB7k6mHCoMexqjB/nsCx/+1jUx74yLe4jlvVG/E73s9Iun61rMpF8mkhlJpUYupSRlMl1qbukmrdVNtXM7pwAbm/TlXV14yrLzcDZLv/EXipqpaZeaCtAV135XIReSGVdPJ3jPEGU9UviMhdgH38uX6oqlv6joFVJBVV/Rrd442HrGRblgsLJZQUfaUOP/foqAiZdnzLG/c7lTdd/KjEViLMm5KbzV0fy4ROfWQNmCQ2RZWBsTXDeujQUwJxI3dbkzQqW0yYUte7CIvWlD7BtlG3z1TkEuJRIhkEEsmIBYjkQiq1tNhOwsOwieG8CG32xGIIkk4w9PtrxbtW+TrKOCVu1XxXo1K4o/1/XVRSySC1QFNy+fqHj8+L8+CHvBm7c4HZ4u5XFPDaiMUnm8zJqab2IvmdkEZOKA37SdhmaCeTDsK58J+PXeAdmhZkApvKhDW1mwFSHAR81BPKLYBHicgIJ5nskZS7Pd1zpDwH+P+AV/mWfQHv6NTTrgJ4BC5mcAA8RETINEsNrLqhfr1in1Nf3xhM9b2Ck0ooj/jKMZhs9D0tvPEHf8a8Fuxo3Mi99OqnILnY5EMKKrDg+uskBxhZ06p+S72/UgIJe8PNSif5ClHtJjH8p3EoKbEU8TipBToaylZigbrUUkhZJxgC6UjNQwyxjXiW0C7nQebqDFJKSeHdkq0P5AwSTTNep1QnWZXq5lMJkfRMHktfv+cTGPFFNaq8YnNaYjWrrDReCimq40k9wLo8vWrSCk2VmMnKZNJJaEOt7lXEZGlaxjeyxwxQ1ZNkCxaRfwf+U1U/7dVXdxGRvYFfAE/Epatvq+PXfv9C8FlgM7OZH1cfQUIJ36iq1CSUSQlkn1Nfz48e2y05TzML6qZLHg7MsXOx2W1QA2YEtrIXnH/4Gzn4jFcgYsA4lVSDRMR37NQz86YqMhtUQnF74i2WbU/VZmHe99i+5E64un2AolZR+vMU0dbiiC/7NrTycgvrNqzrIG4v1RvjI1kZbMxMHNriz4VhHigZeXJRl8tLDTBy9YhS+FS7RXQDVErPUiUVARuBUi1mwrxfKcYRix0aF/So7lyi6oiiZkcB8TdeTWZHCbetkMqTrFWtJTVCiUST2lC8NNOQTnIyCctqwt+vsWXGo8sMsCeAqr6rs3rVkYg8H+cRVgDvU9UfpGVE5CWq+lYR+ae2Fo2Zb/72qrrfRFeRYEYqU0butbVa+X/OOOztCz5mKCXDZMReahHjNgIswqg0UTJRr0xPR22p2ivfniMSTUosEEfyVg02sbGEXiyN96gmBksIw7v8OiKq1GORXGI5W6+jZri30eXZ7XN1lFQSTenJBXyKGSE6DeQqMcRivFSUXn/p1UqFPxbRmvrL0dRiZBV/jh5iibaQtg5QlZZHRmqYT9Vkra96KqWk5RqZi9uJQ3u2rzbGfdsTen/1mQHayv91tv454HM9h1zi/4+dXKsFZ4jIw1X17IUcNCOVKeHup73O/6rej/Sly6WVNkTvL8a/sNBvT3nQFyv9+Zce3JfKp8IGM590jEVlwKYayQdppbQmZiSuiEEaEkmqbmqztdSvwxML1KSWKv8WkeDKtnupyfHgPMUSyaVSY6XSSpA8MkM+mRE/1C++rNaDJQ3We6aZeA+DSiwllqGU0Xifx+6V2f0K0kqBxCDOxWJBHmLuBfRk03afvbOGSSLpw/PKpZSAVO0VqkkkjvR3bj/p/L2KmCT4cS1AVT/r/79/EYd/AzhNRAwwj3/Kqrpr30GrGqeyXrDvp09obKuRgta31+ZcSLa14a6fqs8QmU5XmqNre0owfRhKmWQK1phOPvfc+vbh/+DOh0Q7S552Ji60T7WaHh8XFT8tsUvTEgIsw7YQ8zLv42DyOtN0LSEGZt6aGO8yry4mJsS75Klb2mNYqt/19C9FluZl4ONTxKeZMbVYFifR1NO4hPiVdN56i5NWyqTHCr8t9eewVDzw8LdWKxkBYITPf+UVcareNJ2LlFqpzFKi6JIgWlK4tEsf0lSHBTJK41VapJ+VhlozdlkT4pSHiNxVRE4RkbNF5IthGXPYScAhwI6ququq7jKOUGAmqSwbjCjzWweIsRivh86cfty27MWbZPCTSgRt+6wnqUk9zVx7uzusvsSHwc5RUE+nUmtjInXUz1nfGG1E3pAfjfHJ8UF9VVeJhX0+AwBVO1L1VdgPeCN7y293pJ9jxTQ8xKKNJTHWt87TgqErSVKZqcAmgY1+YUtDmyosqsDiuvDFL7ysXsbQmAv+YX/yRiep5MFSXQFZOXH5/yr1bZ3qLvGvwVqQVBgvqawxQeYTwLtwafAnffl+DHw/jW+ZBDNSmTJ+6A3rd/roP0BPwGMbmlY09++un3wDl/6lm9s+BByGmJC2GJXSx4cshFgKbOwcrffmMcDRdz+r85hAXiHjlgsUrO8HnJsxCckocVKvFFXAoifOhKRS0jMotpT6MVQBk1C5/Bq0ygnmSWZI2TDs173TfHyIr6+IROKGzbZFeoMwV707vggeaB0Bkmn8yjDc90wlluctW6yxfmJ4aeFL59STgudkUjtE1TW8MWkXNcKIZq9ELZaSifbEqtQIJY1TWU1Mz1C/Uhip6rgI+hxXA18WkTOAGJ8ycyleAbSlqhdjW1VaqbTS9c7F41pG+JVLbx0NcmHxLsep3eFff/QAnr3PV7jvU5xd5hsfqlRpUe2lAsbZEYw6G0hKZsFDLPUGC+queL7sWqKXGFWgZOVuXEXr1xwBapKSJxkh6dHCMdV6FbSZuSOrjR18iGtZ7GRgKZzdZGGw3jYzkGC0XxqxTCKtTFaRd0ceVsb+tkm82tBGLLV1qJNMUmZNGOpV0DER9WuMVD4rIn8HnEadIH7Tc8wVfpnzy0SYkcoywqVmSbxjfGfb9641iChbtQilNRTGklOLehtGWhYVzn3IiWPb2iY1BMnlkCefFNtxyJNP4usfPp5vPOJNHHL2y2qz36lXS7mVqk5Vl11YpMpwbCUhFK3+AzUyTLMi1/57aaxeztaONypgyhhEiZoqQt+vhztlWwIoTZxxUatcXmIbaq0QbFlN2OXqGXb0OZbuibtKP5Kw7sbVnr/1AZLTgDPcPwvEzfMeo+oXgHP++1U85EFvwowU9dKKiIwnlgaRSLZOpeLKVF5RcvGPY99XbYq2lh+ecOzCLmAJmCSifi3Np4JLeQUu9UqAAnfsOkBVX7eYE81IZRkxqeprIW7HLueQcR109tJWc5ks/mUukujvFG2j2DBnhEXQ0lCYikSdqsm3J2zD5ehyKqkWokhgMnIK6V7S/fl0w0GaSaWUkQ0uxLZGLiGiP5DLvE83E+wrlRRkIrHE6w6uTJ483LU2y1k1mcrLMPTq7LR8Pf7Gdc5bvYtxKtpafDDolFRgXz7jJdXvMxc5D54qZmRjkkcDWAH1Yp4bK7RZEz3GSCx1FRkVuZjqvy6jRrATk6i/1hDSAMpxEJETVPWExZaZkcpKIfaRCzOgB+xz6uuZG5TADuwwN++kkhbWWiyh/N0+X+I9l97fdYpi2SAu19fT7vIN/r1jdtFIKCouf5UF8YklA6GIj4hz6iwPryaDSlWWq8IaiTGDeqrvS/adcBr3kpJDiNAPKrHUEcCQ3Dup1F8psVRh5cGVOrWhVERRJacsoyot2LIrMiFeZ+mTSsZMxj4fWEjbkkosFp2KCgwmi7gfhy98+RUuTb4FMer+W3G3cLFjm57jcvVYur7PGzbxo1evlLQygQ5ujZGOiNwT2BfYGLap6gdaij5LRP7QVxUuOv+Etp0zUllmtOX86pRM0pcw9G8tBORsoy5NStu5FoP/+PF9MQwoxDIkm6s9GWhe/6Tfs99nX8P3/vz1fgZG8YNrZ1cxqp4owrEVycRklKmajERdRZ2MajaYjHQGiT2khoxYRuGYYOV1tTVsLTbdB7gkke2Ge5diXyvHgOSc7l5ZCoKHGNE7Lhrrk2MIqVvUl/H3beilujTJZKnacLRaKtJcYTBhHEuGL3zx5fH3gx/2ZmTeIsagmfG+hrRPzv/TsT39n6vIVlpa2cYkFRF5LfBAHKl8Djgc+BpugrAc7wZ2GVPlu7t2rBtSucN7nN3gp8968ZiSK4fgiOcCpn1nOembmGkM0u8tSAcpiaQSSrDdLDQFvstNVRHKk+9cn7/n+if9Pv7+o9NfiwnZaNX1kFFi8e2PwY3R4O6QEkxKOKkHVirJ2NQW44lkhKnZY3IngOo2V5H6laTjtqXqsHkqW00glqhejC7HjljyJJSlFlFiCS7GpQ+IDJ5fW4E5IctmTCSTtkkMCyFG1buZH7vnrF8r+OI5L+OBj3wLMnKejyHtCkwmuXSOtzrUY+lvFbjLmzbx45evgLSSi0mtZZa/GQvAXwL7A99R1WeIyK1x7sUNLNaWErAugh8vuuZX8fcd3vvWnpIrgzt+5B+y4MZ0GT+5Tw6hKekE20o1H7Y7trQm7psk6V3A0+7yjZgvK8fXP3J8jVDw7bH+vClqREd1/VAPzoxebFrF1YTrikGTVMGV6fXUAi2pB0COQjnSfUmwZLKtClCs2lwS9vlASvz9DP/VeAnNxLI5Sq0CHevz2tfvVYifSe1KBcpQXELJwnuKDcX431XesbWML5/5Ukf2JT6VfrUv74tzI31ELpXQtLPUDPowsefZNKDk33VzWWO4UVUtMBKRXXGTfXUa6ZeCdSOpAIvwiVxGqIA0Y0U6p6pIPzTttrsYY2M9NTVTemp/6Kg0Mfp9EjztLt+YuGwgAEPwcqvvk0RqcDEz1TUGqaJOQNS21ejNFwvSi03qSI3cKYGmmZPbpJbUO82Vr2wwYd10BCjaVN/iJRaLtk7U1TYnvUnKhozGQ5+9YOiJJRBKfb765jz1axVi/QRfltapf7WFLGr78u1dKjCaZe/81k1c9hInrez1jpOqF8dQ/V4qLDDWpXhNSZXnichuOLXV+bhZIL+1HCdaX6SyBnDHD7tO3GmvJP7ug0g15/ckHmPReMwC1GlLwH6fdQGdqXSRkkTarsqNOLGNxN7D/avbTvzBKqg/Nhj3oa4eS8klxL6kqq9RCMDMbS1CktyyThY5mUD73PEpAimkaWxqs1h6r66hlM7VWCxz4hK1DCnj7zmfFmcoljmcMX/oVWFDr+oqIpnIVKcUXm58+cyXujQwPrVLn20l/E+JJn1l2mwvDeLJbCt3Oulk7Jwumy4ml8DWOlT17/zPd4nImcCuqvq95TjXuiSVVAX202e+pKfkMiLYbIX+EUsyOh9HLlYFvDux9V5kRcdHE0bt9/qvV3Phn76hvdACkBNKQGldbEKQLcKlpmSRo6TuMlzNJhlKVBKY+lgfAzXby8AnLuknkDzivmUGSrENaSLmPRPFeMIpwn+xDUJxkkVSzpNOTihzMmoQyhylr6eyreSTczlbyvKTyVI9wXIEl+X7P+ZtDRshJKqvCdBQeUFFJLX/Gue7ryG+jwu5gnGNmmJdywwRObBl252An6rqqOUQROSWwN9STdIFgKr+Td+51iWppLjDe9+6YsSy94feRHh7mx1lEzXCaZCLIKgLoPIjd9UwF0k9ujygKx/YtJDXHa4tDQSLAZ5pP98ypGv1EEvcrcN89dargQIVBHWbRTAJIeXk0uekkMe8uPLNtDELRYFtVYG1IWQkLhGG+Oco4gMu1Wlp4v2xftIu8aS5bUgr4yCq7cTSpuoK/1uklfS4hlSzXLAygfprmduwMLwTOBD4Hu7u3NP/vrmIPKcjvf1ngK8Cn2fyfGFr9+0UkUeKyI9E5DIRedn4I1YXe3/wTbV1VancDjsWtYlRL1gwo9EarHWpINR647I1bpsmebf8uqqTGsJva92++VHRmkV5IUizEKdkkToXlLZaRqVhVFZOBKOyiIu7BtPa9prBPjPyj3OXbiOEhZLEQgk5GOpDfEnIWmyRKjNxkq14qw7YqgXzuKzGm33m5M1xMdyghs0qbFZls1q2qGUey2Yt2aIjtug88zqaesbiaUspOcQuUmXUQhK9ZNK2f7kw5vuehFREZA8R+ZKIXCIiPxCRo1vKHCEi3xORC0XkPBH5k2TflSJyUdjXc6orgQNU9SBVvTdwAPB94KFAl3fTjqr6UlX9uKp+KizjrmlNSip+buR3AA/DzcP8bRE5XVUvXt2WtWOv/3hzmLivBk2MyG2QGNdA3Uah4lVnaQ/uP5b4xWgcxbchEMG0vVDCNOWh/danaenr9MN1iFQxLEHiaHNKSNejc5A0I+j70CCI+Hx87Apacy+GahIw6+0YWFzSyXiv1Qcrmmg3sWKjm2+hTh02dJMIg3X2lRJDoU4VZjEM/YyQBmWegqEGO4tTn82rslGc83GBmw2yQKJbdIkypHA2GlmTn3ANXz3tRRz6+JMq3wYNtpLwcIn/UzVX/oQ7VV8Bid1t2TEhaUyAEXC8ql4gIrsA54vIOVlf9wXgdFVVEdkP+Dhwt2T/g1T1mjHnuVs6K6SqXiwiB6jq5dKthvxPEXmUnwhsYqzVN/I+wGWqejmAiHwUOAJYk6QCdcN0raNMX7xJX3jRVpVR85x0Ekveqd7t1NfHDMoLwb6fPqFht8nfwbSlKblU96C+TSOR1gllQaRB2yRf4SQtDUuOGfi1sG40xMJYbxh35DJPQaGeOFrIJU42pgaMi3Y3XnoJtpsgtRSebMCpsQpRhjKqpfYvfJtKcYQ3p7amEkuzFi91NsjVgPMEqxtXej29/O8ameT7w3rft9Viz1kqRAUZo/7Kg5PboKpX47IBo6rXisglwO4kfZ2qXpccshOLo7NLReRfgI/69Sf4bRtwE3C14WjgFSKyNSmzzU7StTvw82T9Kr+tE1JzE6mwIvaUVKWV2BYacSdtkkyyPUoVmsat1OuKMRkxNoWodkrjNdK4GGuX/pgLY/nBEScA9c7/h499TdU+275YL3ml7bbZfYLMJbhF/ZXGtISYk1JNbd/ImhirMlLjFltfttqCrXbAyBZsLQdstYO4bUs5cBN5Wbd9S7ok+7bokC12wGY79NuG/veQzerWb7Ab2GyHbFa37wY759f9f//bqcCGzHv1WDrpmEvLX5+4K5DLUmeDDFhu1RcAqpXxXIMqrGO6YmgngTYVV75tG1J95RCRvXBqqW+27HuMiPwQ+C8gNZQrcLaInC8iR/VUfyRwGXAMcCxwOfDXOLJ4UNsBflIuo6ob/e/pTNIlIs8HPqSqvx1XdopoezVqj8nfwKMAipvttgJNasdeH3gLbjhFomKpoyKWZGfkk2S0HqoRX5kA4p2GvQdULBd2t3iOTRPiVS4pYeeSwaWPe3X8feeP/727ruQLN0bjdXpFGKV1bRbfdmOUws+7kqu/Sg0eYBq3GaknrwR85maSctrIcpwmp0y3DySkwHcJNY0YP+eLl15UfcoXF1OSSy/4hJRBcglzuJQIhTqppPRPcEjpZ3t0qrCQHgd1nl4xhkb9tMlqGYrLnTYf52dxxvtp5QFbbvy/T76I+z3hpFp4T9oBB5UYJNtbeoFF20ti5SvFOhGPFZE0cv0UVT0lLyQiOwOfAo5R1UbeLVU9DTe172HAG3C2EIBDVfWXInIr4BwR+aGqnpvVXQCfVdWHQmsiv+tatoVjHw0c5le/rKr/2XmlHpOov26Ds2lcALwPOGuhM4EtAlcBeyTrtwd+mRbwD+YUgA13uH3VHpVFWAOXiGAzTSSNBiT7SlI9sja3OU6pVEWCYG1COOGfJCq3juYt5W7kxu4fHHEC9/jMCa37AC77q1fF33f66D9ESaqmMhOtzUUhAqawmKIyPsdb4cmjQSSmIoRAOCJFbFMgFEmIJCWZnGAw9UzHYF3cS6oaEwU1vqNPfNJCnrAsR9gwiYcJiSVLH0vjBiCWAsN8UGMFAhco1BHskNJJZM6BmpBf2VDNYW8wDKVY8+Ty3x87nvs+5aTgzOiIxb/IiuPKaGaMKtKkgkA+Ut9Gx7oE7cFy8IhO0M24/aeqaq/eWUSGOEL5kKqe2lul6rkicicRuYWqXqOqv/Tbfy0ip+FMB+dmx5QicoOI3ERVfz+m1Wm73gwcDHzIbzpaRP5EVXsdp8aSiqq+SkReDTwceAbwzyLyceC9qvqTSRu4QHwbuIuI7A38ApcR88mLqegO7zlx2fKB7fX+t7gfLZ5RDUSJIm6o9gUrf/aBpDaHYMgPebb8gZXbMSwLmaauund+yya/9SZ+rnK46/c2gcClrzy2cexPnvgK7vhhn7Im2W4KsCMfvCnqPNUKwQwqqcv995eVpNRPJRsjVWJKF7OTkA6OiApjYwJLF9mvYBLPKX87qwzFRIN+V0T9UpC7HIdph21IKumnMZ5nADICLTyJEeNZiGnxUxsQDGXtuxt/40PH88dPO7n++qt6lS+tEop4Ve44IaNGOGn55RhoKuNdiieAOCv5e4FLumZUFJE7Az/xhvoDcRNm/Z+I7AQYb4vZCddHv77jVJuBi0TkHOD6eBmqL+xp3qOAe/n0LojI+4HvAEsjFX9iFZFfAb/CeSvcFPik91KYutFCVUde7XYWLgP4+1LPhSak+yVaTqlFqX8M4dyN5mntEHB0UNuSEIt6sojGbF9G/Yhf4/VVUkuQVnzlrW29yyf+nh8//lUtO7sR7CgAd75kU7VjQv315U9+BXt/8E3exdq1dbTZp0YPKg/rttsdRq2GfjHuXojT90VSQZoqtCCdBJIJZJxKLcHYXhhbqcEsDQnGbbMNY77RNMtxknxSDIZUOmk6UZQt6V/cJF9l/B2SXaKBWGCrFKAw9M7ElaRSUohgtUqJv9allm/+x3EAHPw3J1dqr/QbCmj7dFN1WS6heDT2ddW1FLS1t63MeBwKPA3X4V/ot70C2BNAVd8FPA54uojMAzcCT/B98q1xKjFwffmHVfXMjvP8l18Wit2AMDvkTSY5YBKbygtxRp5rcFktX6yq8yJigB8Dy2IJ925sC3Jlq49UllcNdof3vRURTyhW6qfK1VlBkgmj4MQDChXXaSqu9wvcEtRegSwydZjXe8WIc00lIa065Ngkv/9OH3sjP3lC95zjfbjspcdGaUV9n6eFO8+d3nYyP3nRca3HXfHUKjX6Hd73VnfwCGQkmHnBbDZooYwKjcTh2uzdlY3vRfz9QMCaqqzxEorVimBEFGuU0kgklUJstBEZUUZqIoGMjGUQSMarxKxxE2JVNhjLwItPRSxno/qswHmFDX20fOj9g1cY4u096hwRhokKbCsukt5iKL27sVOjDShx0fmI8xwbinVeae7uMIebucW5HlvmtWSDDNa+u3HQIiaIKqvaIJEmkYRtUP8m0tky/XrYNU3IBOqvSU6pql8bV1RV3wK8pWX75bjMw5Oc5/0iMgeEuQ5+pKpdXl8BbwK+IyJf8m08DHh5/yGTeX/dAnisqj5CVT8RGuJFoj+b4PhVx3JlLtbkZa97flSj8nwEJS371SbrwYDpJRC1EgMpo6dU+uHVPMXqXl/5duvF9Tt9dPIkk50QGsn57vS2k7nT21ol+ArhHliJ90osFDcK5oYC5gUt/WKJvykNlIJaE7dZ/78cGcrSYEsXHFoFXbrAy9IHY87bwnmAlYZ5H4w5XxbM24LSGraWhVusX5L1kc90vDV4hSWeYCNbRO+weS2iZ9i8FmyxQ+a1aPzeqgP/2wdE6iD5HQIki1qw5LwPqJxX438L87hZIufRGCg5j2VEuSxBktPEt//ND0IWor3t6Mwbg7qG1DNlVgnfat+yjEqShUJEHogTAt6Bi66/1Bv9O6GqHwHuC5zql0NU9aN9x8BkNpVOI5OqXjLu+BWDl0xWTFpJOsTK2b6lTQEuvi62EYhGA8cxGtfjaH2M5ILiOnZNcmX5a87TpFTuy1P4uJZQxU+f+RL2OuVE/9EJapTRTsrGXxv0WkO5UVwiwEEyNC39NRmp7otx0oFSSTBqFDFEFZkVpzpLVWLBzpL+NiilMQ3j/tCUlTrMVhLMwBTeY8x5h20VZWDd76H/b0SZ14JClEFMLOm2hXxhTqKxDKVkTkZVokos8zpgKCMnEalL/7IRYV415g7birKREfOoS0RJEiiJT06JyxtmkDUpuZz33uM46FknE+NRksFZNNaHwpn0Er/1KKlU26Idhvr+aWESSWWN4STg4ar6IwARuSvwEeDeeUERuZuq/jDJF3aV/387Ebmdql7Qd6K195YtBelLt+znkkrqSAeDfS+aM3dVbQwjNN9RVv2+W09VQZGA0g9I1NtZEhIJKrXkPqTzuoCTfvb+0Ju44iljJdmIO79108Rlx+HKo+qOE/d46SanPtoK4O6rDSnTk+t32W6bBCOelDWxs+AJRYwz0kuwvxjnGBBIpRRTs8cEFZmROtEE77GBsQzU1tySK4JRBqaM+0amiAQTkk9uMYNagsqhlGw08wnRjFyiSRk50sF5nRVY5o0nGizzlD4w06ny5tQnqPTux3iJZYjxqfWdI8CaJJb3HMeBz97knpm2f0KtdhKoqcDES+jVi56RzFSZRToaVG/bGsIwEAqAql7qvc7acBwuXKPN/ViBB/edaO29YYtFQiidL+BynDMXtXtP3PWWuZe9GoS5dXdJqRIZSPKkBIN+mg4mGvUnaMLeH3xTzd4xEaZ0X/d91SaC2QBwKU02gx2ClCAmMidAzEDrjSaVh3b4tsO08IJL/xF6J3Xr0f6iXqIRd5etl0wKVdRYrHdLTqczDsRSGOvUbio1QjEE+4sm+9x0xwNT1uwvIdp+aJzBf16K6DgwNKMoyVgRtsrASTDq51+xzmA/JyVb1WU9BjDqyufux0MBq5ahCKUqG/0t3ZZS6Lcil0CybXVpJXkXptkntKnY1jbOE5H3Av/h15+Cm1elAVUNQZSHq+rmdJ+IbGw5pIb1RSpBFpaEWJaJXaKUQvW/IQ7n62kHmR5g/Ebf8UWK0SC1uP19Bv2ac0Cy3mqwDx8bsNcH3syVT+/2ELzzicFGMtl97DLWTwSF4R9gy80dsYBTc1VazIo8Y2yl+NtqEslGcN5lIqitpBcxPmbGVKqw8FtVEVsZ9UUULWwSAwOln3bA5fGqx74M/LYgscTfduAN/NZLL06S2WIrSWWkPo+XHURpad4UNRWZk1RcfrKhT6G/WYZslXnmZMRmVeakdJKMKqWZ90GXylAtc1JXiQ18bIxF2WHxT2xquOBfj+XA52yq1F6J+iodJNYII38l47cwTlpZOiQdEHVhbZHOc4HnAS/E3aVzcbaVPvw3LrPxuG01rA9SaUgLNPrAZYlXSd5sydsQtpG8/FrfHlVeNhAHkTAkIZMwSg8uxa6cVkPziMRTzJ+k5mbcSnqSxNvAlX/90sXegsURSvLRh0vZ8BvhB286ljtuOtl51uWkiVf9JQkJ1YAUVNKLdYTkbCx1gjGFraQXGwikKb2EOKHUVdmQbE+kmOhRJqZGKs6jzDBCG5JMIcqIgnktGUrJvBRxDpeQLyxIMAUa7SxDKdgSEloaw2YZOpLx0stQSkrrvMTmtGQoli2qlKZkiIttGWJ9DjHlt7+4HbfbvRZbvHpo+5bT7VLfVieMDtLREM81RWFFaQ4iM6yEsmRSqOoW4GS/9EJEboNLi7WDiBxAdSm7AjuOO359kEpAHM26p72carA4ehbcaNp6RVUcaVUnrkgkewvjWy51Fa0oGKl1oCCo8ZKL21jZXLJ60LpKLJ6r77f/v9e/V56LV/71S7nsxRVRRKnFe5EVWyo70KWvOrZ5k3pw8d9X5e/54k2+M6/27/vKTVz+xuO446aTiWEdaa8QpDVvmHeZnbUiZe/AEB0cTKVKs6XxpBSkHJegUSTMMBmCTq13G9dINCIhor0e5R/UX6n0Yo3LP1YZ+G0kldT2YhFGFDEFTMhmHCYIG2pBIZYNZp55LWrSi3NNLtnsjfeBmEIm5TjTpCilnU8kF2UozvC/llCTUgJphPFTLpmH/+EZ+0+hsc/VnBSYAiZRf62hWysihwInAHegPuFW2zz1j8DlBbs9dRK6FhdD04v1QyqpyBst2StwXgkdWcZgQTSudezNBgViCKOssFHT9oeO0mol3RBiVoJRXrNKSb6w1oaPvbS9/q1yxR5ck7wqJr3PC8d+x24C4HubHLE0vnVf7b6v2sRcIYx2yipICMGNI7xq0Pp7439HVSCJlOcJW9URjSJ+hiyDimIMhCwF1qbkU9lXQtkQNxRShzci96nnG7OlQEH8HcglBFkWVBmOrU+VP/RENPSp8a3YmE/MeDtLIBAX4xLyiQ2Zw+UbsxjnQWass7eIjd9KuUZ6vnsftal6neLArCKXtn3kUklKLl46CWVguoPMidRfawvvxSWSPJ8xE26p6vuB94vI4yaZPyXHuiGVMKJxK8S3LP5c1pPjVTBOL6/4frdF3k7bUqnHQoeX7EgkjXiMV+WkZSvpRZJ9LQTThb4+pecrLG5051uohLLfcZtqv793sicWP4lTCIZTU/02frLTSpKTRELB2VNCJ+IfeOUJRiTiyqvOk3OYOz2KmEJ0MBOw3vgvXt0VyCWXXIxU3nchVUwIrhyIrTzIJCMaX2bOjBpBltZLLPPq7CrWmBj1H9RihVgwRLVYMOwPpcCKYV6cVDNP4dLuW5iTEisjhmKZT17Q7/5sD/bfM00MvnJwLsWVpE/4H6QVvLTig0lV6/vT8jVpBT/QTKQVWSMkugr4vaqesZADVPVTIvKnwD2Ajcn2rlQwwDoiFYLKqaYOchin+1wMfvqsF7PXv7ytef4EYpv63dDH/+T44yp1kqnaq16NFeItIOXIyr4SpZdwrV59FgmG5F/OC5MM2aKazf0f3WIUfy/U7lJD9mz2O25TRSbpvkjUICWVqkqyTsM/b9fxJLpz64kl2FaIQwwvxWi8MdEg7NWY+EwFxp8i8ru6jk+NjdJJyD8Wvb+s1lRjpbexhHiYSv1VuSVblcTAX7fBDE2JFcGqdVKOBhdlm5BUJb1YcZOIYfCBktZlSBY3I+U8JVu1YKMZRTfk+caE7isP0SBVSEMaCZkJ4nNPCATr35FEsomqMqpyVRcwpRFmSmh9ZdYOviQiJ+KCGLeEjX0xJyLyLpwN5UG4bCp/CXxr3InWD6kENPQoOrX3KIeUQe2RfAQprETdfhwh+X93fsum2KmJ1TrpCGiIafH/JEhCShx5O1VOdZ2h44v/1JVpJOPrIZRIQHng6BSYOai9aki4y2d/XxDqBllqapKoEk2lVpykIanFN6TbUSIpoXWpJUo0olEtVs1kKYCtJJlMNRbsYFYUrPvv3I1tzDGWZ0kOOcecekui5DI0gFqsn6myUFubJCygUGfsH3q34xSlKxzdkENK/tXAwX9zcnVva+or6tJIOsZpI5BUYqFZ17Q1FpOov5ZjMLsE/LH/f1CyTemPObmfqu4nIt9T1deJyEk4UurFuiGVOFKpuYdAvjrVc3pSkdCzpSOogMzt2P3OSUhqnVYclWu1W40T3mv2l6TDikP4ZNSdfkmND6rjjY+15V/htL6QRjuS2xDanxBD1ASG0ea4jiFIK2nnZHGOD+Ht0HAaicTrMtNXzyEEloZ7nJJLkBqDtxi+ziCdhMzJqddYkFDUVJ5jcfZIb9CvuyO7mq0pMVLNzxI8xUJA5WaLU49ZZ3dx87S4VDVDcXErFuOlk/kY5R+mMd7JbKH0ksrnrrgnj9r7+wt8oNNB7KDV27mSbyQENobBVng1ndToykiQWKgeKTZIPhrPMTWhbBJJZQ1BVR+0iMNCjMoNInI74P+AvccdtD5IJRmV1tQc0BxxTxHVIFBIT/mT44/jTiefXBmM02OyEVXKCa7DSqLhwz4fn+I61crgrFCpckIdOVEl1dfvQ7W/TjiOjKp56OuHLAnhfG3bBTSdHTeQS0I0tVFn1uR6xZUaLIpsQewIdi8hxgBFcoFKqktIPjBKUC1WqfmTqQlcyshoawFiQGWUXqQeUBmi+a1XQ6XuyHM+RYy1LjByFKQdJEbRFygUREN+NNiLiTaVYFfZKPM+CaVlXl0QZeG9SSzCVl35ruDgZ5wcn2v6DJ2BXaIdJThkCHjyJ2a5DmSk1TQ27v2olfGqUMZLFxMjHzyuUYhIr59/V7p9j8+KyG7AicAFuMfw7nHnXB+kAtlLmXWUyxUAmbygDe5KhaWW7a3kIkTdcfzQxI2gnXcT1Ug59foK6rBkZB9jXyAZ+Uu27k5Uu1V9KkNdoj2lam6N+2LTMuksmscSKSV2HGFbQiC57lw8mahJKk5UYcFG5dRV/oRGqtFxmLEy1O8bG9PeJCRTj18NEqyFzIMMY2tqsUBAA7E+tX5zdsqwvtV61jUwoASBeWsYGpjXasbLAOPb69K6FE4lFrcZ5oGhOkcg61Vg77n0/jzrrl9d4ENdGiIx5O9c9g1FFaVUv0O5OOBIJVttf4emhnGksjZIZ5fFHOSz0H9BVX8HfEpE/hPYOMkkX+uKVOKIJPu9XJCRxE4+N4ZLmbBM+nG0ZC+NxaQamdVgqDq35FxqklFcTmLR9bjlRDXpI5FopO4tJ5Idt0R87+RjnV0lDjup/w6jS/x9CgJgLj1k60G6U0I6/HANghQac65Fo38SJBk9wXxvJeFm5t5h0vYqhSmSXd1IlYbfwbR6iaXxLSGYMjfoQ3P6YwCrBqviJJDEiJ+6H5ug3jJlzENeYijUZTU1KPPqJBSAoYyY1wE32LmlPeDFIH9vwyebSKRxIJFJJelv/8pXAm4oEwZqfmCmU5JUxE5R6llGqOrrFnmc9TaUQ/z6FhIDfx/WDalET6ucWPxbe+XfvWjq5zQj33mFTgr48cuOrdpjXCeVivfpy5h3+nE1+dAC0bjNfqwc1DLqt+USSWp3qZ2gOmEt0DJ0nE3FUg1LllJwsSn7HbupLh0laowmYcQ+vpJmsiXuU4kxNBVP+fsTJD0c4Xd50aXnSKPxq8YlEKoMBtZF79tEZFXVKiUMTjUWDPElRGP/IAmmLK2h8DNT5tMfA1gjMaeYc0cWRuIyIc9rlbhyaKybAkANG808VkzNYwxcW7fqgI3iptUIKrA3XfwoXr7vgqYyWhoS6RTC96LV+65UXl5p/FdOMn7OtJRYgr0lJZapt3ux+9c+zhaRx+GmRJ74atYFqcROO3bciZSyTKqvfV+5CTZQvfQKl77i2KpNNjl1Tiojmp0jVZmqw6cS35OPSX2hGJMi2XEmmS2y1ntXP2MnmhNJ2+1aDrtU0pEEaSRea9gdyMRUv4EYQ1IjnnAPYoWBM7SS9KKE1+JF54+rSLuSkKr7nI8CfIHkWQdJxG/2hyWxMbUYF5/axV9T4VVjQbxw65XhP8J3noEgBmIpRbLElZbSSCwb4llMklLbqhMLg41mXovVkVbCAw9LeH4kRnuoSTE1tXEwwHtJN6ovs29QcMQylSaHweKYyxpbj8gewAeA2+Ce1Cmq+vaszBHAG/z+EXCMn9wLEXkk8Hbc0PY9qvrmhV1JL44DdgJGIrKZ8Kmq7tp30LogFXBEEjpYN3j068soogZJRSz88LXH1nf6FzwXk+NgOrzkScdYG6n5D6uKkQgXWpWLPaBkajGIK7GTDEi+hCjNhM7Vuz+HL1eraqZKziGSPiBILhpUf/k1arZNfVMLKhWgfw7B2H/pK47lrm/chEHc7JSpKiv38pKEGBLykCRBZcx8nECs1y0NXAPVM2MgtiClBGISYysXcKk8xYL0Yq1gjFKqMlCJCSyrSH4nXQy0SlA5p05SCSn2q7T7JQM/sdiGYuTVYraKxMeRisuKPPBzsQjzfnKxl33vL3nzfp+cwtMeg2xMA9RVXySzmibSSFDrxXfG1xVeFfDvRIh/CuealveXZXzfMtk4bAQcr6oXiMguwPl+mvaLkzJfAE73UwjvB3wcuJuIFLhJtx6Gm/Pk2yJyenbsoqGqi7LHrBtSqY1ecC9bOmKfJu75kk0w8IQBrUkPTOkdvwKBhLaleawgBv61fVuQbE8KpIKNeLdJZ1Su6gyEVBUMvyX+dufW6iNO7mFAEHp/+jfLMms04Ehm/2M2VdIB2TWGZqWjU60KRGIxICP40WuO5e6v2QRzgdClisCHGGxac3iIEp9U+8LZo7SSNTyMekeCDv19TANZazYZRdU4lZi3sVh//iCNGKM1ySTYXNIo/ZB6PwRbQrC9uIj8kFMsxLdgRlAOoIChLauJwHwa/nktSN3uyrANOPo7T+LtB3xkwc9zUkj6jtLy3qblIJFgiN5d4Z2pGebDdxnUYaln2BQHmdMQ3lX1auBq//taEbkEl8zx4qTMdckhO1G9/fcBLvPTCiMiHwWOSI9diveXiHxBVR8ybluOVSEVH9n558BW4CfAM7yXASLycuCZuK76hap61tgKQ6dtk1G7qYhlmvij4zdBQWUcbHmx9n/hJsyuidbIJuUSMT96qmQG4VAsIB2sd25PcluFzixKPL7CNpKJH7ZCdMtWKrXYdG9fA/d6waaa51fNs0cS0s2uJdzXKNFRdRj7vmqTm/RrC0RtTiKRVcZ44lJLlRP22YRgEhVZrA/iQ5ZSotoFfFETJBwn94WpC9L5XYJ6LleNgSOVwlRR+uBUYtZKDJ4E6gkrvQtyiG8BYozLQIYxdiUQSekN/yEA0qqLa5n3UtjfXfBU3nngBxf9fMeiq2NOpJW6Sqz67nJvsEgoibtxTigrGqfi9j9WRN6TbD1FVU9pKy4iewEHAN9s2fcY3JzxtwL+1G/eHUhz61xFFeQYEKSNfYCDgdP9+p/j0t+3tWMjLpL+FiJyU6q3flfgdm3HpFgtSeUc4OWqOhKRtwAvB14qIvsCT8Tlmrkd8HkRuauq9iZAg0oCiB9sa0DDdBA8uPpGPWYLlWE4bUNCMFFokGyBmmE6qLaCRBMJQpMRdKNzrE5a8yROSUKItoZgZ6hLO8KVfzvl6QK6EO5nKhGk0lwmKTi36ep+5Lb08GykrPbH++1VUPn9DQMS4j3xdQjJCWiMJDRE5AvObTi01c8FkzoEaBF6QqJqTAvXI8YZKo2L2jfGMhIviRiXkdiUJkouhXFqsMJ41ZetvMUGpmBgLCNbMGdGjkhGJJOGJbYVDKV6CSjpdcvayzJ9fOvfj+M+R55cv6Xhs+2SViBK1TWjfVCLSUI6wdvPVHVOS1KZxKbicWrflOyxPpGdgU/h7CV/yPer6mnAaX5e+TcAD6V9yKfZca/z9Z8NHKiq1/r1E4BPdDTn2cAxuD74/OQ8f8Cp23qxKqSiqmcnq9/A5ZQBJ7p91LuvXSEil+FEvK+Pr7TeKaVuptNEFLOzTi4vY8rqd97OWC5IJeE7rpFDRhhUZRINVu1DS20P6VwjcWSeHBBJiVBf4tzg1TpXPnv6HnM5LvynYwEnsUQbUst9DZ18jSATVUfcntxflYpUtABjq+uuKqnucxp4mhJNWK+eQ/UAQjnRfH4XdzHpM6wGAuIJx22wXooKE4lhFQqL1SLaXcQKqpXNpRDn3aWF8wKLiSalSqcf1GRO+nASTIm4oEmo2VbAkUggFjNNPVEH7vvUk5E+ySEIyoknWDroiVJM+B/KJ7FMeIlWIbqrTwVBUh5XZgL4aX0/BXxIVU/trVL1XBG5k4jcAieZ7JHsvj3QNTHOnjjNUMBWYK+Oc7wdeLuIvEBV/2myq6iwFmwqfwN8zP/eHUcyAVf5bQ2IyFG4eZQZ3OSmVWcPtc4VlenqUUMn1veCKpj5/lFR6uEVRlhph5YmmUxHzWT7CN4uWQdJUn90t6XaVnGMVuoCTyiqcOXzju+7DVNHbdSZ7/NttQMqewiOMKLqo7XSpO4RNaN+5IV8nYzQvUQjSX0177wg3YT5b+J7R2L8D2WT9puwLRj4w7NIxapk6mOjkVSMKKWR6trFqcVChL5LAVNWhGIqUhmoiV5iQI08rLqkk6UKhS+/7Ajf6iKOiwMLqgFlrM4TSVBDRmJZzLla0DOmrJUZW49LHPde4JIu+4aI3Bn4iTfUHwjM4VKm/A64i4jsDfwCp+V5csep/gP4loichrsVj8F5nXVCVf9JRO6HI590Dpbe45aNVETk8zg3uRyvVNXP+DKvxHk/fCgc1lK+9c32eslTADbebg+txX7E0XlV4T5v2MSPXn3s4i7GY/+jN9WJooNYxFIF2cWNSdvbOqlkNCsCWta3YYjxMJJ2VimB+vXaaD9/+5PhXozriRYU59gwpe9uQfjOO47lwOdm8SuBFBKVlpSgg0Q6SUg5R+h0Yz2meW/SZ5ETc5fasBYvg8Q0/ZFgAlmYZl0h8DKqyYy2Eoz1bk3qpRcxFjWK9amITCCVwpOKSox1KXwQZGktI2Odt5i1kVTqEfv1kY9VEycWG5ixWuclIVdpjj8geeVTFTCV1JJ+EjG7cTDqr7RNZTIcCjwNuEhELvTbXoGTLFDVdwGPA54uIvPAjcATfNzISESeD5yF6x3ep6o/aG2u6htF5Azg/n7TM1T1O30NE5H/AO4EXEjljqSMIaNlIxVVfWjffhE5Evgz4CFJYM1CxLmqLqhG+1BX8cCkus+JIL6zz0e3AaFjLLZqXbqAaLRN21Yjjpb/YVSrpfs4qg7Il0miw2N9qQdSRmANggm9c0g9PkXX4QXDZs8qa4rZis/GS7z3seNuQbS7hHthqntRI5BsW36vNCtTIwoh6u2ja3Z8Nr6XS+wsqX0oHh+knKASMwrG+EFLkF6KaHsxxrkfO+nFVW99ospAMEMV1CeqLK3FFiWmbJJKG3GMrJuF0k4ppmMaqKkXA3IS0eq3S7NTEUrN9XgaSG06PWXGVuPiTXpbpqpvAd7Sse9zwKSRqjsCf1DVfxORW4rI3qp6RU/5g4B9FxL4CKvn/fVI4KXAA1T1hmTX6cCHReRknJHoLkyQv7/NyJvaHaaF7779WA58ziZSkbqtLWaknlTSoS6EBIZ551V1MtIkFKmIxCpNsrE0jzFJh5XuIzkfVefo1AYSI5lXC6ZMeoXYwAy+c4jqu2Tk2TDu5vclU7HFK227P22knJBTOE6Te94YFJSS7Q9ZiokeinkdTkUmXoLxjOEzTpfWqcLiBGRG0cKRS1k6w34gGC2EwgqFcecMKVkGaknzis21DCKcjcZlTV525Oqvto+2TUWWEYpCfDeimjOsk2yf1iVNT1JZEYjIa3EksQ/wb8AQ+CBOUurC93HapqsXcq7Vsqn8M7ABOMdPdvQNVX2Oqv5ARD6O87MeAc+bxPMLqOnkG+qfKSKqtbpGKgqDG5ViS4ukknYiEBsZZztMSafW2Uj0XIkk44kjqMbqI+T6aDraZMJ68iVWhuagTli90WmQAqMHF4mR3MOUUMxDOfS9ffIMGhzUQqixvpTQScpIS5mkvvz5CLj7H55h+ozz5yKpqgxHMiKVWlOqbLpa5BIMSKGoaCSokJ5fTF16sd6oXxo3cZcjF9fAkU3S65v2HnZkTUzJv1w45MknQZHc4ElPFcgkDIzScUhmXyEd+IX3akrqL//4+susLdJ5DM5d+QIAVf2lD7bswy2Ai0XkW9Qn9np030Gr5f115559bwTeuPBK6y9Y2/O8+6s3cckbjl1w1SlEncE0nkvz/c5Ib0oIUmP8AHzK9UodE63lIBI/ltR92JGJ60gsEo3q6vXFNY+W1ICfjnzTUXfo5KpidWeoFRic9qEtL1ru0eXKJaqlWgX1so3BRWIHJzm8lVySMkF/n+6P20OEdyD+MFJO7V3h2WhVJqrFQk8ZHrhRJ+UkxoMw4iZ4NSWEBS6+RIzLNWwNlDbpVY0B67zFrEjMiOyqq/KKBVj/gthlGmAc8uSTFnVcTQWWvLQ1T7C0yWFwkvYL03IpzjJltGJtkcpWb+h3/gsiO01wzAmLOdFa8P5aOpToOhp11/kodQoP+KBnnVxlEfaeR416FQZbLDJyqokI33nEEWva+ecj4MwmEsqbQuNIV8Oot0hGx0FNFo5P6/TlNNkHNIhIYMkODYuFCc+QFqnDoyIVv96WIDAjlkZHE++txPK1/jN/Nl2/U8IO5J7c92CUT8vaguazMdJ4htVzlajuSueEidtVvTHf2V2s8Z5iA3FBk0awxnmLhfta+riWUqusximxjHzg41xbqogl4pAnnRSvvTZYCPfOP59WQ7x4YiFxLw7lw+9EHRy87VrT/ywV25j6C/i4iPwrsJuI/C3O67Z3bhRV/YqI3AG4i6p+XkR2xMnVvVgfpAI1l+LayHvaD16T/146MiO38T5HngxzgozUB0gmJw8vc+FaWI+HqGYXjB5ZgRzBu5V6ScUGcnBG2nRb+MAMWWca6g3tTknHX0OneLfCcBJIPblOLVi0toNuyUpa/mfHhqkEoE5iKdnkEktsR0YyNQkolE/Ui4EsjGbEnpBkFfXtK4zPReI50ucc6zc4n7004NWKG1zYoAMylMZNc4w1aCKpkKTMd15jzjU5kMu0cL8nnNRUP8Wgr3Rb/fogkUZyYkmfa/L9C+mPrE+YAgTWmnqrF6r6NhF5GC6AcR/gNap6Tt8xnnyOAm6G8wLbHXgXsPbStEwdisv8m3pCpaPBKeCPn3ayy0psnUG5Jkarm2tbgMFmZXBj6b14kiLhwxlp0hm5H2oUTCq9tEs0JkgphR8JG6mkF78eR7nZaLgiI5oj4ml9aUuElJ6MO9yapWWls+1JR9V7fW31pAGPvkz9tzSPNclvCc+DuuQSRs75vqK+zT0nSX7j7CpFSPwZpBdx3hveLVkKZ8RX3wOLAWssxgilqWadNMZSGGdrsYW4ee69R5ilIpVpegIe+vgmoYj19zk6syfPOBCmVvdP0u2RdCvCjc8kH0ylg4BpXdIkksoaIh0RORb4xDgiyfA8XPD5NwFU9ccicqtxB60LUhF8tDTZKHJKL9HBzzjZhYlscVJJ1IdnKLYoc38YYbaU6MDU7QIkx8TOyJNKUY0ya2QShkKecEJHEjqgVP2lPqNuULtUnZv76ILbayzvOzjbMlD8oxdt4qK3Hbv0G7dASFBjJutAJfFlDY0dTTygtrf6NcmAOzm2QfoNctEGGdU9wqRG6OnvXP3VUJMF0hkk60HdGcpFosG7mYt3QxbwxBLmdREj2MKrxIJR3wdJDgqLpaTwhvmQc2xUGh8DMz31V42fggkppFAJtqNsIFWToDOyqH5rtS2KfVW5mtQ+ZVIZZ1NZY5LMrsBZIvIb4KPAJ1X1f8Ycs0VVt3pnKkRkwARUuS5IBajFqeTv4rRQbFWkDHoO90aFVBBilWKzpdgckpBp86XKOqLIMcEAGclKq1GdD4gTQAo/T7oBUbddNdhWqilrY8CfJyIVfAp41z9HcqH6sAOWOd5tLGr3LL+HiTqxGsWmbNBR6SQfd/qixPuh1TsVn1l9Rs2oskxVNVJNRRBjk/xikpE3waDvm1glQfX1JOvRQSNRkYXBQXgHY4JFI6jYqBYLk4UBGHWkE+ZxMcapv+JNxSWZLLBTNdRHVV2qqqW+7t78ODVXeAKunF9plV7C/bPuO4r7ff259mIq2MZsKj4H2Ot86vwnAF8RkavGxBN+RUReAezgVWd/B3x23LnWB6kEu0DiSpjn51rq91FsdbEnZuQNo4oPHHHqMLGK2WqRkROZpMzeuNSqn7saS7Xb6fmThks1xW+U9lWiiiPadmxwV/WqD6m7IdvwRRqcmlDdf6HeIa7mh5JKKa2knKxXo9g60bTWOxGpVAfXJneCiliCK292vnivJd0WnmsqgVZkEMclUkmL4Z1VWxEIkURwX2u47hAl7iUXComeiS69vhtERE8xdQRnVRC1PrDSUJbqz1VJKqUVpOi4mUtFOsJPiAV/fwOxBASCyW0iqd0kMTkhMeWNVEQW9yUVLBGi6s617eHXwK9waV7GqbJehssYfxEuyeTngPf0HsE6IhUzSlQLIYp2CiOTQx9/EmYHYcPvRhSby7porl5yUf8yj3vJghhZ+hGs/1QkiP1hhCri07TUxXmnU3dDtWhDiaquxA5jcKSTxEWY0unhbaIu0wJkQM2DLHrSrQJMam8KCB1Pg2CaerulPepMCsp3p4OThhpOq869pWxNfRYzF1fvpxSVNNNQa0KlAhtVzymqwKxU+42bkEyNoKWXdguNNhfryyLGTSDm84kVxjIobEIqBmsNW+cHXPTo1y3prgL8yWPf5kgvd16J9zbcMOKgMLm7DWmxcsWmtq9O6ppIkFLbNw3INqb+EpHn4iSUWwKfBP52gsm8dsClfnm3r6Pw227oO2hdkIpAlY4jfJxQed1QvYP3esGmmBl3UhSblWJzidkyQotgkaUaqeRSSScqtZYknaKbMrWa4hbUeYmlcS4iXvVGVJO5kam/uNAxkUoqGqUY638bDWqwcKzgbeMxOeVa+hggaU/eIU0wUmy7loYX2bh9MUiE6h5nkgwidQkndo5a79A0iaj3/00YXRuJAyIL1eAoSOHhGfm600mq4nHqAyAlkVwMSEGlGgp1KthSEBFGpXGqMBz5TN15wz+r1ucRBldIpbJK92ffcE1FlksjsUwimUhKTFO6sG1M/QXcAZdW/8IFHPMFXIr9MEnYDsDZwP36DloXpIJCMe+MkypEXXTUP/d0In2431+dhJ2DHX81T3HdFjAGKVuG8VFvMcFJkq81jqoyGwpQTXmLIwjwKTmobCdIIr2U1Sg/GO0xidTiezE1SayLEcSqs9Vk0sq9j9rE+acsjHynAVHf/nQKyFyTmK7nepF8e14+L2q1ua8RSV6Ru7ScqzLeS7JOJY1Asi+Ravz+6OkVo+VBQoqXxFusZqj3/6MDRpBIw3MtE8ml8FMql8a9ZyGJZaGUgpNWChuTVU7TlvInj32bu56gpk1ud9Mgn5B1m61Mqn8xPqkmqSRG/vTw2gBgSkwwyeBrDZCOiNzM/3xrtg6Aqv6m5/CN6ayTqnqdj1XpxfogFSAYyzESg51Eq493sSi2KMXmEVJ6V83O8/eov2pveKovTjaH5H1G4z6tjbtIJhxymYXjgDmRXmL5aOB3X50pifYW1I+qi4oMVcEW4kbAq2ysB2okXTPKq0ZbUQ1px9NGKLbl2XQ9zlTylJafCemkhuPYttiWamBQ81JKpBrnZdV0sjB48vcqK0ntLMkYxkJlyA8qsZCmp/ANTFI1R2O+fxWw4mJaRKKnlJtFdMo9YuiEE0++RvAjdWmEuE1qZaD+/FNbTPWeJGWpE/3UsAZIYwKcT//Q6449x14vIgeq6gUAInJvXJbkXqwPUgkfSSCWxKWzbWR54LM3ccG/9o/C7/uUk5ABzP3WIvO2io5vC9Ya2758qCz17V5VAXVyqT6w5FeY+N6TiAte1Er2D3r2MCIOpws3Qlx5Jw2AmwddfHicj01YhY/lvk85ydmhw3Or+sHK4JoQSydyQrEtPVe6fxyyMio40klGzUBFNGnnFUbeXeqzZF8gl6C6DCpJFy9CVNvU4o38axCzVydeYkEtpoVPuxIlKXcznTGfSCoqBvVzZNswNfUScf+/ONHdl4RQYiBrdmO7DPJp2Zq3X/p+BIKJknbLg22TgJaAbSVNi6ruvYTDjwE+ISIhU/xtcXaZXqwLUhHc6Dq4a4anGVQEUV9d7ZoIG68ZMfzdFszWkSOVMDRsSw0SMEluoZ7jI30k5BHtL+FDEpLki14qEZwaLRhjU7tL+PgS54VgyHcSC95g72IapjqaWyTc9aSskow2fcR5UKmEIrVj01ucl0mlxfxRtD2aFmmlrlIRsFo38Md77sfQKedIWodW6i/vnKGizgYSBg7eq0/L8E4naV2S9Dtp/FHIR2YLfF2CnSOq0aRw75h73gaLRdVU3mfT6HxFYoCjJNMa1KW5cEO1vi4tN90VbBB6RS7tbU4Hl61pfRYBYfygZA18RjWIyKOBw/zql1X1P/vKq+q3ReRuuAh8AX6oqvPjzrMuSAV1br02+/qFZBSX5HAZN8I49PFOShlcN+8IRaRKGgh14kg9VSZNVpfWRWhbXRKKsSuhbLo9k1zUVIbLoAIIgW4xnYUftYupIpc1kXwM4gQc31GtOIJjQVdnlm+OPrhuVcE5MhgZSyitNplQbdsot0ZY0mhO70g6dKqpnaYxHPfPFkf27rEnKkqF4FPuOv1gF0su3i8hwagZuecY+AWCh2R88iD++dvknfKR9JLfmCXATa7m6zPtaq9wP9okGckffjrAICUobQ4ofL1IuxPAouElr7FlxkBE9sBNenUb3KM6xU/nm5Z5Cm6qEHBG8+eq6nf9viuBa3GTaI1U9aCO87wZOJhqQsSjReRQVX35mCYeTDXz4wF+IrkP9B2wPkgFL6kkEorbKBWxJFHmXTjkySehUmVMMzdmpGyhMVlQ6PQX+rKmIjssnFiiSqUilqCndn1tFUEdvH4UHLEAcfrb0FNZnNE+cW1uw32f4jLMmuDemuHrH1n4NMT3fcpJ2IG4+74A9WLqsitWO21BDUKZhEg6nmcIIiRVSUUJudkZxrVEZVbtxz0HmzTSX5OhUlFSUHlySXxciGrMKByee7SZ+DaiPt9YIsSqiotbEq/6Kr1HWlld01JTxN//MW9ztqGS+j3PHSNS+1R+b+L25vPp9NBreXXyiP2pYILB6YS8PAKOV9ULfCr680XknMzd9wrc3FO/FZHDcTPe/nGy/0Gqes2Y8zwKuJeqi9oWkfcD3wE6SWXNzfy4khAFM68wD8GWUo18XZnK/99tOOTJJ/H1D1cd4H2fclIleZfKjtc4Qqk6jlRlkr0tExq2W1UKKbm02F7abC2QiP7BpB9mpPS69tClqa26NjcSTs4rwEDCAcjIT0mr0gjePPTxPl35nD9vYtBPJZtDnnTSoojFlFTRzy1qqqiXz6HK1057sZMu1XZ/6F3PL52PZRLvvfRZh3vp73l02Q37Um+mNni1WWqHieqyNNaorAZEcT4WryqTQhMVL1VwZYg/8uoxW7j7a/02KQVb+u9BjZumIbxbRtFSuPKvX9re7jE47NEnQiGYkbrkqumoPo/xSZ9LuishmwmHGK3qR6je+eBFOQ1MZFOZAKp6NX4SLFW9VkQuwSVuvDgp89/JId/AzYi7GOwGBG+vm0xQflEzPy5xPLJGoBqj2l3CRz9y9eti3cjajBxhhKzC93tCNq+DwvB6y/D6ksF1W7vvThgSpstS0faC9o2g0/M2Rt5hv+8ovRQSRlfRaGrdBx/dPf1oPxDKIU8+KS4BZh6KrY7E4z3PSPWQJy1svgw7yEjMX1utbUrjnof9hx1xIv/vE8dXNrQONEjJhu0t0dE6ZkmPs0QpVtJn4tvXtcTrCM/B4iSa5L1191erd7p09zu+y6V/3+Pi94cyI6ryo/Q78P+tQClIsqg33i8Fsa22/p6597D5DCW/v1YXvNTub+j0a9s02nimgnHviDvVY0XkvGQ5qvOeieyFm0jrmz1nfSZwRtaKs0Xk/L66gTcB3xGRf/dSyvnAP/RfYJz5cUFYF5IKUHU86VAxsaY5FYlgRvXD7v+Yt1EOhUJhsNlS3FBS3DhC5stWKWUpBNI6z3aK3NYSzpdKLEH3AZURn0RisVK3iSh1iSVIMsFDzucycx+bVNJOrqrxnX68pUFNFfUsybFMLrHc9yknwVAqYtKqyk47CNR06uCIRQeCzHfo1ZP7AdQIpba9C/lIO33NUjUlRBVZpaJsR6o2i+7IXp0VrRypmlLxNolENea3R3dkBbVeLVZUqq8Q42J9Zxc0tjLC2WFKqtioJRizDzviRJ/BIR3AjL/uant2fydAfBfCwCS1t5j+Z7BYTEJQXkNwqqq+Zmx9IjsDn8IFKP6ho8yDcKTyJ8nmQ/0sjrfCzaT7Q1U9Nz9WVT8iIl/G2UgEeKmq/mpMs7admR+nDvXqr7Aq/oGKF++jSixREYgLmAT3guz4qy3IqPS5uxQdeN9M7wkjjU4l7+W0Lr+PsQ2EjqjVRgPVh5260KbtAB/DUHX2MTIfYjR3zTMMXMcBzlU1xCZYrVK+lIoZVdcYJYVRywcUPI8SN1dN1BZBYukjFy2EYks1mo2R17HTD/clO3/MIFBBErtFbXyxUPS6LOfPHfdc0p7L2yZqQa2d9VU/o3oy1dKUSsgSq0J1z3tUY6FTD79t4VViQzBe/WULMN7jT6yTFuP93GK4/OjjxjS8G2Y+SCnZgKzDwcVdd8osHch3Se1fMwtAUC8uB3SC92vCU4vIEEcoH1LVUzvK7IfLu3W4qv5fPIXqL/3/X4vIabhU9Q1SEZFDgQtV9XQReSrwEhF5u6r+tKdpJ0x2BXWsD/UXycghUyeI1+s6dYA6tc28pdhq4zFz15bIVk8o4MKSc91vThAizSUWbr5NKlKrI6a9H2c4zKWk3DaQqMOi+kU1Ef871A9BLTEKKkP/e94lxjRbrescwnqZqhirhJphNBpVjcE2kqBLHXafI0+moZJL1qVUN/oM+dUSlUYrJEwL4O9paOdyw6saawQRnpNd2CL581Lq97ysnm2q3o1qskTNG1RiZqR+8eqv+fy/VKqyEchYp9F+xDbl9yBFft2lVteeLNSuP1uSMun70alqW2n11wQQN2J4L3CJqp7cUWZP4FTgaap6abJ9pzDPvJ8e+OE4lVUb/gW4QUT2B14M/JQxBndV/QrwQ2AXv1zit/ViVSUVEXkRcCJwy+C9ICIvx4l4JfBCVT1rbD3+BUoNpaK2siVANQIOD9t3vFhFRtarFExSp5c0iupYJVFx9I1mW8hjwWhThcVK65JLpf/WKvq6MfCrJKdY2nh1WZa8Mm1zfp0hRb/60bT6jznMaGnCyFllMtdkSTqD0LkEMuz4OI0qzMP8TvUTfPW0FwHwJ497m7vcZcoM0KqKi/cpu3cLffx9bfaPUIOXnjiJM07wJpUEkzpuaIhTKasUPXYg2IE34G+gSguzRBg/PUTX99H73bRce5W1u/vYtExj3zINm6MdaEyZCXAo8DTgIhG50G97BbAngKq+C3gNcHPgnV5qDa7DtwZO89sGwIdV9cyO84z8HPVHAP+fqr5XRI7sbb/IX+H65y/j3uR/EpEXq+on+45bNVLx/tkPA36WbNsXeCJwD+B2wOdF5K6qOr57sFTunmHdKlI6FqjSbfvRTxjBpG7CSRyKSsM73sFUKrHY7o6XfWL3zLGuiZOp0mJdrdH4bq12XIhxUeqdX9vXEAmpclUOsRNR1RRIJpzKq8WQdhtLlEZSwk8klvicUiQj4K9++sWd96Tlcv1J/XZvVKipNrNr7VKD9dtsUnEl0+enaq0+CD4tUP2Zp3FH4UarEa8io7K/iIs7ShOKqo8MrqLx3fNL41mmEZ8UJIreQVHApPei7Tnkj6yDwJfqcNDZLJ2O1KOqX2PM0ENVnwU8q2X75cD+E57qWj9gfypwmM84PBxzzCuBg1X11wAickvg87gsx51YTfXXJuAl1F+PI4CPquoWVb0CuAynIxyL1AsndjyZGqhGKAHBzTi9E/53UFlpUIeFxVArH8tlS16uEyZbkja4i1vEhxG9a5oeSanLbtR9lxo7+FwFUVclJPc61KEQ5pZJiSGoJML5Ui8y8J1z+nwSD77K06laqudKZ4d02BEnVuddCNpuca7WzNoei01CMDCxSqThXRYQJbnqXueeY/F5+mdnyurZmvlMDRa8x+ZxnmH+v4xaWzUWD/jTt7q29dz7GlFO8lorLe9tur8alLSpoBoqsyU42vS2q2tZO3gCztj+TG+g3x0nhfTBBELx+D8m6NFWRVLx6QJ+oarflfpHuzvODzvgKr+trY6jgKMANmy4iVNjxeF5NfINmYpr6p34sBOrblq3ahUBGaqMZX3nZm3TSybxyqrON8GXk7/oQeXWZsdpOzzfnrYj3Iv8mJojf+jFWlRG3re/kcgyug9JVKMRXLcknFEJaUbC6fL4ICmJnWJll9GEPLTelDFQcTaEhotyrYyXThJpxbW4gwTyEwd16ESdYri3PYVbO7pEEg7ioN9c8+ST6r5LaFPILADu5oZs1Ynx3hiwpVOBYanUlgJ23Pi1BQ/407e6cyb3vUtKqKmzEs1t970I1+4lv0zicwJZx3FK/d5PiVQmUX+tMVwLvF1VSxG5K3A34CNjjjlTRM5Kyj2BujtzK5aNVETk87T7OL8SpzN8eNthLdtaH52qnoKLLGXXXXb3X3nSAaV9SsatzRxBWadT80msFxHwfpotKpKcw3NjfEvkvbSRR46e/Yu12bS6NycdV7XNtc8lMnTKF237qMM2/9FHdRgtbs7Jcfl65WxAJQXF5vV/xX/y2LchgTDSot6DLlVb5cQStoV707gPJNc8Rj02dWj9dyC/qIb029OpdMN0kgrRuB9njgyjeBMyI3h3ZP/+msUa6r1DRfTKiuTbTS61e72Q2ynJj+Q96SX6aT6vEFPUh5V6PybDucD9ReSmuHlSzsORxFO6DlDVF4vIY3EuzIJLIXPauBMtG6l0zX0sIn8E7A0EKeX2wAUich+cZLJHUvz2wC8blUxy/tCBtLzQaVK5KMXURpQto8u0H3FJneqj+hZ34oZNJTP8Q/doruvb6CSRaSoyk47BrdeJL44MkzQwzpVZYocVSSa9LT0ffFSbBXVZtKtUzyKSV2/bc6lkghFlRvadhuF8VD3pCHix6suu4yJxJ04aWcxSancJ5BIyFoT0LkENptLf/HF4wJ++1TUhdLLZ4KTV2SP7HaWWvnaEe5K+VzLhM14GTMlQv1IQVb1BRJ4J/JOqvjVxDKgXFLkzcGtV/X/exflUv/0wEbmTqv6k70Qrrv5S1YtI5kb2CdEOUtVrROR04MMicjLOUH8X4FtjKw2675YOpbM8vnOMnXxauKm6qryp/HlK4yoI07a2qUgyN+La6CqghQzijI4LwQJF/FZyGicweWkldPBoGlTpVWMJScdAvkAY3tX3vk85yR1fSGWvSVxKK7tOrcVRBdfdvnDPtdLAGUGtY6NoWPWdV83ZoiXgr5vw2+7v4iRGd2hHr54TS7oeL8X/SPJ2NSd904bXWGFBS+fxGObpWcwlPOLer0VutROoc9UXW01r3XBSCD9bpOTY9phmKDmmNn1BdQ/CBHUSsxBoNfBI1N3ViZfwjHKktpxtAyIih+Akk2f6bV2uGf+I0ybluMHv+/O+E62p4EdV/YGIfByX92YEPG8izy8YP8pp6XSrdOQt0kzHy9hQ/ZB0TrVqpF16SYO+bH5MUjQ3dk6im29pb62KrmMX+q0lI0ZHJfXRY6r6Qj0BBUJKT5sY/4HEXTs7V3pNPSP4Lm+wB/z5idiBYLbYGFvTuKQ2L7A26a/L8y+XYtpQk/7yfUsUF3J476su6cU9LomxLdo2MJoQZmTHZg9I0XgPU6eXJFddKOt4sZ1YEEcufQb4qU0hnGBbmU8lwTG45JGn+X72jsCXOsruparfyzeq6nk+lUwvVp1UVHWvbP2NwBsXXE94+aqK3P/WEXm9s2+VaHq9VKT6CFPDZOaxVY3Y1Ek4eZuTcUJa1qWSyUZzbZ0e4z+YcXrtiQgl7USDm3AkA6ncudXp5oM+33VioBokheoeOYM6tWA1t0PjefKOxLnG0kssD37Ym11xU0kmducBxY1lJWF1oOHC29ZRpc+4jWAm7b/aCGaJxNKdncHvI0gy4NLdgyndKEmL4HCxwHNuHVHcMKLcMelKRBr3oZdIMomxJiEaT4hB2k00AC55prtnWoh3w04bRz1UAMa7708IYbwn2fSpbPHwQYtfSdYvB17YUXxjT1U7jDvXqpPKNKBQuQXHOIY26cGXz+wDnfVmL2RN/2urlzmvk5gtVqK+ty8gzBaVVCNW0UIpttCUbvpkti7ppFVTM/nrPi5BozPEQ7CHGBJpTnD5p3AzDbp0LtW5zchF6RNUXtE1NCWTtLPMiCXDQx74DzBsb7AOjZNUYuPzAi3H5J1jXiYZFMROexGdVl2dJvnOCff1DByCBBjO4wdEogpbLTIQdBQ664W1ffPuu7qMDPPWfQ9GsEPjVJWBCOh4jxoqMKJ6uWZ4L9z2mJ/Ogg7EpZ8ZiruykKYpCU5WkZimqTrnwq6vE21ZAnKsAUlFRP5RVY8Rkc/S0qKOPF7fFpG/VdV3Z3U9E5eIshfrglSCG6si3hBO3bWxx7jdGxxlsmODBoZqAqxa/WG/+M6zyDylspcwpug3RHuDln6gZ02lHmpVr2V1dXb+sqDRZx+JtNYe1Fx4tUV039bkv/sXkiG6E1HZTVJJpfM8YWIpJ8Wc87VXAvDQw97oc34JDCQGDQqugys3mirdS6ys7QSTXGzH9sQ+kwfgToKGF5SvcyFtXJCKx0uWGt6NkfpcarrgPtfOOQIptkhUg2kh6CDYsoiu/W7umI4HHd5/3z4Nx7Xdj5DRoagGbgbcNMjBJhOlPxrSy7QwPuZlDbAK/If//7YFHHMMLlL/KVQkchBu4ovHjDt4fZAKoYMOnZwnlzT/UFdn2SYaJ8GPKVEE+DFzXEknBYPqA6pSZ+DmLRk166III29fReHGkxrKa73sJF5GeWBezZaR2ibG1LMgBOkwqMJsfBix7aKVETfmbEqC+ernb2mf1Nv9sPv9vZ8Pxu8OHOztPCq4RJiewJaCXg+j5Hal3XKb8b8VaaxMlztzZ7smf1Z5pmsx6u13Em4c6Twmk1WKk0wKn4jUvwah0w+vQHwni/H1i/Gq0mSbJmmYoje/hAEcbqbMoam5UMd0RSL9z28xCCn3+7AGOEVVz/f/v+Ij4lHV/x1zzP8A9/NZke/pN/+Xqn5xknOuD1IRp94A9/K5F9J/pF7t1FBldNTTqDd5KSEZPSU2m4pU/H9vVxBT7VMDDOplYwfrR9GRXIxQisEYrUcop1HrHYi2mShVhZP1XGzSUXe67fZ1XonaSkJGAy+hqAjqR8NVskeN5wqqjobbqaEKqPQfb6vEJW5UHFdDxmWLmz2xR7PUeim90kB1zvYCmqnLWsq1Pbsi6fBDBekAZ5zE0zVg6jgunfjNWG0E8X7xnJeNOWFyCv9O2w3CaKPEpKLVybIDJuhoq4zVaZurAVV0BPEea2FismqAJzF5bCQ5P1ibFrHIJHWtAVLxCStfCzyfMGwQGeHcil/fd6yqfoluY34n1gepkHTIPrFhkBQKWxkvezsFbYr+NUKpddI0PcbCapIht7WNSb3hvADnnl73XHrAn59ITA5odGJVSmhLtAfZaltr0dT3H6/KWqi7ce75k3mHRXWEJNJKPD8NKUXR5gdrfesGVQ9qN+RpDxwJ22HR0OnXOLRl1DrO/Xwi5DaCll5F6gWS82eSCrSn7JkAtcBOGEsutYliFwixuPlYgJBdoeaJuVCh178ntcnownb/kBSi+7i7DqoU/0X1nYXsDKldZRpJM2O7tg311zG4pJUH+9RXeM+vfxGRY1V107RPuJq5v6aH4AniVUnxfzCYJ1JBIIm4P5VGkrINPayRKmEf1MtlhKJhZJSVDb8bHZX4KVgTtJbL9rctEd4epEX7EvKMxW0xGWH4ny34+rqW5N7UCFOp5e2qp2uHYIhvf6b1eyDqM0r7KQrs0DjVy8Dr8AuDHRZ86eyXMrxuVHMKqN3XlvuXnre2LODeN+prqau+v/sex+cX1nvQyDmX1gN1dW7jYL+k6eYXgCo3m68uOKjE79Attuhf6seBHVTfb+P7Tr7r2qX4+WHsQLBD9z/Op5S0YRpoy03XWNYEp/B04EmBUIDg+fVUv2/qWBeSigqUw+pLTUcxprTeZz+RVtreK5v992Iz2csreUcVPsKW+hsvfV5XeOk6Xj4NfVGZdLyJ5NQY3YZ/mXNBm4RWy2WGH21qy2i5tV1NUnRVJQZnm0gKQWLpm7yqJlEFq4gf+Rrjcq1Zi9laZTv80tn1OdQf/JA3g3FuxQVQbC4d2aSSag9R5NezFLSOiNON8dmnOp7uChYbaxHjR7yKLfVQC8+qCjhdeP1Bwr7/Y96GWJjfUbAGem9i2JW9ZpJII+kkbXWbW7I/kYYi0XhSmt9JKOeEweZcJF3wJbYjl7C7yqw+hmFakRSq+r9+crCpY31IKoRRivtvh4IdEueLsENx/4v05WsZISUjd4pqZJSOJhsj0iDB0EMoPaPeFIcdUUkrtQjnGB3t2z5okT5yaSFHNlKujJzJSNDU709n9mU67kl6rG9TZ3s6AhCruqUiAUnvwWT3styhqAglPKuue5BLDuGZTntpuWcNaSaVptva2ILxElM4ZyUFNTwbl4ivnvaiKitysGOYJSxF8jupK15LkSxZNgAVpwqzQ//tD4iLTmsY7SXsvmWNYOsi9y0a60JSwb9EuZFZ1BkSa0WzMhq3ValHwo62DznfpC07u2w3tY+8w4AcUrd/9fQXc9ijTyTYUdMYg1TiCW2Pc8/3vMsNh4J0e9Blh4tKjM5dYnyrBBR+BruK12u7fT2dmLf/RHuAuIYqLrVIPEdfEr/QUWYdTNrGbtsJ9cFB2/4gvcbKk90tzWpIpam9LbnV7c3JH1JHkG7jwOydS84QH00Y7ce5gai/+4vEht/Mo7eY8+RFHATV21drXG2bBlVoIuEGW0prwsjcuSMSNbFPsIP6hzw9ldR0bCp+XqkP4JLvWlzSxrdnZZ4CBLH8OuC5qvpdv++RwNtx/q7vUdU3Z6fYX0T+0HZq+oMcF411QSoqUM7VXxjxvu5sNNWLpqnKyYv+QatUhv1Clcyw5VzJ77wut3FMx5T8dn1UZpj2/w874kTOPf3FHHbEiS7OsiiqCHEvqYjiYgGgigHQNMdVS1vGdZ6hDakacCypJBtj3cksnPM2S71SqV7a8m9FFY3v7NS7KIsx6I5znPXt1zba8uCHvBk7lP5OLGnfuGuZRFVWe/5tqsw2cqOqt9eLL7dtLNbCnF5D/r6qG4yId4KYhrrGzFsGKpQbnF2jTL2yJPlda2O1zZQS37kwHYKBLOFnuHfSeLdrajADI8nitKZEKsGm0ltmsnONgONV9QI/NfD5InKOql6clLkCeICq/lZEDsdlZ/9jP9HWO3CTHV6FC1o8PT1WdRpTry0M60P95UdE0eiXvMRu6lS/5CqxgV8KJyJXorTUPoKuJYjmbWqLvH2taiCpjo/SR1b23M+8GC1cEF+5wWDn/DJwKj1SA2Y0WNeNmrkxGLJONL8uwRvzpXadnaoViCqeoKpwI0WvchyaeJ/jB9+iSmub4ExTKWVkYWR55D1e2foahIDTuAgNFVSnmii99vBMwnqmmsmff5o9oXa/k3vdd666OtKXyVVn4XqWsDRUnoKProfUQePhh7yh9f724WH3+3vMvMV4g32YI8dk6fAj0vua3qv8/ib3Nf+uW1XT6fb8PGHfNBAku3HLuGpUr1bVC/zva4FLyOaQUtX/VtXf+tVv4LK3g5vA8DJVvVxVtwIfxU10uKpYN5KKnSOOQkTFTzzkR/be20mFysAX+rM4OZSb1zvMjOfe0PQk9dF/DWM8ZnoHmVK1O54zM5qee/qLud8TTqKcM7Vjiq0KWzXpzARUfT6n7DRZG7tUdG5nS7bXUHyMmqdGlP5jHw0liZ5399pstfEcQbpIVTAx35PgHQgMagtkS4nO1V/bBz/kzc4IPayrBXMni17kUp3Ur79VFZqM/DUcFK+je6RaUxEm566V0RbvoZZyE00HkLcXvCQkWBFEFKPW9c2LCBJ95P6vhp02OAk67bSDtCEa7X2RFFLibRHK4iWJH+xpdV9bB2hUJJTWb/0cMlP3xJqQNBYCn6zxAOCbPcWeSTVR1u7Az5N9VwF/PNVGLQLrglSgPgKJ33pZJTHUoiKVWnZg8aPhAoy4xI+qGtVhsZOiu3PBJ7VbEGqeWFWX5NooIOpUX2GEGqQpPwqTkirQTCqpRKxg2+IjpEMv3dY0r5KLjYL6sW2XKu11x9GlEdTf36hrt1VngxHUp1uJ5/Lafy0c2WphkEH95A950JvACHZg6t51C3wcbeqvqErLr8mrjDQeUicvxd+vWsp2X7amHmsSWdxl02fg3q+2x6Yt7etC7ZYE9amPZ9GBoEH1tEjo0ERpNHTkmnTok0gKkVAahFrnk7Z3uJlOPx5avbeTDjLGYBL1l7+Gx4rIe5Ktp/gJBuv1iewMfAo4RlXbbCD4CPdn4ibNgvarmTZ9Lhjrg1TykY9fl/Dxt+h18+MR3KjNj6RrenKao/EU6t/aRY+G0s4lBK1lo6ugGU1HYi6RH9VozjgXXFOzEBM/Jm0hvlbJg4pE69fYTjRxf3I9bc8Dde4GbsZBqTrEkHiz8EQT2+x7EvWj3UJi8ONDHvwmZ7fxpwgefqFdsWlpu/qeT0qKiVqua54RDTnmbCCgrIDNTh6kv45zNzpJQ21jjeibza7a3oN8t0KVFkjd+2Os0189/D6v5+xvvaa1nkcc/Lr4HM7++qsBF4gaYkBE8QGV6pOJejXooClZBRKJKVXS7Zm03LgDLd9xTVINknALaS8ZiVTdXUYBTlXV9hvp4V17PwV8yE+K1VZmP+A9wOGq+n9+89QmNZwm1gepQJVkDuLLYwuac80Xnmy0WkeJc6XXfN+zY9PU7WknFOvynYxbWUDbs55B8c5Q4RzebmIH4lynJbSvSgledX5Oask7/GbaC2KnWBWs9uUEFAyjKXq/qfgspNYxBwlArHg1I1F1p+pS29TVju6fFeM6wIFBRVwiQ28TawTD9bUrTdCZ70pJ0CTtahmIpJ1XLU2/r9sOqrpQMKUbALSqIVtUbPE1jO+WNqbBXojqK6/fV+pJXiiDzaswDK51nqaPuPdrOev818Xizm5ST5X90Af8A3qzHV17vAZAw7eTnM+UClvFbU8GeZK9g3VJjpp0ESWRFikmXl/bgLFvfdGYjvrLp1F5L3CJqp7cUWZP3OyLT1PVS5Nd3wbuIiJ7A78Angg8ecmNWiLWDamM/bjSDifrtwT/cue617wjyTpHV6YaP4kv0zr5Vtf71/HS1yJ/EykrGCxDaop66pfkdNn5nEom+SjDSKutnV6l1pBEcqLpuKTaMbX2V0ZXW0jVGXviiSqfXLrwBnsxAoUrb+cCoSSd/hj1ngTpp61MJPBkPagV83ubSSZineRVS3aYdZyqTopMO9B8ZJ62o7ZdnaSSi5VL7dKiSjfc84Fg1bhpAja7ieofccBrOes7r+OBj3wLIVLODotavjWoD3zssLrH6TcTp4xIvr+xAZfSvM5F8cI0pRRwqs3J1F/jcCjwNOCiZHrfVwB7Aqjqu4DXADcH3umnYB+p6kGqOhKR5wNn4YbP71PVHyz0UqaNdUMqEflgpq3zUGqdUBtaDbPp9qRzctPmVpXlHU6jHVrfNlbPbJpSU36u4FHlmpZFR4fzhMF0cFbInRGSQrk6gqRDhmSUPMloLRB56JwF7JzEUWo1WneVNlKeF0TVUYhDKYchyDK5zDTKOrnuVrJpGzAk26MnUdYxBkmrphbT0GHW60+N0tGuFyTi9NwZoTTen/CYMtvdUvvJ6huR6Lpt5wQ7V6CFUHiJ5fC7vxzusBsYYetNN1JudOnuzdbEocMTSrkhU0Mm9yDCJq9SOnbSioRrF5l/L10X1HauZUJbEtQGJvP++hpjHqWqPgt4Vse+zwGfG3uiFcT6IZW2F67jUcV3NB24p26zxh1c08/mdWf1RZ13fkyRFArnbc22m9QXOxeJLtExl1jWQZdzUpFkJA8htclo9uGGtBftKjHBlL7dWfbi2jVHgkob3nJdtbrB+vs8v6NQDpO4BHAzQZb1zihsj9chEu9HaEhNBTgp2iQCIFV31V1Rk+05wQepUbJ7npzDdbT+uZQtz6ZNUoKonnWVUH+YSxVV0oEQTpJVYH7XATJSRjsNGV47z2i3jejQcN0eGx1p+F7DzDevN3UR1vQ6kqDUaFtqewbJ6xy+R2khmvydTo+HpB3JYGCqWAbvr/WC9UMqpCOvJVQiLR96NuJtHBJGWMmJc6OqVDuanV9be0ViYj07kPpIP0Goqza6l+TD1foxqu4DD95LtbxhlqjCyyWTup1Dq3NkpDlR/ihfrbuuiuA0sGbuXBHZncohoW1E24HG4KDjfsd9qXSREkoy8GiQbHAKSYg/hy3cCYxobRbPtveh1uaW0TqwJE6R/PkS2q7uuXh7nZ2bA2B+J8PIBzSG67eDuttzq00D9751vfOt0mNy/VF9mB3bkKLzupYbqhPMp7J9ks6qkYqIvACX43+EmwDmJX77y3FucyXwQlU9a2EVj9kfOr/0EK06w9B50NZ5aFW+tq1FSpKsJ0/6xUZ9tU3JSCsQSj56rZU32UeXfqwtnZtQXVuqAhMvZcURZH6u2jVnF5ySzBhpoVJjuXNYcTEs6qUNkZaMAN6NuAqcpNM20TyhTFSupqYJpCK+Q0wIpe2+iCdqjHYSShyXGD+hlLRnsc3bmL43bfd2MUkgfbPbIZLtcwOalFC61HGuvc2LVx/IGtGipuyycUXNcq4CC88iJ5y2OpYDqmDH3Pztk1NWh1S8v/URwH6qukVEbuW374vzYLgHcDvg8yJyV1Xtm5092p1bX6KWByt+e1T/hDKmPVdYWo9Y7zGTbM/XG+cdp7LIRzQi/iOudyRd3j5dI8QGoYTjfccX4ghCL+9IVNvtN9pyL+K6VOu1cm29Jk79E1ObE+NBHEG6RqZZakGa1+g7G+lllAlGr3knlfyuJ9ls1huDMwEK0LiSvFv4exrue1HV3TZgaW1i+tzzTjzz9JsYfcdEcnX33Q68mjW//5nbc6s05QnZFkk7g8RX1Mt3EUufWrHrslLhblmw7cynsuJYLUnlucCbVXULgKr+2m8/Avio336FiFyGS0Xw9amevWuEGAILU8Lwb2d8j7NButC/Hjb22WVaY0LyMh2EEk/aMUJOT5p2hOHaYntTyaWjDkeeydCw7X+6ZDmu+kajkHRSgaUTwq6pJJUYy9NK6Hn96TW2IZFQXDmJnWYj7UdynhqxJGpIoOZe7rIDJJJgUC+m7U7fu1qjs3ZLMx6qLX5lLDrOl9uWGulQknaF8rkrfl5XbqyP31rredvbmg4ae6+2rUzyzk8N28h0wquB1SKVuwL3F5E3ApuBF6nqt3FpB76RlLuKLA9OgIgcBRwFMNzlphOJurVvMxO/cwNhJJJkNBrVHEBQEjTIJCehsD05V7NT6Glo3tYu9F1/8kHViIXqY42dY36u5ALj9eeSSBup5Ns72lozuJqkyiD9eLfjfI6Y+oyA9fM0SCi9nK5OK81DFsp1jYqTkUOu1kyff12aqd6b1veM5m1qaX7tHFWZCV7+rnr6tku25A3TdkKpSRMZoaTrjYHSmHe48zMYd/l9hLVYqAXbq0Bp+Zi2DywbqYjI53HpnHO80p/3psB9gYOBj/spLlu/obb6faqDUwB2uM0ezTKhg5mksclHEUe+6eg/JZZwiOQbtF5fV+fc8rtBQOJykDkbRZKChawT7pNe2s6V1B+Or3UEPdJOzW4T+/PqSw/7g3owb0ObGhHEqY0MjY4ywlYEU69SYr0az+GJvnXUXPX+XcSS/+6KUUnL1aSw5J1TEpJMJJHw3rj3TJvvSsuAo0uC6ThkUeqwmhYrseGFmKL8nsW4LutSGoVj7FwS2+PrwEttF/7zsex/9Ka6xEJSrq99C7+k5YUyXlJZe61eESwbqajqQ7v2ichzcekLFPiWiFjgFiw27UBbJ95WZpJ60tV0VJ8QS0D6HaSZmQRtGU02TyMtddYK+482emuZlgFj6FQ7RaNu9HpQtdyLtM1tdTm1VNvOrBPtaU8DIZi0DUGySof+be3LO7EeZ4K0M2zYWTrKt3bi6fP3vxvvUzhPs6n1c7SduOu8afk+EajjhE2HBS9htQ1g1LuBW6CEb37gOA74u03Nuv3//Y/eFOuK50ob3XWPe5rfe2yPhLxkTGJT2T45ZdXUX58GHgx8WUTuCswB1wCnAx8WkZNxhvq7AN+atNLWd6bvwS6k4235oLo62lSHnp+qYdPo+iBSiSRND1OTjjqOza5rEi+jzvP3kUteTlo6tKRNMfNwPrrXRArLyLihf8+vLfzJyLUrDiSMvidCTig9pNv5LmUSb5dKLNTRak9rq7erbKg7fX86mgbNa2uzLXUdp0M4/93HjW3sOON6VXDCcpNgjHS39PonIJXtFKtFKu8D3ici38dNaXmkl1p+ICIfBy7GuRo/b5znF1CpfFue8TjVQaOilhFl6weadH61kWbWYbhtFcE0+uLkY274/Of1hvQvXSO9tGzXtnAuxmDcIKxDyql12G3E1EFSNeSj5459jdHzJOfJJJAu9BqOw/Y+8s7vTcv7VL0D0jwGKnVeC0Hn7eqLwekbQLQ6KLQRcVbHd955bGt9EgJnu5ATdXqevG09x3ei572dpqCCtVCOs6ks0t97G8eqkIqfUOapHfveCLxxqedokEnXy7aUwUbWWUCL9KHuY41Bhi1EFbZrckztQ29rq1Sdatq5trr9pttC+bbOPz9H12V33duujqLjEjptFY0TtrevQbztxWo7+wil0zttoRinbsoIoCH1+Tq6pl/OI0m6pJaJIMl5csLNycT//s472gklbU/jfk9IJosikgkwVUKBySSV7VSQWVcR9a2YgFw6XVLbqstH6LESaBBL7Tiv6mhL4ki9A4meZZlHUh/yUXJ+TRe8y3UEBz57kyufZJTtG3G3Sky1hlfna3MmaDY0O3yCUXjn8X2quTEj9oW0sbfcpB1HWjY7rkEuXW2I71e7FDwWLfclVXH1EgATkEnfqRdDJh1le7GQZ7JUzNRfrVh3pNJKEH0i8QIIpderpkfdUuuk276Slg+9d9Scdaxt7brgX9o7gAv+tX37gc/ZVEvIeP67PQk9d1PWtup8XecAuNfzK/KKklTbpbcR2DhimUA11zzR5PsnxqRq1Gx71/nGvoLJMdJCMLVKekgp3d9JJIsklDAZXrRd9ZDJQq53rUGtRWfqr1asO1JpIFUDTYiJy44hpLwDv/dRm3o/lInVL5mtJEghS0FXHX3E0YcL/7n9uAOet6m1c4OcfKeISSWUxVSd26o6pJG2tizaO6lF3dWqQqNeTlq2TZNQDvi7Te3Xt5Lk0KaJWI7zzIIfO7F+SKVF5dM1il9InQGTptSAbmng/FOOjeqntN6F6PKnQSCribYO6oDn+XuS3+8ONcxYdJSfNqGEOls9+vL9bZhg0NAol0txmX2mt61tXm/SQjLLhWwwIS2bG+UX0p6VIpRwspn6qxXrhlSiQTrvmFqIpdMVMxboqJuWMn6kN2ln30U42zNyojng7zY1I7XbbC/QJJ5VUJn0EgfTI8Wwb6LYojb1Wle9LdsXZT/pUbnVmpmpAbsebXNlwtN3DQaniYm8v7ZP0lnIDBRrGwmBSEIkNemlpUxaNiUlFy3sllYVUEIm27r0sNbwnXce23heuY1Msu2TdB61Z51jpb5/aVkWCJVq6aw7K9eq8lrk+bvQmzG5T+rPB4NLaV76XcfJ6NrPsxSoVWdX6VkmIRUR2UNEviQil4jID0Tk6JYydxORr4vIFhF5UbbvShG5SEQuFJHzpnN1S8P6kFS0msgprAcsKE4lh1SEMiOOlUV6v+991KZq+NMnvaT7c7QauSc8Nj2+TcXSIgl3BrX21K0tbRyHzmKLIIuleHcB1SCAuuZKQ3uSja0BuR3Vdl5KIvGkmop0kNgXv7MkTORSPNFDHAHHq+oFIrILcL6InKOqFydlfgO8EPiLjjoepKrXTHKylcD6IBVoVXP1GZlzr6ZJj5th5XH+Kce655VIJ/l0vkEt1Nl5tHTyE+VOS49vQWeqlA6V2KTnm5hgptBZLplMAvzzCbc6kElMJZSjy9mAHkeEZF9NMkolE+rEkh8/FUwySddE1ejVwNX+97Uicgkuie7FSZlfA78WkT9d8glXAOuCVPbd89ac1xHh24UZcWxbSJ/XvY/aVM1c6SWYWgcWpJg2O1jSWS119LqQjmop52qNY1nA+fLjpkYiGcQP3lOhJDN9VVILLTuzuvrOUzs+V3dlyKP/5V+OaxZaINRalH6bijrSeayIvCfZfIpPhtuAiOwFHAB8cyFNAc4WEQX+tavulcS6IJUZti+cf0rVSRz8Nye7idVSycUk/VU+wl2IWqoFC7HJTFvl0kcuy0UUC8H5pxzLvY/aVE0c5o3wVXLKjOt7VIoRfRJiixTSlT5m6lBlfByKgkuc+5px1YnIzsCngGNU9Q8LaMmhqvpLP9HhOSLyQ1U9dwHHTx0zUplhm8a333ccBz3zZFCpVGINhb5D7ODC+gT69mXzHpoAIdbngOdtaiWUtUAkDYTOPrvPqYQSpckJ722XXXQ174WqDZJIT5nJLlBEhjhC+ZCqnrqwdugv/f9fi8hpuEkNZ6QywwxLwXnvdeqMg555Mlq4nit6/41A/Vue6/oDphXL1IVx9eeklgeOrkny6EDIxJDiwOdsqttWxtm/aPEQ69i3Svfm3F/rz7kVt+ssUOqIa/ktwKV9FYmIAO8FLlHVkxfSCBHZCTDeFrMT8HDg9QupYzkgk7LpWsZBBx2k5523JrzpZlhjuPffOnVMmBe9Eey3RCwkdU/Aiqlo1iDu9fxNVULTNpvKBN51SyUSETlfVQ9awvFyU25p78YB7CS7tpb5qf4IEC7V7/a+bSLyJ8BXgYtwecgBXgHsCaCq7xKR2wDnAbv6MtcB++LmoDrNHzMAPuwT8q4qZpLKDOsaokot31owJC+CWBZDIAHbM5GkSKWwmLJH2tWSOdaKxKaqem95AFdwCffkjxv7Sx1xNT/jOn6/0wR1fY0xVj5V/RVuwsIcfwD2n7DZK4YZqcywrmFGblSsGZks2VbSc/yMQCZDH0nUZpBk7d3TCzjX3JRb2uv1Dw1p5Sp+wm25A5fqd29YpeatKmbqrxm2G9z7bze5LLp5jAst6xNgrXV0M0yGpaq/Au4tD9BfcgX3lEpaKXXEt/kS1/H7nVR1uySVmaQyw3aDNiMy+FHxjExmWCDapJXtXUqBGanMMEMrSax19csMq4/ctrIQW8p6xoxUZpihBTMSmWESpNLKNVy93UspMCOVGWaYYYZFI0grl/F9buT67V5KgfWU+n6GGWaYYRVwAeeaEfPcljuwvRrnU6wL7y8R+V/gp6vdjgy3ANZMOmqPtdgmWJvtmrVpMmyLbbqDqt5ypRqzvWFdkMpahIicNw23xWliLbYJ1ma7Zm2aDLM2zZBjpv6aYYYZZphhapiRygwzzDDDDFPDjFSWD6s+WU4L1mKbYG22a9amyTBr0ww1zGwqM8wwwwwzTA0zSWWGGWaYYYapYUYqM8wwwwwzTA0zUpkSRORKEblIRC4UkfP8tpuJyDki8mP//6bL3Ib3icivReT7ybbONojIy0XkMhH5kYg8YgXbdIKI/MLfqwtF5FEr3KY9RORLInKJiPxARI7221ftXvW0adXulYhsFJFvich3fZte57ev9jvV1a5Vfa9m8FDV2TKFBbgSuEW27a3Ay/zvlwFvWeY2HAYcCHx/XBtwM8d9F9gA7A38BChWqE0nAC9qKbtSbbotcKD/vQtuytd9V/Ne9bRp1e4VbkKAnf3vIfBN4L5r4J3qateqvlezxS0zSWV5cQTwfv/7/cBfLOfJVPVc4DcTtuEI4KOqukVVrwAuA+6zQm3qwkq16WpVvcD/vha4BNidVbxXPW3qwkq0SVX1Or869Iuy+u9UV7u6sCLtmsFhRirTgwJni8j5InKU33ZrVb0aXKcB3GoV2tXVht2BnyflrqK/E5s2ni8i3/PqsaA+WfE2ichewAG40e6auFdZm2AV75WIFCJyIfBr4BxVXRP3qaNdsEbeq+0ZM1KZHg5V1QOBw4Hnichhq92gMWibF3ul/Mv/BbgTcC/gauCk1WiTiOwMfAo4RlX/0Fe0ZduytKulTat6r1S1VNV74eZIv4+I3LOn+Irdp452rYn3anvHjFSmBFX9pf//a+A0nHj9PyJyWwD//9er0LSuNlwF7JGUuz3wy5VokKr+j+8ULPBuKlXEirVJRIa4zvtDqnqq37yq96qtTWvhXvl2/A74MvBI1tA7lbZrrdyr7R0zUpkCRGQnEdkl/AYeDnwfOB040hc7EvjMKjSvqw2nA08U+f/bu2PWpqIwjOP/F0VTcJBKh44Krm4u0qm46OYX6OLqNyg4CW5+AydBnbvXsYMd1GqxxdUPIdjyOpwjuKRdXu+Bm/8PDgnJkIeTkzy5Nzc3cT0ibgN3gY9TBPr7htQ9oc3VZJkiIoDXwPfMfPXPXcPmalmmkXMVERsRcbNfXwMeAicMXlPLco1eV+pGHykwhwHcoR1d8gU4Bnb77beAfeBHv1z/zzne0Tb7f9M+nT29KAOwSzsS5hR4NGGmN8BX4Ij2gt+cONMWbffHEfC5j8cj5+qCTMPmCrgHfOqP/Q14ftm6nuj5W5Zr6LpytOFpWiRJZdz9JUkqY6lIkspYKpKkMpaKJKmMpSJJKmOpSJLKWCqSpDKWimYnIu73kwou+tkOji85Z5WkIv74UbMUES+ABbAG/MzMl4MjSSvBUtEsRcQ14BD4BTzIzPPBkaSV4O4vzdU6cIP2L4qLwVmkleGWimYpIvaA97S/j93MzGeDI0kr4eroAFK1iNgBzjLzbURcAQ4iYjszP4zOJs2dWyqSpDJ+pyJJKmOpSJLKWCqSpDKWiiSpjKUiSSpjqUiSylgqkqQyfwCzlHq5QfSxOgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACJyklEQVR4nO2deZwsV1n3v8+p7pm5S0LAgAQSCEtCCDskCEQhISQ3F31BcQFFRF4UFVkSgkDClkAWwpILoohRREQEQYKCviEJIYCoLFnYwxIIaiQY9mz3znTXed4/zlKnqqu7q2d6puf2rd/91J3u6lPnnNrOsz+PqCotWrRo0aLFJDCznkCLFi1atNj70BKPFi1atGgxMVri0aJFixYtJkZLPFq0aNGixcRoiUeLFi1atJgYLfFo0aJFixYToyUeLVq0aNFiYrTEo8VEEJFvi8iKiBxY2f85EVEROVRE/tq3uUVEfigil4rIEb7dGSLytyP6T48N2+eT358pIl8VkZtF5H9F5F9EZL/kWBWRJ1T6fKPf/9v++0Ei8kER+U6Y85hz/nkR+aSI/FhEvisifxHGHNL+t0Xkk0N++5iI7PHn9X0RuVBEDho1fosWmxEt8WixGlwH/Hr4IiIPALZU2rxWVbcDBwM3An89Qf+vVdXtyfYgP85jgHOAX1fV/YD7Au+tHPt14OnJ3DrArwLfTNpY4MPALzecz+2As4C7+DEPBl43wflU8Rx/be4NbAdev4a+WrSYCVri0WI1eCfwW8n3pwN/U9dQVW8D/g64/xTGPRr4D1W92vf9Q1V9h6renLT5EHCMiNzefz8J+ALw3WRO/6uqbwE+22RQVf07Vf2wqt6mqj8C/gI4Zq0no6o/Bv4RePBa+2rRYqPREo8Wq8GngP1F5L4ikgFPBmpVUSKyHXgqcPUUxv00sENEzhSRY0RksabNHuCDwFP8999iCGFbAx4NfHmtnYjITwFPAq5d84xatNhgtMSjxWoRpI8TgK8C/1P5/YUi8mPcwrgd+O0J+n6hty+E7R0AqvqvuMX2ocC/AD8QkfM9AUvxN8BvicjtgMfguPupQEROwElar1hDN38sIj8Bvg8cCDx3GnNr0WIj0RKPFqvFO4HfwBGFOs7+9ap6gKreWVWfoKrfrDYQkdMTo/hba44NW7RhqOpFqvp/gDsAT/Tj/07ar6p+Ergj8DLgn1V1d9OTEpGfS+b05cpvj8Cp4H5FVb8+rv0IPE9Vbwc8ELg9zobSosVehc6sJ9Bi74Sq/qeIXAc8HnjmKvs4B2cAX82xFrhMRD5KvT3lb3HSwXET9vuvOEmpBBF5CE4d9n9V9bJx7RuO9UUROQv4UxF5qLYprlvsRWgljxZrwTOBx6rqrRsxmIg8UUSeIiK3F4eH49RSn6pp/sc4ldonhvS1BASbyaL/Pmzc++O8s56rqh9qPl1ZSrch7d4B3Al4wpDfW7TYlGiJR4tVQ1W/qapXrEPXL6rEeXzf7/8R8LvAN4CbcNLF61T1XTVz+6GqXjaCm98N3OI/f9V/H4ZTcWqwt02gonqU7zNu3m24Os8VHKF7+Zj+WrTYVJBWUm7RokWLFpOilTxatGjRosXEaIlHixYtWrSYGC3xaNGiRYsWE6MlHi1atGjRYmLMRZzHgQceqIceemhp3zeuuo6SK4AqiDTvNHEkOPxh9+TrV36r2XF1Y6ROCSLF9/SzH6fF3oFvXH3d6Aar8EMZeF7HoH1eVocrr7zy+6p6x2n2+ftPP0CPPWYLT3nWDRMsMns35sLb6qijjtIrrli9x+iOpaeitnId1BafxbjvUi+oiZFyWyNlwmAV1A6OUR2nCcSgeT6w+9L87yfrp8VI7Nj2W+MbrRVDnrnSczLm+Rj53AKX2vc1msoJ5lfHtmnaV1PEMcWU36EapOcpRlCr9cfUvKOXrPxduYnIlap61OQzroeIPPCYo5c+v3uPctUXl7uq2p9W35sZc0E8bmd+Sh+x+PiB/RfvfufEfe3Y8rS4+IsxkCVpkyqSQoSdkACoopMc48fUXr9YHDxBiy/VpERoSqguKKMWoWkvPi1WjybEYjVoco/TsSXLmjFlgz+OHqTyboh/j9Uql/bePVXi8cu/sJ+e8nsH8KFLbuV+91ngt57z3X1C+phr4jEKVcKyY9tvDXKCgYgEAmKmYCJKiUYgCn6fGOMIVJNxqsQnHFPpX62F3BZcbZ5PRwKaAVriMz0MEI8JF/A66XciiCneqxHjxPH8MxvbjSMeI3DJnr+dGvEQkQeeeOzWz1/07rvyve/3efxvfGefkT7mwuaBCGT+YcqbLYI7tjxtUDLJzPAF3NrhC/YkqDkmfYlGwlr30nqic/GtzTONn7jwG34wg2QMEAtd41qwKgxbAIYQshPMrxYqRI+WoKwO4bpFIlJRy45bzGuf2er9rFHDiZHmC386n64MMncBY+YKuGObtJsQT/r57Z8/5fcOAOCOB3Z43GO28vxnHdAD5l76mA/JIztQH7ndpwYK3Hyeo73+SE6lVvqAQmXlPwPDCcVqCEpqVK+5/h/+0V+O72ONOLH7lIl061PHGjjH1er1W4xHSSLx92gcIRlAuLepinWgiVR3jO5z1BxGPcdZVhA6/95dfNPbpyJ5pFJHwPe+32fnr3+Hq780/9LHfEgeeGKx0gOcgezE7lMqxuUya31J7z2l7zu2P33QptFEheR/Dwv+SbdPsoMHwlLtYwjB3giiMYBZqatGOCCMRWVxqqpgWmKyepQkkig5TEhERhCNoknF4D3seaiOOc6xJTisQC0TuGZ1W4JU6ggI0sfJvzf/0sfcSB6PWNgJOGnixIXfGLooBm57Nd5JJcLAjBb7KeOE7MnuwyyIyGqJR4O5tgRkuhhmYG+kck1VjaNsK+lvKdFIDN919joxAp1OQSgGGkjJSeWSW/9mzZJHndQRsK9IH3MjeWCcTjTq9iuoShqrwTwQiyoCEV0v75uhGKIfH9pmLzDozzOGEeNghxoplaT3rqnEOcS+Edx0B8dwxGFA3awaJf2hxGUVqJM6AvYV6WPuIszFyGRGuRaAWxw2lFtXW97GtZkQJ5hf3XiCuA/iUvs+Ls3/HrVav6jXoeaeqlWneq5sTe69WoU8h9w6d/aA4PySbBO5yA+BiDzwllstjzp6y9A2p/7+Abzxz39MXRr+ecF8rLAiSKeDLHSRhYVybAbTkTpa7J1oCcjG4NL8751aaRKbQpWBqNlKxKRCoCKjiCcgyTGoOpujMW7LMmc8X1iYxun+4jN+ff+RDe54YIcjDlsAuN80BtyMmA/iAfEhcXENOdrvoXneEo4JMY+2gpaAbAzCs9NYAmmKivSREo2B717joN6tXXs9J5VMF7K0OF4btbQkMMdqq7kQqQ578N358BXzZ4+YFS6175u7BTc4BrRpXNYX4dlRW28HGYj5GIU6F99xBvqQGih2YQZ/nwJyzemNsYXbObfTzQXxgIK7nEfOeRZIr+NeTUgqC1BLRDYOU5dAAgIBqOvfu+dG24YnJJJl6BQXcwvYMdkv934/1tGYqdpKRA4QkX8Qka+KyDUi8kgRuYOIXCoi3/B/bz+un8YZb1usChtuTN8ARBflFlPHpfZ9w+0YCcYSlyZOFQGZKWyenQ7S9Z+7HWTLkstA0eu7bQpQ7Nh/804+Zm3zeBPwYVU9AngQcA3wEuAyVT0MuMx/b9FicrQed5sCJeZjrdy/SbynTEU9VY0mN4KIN5Z3OoXxfAroo/TUjtzGSSZ7O2amthKR/YFHA78NoKorwIqIPBE41jd7B/Ax4MUj++p0MAvD3eZa7P2YyA7TgGi0aqv1xUC25ezJA3nJSqjcs5IXlfvgDOOBCIBzjCF3hKLTcYTDCGihqiKJ+5Dt25wX1o/Xfn4WJW/VVjPDPYHvAW8XkatF5C9FZBvw06p6A4D/e6e6g0XkWSJyhYhcsWJ3Y/bbPlGiwBaTY5aqq6kQjjXEjbRYHU4wv1pWEdbly6oEGaaeU9J1REE63UJ6SOI2JMuc1GEKSUTEOIlDxEkd4ZgpQnEEZNQ278RjlgbzDvBQ4Lmq+mkReRMTqKhU9QLgAoDbde+kADvv/Gwu+u5b1mOuLdaASWp+rAvaLLwzwdCUJiaRDJK/If9czHuVShpSJg6qFtQMJiYVcSxxIDBVTMltN1elNya1k52D1E+jMEvicT1wvap+2n//Bxzx+F8ROUhVbxCRg4AbJ+l0512fy0X/8+YpT7VFwEAq7wZtm+yfpL+RbYdIFS3R2FiUCj4ZKRVj8h+apSoxxhOQMiEQa1DRSFiipBEIRl1S0yku5nmrtpod8VDV74rIf4vIfVT1a8DxwFf89nTgNf7vP43tTBiIKm+xvhhlg1jNQj2OoKS/T4OAtVg7diw9tfT94j3vqm0nnW5RWA1cGpGcgtDXEBG16urOpC63pazXvj6HpaSyim1LE0i+T8lgbhXycc5iUxlp82LWcR7PBd4lIgvAt4Bn4ITO94rIM4H/AhroOBKOQ5Wdd30uQCuBrDPqCMg0F+txfbWEYeNRJRjjfjMLCwNF1pQeorYoQObTqAtZOb1JkFJMjQrKCGINZJQ9sKqI9XgKQ/o04Gwe49vMM2ZKPFT1c0BdauTjJ+4szaLZYsPQLuD7BgYIQ1o3IyDkl/K/R8N3blFVn3fOILKAqoK3bUi3gywuOsKxshLLJku3445JC7KlNo5siLSRuuumLr3Z9PyDchV6Y4jRvLtlzLUj/M6DnzfrKbRosdejRDjE+CC8jktGGrbgJks5+C9ky8VqOYHpliXMtq3Ili3I4qIjKp5YyELX7VvougW/zn5RyZYLFHEcMRmiGS2VrAE5MnbT+U1rBcxebTVdVKsAtmjRYtUYkDZCEF6WldVB4KSI4BobVE8lt+jysZK2S3NRdTuF5DCMcASk+0uG8ukTiyosjoCMwrzrQOZa8oBW+mjRYjWolTY6HRdrkRkXXxFjMLw0sbSILPptoesIhC8NK91OJTrc+L6yQlIIv2VeakiD/KqoqdUxIIlUMUUJJMfQ09GbnaKNZTNiLiSPwx54CBdd8SagJRYtWkwVwZidZS5PVCp1xDbBpuDjNnKvLupliHp1lc85VTo2/Ry0BqkKKv0+zJY5Iw2DRcjH8N7zbvOYC+LRokWLFhsJq9JAsmglj70KF13/x0AhgYTvLVq0aIaoskqljmDvGJVcMEgBnY5bNrPMGcqNjE9KOMwo3gTVdl7aiX/XAa3NYw6JR0BLNFq0mAw7lp5aBOuJKcVnRMJRVVtV1U0BnU5Z1VRHOKbh4DLsuND3OhGQXDN6Onr5tA1MyiJyCPA3wJ1xNOkCVX1Tpc2xuGDp6/yuC1X1VRNPesqYW+LRokVTHH72LvfBx5GpAfEK62+cdsrsJrZBKBENGPSqMt6InRqpq2i6b1iburZV4qJatoXUeHyNHmtEVt8JYb077ug2jdAHTlXVq0RkP+BKEblUVb9SafevqvoLq5nremGfIx7RoJ48mG0k+r6Lw8/ZNfr3s3bx9ZfNLwEpeVXFeI0kn1RqDK/LTjupaqlO2kj/1hGMurHSAMBIREaNb8p/1wiLkOvovrSBt5XPHB6yiN8sItcAd8WladrU2GeIx85Dnj/rKbTYpLBd91ezoOoAEEzPfT3s3F2I/+nrp88hIfHutnQ7vnhSop4aJRmMwqRExUgMJGykzsqGELKqV1YkWg2SME6APoYeo/PpWSeZPElE/jLZfYHPCD4AETkUeAjw6ZqfHykinwe+A7xQVb+8mnlPE/sM8RhA3YPWYp+D7YBdVP9ZQRTJBbPiXn6Zd39LMTEuIwbnVVKgD2AttcnriIGpEJBq26paKsaLJMSgTh21jm68Vs14ycMRjwtV9RXj+hOR7cD7gZNV9abKz1cBd1fVW0Tk8cA/AoetZt7TxNwHCUIrdbSYHsapufYm7NjytFlPYa+FIljMyK1pehIR6eIIx7tU9cKBsVRvUtVb/Of/B3RF5MBpns9qsE8Qj4g6kVakDSzcR3Hv1+7CLlnsott0S44uWbSraAfnpu+3VH192Lm7OOzc+SAismUJ2bIECwvQdaorOlm9WgjWJnWkCGnUq7mnqjXKh34fs3TVGuCnV0Wyr4YVzUZuTSLMRUSAtwHXqOr5Q9rc2bdDRB6OW7d/MJUTWQPmWm1VkjjGqKh2Hvy81r13H8Jhr9kFxqmqtOsWFMnU2TuMU185xjHo/D0B0UofCb7xkr3PHiILXUcwxnk7TYphKq84cGr8DoTAL+xmxO+qDGT0jQWmxhXYmJ6a2mKwzdRW43AM8DTgiyLyOb/vdOBuAKr6VuBXgD8QkT6wG3iK6ux17nNHPHbe7WT3YRXXdudBf8hFN/zpdCfUYio4/KxdRcCu/7tW47XtKphkbVJQK4gNPrvll18Ft7CF0IbKI3bv1+7i2hftRQQkM9DtgqkYftUOvj9NJY5Yf3zEwtlEahjWZmS/I34L5zMlyalJepImI6nqJxkTiq6qfwL8SfPZbQzmjnisCqqDtZBbzDXUgHbUSRlhnxWkZ5C+FE76qf02fBVAtLw47K1J8EZJHJMutHXZbIcRgbpaIGnbUb/XSTV1MRwpAZyWui12J+Rj7vm8p2Tft2weLfY6HH7OrgH1UPrbanDv89bPXnGv82vV1i3mDLkaetoZubVZdfcyXPRfb3Sqq2HBTKr1fz123vnZrpIZcNH33jpyrFE1tNsKe2vHvc/bFbmbEIsBLvo7qIwOP6sgBOOC+aKR24BdULSjLrYjqKFygb4geeKiGx4j9ePiNVqZxLgQp/rWOKd7vvF8vnXyC1ZxxhsLCQWTUqzWoJxKHXXSxjgbSPX3gbKzDeYQxq2q3aYsdYBTW9mxua1a4rHX4aL/euPI3wNxSdvtPOgPawnJRd99y6rmEAhLS0Qmx73e4Lh3QcgXFQ1VRcO65tVK1RiM+7x6VyQEX3vFKaX9NnnStavYrqJdbxS3/iXvCSanUFmJon4Ri/YNm6xrgR8xgPFDz9yM2Qw7tjwNc4cDBmMlVmOHTRf+UaqlURgXuV6Nyxo1zxG/XfRfb0TkTZPNrQaWJnEe8425JB7jUEdcUkP5zjv+/lTrHbdYHfKttljgczA9d08k94t6qmJv8KbarhZ/u158sYL0PIHIBXIpG8JTQhEkFBs+++NEvTFd2auYzcXFIjCvTuJomjMqRTWSe5JAvbpaH9XAwSbErUpo/Hlc9O3pqSud2mpMhPkY4rK3Y+bEQ0Qy4Argf1T1F0TkDsDfA4cC3wZ+TVV/tBFz2XnnZ7dR5zPGPf/4DcgUVuBgD1GZjWHv0D99A9/+w1NnMHKLjcC0vK2mDRF5EnAecCeKSCVV1f2nPdZmII3PB65Jvr8EuExVDwMu8983FonUMSqA8FL7vri1mB7yrZZ8q8Vuy2FrDgvW+/6rVyX5huLTi3ScTSRfgHwRqpmybdelIAmbLqjPnOukDum7zfQECWqr8OZreZPkr3jVWWojUQN2NEO6KWC2b4PF7uAPw9KHDFNDNXHNHYdqDq00k28oSzusLnmdVCSDJWqnKXW4YQWrZuQ2I5vHa4EnqOrtVHV/Vd1vPQgHzJh4iMjBwM8DaeKwJwLv8J/fAfziBk6onHa601wwa4nIdPCt552KLlh0wSJdi2RhVaYceyEhwK/Y7IIjDv2tbsuX/LZFne0k2jnULfYJ0TCBiOQuzkOsOJWWUmx2+BaIjRrv/ms2uQS7fat7xvO8vD8svHWoEpCwoJuiVnmtympUrfFqm7RfQEW8ilLK0eZp27otnc8UEyIGuHoeo7dxBvV1wv+q6jXjm60ds5Y83gi8iHLq+5/2aYpDuuI7zWBeU8Moj6wWg7jnG+fH1fXuf/XaWU+hxTohVBIctc1I8rhCRP5eRH5dRJ4UtvUYaGbEQ0R+AbhRVa9c5fHPEpErROSK733ve2uez867Pre8I6l8FqPWG6CVPtYOyRTJFNOxzhitOI8oS2QztOPUTzbZghdV2PLF8JuFjhYaYCvQM07iWPGqK6+ycmooBj/nOOkiSBpB2tBC8lDfv3YVXXQTvcffnrvRl68RLrrufDQL7mL+oqY1L+pqZ0iVuxeXiTczLh9WyImV5sVKjw2/ZYNqpYF+ce7Q+E0zQY0pxuhkRY2Ruq2TcdG3Xh+3aSOkJxmptpqN8Lk/cBtwIvB//LYuRaRmaTA/BniCTzG8BOwvIn8L/K+IHKSqN4jIQcCNdQf7nPgXABx11FHTuU2mInIPq5o2Bi0BWT00K1Q+JrPYPK1wF+IqXIyFdrWowUFhjyhUW5XHIi+8qiQXpAem7+0cUNg5vGdV6XBNCIpSECJ85cHQ1gBGkY4iZnNnLZBcXULElZWaH03ZcyzW20j2pTaJgDTPVDWlevouRcKlA79plXCFv6KOm/fvpVbeTUkyRXz4C2eNOPO1w0WYTyW31VShqs/YqLFmRjxU9TTgNABfo/eFqvqbIvI64OnAa/zff5rVHOuw8/AXA3DR18+b8Uz2Ltz7tUUMBsC1Lz5loM0933g+Y+rrtGixKdDIVXcGxMPbkd+MY84V+CTwfFW9ftpjzdxVtwavAd4rIs8E/guYjdGgGjB47z8qSSItEVkbDnvNrlIW2nvuOt+pfBYtxme5NUaxQSrINMbyYRQyJ3WkiQM0Sh3u3pUkkdxJHIAzkvfxBvJBAaXqWRX2ReM4MHRdEEV8Vl7xEtQDPvhKMm/4/9zPv3qSy7QqHH/sOel0APjIx08faKeZoFuXMLcZ2FMjfQykS6csKXipI6q/wKn14s0gtlWRQSW5ZVCyN8UxtRKGAYwfMzGqiyqaK5LnjYuHrwUWGZ9+ZDbpSd4O/B3Fuvmbft8JaSMRqRacqkKAG1T18GENNgXxUNWPAR/zn38AHL/Rc7jof97s3HLrFJVtwOBUMG7htV2FJUunmxftgvbDaFxY1Hi7iGj5BVWpLPgF0RArSN932y8iyYMX1eBkfNsK8SCorCj/DdNQ79xjMkvWtSwt9sZfmFnBL7526wIsdpF+H1nJCw+s1FZRc6yKt0mEds445RJMQkEwhql/RQeJUbX/ND27JLYPIRIt9WoxsQpkfOQTL13rlRmLJnEeM/K2uqOqvj35/tcicnJNu2+q6kNGdSQiV4/6vV0VW7TYQBxz6YvXtf9U6mixfsjV0Nds5DYjb6vvi8hvikjmt9+kvnDULzfoa2SbTSF5bBbUFYPaecjznRHQalmkbjERrn3RKTExYZ00/61TXsChf/56TKeIO7C5YHNTsr0CznAa4z78rlwKjywNnGgwjlMK5JN+oZIakDoqgYClYEE8sxy8qoIklIVNYyEpyRSTOW8xgK7JWehUYio2AKM0J9K3oD10aQFQ5zCSeaNzXdXN2GciERiT5P/yN8ooGj23KqonQyLVFWNoxwyOEdon6ilMkD4kSn62Uxj3L794fYlzQKOU7LPxtvq/uNofISry3/y+ElT1W+M6GtemlTzWiJ2HvzjaP1pMhnu/dpczpONtHvsIdn7i+VPt73GPOYfjjz1npNTRSiTThXqbx6htFrRDVf9LVZ+gqnf02y+q6n9W24nIESJykYj8i4jcS0T+WkR+LCKfEZH7NhmrlTzG4KL/fhM7Dz3F+cJbUya3rQQyGRKDtwouihtfA0NAO44l7fecF4vtGbRnoqE7dhO+qxRcbJAsbCKNVNOH2GR/iNmoMZaH32DQXZdk6GjnyFx6dzJifEqWWTJj6XhDeSezLGR9ljrO8PLcq54KwJsf+q7Gl68Oj3tMhShUn8mE/Q0E5LKPOeP5RV9x33ccdUa5bU1G2wFJQLztIeyzoMYUxvKqzaLGaB5zMRqiHSNKGVW2VsSnwnfvoCbtSgb7DYL69CQj28zG2+qewJuAR+Ce2P8ATqmRIi4AXgdsBz4KvBh4Bi4m5E9oYHduJY8GGMiL0yZPXBXCgqsZaNcZyLXjYze6TtVjc4PtZdheBssZsmyQFQM941Kx9wVZMciywSwLZsX4Tdz3ZRf4Z1aKnFXSp4jRiASF4elGkgDBGJiYBAUCxDgPr75ylQldOhWTWYxRup2cjrF0jKWb5Sx1+uzfXeaQrT+e+nUdbpQev4BJv6F7UpVwhCC+YDj3C7l2jFNDdQyaZfG7dgyaJVvXb50M7Rps12A7gu363/0xtpthO66tXTDkXYPtCnbRf19028f/5UUTXbe1oK9CT83IbUbFoP4OeC9wEHAX4H3Au2va7aeqH1LVdwM9VX2POnwIuH2TgVri0WJDsJ7V+/ZmvP6aHbz+mh0bOubjHnNOlFhOut/6eybNI3RMdPkMEyOKqr5TVft++1uo1aClQSpVnfFCk4FatVVDXHTdvqOTXy/EynsdLRdQCvtCPY0Qj7Hi6omL9dx1iFROor2LzofEbARpoqKKkqokQXJsnTqLxPhc+asGyHxUeaZkHeukjsxJHACZWDpi6ZicRdNn/85utmY1sRUTopA6GFgiLrv8NI4/7tzEjbZ8Xo979NnlBcCrliQz3kFEhmStldHOIxU1V6qSUlM+Jl5TU6i1Qq2W4npL4aTQccby1DV6FmorJ4xuHrW1L2UBcLmIvAR4D+6JeDLwLzWH/KmIbFfVW1T1LUk/9wY+0mTMlni02DCEgNygvhIo7BM9QXqZIxyJZ5MkwX1pKhKsDHhKFUGByfFe5SSV/bWBgCT7YGAxrqYkiSpvn5IE4whHJ3PEo2ssXeOIx0LmVVhiMeL2dyUnW6tZVQqC6v66D8GuEQkI6XkVY374y2ez4yGvdPmjjFM1sdIvCG0tFVVnW+qUA/hibEe4JtW4Db8vEjx/kPr4jUgwQluTEA2/32aUPK00A9vZ+EU814zemNz7G6y2upJyFNLvJb8pUIpOVdU/r+tEVa8FTm4yYEs8WqwL0mzCba6v8XjnNx7B0w771IaPe+LDX7WJ+Oe9B857f4yr7gZeWVW9h4gY4JGq+m+r6UNErlLVhzZt3xKPFhuCYBiH4GXl1SgxWSFF5LdHYOyqZV/jPlvaFaWGKJGkKquq5EF5X2k/yf60/2DwN/5zTNToUqVk3lje8VLGQqcf1VYLJmfBq6zc1mOrWWarWaEbQt/XiorUke6vSh3OIcBfqI6L1ZCQVPCLZ8dDT7rfS50HVUWSEFU0xnX4rvHeb9XYjGFrqKQxIxTqqEyS61z5bLzDRWifzab4liJj1VYb7VajqlZEXg88cpVdTETtWuLRYqpo65esHh//9uE85tCvx+/2uy6tkLnz14cdMharie/Y8bBXOsJbLRTVIiJXQ38M1dLZeFtdIiK/DFyoOrFbaJ1tZChab6sWG4JvnvoCTB+fkJBYSyPb7bbOrYLpUUgDWrjOBgy402r5u8kp3HLD92DzSKv+VfaZpG0pf1WQNKLOPejYy5t2FOn6+A4f29HNchdV7relrM9S1mNLtsLWbIUl6bPVrLBftps7dW7ibt0fruq6Xnb5aVBNRDgKNVHcJYNzTT+a5q8yBg1R5UlciIYKnFkR06GpPUa1PodYnAuF1BFcn41Eg3jxOUgcUlx/X+9jI6FjAgRdkOBMiMcLcO65yyJyk4jc3CAJIiKyP3C+iNwhMb6PRCt5tFgzmkgbh5+zC2pKZrco4wffOZiu5+m2myXASSBrkT5aTB9NvK1mFGG+3yTtReT3gFcBuykUwQrcc9yxLfFosSY0Ihxn7wJx0kaEglnBSRs4KaK/xXtkJRHi8VGu8ZYaKNZUqSc+4DlV9baqfK6uBUHaACLXa7tuy5cU66sFsmQx3ZxOp+xlteADAwGWsh7bOstsyXpsNStsNctsM8vsb3ZzgNnNHbJl7mCGKwKaEpCqvSNNPDxQI6tUpKksvcS8U4lLrpqaDAsmeD95TnucBKSKULjaunkFySaV8qSwgwTPNgEbvLL8vvB9oxHSk4xsM6NYYhG5PXAYrsien4t+YkjzFwL3U9XvTzpOSzxabAwSQ3ZQHZk0VkMoKvpR7APv1jvOnXZI7EYjlBay5G8w1ALa8URjAewWi11UWHITNgs53cU+iws9Fjs5C50+i51+VFUBbOssszXrsV+2xxvK/SYrbDU9tglsFSeaLcpkItqAgbx6egkBAWLK8h1HnzmY1DC5DpKmQg8R5aWO3X7tmIQwDRKQWnXVQLbLMagQkhjfMSPFe24NfTsmPckMbB4i8jvA84GDgc/h0pT8B/DYIYd8E1e2dmK0xKNFi70E01Rf7Tj6zKn0s69C2VyuugmeDxwNfEpVjxORI4BRN/s04N9F5NPActipqs8bN1BLPFqsG0J8x+Fnu9QkdSnR0/fL5BTJ8iAaqGOTERJF4K6rr2soLFjx6I3fh77/iXEcwC5AvqjYJcVuyTGLOZ1FJ3l0u30Wuk5FtdDps6XTSwzkTvLYkvXYnu3xKqsVr7LawzazwjbJWZSMrkzf5zScX510Et1kc39hgzTgXXM1ZeuTyn3x+EyKQD6vAtMa9+dYrTUmTKToq8K8h+eipNYyNVJH+O7bXf2WUxpekelgM7rqeuxR1T0igogsqupXReQ+I9r/OS4x4heZsAZjSzxatNiLENx3A1pD+myQW9mUaivgehE5APhH4FIR+RHwnRHt+6r6gtUM1BKPFmvCpfZ9jYzmYhPjeB/HlqXvXkhFkrBraoboyykbs4ftH0g9EiczhisMUscC5ItuV76k2CULSznZorNxhOJOC90+C1nOYpbaOrzk4U86BAYumh7bvLF8q1lhm/TZKsKSZJh1UOCPsoeIKgQ7k7We70yDOWOOEjTHF7oqSyAxRUvi3lz6PQ1OTGwoMUCwDhoOLNtgCjuURAP6mKzo64bgjjsKM/K2+iX/8QwRuRy4HfDhEYdcLiLPAj5EWW011ne8JR4tWuzFqEoiMF4aae0da8e0vK1E5BDgb4A748j3Bar6piFtjwY+BTxZVf+h5rcDVfWiYnz9uIg8AXgALvdVHX7D/z0tnTqtq26LjcawPFZmBcRLHiYnrSALUKQRSVBKPphCKFJa1Ly/dbn8avuo2adSeFb1t6jzqgJ0ycKilzq6OQvdPl0veSx1+nRNzmKnz4LxqUlCGpLMueqmto7gZeUCBZUl6UzsYTVVVFa5i69uRlxOfOSrkVydqy5E6aNU9MkGt98gdRS/p6lLatfhqgt14qJL9LhqNNWpw8VljlNLNVJb9YFTVfUqEdkPuFJELlXVr5R6EsmA84CLh/TzOuC3a/Z/BVf4qdbbSlXv0WSSdZhZhLmIHCIil4vINSLyZRF5vt9/BxG5VES+4f/eflZzbLF23O+0XbOewj4H+93DS1uL6SNXQ3/M1iRlu6reoKpX+c83A9cAd61p+lzg/cCNQ7r6KVX9dk3/1wI/1fC0JsIsJY9aioujnpep6mt8XvqX4EokttikGJc1t3szZCve1gHRppB6VqX2CS2Y1EHuk8IWoqaGt6tKHSXxptz/wP6QemShCAJUHwgoXUtnsR8DATuZpWvcb5lxaUmMKEa0VLdji3E1O7Zmy1HqWJIeS6bPkli6CF0x62LvmAgikMHFV5zR+JBL/uPlnHDMWZi+oqZIVYIBm7nzEaOorbjB1dXsqJ1T8nuQCo1EqcOlZ5/kJKeLsZLHhEYPETkUeAjw6cr+uwK/hJMejh5y+JYRXW+bbCbNMDPioao3ADf4zzeLSKC4TwSO9c3eAXyMOSQeOz/xfAAuenStenOvxhFn7ooBf23ytNkjTbC446gzJgvOa1GLCQzmTxKRv0x2X6CqF1Tbish2nGRxsqpWc1G9EXixquYy/N59RETOBl6WJkQUkTNxrrhTx6aweVQo7k97woKq3iAidxpyzLOAZwHc7W5326CZtpgUIQVJtlJ4TgUOXyveVu4ACknA+nUu2Eek3DZWGByGxPOq1C7Zp1mhN3dSh2IX1EkcCxbT9dJFN8dkijGWLLNkYmsLJRnRQurIemzNnANLavNYkh5L0veFoGawkFctuX5Buvizr5y4q0v/7WWc8KizkkwBinaNS9kekiNmFOlOqJE6xqZtT6YeJRB/72bmbWXIm7nqXqiqrxjVTkS6OMLxLlW9sKbJUcB7POE4EHi8iPRV9R+TNqcCfwlcKyKf8/seBFwB/E7NmCPrdgRV2ijMnHhUKe4IylqCp94XABx11FEzisdZO4697IXx88eOf/0MZ7J23Ov159PZLW1xoU0KJ4H8xth2eyPud9ouvnzuBgYKTpDIeBTELXhvA65R1dpa16lRW0T+GvjnCuFAVW8Ffl1E7gncz+/+sqp+a8jQbxgxLWV4OpOImRKPIRT3f0XkIC91HMRwA9FejX6D3Dh7K8wyeIabbNlJHaavCQcpMRdfCUHCGJKoMG2HbycVm0Yp/qPKsSZlYzXx1rFd14ldULSraNciXYvpuA3AZBrTrRvRWs2Pwdk7tmQ9tndW2C/bw35mD4CXOFbokrNQSeLVU0uHPl1Z/9dxEptGU1z67y8b2Hf8Y8/1tq0kpqNO0EovpCn/qHXPCJTucyo5biSaZdVtxEYdAzwN+GIiMZwO3A1AVd86ybw8sRhGMNJ2x03Sbx1mRjxGUNwPAk8HXuP//tMMprfuuPTYXRx72QtLD+CjL/sjAD5x/OtmNa1V4bDXOI+q7h6hcyt09hQBgaanpeSHAaKUKgHGILBKu/DbWONqaGcYMLJW3TptBpop2gl/vTtuVx3RyCymo4ixGF8tMDOFobzjDeSZN5gb1NUnNzYGBoZUJEv+QnTF1yz3F8OqkIvQQ+mi2A0KKasWmJpGwalaeEIR1FfAeLdcq46ACElAoU9xMmoof2/v+4pdXPOqjZE+mqmtxvejqp9kAt2lqv5207ZN4Bn4PwAe7Xd9DPhzVe2NO3aWrG+guI8Vkc/57fE4onGCiHwDOMF/b9GixRRRdeOdF5fe+7x6Y1zDQ/2tkduGzGTN+DPgYcBb/PYwv28sZultNYriHr+Rc5kV+rP0M5wiFn7k/nZvg85uxfQrRs4kkR0woE6KbbJBtVNJ6kifljQdRnp8xYiaqqa0E/apa+OlDvGqKclcNUAxijGKyQrpopMVtTo6WU5Hkt+MZSnrs7WzwrbOMts6yyyaHl3p0/UqqsznnMvVkIuQI/RUnNTRKKpx78Jll5/mVFc5JcljQOrwaUuidGGHpGpPUvqHvko/C/H+bgiaBAnOJiX7I3C2jpv99/2AI1X100MOOVpVH5R8/6iIfL7JWPOxeu2FOPqi4TmHHnnJSzZwJmvDkS9rgwBbbC4cftb6P5OqMn5b91nU4s+AW5LvtzJakshF5F7hize4NypeP3Nvq30Z/dwp4YPLpxEd6zu+GbH4Y/e3u9vZN2xWcIG2K1hva6gWcKraIUr2CihLHFVO06eoCH1rZ9B9U4267x0vaXjbBsYFtUmmiHEbeMkjsxi/LxjIAbodVxkw1ib30gfgKgZmPbZlK2zJeiwZ54rbTQzjJmGb80p0o9kE/mnrkZ33so866SO46boagg6l++x/l+Ax4b8bxNuCxL0joeZ6Io1qRRrdKGHeqpDbMQbz2VAPSeM8VNWKjPTE+CNccsRv4Z7KuwPPaDJQSzxmgAf988tZmFFOnmnhAafuckbx/Wc9kxYtBnHYubv4xmnrZzyfYm6raeNbIvI8Cmnj2YzwvlLVy0TkMOA+uAl/VVWXh7VP0RKPGcEisfSKRI5q79N9L/0AshXPWYpLYW4XJKYyDykkJAfj05PExIidothSKOxTSsmeekqlwYPJ/nh8R91nQ+zEBQEqeO8qyQrJQ8RLHEKUPFKpw4iSedsHQCZK16ddX/CSx4LxKdl9AsQtmQsE7A7U03XeOVbKbHGGDlR2nTdc9tHTeOwJzudFVKP7qlBv/5Bgy/LPivgAwpCORr1Ua4PUmjwXbozimVhfyNTTk0wJvw/8MfAyP4PL8MHUdfAJF3cAh+LowfEiwrCYkxRzRTyO/MczAPjKL54x03lUce/3nuVS/ngDbLfBVT/6otP57M5z1n9yE+A+r9pF5sIW2MsFpxb7AO593i76+xWE/NvPfuGI1pOhWXqSjecMVPVG4CkTHPIhYA9tJcG9B7k15Dg7RzCtzUhHuipky9DZoyU9c3+LYLuQL7jkguC5Q/VpSkJ6EnX7865LfQ4UUkU16C+Ugk2D/KQcq+HGUd9GC07UULJvRPcQL3U4Pfqgc4+A87ZKYjm6mYvRCPEcIfkhQMfkLJg+3Zgc0ZZsHKOQK1hR7GTv7V6Fj176Eo478bxSihIglg5OoUmgoCiI9fYqpAgKTGxbaSnatL91t30kiTxHttkgiMiLVPW1IvLmupFH1CQ/WFUfuJox54J4fPGHN3DY+86iO8OSCCnuc+GrnLfFGIPa3oT7vKr1qmqxd+PQt78WOtMj0uPUVhvMC17j/14x4XEXiciJqnrJpAPOBfEIyK3BbGK7QXDh6+eZT3ERUnZ4PbAQ929GmL5LNQI+glxBM6Hvk0EHicN2Cy+qYMcQBRv12F6iWCwkj2jvSKPOTSF5BMnCdRC8rbTkWRUkjbJtRGNyxWALSaWOAYjzfgs2jywc4/cBMfW6obCHZCgmkR6sGnIxzrOK4pxCRoEcQ+69iXJVcpSeV/RvRJqSFBtRB/3yS1xi7ONOPM/tiBHowXuquBm1JYal8KwLaWk0+YziEmlS9Gm7iuTiMgh0pvtOhUDAzQJV/ZD/+44JD/0U8AERMUAPb45S1bGuMHNFPALu909n8OUnnrHh4x72vrO8IXY6/T3on1/O53/h1SPbvPDzTx762+sf9PdrnsMRZ+yqdZVt0WJfhlqDjstNN5sgwcOBF1IYwN1UVIclOnwD8Ejgi6mLbxPMDfEIpx28Y2aJVF0V5qUKWCHHoOqiiqWSYM9IsX+zIUwpvA9OuhDsAvSX3L58MYmzSN+r3HtGBbWignbdcWGfhAjiquTR0aLPKHlo4esf7ncidVR9/6up3EvnJSAhR5WXSKK9I40iF1uSNupg/UlbH0WeIseQq5CLoUfGgub0MGQoPVF6WLozcM/ZCKmjCYaus+KMUtGuYf1zIk76DXYPMeXP7r4CRlzRsfgiTmm+SZej2swA7wPeikvP3iTY7xvAlyYlHDBHxKOK+37gTACu+aVXzngm64MXff5X/afh3M8LP//kVUkfR5zR2jdatBiJTWYwT9BX1Ua5qTxuAD4mIhcBMb5jn3PVdTaFJsE764Nv/OpgauqAe73nHOduZAXrdbxBwgizDVJHZppLHwYbOd51QSWvlPXxG33/WyjbCgxKCAmcDrroM18Au1jYLJy5QEr+/6lHTWqzGJqVVV2Ecrx24twlNY0fCG2lkDqCtBqiyt3mpMIgeYxDjpB7981cDVYNPc1iTqtMLRkdMlUyLHtwF8OI0tWcHpaeZxQXZZN4fqwDgu0D4Lgd55V/jF5yMhhF7iU5scQqlXhPvlBbQ6z7LP3AUjmbkhGwPreaTCuwpolDzGyIx4dE5NnABygTgx8OaX+d3xb81hhzRTzqcMSFr+KrTxpZyGtdcejbX4t0c8wUr/Rzr3oqW9Yh0CLaN1q0aDESTZjUWcR54MpYgEs7UkwF7lnXWFXPXO1Ac0I8fLSnaryhs5I+hkEtqGezxXPRUfLwHj6IeI8eG6POh2HZdpxHkO8jr5xvtha7SdJVKnWoIXpWyTAeJYjz1embikTRqZcgBqOOSTi4EJ2ssVCQeO7PffceVGktCKNON51WFkq8r0yS2yqNKs+8jaMKi8QAseg5pcW+nmYYVTK1GLVR8sC6axD/4qTGIHXMkVd3Y1x+sZNCjj3pvNrfS+Vmo3ju7Rv4rZqBIJEunX3E2TwkBzKdMAxuBJqorWaAtOrgKIjIGap6xlrazAnx2Jy4+1++DlmjhHDfD5w5t3abFi32XlQ9M2owI+IiIvcHjgSW4lRU/6bS7HdE5KZR3eAi1c8Y1mA+iIc6Dyc1g/lmZqmyClAbJCO/Q5JYg+S7MYoVUJ9ndZjdo6cGg5CpYmNlusLukXv26y0P/duJ5vnVM04piukkc43n4eMzwP0V6/XL/aRNJQ9Vemy1HofYENxBfBFLp2zDBLRSIVCi9BanqRReOXUed5VrKeI98yRx4qrxdAvPk5VE4lChrwbjAw/qPLCi7cO4+7JoeiXpwxhLV3LytioCH/vwizn2pPNcdHm8GURPqxjXM8xlPHre+c9p2+o7NC2NxCaVPETklcCxOOLx/4CdwCeBKvH4C2C/Md39xagf54N4bEIc+tbXz/zqPvXTvwvAu35m5DMQccSZu9oKL/sY7HcP3zTuunsVBvLB17XZmKlU8CvAg4CrVfUZIvLTOLfdEtZi6wiYH+KhYK1gss1l81UF+mZA6iiKxXiduzpuVYxF1Hliqdav5Mu2Q1eskzq8Z0+A9V4/fbtGfVnNRfz6y06JhXZCzirJnfQREfJQpbrnih1E8ccpRZU5knZa/S4oRUxMcbpS5AWTpJPoteNsI+LjTmLdjhDyXgPnsafkahB198J1KzGDQV+Nkx5CH5U0rlYNNusP6tdTqUMzcjX01LAihhXN6Xkpcll7c+1xNQwhMjxuldxV1fgdUQYiGYJ9JB6feG1NE03iPGaE3b6GR19E9gduZIixfK2YH+LRokWLFhsFC2O9HGbjtHOFiByAUzldiasq+Jn1GKglHuuAe/zJG9or26LFHGOE8DpTqOqz/ce3isiHgf1V9QvrMdamXeJE5CTgTbhQoL9U1deMaq8qTuz1GfZmrrpSkH6Qmf0+ATLvOhoKQZk0kE0RNQMpwqtYsR36aKlsbXAbjd9XkZO6CaMUMo0HlZLpF/sQL8prsi98T180byfXRMNUl1a7pPLSIW2q808M5iF5YtFJuXEIHoxqERWsOhWVVe/+nOYvMiBW42fSYLVUdWX6kHf8/mS3ONfdnnboac4e7bKgOXvUusJQWtbB7EuqK5fo0N2MmPSw8nsIAiwlQ0xVnal6NDhuhOJgwxJhrgWbkHiIyENr9t0L+E9V7df8dkfgdxnMhfV/x421KYmHr271p8AJwPXAZ0Xkg6r6ldnObDzuuet8mPI7f893n8O3fv10HnnJS9z32023/xYtWkwIKw3UVhszlQreAjwU+AKOXN7ff/4pEfn9mtTr/wT8K/ARmuXCitiUxAN4OHCtqn4LQETeAzwR2PTEA0ikjsQT1eCT+EkMbAOcUTdTJCOmmI4c9hBuaU/exaAlaSNIHH1rsIgvVjS92gVfe/kp7u8r3N8jztjljN6VIWJa9YDE+B3PC2L67HRfqQ/qpYvqYIWhnDHcpRQGTgWsUk3uYkMQXxrNF66hl0CMJIFm4cCcWunDWIMx3p1XlWXbJTPKHh9EWLpOBrA9153kWOMKRC1KF7MPucCJglpFxKcTsYmUWiNxCMl3iMbx8L5VjeZTFT7GEYfZEI9vA89U1S8DiMiRuGjzVwMXAlXisVVVX8wqsFmfyrsC/518v97vixCRZ4nIFSJyRX7zrUM7CgkSNwL3fu2udev7sPedtW59w/hiT/d7ya64tZgv2O8ePusp7H2oU5dVt9ngiEA4ALy25iGBEa/BP4vI41cz0GaVPOoYhNLtUNULgAsAFu9xcO2tmkVqc8lB8mT6nguSIFIk3KYKkBF1vGLFl1HV6M4rmZL56mc/vtXlBtl/0RUSH1ZH2aV2d4Fsk02+fvfXXn7KANEwfdy5pJfYSx21l30wHrDgHEM31fETt81Vw7v6YhV8iVPN8WxTIX3gd1WlD+MNUIq7H7k1hWASYMBYdX+9G28milFlwF03QZ4UfskRrB8rNz2szelJj61i2SLdDS8QNQtU7R5i3QMifYmStuSKxiBRCokitZOEZyYNHkxKEE9nrhUNwpA2M8DXReTPgPf470/2+xZxxZ6qeD5wuoisJL/v1cWgrgcOSb4fDHxnRnMZiSPO3FWIxhPlpNx70Eob849ZBgsed+J5mys4qwlmK12MwtOBZwMn467qJ3HFoXrAcdXGqjouynwoxhIPEXkO8C5V/dFqB1kFPgscJiL3AP4Hl2PlNybpYBZSh/F5ylM9vBqcQjYoXFMdvXH71XguJZRVFRf6Jpk6jyB/TG6ULYsr/GSPk0Byz/mkKdxDGduOWLpZc/vX116RpCZpAMmpfYFCoZ6A0rVouEA0ZtgCywmFhKEaDZni8rM7blaKgELEFwiKB/oiTliMhACwIGn4yRgDtpTVsOxJFS9Ep/C2ImlekUJSScONbaIk4n7rkZucnD45yhI5W2Sx4YXZuxHtHsZJ6iIKXvrQ3N1z6/PKhCDQYBMpBe4FO1ja8RzDOxp9SFUfh6sQWMUtQ457AvBo//VjqvrPTcZrote4M87b6b0icpKMS/c6BXiXsucAF+MKu7831eO1mC1aSaTFtBBrmu9tSAz4w7aNlkxUNQduE5HG/pgi8hqc6uorfnu+3zcWYyUPVX2ZiLwcOBF4BvAnIvJe4G2q+s2mk5wUqvr/cIm9Gh6Q+Hyn3krrDa/jF3EeRFG3H2IHMlzCRuPmk+piseLIt7cVuBKahUuIWkUyLfnP7ZEuvX4WE/aJKJ2sKGgUJI+AK3ee3fxcknlD4WFVSyyGvRyJ1wuUvaxWg8K7RspsZRAiQkp2o4gFTY0rnjsNXl1xr9FC+hCKftXtC8kpVRUTU/xbrBEstkiQaMonZuPF68SElSFVft9mLJo+Pc3iFpImBnQz54bf0w57UHIr7BHLHrEsSc5Wydkq3fmL/xjzfER7hhKLQRmcXU8EL514D76wxfVAiHc+/bxWKONddWeDPcAXReRSIHoSqerzhrR/PPBgVSeLi8g7gKuBl4wbqJFF1de3/a7f+sDtgX8Qkdc2OX7WOPqi09el3/udtvk58I30Nmuxd6P1upoATbytZqMl+xfg5cAncOlJwjYKBySfG0stTWwez8MZYb6Py874R6raExGDK57+oqaDrSdchLn3UPJ3TQS2Lqys67imRyyXGhV6gYNPvYos0UukFAltcV5AJrTxh/jv5IV+Ps+FfMVgOi5IIpRR7Wcak/SZJLZj0oJYIYajii+/xntbVSSTgEZxGRXPqioPmH6X5Bj1kpnY5Je0zGzYFSQOS7wRGgf1iSYJ+xN7SLDd+B+st6MYVdQo1ksl1opLmW+E3CiZCpmP/dBMyNXSt5a+MXSMZcHk9NXQse5+dEzO7rzLYtZn2fRZNh3yzMT0+ZlYutYHABtY0YzMSy8ZSlf6bJMeW80y+8ky+5nuXNlA0nT7Lq2+JAkOy/bCGPfhpQz1BaLEEj0AJXdSfJRIQxGpKUkLTdKTzEIuUdV3iMgCEDiBr6lqnZdVwLnA1SJyOW7KjwZOazJWE2+rA4Enqep/ViZpReQXmgwyj3jAqbvm1ruqivu9eNfe5w3TYlXYSK+rx57wmoTj2svgVc1j22wwRORY4B24YEEBDhGRp6vqJ+raq+q7ReRjwNG+/YtV9btNxmpi8xhaTUlVr2kyyLrD6zZd0SVK6c739NZPP2x6jjNWb68oh0l7bsp4jscknLdvG20hNthCCskkHIMAeeLhY5S8Y5ze3jiPFJtpkm680ERO9b3Uyl8SzqsQBGrVyuLblKLJveQUQlFi9G/CYapQ5DMKtiHcdXN2JS0Ur+r3m6RAVC6Ft5tJvK3UPSchVXvgRmN+MfESiNVoS1JxUkhVAgEX1Z+JJTNKZiyZcXaKjimi/EPE/568y1LWo585ZjATVxSqawvL1h51XEnPp20HnORhltnP7GF/s4f9zAr7mRW2SrbX20EGpI4onQuaSVmi9eqgatR5kERiyVkJ0gdOss8TiX8KmFZiRBE5BFeo6c44cnSBqr6p0uaJuAhxizMbnKyqnxzS5RuAE1X1a/7Yw4F3Aw+r9HmEqn41yYV1vf97FxG5i6peNW7umzXOo0WLFjPCt64/iHsefMOsp7HJkehMh6EZcekDp6rqVSKyH3CliFxayeN3GfBBVVUReSDwXuCIIf11A+EAUNWvi9RyFi8AnkW9S68Cjx038fkhHt7TRq1BxaKZ4xLXK8gzenQkEkYswQoDNo8o4npuWo3jjGJcR8JxOY5cvc4Wgne0ei8hcnXZeTPHeWuugxzVBhjs0jCLMGZqr0jbQfJbOld/vSS5XvGepWVFUy86G661JLnDNGZVjhJXsCmJFJ54fvzojeN14WE8VUFFfXSz+wy+jThJRIzSFxPtTK58rfN0M8ZJIB0vgYRYm8xLHgsmj15ZHZNzW77gPIfUcLMt9CA9zejZTmzblZxF02M/s4f9sj0ckN3KfrKH/c0yW80yS7KHLkJXDF0MmQgdMjIxjXNj/cjexk/sRLnx1oSPXvoSjtvhXXWTdwD/3JcSJAQ7hndtrBZiilkagn3MFnaPkPMseGNNBVN6v1T1BuAG//lmEbkGl4rpK0mbND5j25iRrxCRtwHv9N+fSo3BXFWf5T/uVNU96W8islRtX4fNmttqU+NBz9/8XlYp7vHmOuaiRYvhuPi6I7n4uiNnPY1Ni0CkRm1+iX9SyMHnt2cN7VPkUOAhwKdrfvslEfkqzptqVLr0PwC+DDyPIn7j90e0//eG+wYwN5KHWom+3s7/23Mv6yR6mJ6PKBeXTNV2KLiRRIIQ67yVjnyZIziRuwrByr59sBcEDlxDVlFTZI4NkkiIaZFcinoFpYshrt9cpsdpeaRDBakrOHil9o5SYO+I/gYi0MM1ILUNFXaguD/ouIPkYhP7Rjg+SCFGE4NMMU8J98AW/UoYU9xNiRYUCfdCnWePsQNu/iELcmYsncySZZa+t1d1MieJ2MxLHWLZnTttQk/LJYOtiosDUYl1WTomZ9H02WpW2N7Zww/NNm6X3cb+2R62yjJL0mNBcowoC+S+dkifDA0pvbzXFmQIXREMQoaQo/TUcpsqN9sOP7BbR9yxKaN8a6KXVfEQaOn5itJ4He8d7CGJd5XJ3XoQvCGnthw097a6cJTdOLYV2Q68H2fPuGlgONUPAB8QkUfj7B+Pq52W6jJwvt9GjXdnnISzRUQeUkyX/YFGD8DcEI/NjPu/aO/1zHrEU98AB7cC6r6K933zYfzqvcaFCeyDaKK2aqjW8jaJ9+PSQF04skvVT4jIvUTkQFX9fk1fxwBnAHenXNzpnpWmO4DfxuUNTAnNzUCjwLj5IB4qLtpTvOeM92RyauvpK/4lh84eLXTvIpErjhHVFe8rycuSBV44KCQNolcSvkm0h6Qct8+HFTPwxtaVOSohVHrN2O96y6fedWpp3/1ftMuJ7l5F/sU3nFJ77ANO9Sq+IfaQaBZKvK2irjtkQw0RxMn+6I2WXgJNO8JJIV76DDaL2DY+J8Ukgn5cEz15zMYj6rz5fMZjJCs9WzHi3yg2c9l3OzaPkkauzuaRSsJ9NdzWX8SIxaopVYVMMyYbn6usY3KWsh5b+lvZni2zPdvOftkeZ/MwPee1JX0yLFmI+/FiVSaWLnn5r69smAE5HXIMe2yHXA0r2mGPrr8Hl+SKZuIlxopxLPGmCvujrTHtJPHAInfPpJEiAFyC1CrJs7HWeQfJda39uAfsbcA1qlorLYjIvYFveoP5Q3Gs6A+GdPk24BScnWOoAUtV3wG8Q0R+WVXfv5q5zwfx2EA85Nm79kpL0X1evSumG1ktYqAgU3sHW7TY13EM8DRcSpHP+X2nA3cDUNW3Ar8M/JaI9IDdwJN91o86/ERVL2o6uKq+X0R+HrgfsJTsf9W4Y+eDeAQ9p+coXS2MwKFMf5kzua/d7f3JQRGfHVcFtOMDXVPpw1akjIquv/Sbl17COaXxFGLFx5W4amvDvKyC5GHyQjpYDaoSR4qYWXcEUonkQScnjgaJfQjKpxElrcx7RAVpLbGnRO+p1LutYgeJ9VO815V65X/q2ZVG9QdJJHKpib0J3HcRV/s8SI6l8wE0SCjWscfWR6H3c2cHyX1NkF4n47a+4+xVJUob8XsidYQsyZmxLGQ5S1mfpazHts4K27JltmQ9lkyPRdPzNg5XEz1FV/peMsmL2JJESjFJxJvFkCf2lvWGhKzTirtu4iQRSe+34LIIVJ+3YLgOXfh3LpqzhLLX1bROaUpqKx+vMXKRUtXzgKYZJC8XkdfhqgYuJ33Uxm2IyFtxNo7jcBlEfgX4TJOB5oN4tGiEI093i/dXzmkugRy706Uv+/4DuiNfvAe8oOyB9sXz1ybltJhvHH/cuZ4p2Dtl2CZqqxllgP8Z//eoZJ8yPG7jUar6QBH5gqqeKSJvwBGesZgf4pEH/34faW6LCnHX/trLpjbM1W85hYf+/i7EQrbs9co9yBeIkkO+KLDknXgSrnbgc/C0SrxAgq0j6P9Lv6VeTcEbqPLuxQc2ZPvNi22tSF+W1eh7P//GQYJScnsOnGbqXQPla0cisKTcn4FaCUWKjsRq7LfoUwakF7xkh5WShBgyH1OpWRJtLeClHCW36jx+Mv+MGEM/V3r9jE5m2d3rBAYbaw25lWgPCRkS3G12kkdmXAxJJ7N0jWWh02dLp8fWTo8FbwvpmpwF04/SR4qusXQkT2wjeZQ+jKiXQCzG59ECl913Q+ElEPH3IIW7NcGVMdj93Pf4bKc2LPXFI5MObGI/XPtcmYo9cdpQ1eMmPCTEeNwmInfB2VLu0eTA+SEeLRrjgae4BfsLu2YrHext8TItWkQ0cNXdSIjIC0b9PswYD3xIRA4AXgdchSOJf9FkzLkhHjGPkc9eq0GPuh5IuA5RkJ5iesWTlPcMKyKwWOjfAwOcxnQU7CUlqaQaSzFwFlL8VqstDV4qIdI25PthcgnkYxe5pMn3/6Nd8XzDGEOmxRcmUVml/dRIUSFsQylLO9FTLf1uSmYU52uS2JBKNo/0ZEK/BtfQRCV74dHmpT0pDRAGlyixIOKi/w3YzLi+gFzceGIUkxUrj1pBcycpu0aJPcefEzGPmTvWZJZOJ6cbNmPpZLmTPLKcBZPHnFohCr4jlgXTZzHru7+m76PW+1HiyMSyaHosSQ8jGu0u6wJx72mamyzeq1yRrDy2UvwegvBcnFXi8RYlDwHvKBZuiRiKXFfTwhRsHlPExOVkfWb0y1T1x8D7ReSfgSVV/UmT4+eGeLSYHEECCRgmidzvtF2td1WLqSHaO/ZixCjyTQJVPXMVx1hv43ik/75MYmQfh/kgHoFTyx0nJwbHzeXCdb/ZKDX9RAh1ujXzDj89MH3nHSJ9JespajIXa5IVzFFg5GzHc0NBOKpKEKnefuREigbRLlKxecRIai3/PnGFvzCnEdyUMpmh/PNvKrd94Cm7SuceOw3DS7EvzWUU9qVSSjhIFGd7qF5fPOdL8puq78c/Q0ZdFL8/puR5VRnbxRgkhquSp1ZxmBolz/DSDc6u0hNMXzA932+eSEsZaKZoxx/bcVuvo+zOFDEWMS7qPevkUSLpZN6LSopMv13jPbU6TvpYynpeAilqjoQo9iXTG4h8nzY0czV44uVRb9dwaY3Lly7UM7funhi0kDJCf/FdSsRDIeadcxLIFKnW5pI8VotLROSXcZHwE814PohHi6nggd5jakCTtA41hx78HD9WqkZY37WqxYxx/LHnuA97qYdVis1aDGoVeAEu2WJfRPbg+S9V3X/cgXNBPJxXkb9Vfa+rXsdbF712siITqF0Q/uPvTuXYk84DI2R7FLNY6F6heGc0o6ycr7Nr1KHuYa2ze6Qc8ZDjJpE6smWGe6nI8OjyiSHleZUcmmokM/eUhwYU51lnOyFRM/hxIoOaiioWFyfksxmn5x2uZZDkQv30YFNKJTyQKPnF+XmdvBr/DOCOM313jY1XGBhfUBAD1oDtCtp1f22Gk0K8XSVeHwO9jrKyoLCYIx2L6Tj7iPg6I8FGstTpsxQ8tbI8Rq93xLIlW6HfyVi2LuJ8vaDBpmFx0of4feG+VCVj67JMi3X1y1XDvdGyXdG4tUAEjL/OkrvYLM3c36kgVC0ceZJTGmsdoaoT20oCZkI8fBDL/wFWgG8Cz/BGG0TkNOCZOHPn81T14lnMscX6YW+N0m+xejzuMefsNax4U8yDt5WIXKaqx4/bV4dZSR6XAqepal9EzsPVzH2xiBwJPAUXKn8X4CMicriqjuUXTM9lI1VjPDtq+PbvvXA9zyFyPLYjfPpv3L0TWzAcJtfo4QPEWuemn9goqpLDCO+jgd+TNiWOfcxDPcDFV7tO9wXx3Ifsptzul163NokjjcAP0fkDNg8/n1K0fs31SrnVaGMqdzG4I7GhxD78jwO2qMTLB+s5WM95BqkjRDqnXm6R0w12MuNsXtrx9jLrnt1sWcm85JGtBMkWlydrwUsdXX9squu3xSWzC0K+BfpLGXZRybtKninaUaRj2dOxZAs5uxf6LC10uTXLWej06XrvrAWTs7XTpa8ZW0wn1lefKpKsCJIrpu8vYpDGrbuBpcwKIt4Wpd5bSqJ9CgoJEIgeV652uRT3xUt4UyphPtb+F9tsHIIEcR9cSdkP+u//B/hEtbGv2bEVOFBEbk/xpO+PW3vHYib8n6peoqpBOP8ULrMjwBOB96jqsqpeB1wLPHy14xz6p9OvY3H0M0ZmOm7RokUFj3vMObOewtQRbB6jto2Eqp7pPa4OBB6qqqeq6qm48rMH1xzye7jkiUf4v2H7J+BPm4y5GWwe/xf4e//5rjhiEnC93zcAX1TlWQCd293eeaoEHWQOdh2Nr6neNEgccV65Ok8Rzw6avOCQrI8TSEMJ3EGD3lKNbRJS+jOAOo+f1BllQNqosaFo8kF0ijaOZNxSzErIbeWlnYLbHtNX1bMMuObVp3Dfl+8quVbGKnXh2oXnJomHSecGhd5c+kVes3CceC44xiDkzvvOtVPfpuCKbbeozS0KpqdkK4pZ8bEZfY3XRI1gFwTbkeK4WM9E43lpBnlX6G8VelsgX3LHOW8tsF0lX1L6S5b+UofeUr/kmdXxUesr1tUR6XXW13tB+orkaeBOYW+K9iypvBSCK9qa4TIrp+53vgsRsNZLI2lxptz9NjVuOUjj49psPO6GMwcErACHVhv5OulvEpHnquqbVzPQuhEPEfkIrqh7FS9V1X/ybV6KexzeFQ6raV97C1T1AuACgKW7HrLut+moZ56/qXScLZrhAafualjapsV6YB6lDqjlsWrbzADvBD4jIh/ArZ2/BPzNsMaq+mYReRSOwKT1P4YeE7BuxENVaytdBYjI04FfAI5P/IuvBw5Jmh0MfGfcWGKdp4p08NltJeYUWi8MkwwCF6om4XpCzMWy0tsi3hU9cEtSkjxcJ8mDN+IJrJ1D1dOo2i61ZwiUcjdJvd0j/T4NqePqt5zijOYk9iH/OcQ2hJ1FpcBK43gSyfy8NFGNpl+42Xkzhe+OSy/sDoEpMF6qiDEyED3rTN9LCMvqYnpSrrN6zfuK5OqjoIO4U7S1HVOqwS5WMT1bSCm5EtzInKQhaGbQjhQ2NPVSR/Ic2a7Q32LobjX0l8RVt/TSTt4V+tuE3nZDf7thpWfoL+SsdF3FwyyzLHQzcuvqiuzJ3dLwoZ9bFVNaC2eXKs6tlDHAaLQVxfZeBImR6NFe4rNYV7i56G3l82PF3G4CmXVS49TSdTWxecwAqnq2iFwE/Jzf9QxVvXpYexF5J3Av4HMU9T+UEQQnYFbeVicBLwYeo6q3JT99EPg7ETkfZ7Q5jIbpgdcTRz2zmZ3j+GPPgWkGIbVo0WJzQsvEb1ibGWErcJOqvl1E7igi9/A25DocBRw5aYAgzM7m8Se40LNLfaW2T6nq76vql0Xkvbii7X3gD5t4WmEh2wPahcKffn0WcRNqWAzr3mrkeAKHGjhe24VsJXBgfp6iZa+jikeRVgOqknaSfB8KKTcpeWVJZbxQuY/IHBbH6oQ5q8bg6recwkP/YBfkcNWfFf0++Dm7sL5kb7x2gYsMLhaS2EGCx5tx1zeVPEzuJI7urcrCTdbZn3DPRt4V8kUpYm58e9MrpIYgFYCTJky/LCHESyOQehFFe0SwfxEkUvc5Eyk/n1r+nUSicP0LeAkkre0djovSa8dgehmdZSVfKGwqaty5rmwXzAqYvqGfg1005AuWPLOYjiXPDdYaVIXd2bQCIhxSaWrwx5Aht+b3kIrBSpQsg72h+uirAB0pvN9yxajEujsh7mMq2KSSh4i8EkcQ7gO8HRdp9re4olN1+BLOvHDDpGPNhHio6r1H/HY2cPa0xjrilbv46plTNPC2WDcc/YzzYVsruc0LHvfos5mHaPI6ONXzmDazIS6/BDwElyEXVf2OiIwKBDwQ+IqIfIZy8agnjBtoM3hbrRmijqO3VW+aKd48UVj8iaVzmxtkZf9BFsb0bKzHnPWct03wtnI2ECFL/CCifl8S7pXC80i9frdOKinaNHg5h9g8IGFkowcPMQ9QOs/1QCpxBGQrRYR1Z4/S2R10/y4eAhxH2d/idPz5gptcvkhhxQxSU6hn3XP3o3NLP46jRqINoaiXopjcSwxBP0/xm5NIPAcdStXFBlK6F1FyiN5WWuj7RbzUmF7kmoc12AbA1xapHyN4JknupCLbM2SmnDcqXzBkezIkz7zka+hvU7QnaNeQdyy2b2JNkW5nSpJHsM0knlWDz6yLyai9BoktC4A+Lu9YnU3OuDoo4TnOepTsIi7GZjoPc6PEiLMhHiu+1rkCiMi2Me3PWO1Ac0E8NgNOfOSrW3tHixYeJ/zs2fOdRWCTqq2A94rInwMHiMjv4kIhhtbnUNWPi8jdgcNU9SMispWGWebmgniIem8ar6e2HWI091px9DPOd+UBblGWvr+C9By70f0JXPrv5QqFjvNzFzXU95DEa8ZGvTWOS4pR1VKSMuK+SjxCdb/zlqrjWNNJJccWXwdsKkHiCBJIvHZe5VzNgLse+OzbXcxMcFAIUseWG1fY81NdFn/iJAfJle6tht62jN52E88j1I8v5ZNSIocfuF+zkheSQ5Wbt3bA5hBR3Vdif3VARVPqI0gdNkwMF+wzSnKUhBv3x8uQ9rEOuM3JcuskkcSOYpaNk6oUkMyfq7h4kK46KWzB4IU7ev21Gwech5yP50iud8nTMMCW35fidyeVRG8s8K9J0ocBm0qQ6t4/DTU8/KXRDtgpCVRN1FazgKq+XkROAG7C2T1eoaqXDmvvCcyzgDvgvK7uCrwV2LTpSaYL6xYa2xPyRZCQxmFKZ5etQHe3dYuODnnhc8XscTops8egHeNSpYB3OTWYjne5NBKTwEWEB9Eb+13yvEAoipXfZgVhjISImn4o+oNBQ3zYF4hPLNcaVD7WGbVngbBIZCtK16uatnxvhexWd32lb9FuhlnuYvpdf0yG3VM+Przc2bJG9RE44iO9PPEKqFzEWvVJUClKXAQHmqQLfeW4+NloaSEtpxSvUXuF/sIxw+YMYK0jLsGYHIkViMkdc+PdiE0/I1sR+iGgsCvkS0pOh55Anq2xWEUgWivFdVZMPU+rlWtXrfJVQ0DKpZjLnJHk6o3m6tPIKBgXaJkniUrXdn4Mvmt1bTYYInIK8L5RBKOCP8Rl8fg0gKp+Q0Tu1OTAeRYs1x0nPvLVAOw4+swZz6RFixYbCi3sHkO32Ugm+wMXi8i/isgfishPj2m/rKrREisiqew+EnMheYh17pjaUfq5M6LmiwP1ZFbXd2D0ehbxAV/OyF3m/MyeFcfNei6HnnGlND13qSLQ8RJJZoqU1KqOG0xFeS+ZaCYxoMyNK5iOV39lPkhqmOQhhcrLSRiJMb5oUkgmBjSkVenBZ/9qZJLOdUVI/yK5ku3OMct9d51WvNqqlyMrfborfYxXI3ZudY+yM2wnxtlQetaq44IB+tZ5V1RcbkeyUv4+ekVK6acojQQuHwall/R5yYp9wxweVGRQdRZOq04CqRjoAQbcf/vuGTYrOZ3dXZZv6dDbJvS2OQmkv90lFrUmI8/Wzlea5X7xzoggom46QY1Yla7Sz/78VaQkfZAWgYpqKufKK6qu8FdfY+oWE99ZQTqmKN2wVmxSm4fPb3WmiDwQeDLwcRG5fkTQ9sdF5HRgi1d3PRv4UJOxWsljBB7+220SxBYtJsUJjzpr1lNYd4jq2G3GuBH4LvADYJQa6iXA94Av4pIl/j/gZSPaR8yJ5KF0d1ufDNF4g+/0PJ86t1mWvnsrgLdVZGXdrXqdeuLGKaLQ18IgbfCRbAa6WeSApG+9xBLYVp9WPhMX9JU5aSWMbTsGkwU300GXxaK0bWEvCSmqffd+zhTGefA65ek4GawZwZ7cU6SfO0kBBrhT6eVkP94NQOZdpEvBaOJtS1k21J4QuVsYTHRXcy0K/XoiNWQSpQ+x1pVCrjlOEn1+IxfrYai6CddAUskkPd9eTtbLMXt6dG/q0N/epbe9w/LtDHty59CRr7hl4doXrd7mZfb0kD3eNdqAGOOkAox75tL515lXwvPqv2pIwx4kyeD1HN63ihgQXarDNbBKliuST+cBj6n3x7TZaIjIH+AkjjsC/wD8rqp+ZcQhW4C/UtW/8Mdnft9tI44B5oR4rAce8ZvnN7o6rb2jRYsC+4LUAWxatRVwd+BkVf1cw/aXAY8DbvHftwCXAI8ad+BcEA9RMMsWyVzBHJMElK2pXwvb/3uZ7o92Q557PazzZokpxIzxuuTEE8sMcrlqBbBJio1C8qCXl2wegoVMkL63jZhC8giSiEa7R9njqpA6nPul9ek3pFoFp+LVoqYo5/kf7z517RdvLUi8ZoCCS82cuOf02jmoLXvpWHU/ppy2yaDbgU4GWSE1hH7HliuObU1MExKlDt9fqeCXMYVuv8KZajJuCUM4WJVEgjENVypveylJWrHD4lrJSh/p5XT39Onc0iHbvQDaxfr0HmuFuSXU1HXirVp3rzQLUviQ6x4ks/i7+vTr7nnV+Cxr8XyMSHsC7tkWBPUJKKcCbSBZbCBxEZE7+I+vrXx3U1H94ZBDl1T1lqTdLT7WYyzmgnhMG4/6tTfAwvTUXi1atJhDbC7J40pK7jIlKHDPIcfdKiIPVdWrAETkYcDuJgPOB/FQV87SisH0lWzFe0T5a/iIp76BT72rGTf96Ce+DhYN2R7L9utudh4+kVlRMN4YlhM5nuBRUpU6UjhPEC995I5zApxvfkUHD3h7ifqkbsFuUkgiLgbEFMGGpuCqQxyJWqBbeF2Fa+XGwXtrJV5Ym4ReBjuM6Vlvt/AGpkQPruAD+pI32DivG3LPOucW8h7YHNEFNDzuwVsuliwOA9d4SKU2injNGfSUqtgWXB7wmj7T38OYI9Tw0X4S+h/XXzi/tI9wiJWypKaK9PvIrTmLvdy7mLpAiE+/c3JvuxMf8SowBrPc8xWZvJSu1p1DX6CjRYxLkOZSRNtcIiXmQZIKcuIIiUMSadwWzzq4AEttKsGNwWZLT6Kq91jloScD7xORUPriIJzNZCzmg3hQiOmd23LMsrjMoVvM8JdtBExf2XLjMmZ3r9Q3ECOEB9QlUE84EqNdQUDyQRfLmuCvSKRiNG1BTKRiWC8CEgPhEDQXZwgXBsfzY4WXaSBocYb4zDvcwnXCMWdBrtGoHd2byRwB0cr9DcTAOx9I38Ke5bhP/H5HAPzCVecSWxe4lwYGyqC6MJ1HdJJIVYPDgvtqDOel4426JTME/lWJVBU1Bvl4fgbUO3dImFMgIit9Fn60Z80OE2a5h7ltpVCLVp5v6efuPRHnai5+XvE6BGYpqgb9Ofj+Q47t6j0r7pPv01ae8yRafRoQxqutZvU6icgTgEf7rx9T1X8e1lZVPysiR+Ci0QX4qqo2UvrPDfGYBo496TxY3AzuRvs2jttxHtA+nC02MZTxjOlsvK1eAxxNUZ31+SJyjKqeNuKwoykqCT5ERGZbSXBj4eoBmN25y2wrgr3NkO3Xpb80GTEQC4s39ch+5DzVIrcbU17UPBGJyigicF4VzrKQPoY8WQPpGRKVFkRJRMVXSwysYjQqi1NP+AO0aiQO3Qo+ZYM3xudaywXPFNEV0zqVnfi5+syo+Rb3+H7kEy91ifiAUOcCnOQhWxeQPX2k13dqLHASitHC+B3ah0qD6XUoVS0suOlUidIIddLMQJtyW1VAZUACSYPshvaVzDvO0x8rWGfYzwvJA4C+jelgVgvp5dDr+2BZ6iUlWzaCl6VrKauu1BQSiCT5ulJJrnoNEmkVKKnxpuaK3sBVd0Y2kccDD1ZVCyAi7wCuBmqJx15XSXAWOP7Yc7jsY6cP/U0zA91NtnjOCMcfdy6XXT6KUdlcOG7HefvOg7xJceLDX7VPhRw3snnMDgcAwbvqdmPa7nWVBKcLVbLdPSRXtGMQVcyKpXtTD7OcFWkpxkAsdH+0Qnazy7CXBoTFhHZhSBnk6EtSyQguvuSWO+6e1UkzVaQRrSHVybC5eNtBMLan9hqVUNFttrDBBbZrwKck0UzIFwsWUroG282iFNLf2iFbzpGeRg5eO6Zwz83EccV4jh3c/UxSzTSpW5JKjlJnfB0jvUVbSVUSrNQG8R/cfcyTyZlkHpNq1YN9C+OPtwNuudJfvZ+uLOfInh4sr8DiQslGFP8aKexzVN6ZINGFqoGqkOfehmGijS9N+Eg2aJOMdU6qktm0JetN5Kqb4FzgahG5HPekPZohUofHqisJ7kO8Qj0e95hzZj2FTYmoBmrRYgx2HHXGrKew4XC5s8ZsDaiHiBwiIpeLyDUi8mUReX5Nm6eKyBf89u8i8qBh/anqu4FHABf67ZGq+p4RUwiVBC8WkQ+GbezEmRvJg1Jd6eit0rdkWqRxPuFRZ8UaHHFx9Jyp6eWYm3OXVr0anBYwJqhM7aAkUdVJ17rllhqM8JYZxjlZCg8jawddOlO9sHibiFEXdGgDK1vYR2Ypjh+34zzsFm/b2CNoNwNV8qWOk0QANU5CKpLmObdes5IXbtP+/Hu3WyLLDJLlGPFOJH0bpTVVimuTJDeM36sI3HFwQ63CDL9X1WehqJkiJamn5MUTvbrK/cbb25C7jfaFcZLuhPd+573/CA7YVuRz6mSwfSu66HOfq0LflqTt1BaidohkUE3B4r3l1BRLlqiiOdGGE1F9XxKJvVp/ftXQ8d5WDe9NHzhVVa/y5WKvFJFLKylFrgMeo6o/EpGdwAXAz9R1JiLHAJ9T1Q+KyG8CLxKRN6nqfw4Z/4xGs6zBXEgeQmJE0yQ5mXUZa7HK0BS7qmR7+nRuWsbsXnZG1qrvffrCWUa+YOrdAsM26vfySUgt4Rh5TDAm53ncYrbYME9btAub9K17oXs5ZqXvt9wvvhWD5AxgcrfZriFf6pBv7UbCAcSSsKZvyZZzsuUcs+wJR2XuH73sJfS3drBbOtjFLnaxW0SGN1FjhPtinNpE09gEU7MF1DAR8bnMbam2hntmiVv1HGIW2bp5JRquoRvFM4RfvMPnqvpVejmXfOYV469LAnPbiuu/m2G3LmC3LTr38eBCHj53TEGgw4LuDefBjbp0XeM5Fu+G7OlHAhCvqX+WxVYzDtiSCgsvEUwNOmZr0oXqDSFAT1VvBq7BFWRK2/y7qv7If/0UcPCILv8MuM1LJ38E/CcjjN+q+nHgq8B+frvG7xuLmRIPEXmhiKiIHJjsO01ErhWRr4nIjmmPeeIjX+3iB1pMDSc9+BVxa7HvYOfhL571FGaGlNiP2oAnicgVyfasoX2KHAo8BF+YaQieCVw04ve+N34/EfhjVX0TjigMG/PXgM8Avwr8GvBpEfmVEf1HzExtJSKHACcA/5XsOxJ4CnA/4C7AR0TkcFUdb8Xz7nlRBVBoY+qhrr5DyGibqjtKInBigJsoE+owslxndB93fOWYyF1ZCjVJU3VD4MTyvJxfyKuzyEbMPcEwQrHjIa+Mny+++syGkypgVmyJO4z1OPJyLiNXs8GW1RC2/iJcfsmLeewJr0Fynxsrz9xxWcHRFhOodwHVmralCnapikQHVZIDVQZTJwc1vtpkzeRHOWFE9cyQ3+NxRXuX5QmmZs1dcOops2fFvXv+3Ynq04G5CHSkeOfCO2tMEcSJKQzmJbdpL7bkuQuS9dmSo8osZCSQpBYINmbybWKDaIqg2WiAC1V1LFclItuB9+OSGt40pM1xOOLxsyO6ullETgN+E3i0z5I7qn7iS4GjVfVGP8YdgY/gMvKOxCxtHruAFwH/lOx7IvAeVV0GrhORa3ElEv9jZE9KIfaGUpxRiTy48IcypNLvD6bwTtJPlF7wFOMS29V5zoR+Ri3MabGfuv5iCc6KbrjJnFJUFzI/T8EAFaKywTA9G/XggXCYnlPzkBBNp6Yrq3c+/PlXj+zbes8sFrtu4coq98Ymi07d9azUHC8xFWlcj3jbmB18ftQYYn4V30csYhRuS0y+iLsvik+34+YabVIpcRvyXIXa9P6b+16Twjw9n8YQ8aoo41RW3SxmOAAwu51KdEANquoj/L3KLmH83JxtQQgWsoEx48c8j0lD42/hndUQaS5oV+oLdK0FTVRTTe1RIl0c4XiXql44pM0Dgb8EdqrqD0Z092TgN4Bnqup3ReRuwOtGtDeBcHj8gIYaqZkQDx8+/z+q+nkpc0t3xen0Aq6nov9L+ngWrnA7S93brdNMWwCc9KCXF18mkL7WKoVMC8cfd67jdlu0mBIStdTa+nEL4Ntwtoba6nOeAFwIPE1Vvz6my5uBN6lqLiKHA0cA7x7R/sMicnHS5smMVotFrBvxEJGP4PyHq3gpcDpwYt1hNftqb5GqXoDzOuB2W+8S2zg1RoXLcfMp7+vbspFOZGg0NoxQMQ2TOuoMnMPQRCoJv9d6+EzQdtQcrHUp55sSiBpOrlAdrnKxVo2xB+ILbEm4V1HlpvVlZEdAkgh67ZoYHyLBeAuFqqQyn4hUTZj2Ha6zem7ZJBJIVdWVPGMqiYG81GGSj0ySp1kBXD6ygeOGXG+teH/FY/25xXdgtVy5N5T3t3WLOYTzXsoGnsOB0rOq7j7mqWbaSwq5RVZytJMV9yZIGvHYivSRzCs+0z1iQbVJvcmGwjL++Wt2TY8BngZ8UUQ+5/edDtzNdaFvBV4B/BTwFr+O9VX1qCH9fQL4ORG5Pa5WxxU4gvDU+inqH4nIk3CqMAEuUNUPNJn4uhGPYTVzReQBwD2AIHUcDFwlIg/HSRqHJM0PBr4z0EmLDcFJD3r5oN55lUilEKiXRE58xKtgDbWzd973NC665tzSvuOPPWcq82/RooqxiREb0A5V/SQjTLO+ze8Av9N4Wqq3icgzgTer6msTolQ0Erk38NOq+m9eVXah3/9oEbmXqn5z3EAb7m2lql9U1Tup6qGqeiiOYDxUVb8LfBB4iogsisg9gMNwngDj+zWm4DbqEFxV87zwO/c6W+1mUXdL6Cdxm21s2K5KHRU3w6Fo0iYdY5h76LC2kyBxea7dl7j8lvZXtnG1nKvEJEA8tykrrlSq8UWLpG8Lo3k6hvf/Dxz0zvu8ZPi5eddVV0jLoJlxdpDUVpHaqPx4UScPpXuauu6msUXSC8XBKOvGo06/+G47BruY+Wh579IaHp/gYl69hBLS7ptCyklvYWryq3uuvI0wuGwP3MsJoantKHEYUCNoJ0MXMuyS2/ItHfItHexiB7vQQRc62KUOurRQ2uz2JXTLQsFMJDm9CMbyTqde6qiib11J3GrsyFow4tmfsau7iMgjcZLGv/h9WU27N+JUXFXc5n8bi00VJKiqXxaR9wJfwQXP/GEjTysov9yhv9Q/PL2hmTdoVnzc/SSKz8YQiyUPHVjKqoy6Puu+VxE4/BoVxkC7ujmMa9MEdXMYd+51fVSOk9A2Ici1CJ5t/SEBj3XHjfN48cdc9tH6DA3HP/bcaIx26e79Zeh5p4rEKC4hrUuVoTDhvPzz4uNsSmrRzNVdkRxQMLlL4KmdhAgkcw41uE3uVU9BlVU5L0TQWuM3hVqsct1E/bmt+ASGmXHXYFIJLc/BZiWVYHH/3R87xNakxhNR6y64+oqXJWcCEaSOOCQxIOryzBfelukcIqH3v6/0oTMd6rHZ6nkkOBmXjuQDfj29J3B5TbtDVfUL1Z2qeoV3GR6LmRMPL32k388G2twY+wB2POSVG2ZI33nf01y0OmCXFrzEmeS+atFiAgjDpeqizcbDB/h9PPn+LeB5NU2XRnSzpclYMyceU4Eq+KR3MXEaCccb/gZupU4aGYaqSmkY579Wvfq4MerarXWcYViFy+YkfQiF9DFAQFJVl7WVdCEJR5kaukeMt3Ddja790mL9ZNIuPDfsXGWzYg6V/mOsTZrGxj9XasRx8oGzrpUki6SGLso8J3XYSFVOaoJrrpaLJqmWi3yl/fvfgvQBhf5dLIW6KqSoz62rDz/hs3XRtc4DdMdDXonk1mWmDteq5r2J80kN6yaIG8X84k3JBE00LlEKTOvI41Vwomh01x88DxF/zv1x4kJDjMk04SY6naGaQETeqKoni8iH6kZW1SdUdn1WRH5XVf+i0s8zcSVtx2I+iIdQEI248IQftfIXZFidgfSBH6Y+GqYiGqVaaYp0jGmqpyad0yTtq4tE3dxriHRKQAIu+cwr2PGwVw621Up2VK1RUYxDP48ed2a5h+YGtRl2oVg0pa+uhKoIdqlLvjXNo+TH9XETimD8Q+YCTNWl4Ujuoe3gH7bhCOopscSAR4GyV1aqFk3VgeoJXvozZdVjWLC1WK/r++pbdGF1Kp2Lrz6TE445q4hFqUKVOuOxC9yrEsyg2nM2k1J1Tq+iDHaeSOy9S5cUKYcHxzLG3f8p2iLGx8VsqN7qnf7v6xu2Pxn4gIg8lYJYHAUsAL/UpIP5IB4t9mpE4/mU3Td23vOF0+2wRYuAUfnyAjaQdqjqlf7vx32UOKr6vRHt/xd4lI9av7/f/S+q+tGmY84H8fC+5kCs2UCnwhEHT6H0exWjOIk6yaKpuqbGU2fg92r/wySgcW1S19ph59NURTau7TAJpXrMEImpTvpIMwRX1QJpehKsDp43cNE3XsvOQ09x+0wGi4suTqBjsFu6sV/Jc2Q5dzyrj2LWjsAyyO4eWd/C1gXskreTeCO25M6qrh1D7tU0pmdLC4n6mARJNDK1KiZS7rtGWgvnnT62prqv0i6kORliSLcdAZuRdQz0jbvW/dxJZgOtm2Hnkacj25egW0P9m3L6wekgvAahqmM4377GWighZsNdU/8cpQElQW1VUfNhGqipG0KoFXDK2Fi1lQCvBJ6Dm54RkT7OXfdVw45T1cupN6iPxVwQj5DRU3LntVGXYkJy6t36mtow6hboSVRVdS581fmERTMlMk36riNo66HSWk3b9DrV2SjSPqseSsl6IDZZoJt6gy12sVsXXB8dV3b14s++kpMe/ArsUmfgfNQI/f2XkG2W7NYVsttWEOtekXypg1glu9VlkLXbFuh7tZZ2pJx7y8/L5d8KEY9SLH6ZlL2rEhfXePlqAutcsS5Kuiex5X6kDyJaUscNqLC6hny/JUzHYHb3QHvu2uaT2wN2HvYi6Ha8u7QW5xXooRHQosCXpOeZeJDFcgC5d/FNz1HDfxXCYQSNJW2JNheR4nqVrl8m5Yu3FjRyx91QtdXJuIDDo1X1OgDvafVnInKKqu6a9oBzQTzA6zTz3KebDuxK8aAodmjOpoHEh3UpsFVLSRIHfhvotMYOUF1Eq8Qi7a8qrVT7TcdMzzNZtEt2gSnqekuYhLjVnOOomiaA4xbz5Jjwd5T0ZbzyfbnHxT5osBpXIn0bFyLTKxbNoE+3Pv9VSJiZ3dZ3BtyOcXVibllGfIXKUL2SuEgNMimS1LRAfHxRYmAuJdkbck0KR4KU8BYceWxqXZkBu5CV4kCUYhzNhHzbAnax64jkcs9JIGtAKYpf/bX0DEBg6FTE5dWyWjLo28y4lB+5EhNNhtuNJmn0/WAmuf/iCHiQ7kzPlp6RkGdsmghlAUa22VDawW8BJ6jq98MOVf2Wr+lxCS6X4FQx05TsLVpsNIYFJ7YosPPI08e3uccL9m2bkjbcNg7dlHAEeLvHqKy6q8Z8SB5eGlVxQUUlCQIc5yNSm5cIKFcHHOZVJQLiXSyb2glGqZBCUFOdBDHK62sCCSKK7WnfE/ZRwgRqq7G5rSoqhVppIvY1ROIbck4XfavscLLjYa8seWypiI8e95x2qt6s6xunNlN8caOuewbC8ZLmZRIp0vtX51odX/PmasYREq9AwaUH7l5dyQGnvpUYSR+9s9RzzkbIty/C1gWyW/bEuZ/0wJfx4S8M1r0ZqOGhriJlkJ40Uelq5jMIV/JbKeLdcCtdhXdYC2kqqLmqQZRRLe3VeOnz5rywpJRpOHp1TS3CfMgzOTusrPK3VWM+iEeASQiBJH7g2IH0BsBQ1Q8wSIB8TyPLlNalR7dDtKwd8X7plT4H+h5hE6hBowe6qaF/3DFD0Cgpon/xSwSuOk6YkwHFFG1SY3lYVHT0mDossnjUXKsuw9Vrn9is6p+XBHW3LY1pKPU7fEq1KLnvaumcQjxKljPg4op4dY5X+/QP2ELnpuWhdVFSXHRdkQD2pAe+rBjPEiPi4/QksWlUbDbl43y7cDreA7rONhWvkaFUyjaqoFN3fJGBOa0dm87m8SARualmvzA6IHDVmC/i0aJFi6nhpAe9PNZI2Xnk6c4pJfz2gJcWuaKmuijvHdhsNg/VoVE264b5Ih6pWiAa3bQo8FRt7v8OcMrVtunvo25RNtifiA5nUCTznKJGg3wcv+6FzDwHXkklP3AOFckHGkgk49RadS631SaTLCIV5rZUIbFuThlFlbq6l7aBmkyrHDkjrhvE4lCu4eDcBo5NPKoitPi9pKYcxdyvNYHfMIO79Yr4iuNIakTv779IdutKVF+d+IhXIX0bp6NbFvwcU6+4uvxTUuL+JbEBxJxbVAzg6qQgayS6OUfvrChByMC1ST21Si7Tfg2oy++1ZoQ5jWyzqdRaU8dcEY9qWdAgAjvdbk37NVbMa7xYDmtnFLVSrDXT4B2q5xkcehqea1R7NHzwV123o2FfJXtNXPC1IGbRDdW12Xnk6Vz0lXPG9j103hVPr3jdKsStSjhihcDw3Pn5FrU+0hKwru+RFSiHzcn3tarF0B9Xx0hIyN5rnKeZMXlxHkD/gK0uDiaoGfu+umPo2piiimBiX0qjy0v2Bk8cwPNOseKnO9+QwEUzKb3XLtMwZXd8v7/kzRamHvqa9jq+nh6MewnmhnhoJvFFjX70gn8abenJLXGAozi89RLHS26l3k4zissd11eyIKitcGZhgW3IyYbFMp55XTxG2r3qVAnIwHwkOZ8a3XbarmqoPukBL3U5mzpmMGCsznaVSHGRiCY14gfOMyvaB8JhOxJjG6L+H2LQW3EC4piFGrvbqOuZ2jSGE0D/V5Njkv5H9a3BAB3jKQRdCmmHk/iUjinbFKoJJg2YREJUL03EuI5Rz6OWCYkziBenNkD80q9GsAMSZkJAprTgN1FbzSir7oZhfoiHJxbxbyrKQilHjiKOa6ozoo170ZKXt27hHKseSn6/5FOvKP204+gziy/pg5l6jYww8kekao9hXOowFZFJiBC1ts0B1KqAGqKR+qhmf3SMiKEyNQtYaOvrbsQxoeD8KyrCGMiHlBbqAU+9qtpKpHZBrKbtLh8T/xvoe/Ac/F9koE/3Q0JU0ufFJrc6ISYl1S6U6q2LHXyu1UC+mEVjexEbEwhZef4qUl5cpfSn1H6Ur0PpXKKqa1B60kCMIQYZOokmZAYIpz8lRqdVW80P8WjRImDHw14JTG2ZaNGiBq3aaj6IhzhVgVJwdiX7R1RhBc7Kcy9QSRPBINcnlMX/IZLGWlU3Jz7iVQOqopIqqg51uuu6udRJH+N0/kECGeZKnMwv/T7JdRhoX1EfDZWOUsR5mgHpQxe7TuoY5qY7ROqIkdvIUJVPyTAuiXHYTaZeJ17lzoc4RgzlxKNkUfRb1CNP+i0dr0UKE/8OhCJpzp7gf7K48mskz4+PD9GuiedrkjQs1RQiha0Hnyqoxr6iRfswp3HnG+wmGi554pKfvudKoX3Q5L0ttZsWrDaoYT7dITcb5oJ4qID1uYuc8bKyINlggHM62hAo5dQZrlmpjkCAVF66afCyiZH3xEe8qqS6GiqOV7/XGZYT7xfn209ZjdNE3TVsf50hX3W6DgeVGg1xSuMMkwmxc5X8kj6ywf7CuJJ8LvpK+ksISP24lNOmp8eSLI7JPFMVTEwbIqPve52RvpSCPRCqdN7x5MI8046T+QTGKhivDfFaB7uh+mSHpp/kFqte04Rxi2lWTIU5GEUkhqFk3ylfg9rmNSout19GP0OrgOhkKup5xPykJ/Evc7nug/8TgqPCC+65LtvxL4j3EglFZmIbkzyQXropbatdO5M5nvgIl/AyEJE02CwuTibZMnGLYjeLG6EOe7eyyke1dHJeMIQrrpFMSgtSUrM71HrvmDifoVvN3GvPp2NcHe+uKW+dIVtaa14ETF2bIEkwcK9i3fHK7+GeR6kg/T3Z0mcl1BMv9VPpz4Zys35uJM9duNdhTtVnoLQvnTthPuEaJM9yJEx+M8WzXkfs4lz9vYjnFJ6j9HGpY0TCu9YR7IIpxkofqUnW0iFM0tgI8VGM0ZA+V4XwDo3a5hxzIXlEOGaxDFv+rfArN8V+wr0uF94pXAwLdde4MWvjFcYgSCCXfMYRkKCzd/OsjucXh+Aa6ucuaZLF9PPAfKX+cwVpgsUBdRIkaVqkVq1Vdpsc8cIGQ3Dq6hkH8Zxn6oYZkKVzKMbRmlT89RX9Bs+p+M1zuyZR+SSIxus0gywVaSFIGqmjxriSt6McBUbFhaTj18UolSQRKQpGhX1aqUpoyuk/hnpreSlarJP8tVKvPKRMXxWqBCqqctPxk3HS46atoqqDaoN6HvNNQOZG8ojV0tLnxnOIxWa8xFB+6Qcw5OEr+6mPfzBSTnJgAa18DxIIwMVXnuk+VD11sgzbddXv7ILxfzOXUTQzfnNcOImUEDj1ga10bYbMNXLgUuJeA2da4qYTiSOVAEpSR0XySD2h1CScsl/MwgKsJplfOnbYjOd4OwXXO1JNUpEuS9IGyfjh2pjK/R+1QEXpxBRzXoda6QPPVzV4LiUcYV4wXMoM0kvSV0E4GHhfJLdc9rHTyxmD098nXTtHMTvhfkm4T0PG2QjCAZ542NHbfNOO2REPEXmuiHxNRL4sIq9N9p8mItf633ZM2Glp8YnEJIjtHcF2jVt4u8ZxS3FxGLUYJOJ+3RWrHJomp6vur/Y77GG/+MoznSoqy9CFjtv83AsiGM6vePkjsUgXcTO4wNeqflKki7tIJExxC/0lqp3aRT0zaCerWezL7rPUXP+q+2dQF9quqd3q+ijds9LzUFY9pdcgEo70WQr33zMh6fNSZ5cq5bpa61vWpMxGOsaw9qMWsypxSGp0pwTqsstP47LLTysFCLr2Sbp3f80uv7iSRHFgzJSRq/wtzXtQxVp3bzaMcIQ5jVVbzTf1mInaypc+fCLwQFVdFpE7+f1HAk8B7gfcBfiIiByuqmsrNNCiRYsW08QmK0M7C8zK5vEHwGtUdRlAVW/0+58IvMfvv05ErgUeDvzHagcaUF1EXW/hiiqK47JViuCnoBtOjinc/2p04VGvnHiINGU+fPsTH/lqP47n5kN51KqOvXSClNoIEu03he6+sNdUvYfi96quOFFxDKhzUqRZUBtCrD+/MfrpkJNIk+Cv+Dec7xi2InWSSF21S0bjYZ5oVYki2AqkRoqMUfDJ98kL89VjEsmlaS6zFHXn45Hu/+hlL4mfP/KJlybHSzF2IsEce9J5DcevkcirHmTVtquVMqZlh1ALdtzDN9/UY1bE43Dg50TkbGAP8EJV/SxwV+BTSbvr/b4BiMizgGcBLC4dMPKlr0WFiLh9uJKi/YRoDHQlAzrXNNFb6gqJN+hGg60ykUG9lmiUjMHJ/MPinhEnlxpBo9E/EJvq+6pS/7APIxqjEBbm6u7EASGmBA+nUnWxTsesLtimuI51yQ4jYrr2lPCXbRux/4HJ1p5YsX8YcTBDPm8ExhGO5Bqk+1LjeB1SolGHkj1n3HMyyaI/4nlcNaal2lIaVCdsiceqICIfAe5c89NL/bi3Bx4BHA2819fbrbuztXdAVS8ALgDY73YHezFidZ4WpSyfRtCuOL/2UhvXr3juszopDf8NOPV4zlmJRGRY7EDJpz/EPSQuwQMLpV8MSp4yUllYg8dMlDwS76RKHe1QvrdUZ7p0koOeaKGvUrOGt6DWAD3AhZaJRjG+lvfZ4rwHLm9KhGD8Oz1k/i4/k9bOZ69B5dxqPbQSjCMcj3v02URDe1bDNKx2sa5j7uq+T2Os1aCJO+580471Ix6q+rhhv4nIHwAXqqoCnxERCxyIkzQOSZoeDHyn8aBreHjKxlmcAbZ2Aa071i9atrKoarFYi3cDduquuk6SRdITg2qeLqBkxCxFvAfNQcd4gSchNCYlBoOqHzd8IgVYX2e65pzrPGjGejXBwMtWip8JfTS9f3VFt+qgNOCERxxeM5/18JpaFSZUia0mwnoc4Yh9G3HOJ0Mi5jcEGz3uPhLLMQqzUlv9I/BY4GMicjiwAHwf+CDwdyJyPs5gfhjwmXWbxVDx3nNQOpjKWUUS1VTY5/8LdCEk3AvEJBARcQ3EVlREUiEoCUGwldQaksShpKlDimjnmvNJM8JKeX/t6dddlwHPsWSu4XPd5ZTkQ2ynZZvDsHlXUZ3varyKGo5Vu9iuh6Sx1todYzCWaFRtNR4TEY7uGgjHKNVU08V5FgTLWsjH2TymZfTanJgV8fgr4K9E5Eu4+rpP91LIl0XkvcBXcJl2/nBdPa1GuQWOFI8Hue2CdkhM5yGxXocnHBo47jqDe5AIiFJHHZc7mBa82qA8T7wzwFCM05OnNpwQTBZgpKxKI5Fwqqq29LjqHFeBkRmN12MtWa8FfpRhfdSYQxZ9qHlGxs19lYTjcY85x7trN2o+Gae+mQkHtGorZkQ8VHUF+M0hv50NnL2xMxqYRPFxDc+mijgCkr5d1hlY1Oig8boSjbzmZG6x/8F+gppt1Nxdw9JRxUdTtEsTOApDkh2SqsaGzGcISvYbiOkyyunpR5zDBGPF4zbSnjFsrBDdbTXmmGp87DjU3PumRKMW1Wu9FpXOZrFrjEOrtmpRwqQiM1XjcfJZBxewQExcZl+iCgeKhdim3Nx6Pp/pwp4Uo2q6eNZxuAPFqMZgbCBlijopqc4APAYlgrdR6qnVwF/POMW6AlZhf3XOw/bVYE1EY9S1GnYvJnIj3kTEIoFai7Zqqxa1aEhERqZgqCEAqTQykOLdJNx5E2PvKjCK6x7mRTSRBGTK7cdJFKmaayjRspW2FMesdp5D224CwpHOzah1zg1Jjqk6B4pSDqrQT0U1uiYiUTvP9EvlWQ6xGuHzvKENEmyJx1ikL0ENxqm1pIYIKBV1lucSB+twTDzbEfNYXWdNOflRvw2vmV3jWj0syeIwz7dprktNbAMbQFyCm3h0zsgoVeWrlj+97KOnrf+kKjjhZ8+GToXRqRKLUTbFptioRIcTYzreViJyCPA3uLAGC1ygqm+qtDkCeDvwUOClqvr6NQ88BbTEowlWocqKqqjgqltRbcUF1y8OtV3UjFfl6ie1iwyVCtYibTSBpaj1UBqoED0Gomdqml92+Wkcf9y5g23WMt2mBGFaOaqG9FMEp/o/PmYlEIsqkTjhZ2drGpzIUy49Zh4ISCNvq0bn2QdOVdWrRGQ/4EoRuVRVv5K0+SHwPOAXVzfZ9UFLPCZB+gBPGP1aikIvHUNpkRwnIUxTghgmFYwiHE1tFGm7yCnL4AJ4/LHn+I6cdHHZx04fOnbAZZcXfURCogwa65vMeZhdYD0kjBGGcdO3Jc69Kl1c+smXDhxWt28jcMIxZ3n33IIBEhIpPCz2o9K+7OXGZrWK2jE2jQbnqKo3ADf4zzeLyDW4rBpfSdrcCNwoIj+/hilPHfs28RjH0WywYW+1hKHcCWV1TtUraQiaSBqph5ZYzxUPCXiE8iI/DE2IRSAwdW1LhOTYcxDKsTl1+cBEtQiSHPb+rycR8f0H1Z3xEsesiMFqIEGTaJ0TCDmIARtL0ZafC7GVmiGbTZKYFI1cdRXgSSLyl8neC3x2jAGIyKHAQ4BPT2eS64t9l3ik8RyNFs5VuO0OS+dRJ7SkD+Ior5p0n6Ve5VU3z8oiWfU2CsGHoyQJyStGwgEDdsFRNiEK00Z1zBOOOQsBLv23lzkJJeXsdXQZ3YH68U2IyCibSGrQVmJK8yBhXPpvL2swwCZBuIxBbZoa7YXx1f5miWlJPNrAYO5woaq+YlwjEdkOvB84WVVvWuv0NgLzQzzWohetHjtk0R/mWVV1uR3Vx8RG8DrOONk3zu4RF/0h40fJIS++16qzom1BGkkU08RqCVG6IFfnfPxx57pzzWTgeoJTrx3/2HNpjBFeTwBpEstg+yllpt2LcOm/v8xJg1Y9sSi85Jx0KqSBtKLJX61IIOuNdVKPqbUoo20e2oy4ICJdHOF4l6peuPbZbQzmh3jAxASkFKQ3bLGHsQt+bD+UuiQLSkPX73EutaJaqlVdHSslGLPwxtnsqCOAxx97Tn1BKRh730r3K3xM0ttECWMvUk2NQpWgH//YcwdcrdP3K8067T7rQH6zSd3iRxKhmtRCU4Uq4+M4xk9ARAR4G3CNqp4/jaltFOaGeKxOreSPZcixVS697uFOVBVjs+U2qbUQ7BXDmoT3rCTllMdI+28JR3MMSDiJ7WiUhJeqo9zfZOEK6i+z90oaTRAkNbXeDb3k1Zc09M+2Y3Cc1FLySBzLqBV9D31vU1THnhJU7VjJQptJPccATwO+KCKf8/tOB+7m+3iriNwZuALYH7AicjJw5KzVW/NBPEpqoQbUPnlIYwzBMBfWBgt+0ItHFVBikwjpJVyDwrVxqKoptWHUBcelhCJ35Cq8nB/5+MbbGeYZl11eqK7iglUlFAFDJNd5JhhVXPbR05z0VlnR62qphyBZsRWWq2IbCj+W1Iip41aw1VUlxvT9jrumRj0+caP+N3fiLkMb5NrnZn4E8PVRHanqJxlD1lT1u7gM45sK0pA6bmrst//BetQjnwuM5kSqtoexXkgjCEdYTOqidoNxVrRQVwzUSa8+69Xo7tSrqTL+LIzRLRiwgaRS3fHHnlMmGvswIT/+uHPLz7qpISA1qtwqYW5qW3vs8a8p5VqLfVW1Sr7N5R857UpVParZ2QxCROT23NEewUPYJvvXtvlP/RogfF0/v5e7lQ3HXBCP/fc/WI/6mec0DmwbpUYamqnVYxI10I6jz4wGWe0YtFP0XVtSFkcYYuxDsq9Fi70NpWDOirRdTU0D01WxpoQ+9PvY418DwOUfXRvxAHiYPEa/w3XcX35m4Ldc+3yWy7mFn2xT1dvWMs5mxvwQj6OfM7lPfgPJAqafE6hFi30JKRFJMwRstNdegIismXiMkj72BakD5oR4HHXUUbr/7X6lcfuWGLRose9iGsQD6qWPfUXqgHkxmNMShBYtWmwsruIT5vbc0d6qN0Xp43q+yUHcna/r5+eacMCmSEDdokWLvRk7HvZKdjzslbOexoZDVfUe3JfruAZwUscN/Bff4AvbZjy1DcHcSB4tWrSYDS6+8sxZT2FmSKWP73PDPiN1QEs8WrRo0WLVUFV9mDyGa/kSu7mVW/jJPiF1QKu2atGiRYs14So+Yfr0OIi7M+9G8hRz4W0lIt8D/nPW86jgQOD7s55EBe2cmmMzzqudUzOMm9PdVfWOGzWZecVcEI/NCBG5YhrugNNEO6fm2IzzaufUDJtxTvOIVm3VokWLFi0mRks8WrRo0aLFxGiJx/qhttTkjNHOqTk247zaOTXDZpzT3KG1ebRo0aJFi4nRSh4tWrRo0WJitMSjRYsWLVpMjJZ4TAki8m0R+aKIfE5ErvD77iAil4rIN/zf26/zHP5KRG4UkS8l+4bOQUROE5FrReRrIrJjA+d0hoj8j79WnxORx2/wnA4RkctF5BoR+bKIPN/vn9m1GjGnmV0rEVkSkc+IyOf9nM70+2d5nYbNaabP1D4JVW23KWzAt4EDK/teC7zEf34JcN46z+HRwEOBL42bA3Ak8HlgEbgH8E0g26A5nQG8sKbtRs3pIOCh/vN+uFKhR87yWo2Y08yuFa5M03b/uQt8GnjEjK/TsDnN9JnaF7dW8lhfPBF4h//8DuAX13MwVf0E8MOGc3gi8B5VXVbV64BrgYdv0JyGYaPmdIOqXuU/3wxcA9yVGV6rEXMaho2Yk6rqLf5r12/KbK/TsDkNw4Y8U/siWuIxPShwiYhcKSLP8vt+WlVvALc4AHeawbyGzeGuwH8n7a5n9GI1bTxHRL7g1VpB7bHhcxKRQ4GH4DjYTXGtKnOCGV4rEclE5HPAjcClqjrz6zRkTrBJnql9BS3xmB6OUdWHAjuBPxSRR896QmNQVyJzo/y2/wy4F/Bg4AbgDbOYk4hsB94PnKyqN41qWrNvXeZVM6eZXitVzVX1wcDBwMNF5P4jms9yTpvimdqX0BKPKUFVv+P/3gh8ACca/6+IHATg/944g6kNm8P1wCFJu4OB72zEhFT1f/0CYIG/oFAjbNicRKSLW6TfpaoX+t0zvVZ1c9oM18rP48fAx4CT2CTPVDqnzXKd9iW0xGMKEJFtIrJf+AycCHwJ+CDwdN/s6cA/zWB6w+bwQeApIrIoIvcADgM+sxETCguPxy/hrtWGzUlEBHgbcI2qnp/8NLNrNWxOs7xWInJHETnAf94CPA74KrO9TrVzmvUztU9i1hb7ediAe+I8Oj4PfBl4qd//U8BlwDf83zus8zzejRPZeziO65mj5gC8FOd98jVg5wbO6Z3AF4Ev4F7ugzZ4Tj+LU118Afic3x4/y2s1Yk4zu1bAA4Gr/dhfAl4x7rme4Zxm+kzti1ubnqRFixYtWkyMVm3VokWLFi0mRks8WrRo0aLFxGiJR4sWLVq0mBgt8WjRokWLFhOjJR4tWrRo0WJitMSjRYsWLVpMjJZ4tGjRokWLidESjxZzBxE52ifIW/LR/18ek5OpRYsWE6INEmwxlxCRs4AlYAtwvaqeO+MptWgxV2iJR4u5hIgsAJ8F9gCPUtV8xlNq0WKu0KqtWswr7gBsx1XlW5rxXFq0mDu0kkeLuYSIfBB4D6706EGq+pwZT6lFi7lCZ9YTaNFi2hCR3wL6qvp3IpIB/y4ij1XVj856bi1azAtayaNFixYtWkyM1ubRokWLFi0mRks8WrRo0aLFxGiJR4sWLVq0mBgt8WjRokWLFhOjJR4tWrRo0WJitMSjRYsWLVpMjJZ4tGjRokWLifH/AZ+2L8W2Lyu0AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC5Y0lEQVR4nOy9ebztVln//35Wkn3OPbe3LaWFDrS0BQqCAkJRmUEoUBURFFER+SJQAVEo8yCIIIIFQcQBK+gXEEWB8gP8ylBmEUEoApUZ2gKlLUMLHe695+wk6/n9sYasZGcP59x9hnu7P+eV19k7WUlWspP1Wc8sqsoCCyywwAILzANmuzuwwAILLLDAoYMFqSywwAILLDA3LEhlgQUWWGCBuWFBKgsssMACC8wNC1JZYIEFFlhgbliQygILLLDAAnPDglQWWGCBBRaYGxakssCGISK/ISKfFpHrRORyEXm3iNxNRF4gIioiD03a5n7dyf77/xWRod/3KhE5X0RulbT/P779Kzrn/CW//v9O6NeHRWTVHzss70q2P0dELvbrLxWRf+nsqyJyu84x/z+//l7++yNF5AIRucYf4xwRySf06cdF5L0i8gMRWQSHLXDIYkEqC2wIIvIU4M+BPwFuDJwE/DXwIN/kKuCFIpJNOMw5qnoYcALwHeB1ne3fAB7WGax/C/jqDF18oqoeliwP9P1+JPAI4L7+3KcDH+js+1V/nnCtNwR+Bvh+0mYFeDJwNPDTwH2Ap03oTwn8K/DoGfq+wAIHLRakssC6ISJHAC8EfldVz1PVvapaquq7VPXpvtl7gCHwm9OOp6r7cQPu7TubrgAuBO7vz3sUcBfgnQfQ/TsB71XVb/hzX6Gq53bavAlHZoEQfx14O+56Qp//RlX/Q1WHqvodv89dx51UVb+iqq8DvnAAfV9ggR2PBakssBHcGVjGDbTjoMDzgD8UkWLSwURkN27g/nrP5jfQSA2/BrwDWFtvhxN8AvgtEXm6iJw+RpK6DPgicD///bd8PybhHiwIY4EFFqSywIZwQ+AHqlpNaqSq78SpjB4zpsnTRORHwLXA3XBqqS7eDtzLS0ezDO4BfyEiP0qWF/k+/SPwezjp5yPA90TkWT37vwFHPrcEjlTV/xp3IhF5FE6N9vIZ+7bAAocsFqSywEZwJXD0JMN0gj8AnouTbLp4uaoeCZwM7Adu2W3gVWP/zx/naFX9z3S7iLwmMcY/J9n0+6p6ZLI8Lznmm1T1vsCRwONwtp/7d059HvCzOAJ647iLE5FfAl4KnKmqP/DrHp706d3j9l1ggUMRC1JZYCP4L2AV+KVpDVX1fJxa6wkT2nwLeBLwKhHZ1dPkDcBT6RncVfVxiTH+T2brfty3VNW3AJ8HfryzbR/wbuDxfecFEJEHAH8HPFBVL0z2fVPSpzPX06cFFjjYMctMc4EFWlDVq0Xk+cBfiUgFvA/n3XRf4N7Avs4uz8XZQiYd83wRuQw4C3hVZ/NHgDOA/znQvovI/8Gp5D4K7MWpwW4DfLKn+XOA16rqJT3H+Vmccf7BqvrfM5xXgCVg4L8vA6qqB2IfWmCBHYeFpLLAhqCqrwCeglNLfR/4NvBE4P/rafufwNSBF3gZ8AwRWersr6r6AVW9ah1d/MtOnMoFfv01OLL4FvAj4Bzg8ar6sZ5+X9a33uN5wBHAv8+o6ropTsUXjPn7ga+s43oWWOCggCyKdC2wwAILLDAvLCSVBRZYYIEF5oYFqSywwAILLDA3LEhlgQUWWGCBuWFBKgsssMACC8wNh4RL8dFHH60nn3zydndjgQ3iqxdctN1d4LQ7nrrdXbjeYDt+7/T3veCCC36gqsfM8/iPe+SReq+77uLXzrpc5nncgxGHhPfX6aefrp/+9Ke3uxsLbABnmIdOb7SFON++Zbu7cL3FZjwLfb+niFygqqfP6xwictu73mn5c/tXlc9cuFZMS190qOOQkFQWOMQhiZZW7aaeKgxsC3LZenTv+U6bcIzDQ37+sM+d/TtH8q737eVJZx1ZAtdraWVBKgss0IPWgCaG8+t/Gd94gU1BH7HPSjRbNSkQkdve714r3OVOu7jFKQU/9xuX8cjfk/z6LK0sSGWBgwtiNl1a6cMZ2cMWxLIDkJLFOILZSikzSCkAxxydc997rlzvpZWFTWWBbcWkmWcYHM4wD22rwGBriSU594JYZsOZJ58N4sfV5SXe/aWXbMp5pkkum2lT8VLK5979zyfEdd//QcWZv34Z//O/11/byoJUFjgocUb2sJmI5Xz7lgPTzS8IZV0485SnuA+qMBhA5u6f5ob3XPjiTTnneollXqTyy7+wR8/+nSO5y53aibWf9cc/4MdvNeC3nnjF9VJaWcSpLHBQ4vz6X9xg0ZVgAsSAGKe2Cu3CMiuStmKul+PDxiAGigItcjQ3aL69w8wZ5qFzN/qLyG2v22tHCAXgqY87kj//2x8xY72hQw7Xy4te4NBBkB7OyB42sk2M8L7yzaM7BbIYJ+l0iGfscRYYRZ47tVdmIJNGBbYJ2E7vsNSW0kWwrTz5d66ftpVDQv11uBylPy33WbiBLgDA/YpfG0sC9yt+DbWzPfMLddfGcOatn4OKQCKhvOdzL5r7eTZKKu/Xtx6Q+qvPltLF9dm2spBUFjjkMEmqWEgcmw8d5I5UPN77P38093NscwzLLz3q1w+f2OCYo3NudYsB//O/a7cBPrc13doZWJDKAgssMDfc//QXOLVXwCaov3ZAUKQsL02/ruVlgeuh+mtBKgsssMB8kUopn37B9vVjE1FrTTlFq2W3IZ5qJ+CQ8P467Y6nLuwpCyywA7BtJJJ69/V5+a3X828KLGDRicssljsROVFEPiQiXxKRL4jIk3raPEhEPi8inxWRT4vI3ZJtl4jIhWHb3C7wALCtpCIiR4rIW0Xky/6m3llEjhKR80Xka/7/DbazjwsssMD68N5Pv8BJK1uk+pIsc4uR9hLWp9uybC79UOzUP2aiFSrgqar6Y8DPAL8rIrfutPkAcDtVvT3w28BrO9vvraq3n2eSzAPBdqu/XgW8R1V/RUQGwArwHOADqvpSEXkW8CzgmdvZyQUWWGB9eO+n/nBuxxrrsdcnjYzDnFVRFUo55Zh2BlJR1cuBy/3na0XkS8AJwBeTNtclu+xmRrbaLmybpCIihwP3AF4HoKpDVf0R8CDg9b7Z64Ff2o7+LbDAAjsHQeI4376F8+1bMIMBpsid5DGjWut95Zvn5v1nUeopix/5H+JVVmE5a+w1ipwM/CTwyZ5tDxaRLwP/DyetBCjwPhG5YNKxtxLbKamcCnwf+AcRuR1wAfAk4MaevVHVy0XkRn07+xt4FsBJJ520NT1eYIEFpuLM434XgHdf/ldzOV4fEbx39U3x8/2XH97aFqQaMdJIOGK4//LDW/sdCJTpkojfep6qPn/a8UTkMOBtwJNV9ZqRY6m+HXi7iNwDeBFwX7/prqp6mR8nzxeRL6vqR9dxKXPHdpJKDtwB+D1V/aSIvAqn6poJqnoucC643F+b08UFFlhgVpx548e3bCkPOMJPqFV5zzX/MPNxHnDUY6Gu0boG4L3XvX5i+/euvon773qEP5dtpdTppte5/+7fmrkfk1CrUk4JHLczBpaLSIEjlDep6nmT2qrqR0XkZiJytKr+QFUv8+u/JyJvB34K2FZS2U5D/aXApaoaRL234kjmuyJyHID//71t6t8CCyywTuiwRFfX0H37XVLJdWTseMDRZ3HmMY8bWX/mSU+euu9797/RpYYZ5/WV500KmTlgmuqrnt37S3AmgC+p6ivGtLm5b4eI3AEYAFeKyG4R2ePX7wbuB/zvXC7wALBtkoqqXiEi3xaRW6rqV4D74IxTXwQeCbzU/3/HdvVxgQX6cNfzn0lmLAbFIlh1A9XH7nvONvds+/CAo70630sXXTJ5wOGP6pVW7lf8GmZlBYyJGY2lyGHXMmJMiwTOvPHj3Yc+YlDlvde93kkiNiGWIKmo8t69b/C7v2EDV9iGVainsMaMdHpX4BHAhSLyWb/uOcBJAKr6GuCXgd8SkRLYDzxMVVVEboxTiYEby/9JVd+zzkuZO7bb++v3gDd5z6+LgEfhpKd/FZFHA98Ctj18doEFAu7xgaczTsC/xweefv0lmBnzqXUhg4EjFBFEjCOBDpkAnHnsE8YcQMA6L6wHHPXYSBzhO8B7rvq7DfVtEpxNZXqbqcdR/RhTou5V9U+BP+1ZfxFwuxlOs6XYVlJR1c8Cfb7V99nirixwkOPB/+mMw8PaxSH8v3v8xaadazkvWclLBllNZQ2rdc7+qti08x0qeMARv817rv771nfxNVcioQQySUmlLNsHClKQMeDjTnRtCDhp5t3f/Ru/ffMypNQqlDr5+NfPePrtl1QWWOCA8MD/+D2sCgMf05Ybi1Xhgf/xewC86+6vnuv5jlu5lhsM9rIrKymkptSMNZtz5dph7KsK9lUFpc249wefyod+9s/meu6DAsY4yWGM7aJLLC1CCSSRBk5a69aHz+EcIq4IWJ65YwD6/SvR1bV46Pf84NxNuECHGqGektZLr39pv4AFqSxwkOE+H3oKK3nJ0GYYUXL/3uZiMaJYFVbr+T/WZ3z4bHJjOXFlP4fnqyyZKpJKITX7cyepWG1sLGd8+GzOv9cr596XHQ/Tox60zbz9AUf8tmuTthNpCCULJKJtgglkEiSa5QGaCViQq6+Nh7r/7t9qqcE2AxZmIJXrJxakssBBiaOW9pGLJTc1Vg2FcQbiWoXcFAxtjlWJajGAt991Y3ET9/7gU8kNrOQlN166hj3ZKoW48zlSKVjLczJRjFgqNZFYri94z1V/52wYqYSSqp9ERj3BUjuKCBR5VGcBjZ0mbA+LP2515AriySq76kdQW7SuN51QAGoMpU52nr2+PQMBh0RCyQWuH7jb+5/BkUurHLfrGo4e7OWowV4Oz1fZna8xMBUDU7FkKgamZmDmUxfp/h95MgDLWcUNBvtYydZYMiVLpqQQJ61kXkoyKLlYBqYmN5bc2KiGu94jtZdAIn14tVdw+Q0qsOANlplGqskMmmexRLEWBruU875PPD9ul+WlLbkci1BjJi4Lm8oCC+xw7BmscbvDL2VPtooRy5otWLUFazanVDfDtRgKsZRqyMUytHmUHNYrtdz7g09lkMFJh/2IY5au4wb5Xo7K9kYpZZUCFIxYMlFyU5OrYTmrGNoszlQf9LEn8o67/eUm3JGdhSitjINxqqogaUiWQVE4CaUo0KXOcBRGZUOUUnSQo5lgBxktQSDLkDxHq60pspiqOcfj+impLEhlgS3Hrc57IUsD59Fzo8Oum8nu8PBPPpaVvOCo/DpWjPP0yZK5oFFnT6lRyMBYQxVUKTZnqO3stIFguuRyt/c/gz2DYOzNWcnLSCiHebVXJpY6UX3Y5LNTgSm5sQxrZ/cB+OWPP4G33eWvZ7g7hzhMx3XYEwp51nYlVm30KH6dZoItMrQwqBHUCNlqxQNu9zwXOZ9lyBaVR1/YVMZjQSoLbAsGWc2Ru/YD0wfcB//n77KSw633XM6ebJWjsuuiZLJsSoaas2YLaoRSM66rljHGbTdoNOBbZCRg8cH/+bu8/a5/xb0+8DR2FSXg1CdHL+1lz2GrHJ6vcuPiGpZMyUCqSCjWn6vUjFoNdTJrzU0NFqyfkTuHAsuvf+Is/vlnNs8jaScgjQmJAZHgiCQgS1RcgwE6yCBzaq0+rzEVAQNqDHY5w+YGNZCtOolRc4PkubPBzCm1/TTUmlHq5OHTXk+tC9fPq15gWzEoKgZ5zUpecvhgbfoOwJ58laPyvRyTX0MmlkJqlo1z610WZ+NYlpJlqTgi308htZcYaow4icaMmTue+dGmLtKNV67jRsvXcfTSddyw2MsR+b5IKAaNhDJUp3KrcWQVYFBPZN7O4iWV0Idf/8SOSCS7M9AlEBE080uwm4QlM2jutxmcpFKEbZ6glpd497f+fEu6br1L8aTl+mpTWZDKAluOzz/whRTGDfqH5Wsclq/x0I8/vrftQz/+eG64tJeb7rqSo/LrKHAkMpCKZRmyLM5gPvBG80KcTn3JVGSiZAmRWIRKDatVTmUNlTXs80GLx+zay4krP+Imu37IjZeu4Qb5PvZkq6yYYVSzBekkEIpVg1XjiMZLKoFggnQSSCbF9YZYZomyV3W6pKC2EkFNo96KZJL7ddELDGxusAODDjKqGx3Ou786EnS+abCIl1DHL3o99f5aqL8W2BZYhMMLF+8BUGWGh3/ysbzppxv1SSCanzn8G5xYXMmRZn+MDRmSURtDpopRy1rtyKH286RlU/LDagWAQiyHFatYNVRqMFJgUAZZxXHL13BYtuolncoZ3T2JBCmjpiGOMpFQSu8gEJ0EOoOIk1ZoHauv3SGLSRHtIUCyLJ0dxGaocUGM5MaruBoCARopRYJ9BeqljHJ3Rram3OvMc/jwu5+xFVdGhaFksqrNXk8N9QtJZYFtwUfv8zIADi9WnQ1iDG6y8kNOLK7kmOw69pghy16tBbSM5UtSsmLW2G3WOMx7h1kVjFh252vsyppUH4cX+zlm+VpOWP4Rxw5+xNH5tRyR7WdPtp/dZo1lU8ZzOCLJnKeZFqymUkpim7FTYhYCgo3nEZ98zPpu2EGI3oj2lGhUobZQVVDVSF07stEm6NFJK36RNsm0Ylc87vGLL9vci/KwU6SUWs0ion6BBbYaRiyldRJALpar1la48/tcSZ1jd1/L4cWQk5d/wFHZPvaYigxlVU2UJDKx2OR71zC6KysjKSyZiqWBU4ntMkOWfazJkdk+DEomjQY8kJXzJjORRIJ0Emagpc1cPIJ6Hbo32AeysWqiLQUam07435XMDkXItKqMgViokMrFqWjmpRFPKFFSEbe4mBdaLsWaC1spACoy1RC/IJUFFthCPOy/HseNloYYUW5Y7OU6U/GNa25IZiy7iyHHLF3H7fd8i1sMruBI70JcqrCaqJsKvHuvH7jcAG/Ya5cYZBXL0kgnwagPxP8p6pZqy7DPDrBqWh5egWTAxyngSUSFymaeTEwkFPc/8wZ7d07jo+6tGgx66BPLOBWYajtHWG3dYq1ThxlxRGGcyivuliWEkpBNPZAt9eGt1Iy4qXdxvVFzdrBQf60T9orTtrsLBz1c+njn579iHLEsmYpbH/ldbn3kdwG4+cr3OKH4IUdm+7HaEMqqupiT7iyxkJqBN9Qvm5IlKdmTrXJEto+j8r0cke1jxayxx+z3kfAVGdaTScaaOvVWUHWVmrHqgytDgOWaFlSaUXmiKa2hsu6zRSh9wGMkFFKppRlgMlEKU1PNqDI7JNH1/OqQj4p4acVvS6QWRyg+diWVYoxb7vrQzU/kaf0EZtKykFQW6EUfidgrTsMc+9Vt6M3BiXAP03tWqeHacplC6pjxN+D4las5rvghR5p9DKgZ+jxLpWasatGop0KqDP/dYEEMBRWFf58bVVmwwzQ2kBrDmhYM1eUJW9UiqrnWbBHVW2s+j1jYL6BO1FyBUKqUUMKI1zO2GLRl5zlUEdLQ99ZDCcGOaU6v1K04kEkqqXhCGSsEeLK5y686Yvn4vz51jlfTIDx7k7AIflxgXVgQy2wYJ9ntqwpWK2efOHrgYkJOWfk+AGu24PBslUIqaoRVHxFfkrHXtnM7dSWWWqUVaZ+SSRgEgporSCPp9xCHsmqdVFJ71VbNaFqOYKwvbdaQiV9XWTPaVkbdi683EOHdl7vsBWce97ut9fho+BiTYlxwY5BKWrc9EEp3fThWB3f51T/bFGKxKq2A1z4sJJUFWphFzbUglskYdw9Xy4KyzlAV9lUFu7KSE5Z+xJIpWbOFT4dSxYjloJYaas6qNsWwMmy0o/TBiI0lX8OxAnkE6WSfXYrrUsO7M867/8FeArQGklTNNawbA35lr39ZiifhzJPPBmM488QntQtsBULJc08qOZqmYfEuxClZpLaUFjqEItqQzmZILbWa6RH119Nn4JAllXRAWwz8W49JpHzVNSsxMOxnTr6E3T7z7x6zyh6zSiaWvXaJvT5lSjSgqxlDKt34kFFpoOXBpVn04goSSWmDmitIMyaSRpV87sYeBHtJajcZibDv9CdE3Nspht6DCfe5158AID7g8f0ffS4AZ576NNcgyxpX4Txv6qYsL3kiyah3D7BFhh0Y7MCrv6BFIl2pZRza7Q706kYR7GWTsJBUDiEsjOnbi2n3/+u/+gcA/PxHfx+AwnjX4MT9dp9diraS4JEVgg+7ifz6JJXgYRUQXH67EknIcFzZrGU7CUb0EDAZSKOr1op9aMWsNFH1aZqWJn2LT+GyRckPNxv3+dmXjKw7424v5vyPOWLB5+5qje7GVWwMhKKDPBJK8PpKvbtamJVMNhE2seWN7cvWdGXH4ZAjlc0ilCDtLAirH+u5L02NEWF3NmRJyihBQFAtZIn7rmniQGI8SMdm0TMrbGcS9iotjI+Nccca2jzaTUJhry5BVNb0enGN3INknxg8KW2CCVmMMxQrB292qHudeQ5Sh7gbGu8tJa6/351fRGYErGlLC7F0cEMqtjDYwrkR2wx6x+veZJPj+xjUXXd52Py9wcIzOgmzBsQeath2UhGRDPg08B1V/QUROQr4F+Bk4BLgV1X1h7Mca9zAthHbx7j2C1XaxhDu28P+63GAU2Gt5CW7MheDsmYLrmUXQItgwosZDOhpYGLIPuz2aRNIiCEJSI3twQAfpJDKe24No0twm1iCjaSby0k6aq10e62CyRqPNoNzI86ljskua3vwqUfu9YA/HRncbd7ce6MuIt6UaT15bfaR4NFlIBNHKIOsKbqV0aRn6cGsJUw+/i+N/ST9PC8cbN5fIvIQ4E+BG+HukgCqqofP+1zbTirAk4AvAeHingV8QFVfKiLP8t+feaAnWRjVtxcP/fjj4+x9OatYzkqWsorCOLvIqu24CifkAbSCDiP8W5sSSGpkr5KZZCCRro3EkUq6vpFIAklUPckBRbQ1aqQEF75DY1PJTe2IRSyF8W7OO2rYWT9c6pTmu2ggVoPWitlXoks5UmtMX+9IxbjvodhWbpykkjXH3Ok27uDpNwk7zKZyDvBAVf3SZp9oW0lFRG4C/DzwYuApfvWDgHv5z68HPswMpLLw1to+rEf1tZyVGLGt2BSrwprmlNKQQJA2gBZh9J4/qsUckax5T6z0xU+lj3RJiaRO1FyaqLrSz4EsRqSUzvdUsRXUXiENv8HZVOpJCRd3IO75c+d499924KGb87rFqiBeyhCrUBm08ncja+JQQl4vW2RO5ZU3sSkjHl7prR233m/bKo1TnWR2GIcdllDyu1tBKLD9ksqfA88A9iTrbqyqlwOo6uUicqO+HUXkLOAsgJNOOolQXGka+gbABdFsPt5yl7/hUZ96FEumwoi6NPWmnbOrTNRBKSEEw3w3ADEY451k06RKWa2LEaN6IA9ou/xqQja1bSSSoJqytNVewZlAOuoZFY1EY5L/IQV+UHsVxkb118GQz+KeD3xZJA8BtJDeAEQnpSjGSymIAc0wmYFCmwNIEtgoRMN8UHuFqPh4XMt4761tHLNnq/y4o0jl0yLyL8D/B8QiRqp63rxPtG2kIiK/AHxPVS8QkXutd39VPRc4F+D0009XuGa+HVxg7gjSSWMnGXXPdf9NK9iwigb8NqmEfVywYRY/r1Z5VGsFpFJI3fHgCpJI3ZFMgnNWIBURBWOi6isNZHRVJWkRSygrnBbsyqV2tWR8EsvS7ly34rv/0stavOcG/yTCPY0fUQUcUYgBG6SZwtVLEW1UYI00ItF1OJBJCHqMx/Xn2mk+DSFNyyTsMOe+w4F9wP2SdQocOqQC3BX4RRH5OWAZOFxE/hH4rogc56WU44DvbWMfF5gDgiQYaqdYDYGDxLT3QTJJU58ECcQmUkbbgJ7F74FArAqrdU5tTXQLbkiiTR4BKYloR/XVug5R1wNxTgI1Ekkkw9lUDCCmKc4VJJUM9UXDbCSUDGIyzJ2Gu/+SSyEfDefgJIs0a3Cr64JYsOIIQCyoGEQhRqD6Y2CavF5R5eUEmxHpJ6jWJo3fgXC20tnKPUcHj01FVR+1VefatidaVZ+tqjdR1ZOBXwM+qKq/CbwTeKRv9kjgHVMPVv7vxM0L9db2Ib33h2VrrRxfDYGEGBLniVWpixkpbeZdfZ2779DmDGv3f7Uu2Fc1y2qdx89rtd+3zhhWOcMqY1g3S1llDMucsnKfq9pQ1yZ+Dt/TxVqhtuJJp5GqAgk1hQu9y7Cx5Ma66o/enpJ7tVfmY1VCSeSXfPHntvQ3mRWaNbYOG+weOVi/xBxdWWgTtgl1IdjC/18yzTIwcVs4pjtW4vXVSRY5tZ+pyszbY+78G5ubVDK4FE9adpJNRURuIiJvF5Hvich3ReRt3qY9d2y3TaUPLwX+VUQeDXwLeOiBHCwMapPiTPoM+N12C2IaD3PsV6faqs754pnsycDqLtaSwMTU2Nl19bUjn9sG9tTVN5VKamuorbTL/NqGBKp6TABjQhQpJMn50WxTp/JKDPThcyaOUAamZmAqClNHKSUllAyNevlzvngmz7j1u2e425uPuz3k5c4zKxM0o13PZExQort08cZyRbSJ0ekzqEOq7hpNECkIqKLC5KF5HSqmecaYtRKGjsPOcmH7B+CfaMbT3/Trzug2FJFptgQBLlfV3hu6I0hFVT+M8/JCVa8E7nOgx1wvCQRimfTg9WXbXaAfY+N8REdsJkHV1fXaCmQyrJtZXyCSoN6KKi0bSIVIJtY2RvY6IZWuTSVCRwnFdZqYTCqouMCRTYiXCeNnsKPkYp104okl2FICmWQ+un6ZaqoX0XYgSBBpAkdoJILubQpju7sP4kJTwo3qMy6k0kj3lqcHC8QyjjwmjNsh6PHj//LUuQctzxKnspMkFeAYVf2H5Pv/FZEnj2n7DVX9yUkHE5H/GbdtR5DKAaP4ccyxn56p6STimIVQFhiPaWTbJGk0kUiAjnTSjhmprGG1zhubSMdTK9hCgsG7axdJv4dxSa20xjk/do0NbnR2eWc/UXWDRdYzykmq9vLEUnippJA6pmlx3l+WDOuM9rqzrNCiiXorJRT/uXWbui6+wQaCJxUvwfSRQsslOezfHMLbVBpiGdfXXmyykbxW04qD6u/CjiKVH4jIbwL/7L//OnDlmLa/PMPxxrY5NEhlgW3HJEJ51ZfvC7hiV/vsoJW4MfXeqpJ1lTVRxbVW5y1je23dPrU1rK4VLA1Kqrp5wVOvrUAmqtIES9pkZPRE4XaQmPPQrW8M8dAepxwBqZdSNHp3BQO9IxYnqQQ34sJUkVCcxNL8B/j7r96N3z7tYxv7AeaEu//SyxpbSmKnaAhlRE/lEAlFm+/abGuFmoQm44zy0hCLO8WYwXkM2YRjbabhfqbU9zvL++u3gb8EXum//6dfNwJVvWjawSa1ud6RykLi2Bq846Lb8/1qD1dVh7Fk4OpqF9dUu9hvi5hjC9oeXGluraHNqKwrfjWs8ighpBJIVWcYYymrDJuotJrBiEgoqXSiaXoUlai6asjID2Rjp8FtGJyEEpbce38FKSVPCCUswb6S7TRfWZyHl1N9ue+RSLpSSopILtJPMKGZ9hwjEElCLPGYPe3jz9L94ZIutPpEd9Jz4BKEzmBTmeXpEZETgTcAx+LCX85V1Vd12jwIeJHfXgFPVtWP+W0PAF4FZMBrVfWlvX1R/RbwizN0CRG5FY58LPD7wPOAXwK+CjxyWhDl9Y5UDhQLe8p0vOOi27e+X12t8MNqhb3VUvTkgiRZY+IuHNavhVgT77E1Sa1lEykkhYZBydtXmtqzSSNJxqRxkdtjEKQU57AUvLraUooJBnpvR8mwDKSKMS6BZMCpAd/yjTsC8NCbXTC9A5sAm/vYkay5AS27x6T7EiQSCeTREIz4m6wpaZAQCSNc0n+6hGRGyKUHn/jHp4zddiBQnVualgp4qqp+RkT2ABeIyPmq+sWkzQeAd6qqishtgX8FbuXzJv4Vzth+KfApEXlnZ18ARORUHPn8DO72/hdw9hiJ41zgZcBhwAdxGU0eBfwCTtqZaPPemU7ym4g+UjDHfnVBFnPGXrvEd8sjKDXjiuHh/HC4wnXVEqt1wbDOWK1yVuv2EtavVTlrdc5ambNatV1/yyrzLr7GBTRaJ4XYZIlqL/85tFGLW7Rp00sk4/T36WdPKFmwoyQeXy6C3hFJEYIdxVJIFW0rmf8OeDVYtRk/w7pRLwn1gHYwYqjCaIh5ufoWF4PSaRu/i687L9Htl779ST6PO0ffvgnCus0iFIDK2wYnLbMU6VLVy1X1M/7ztbg8iCd02lynGqc+u2me2p8Cvq6qF6nqEHgzLs1VH/4JR0bHAccDb6Gxr3SxR1Xfpar/DJSq+mZ1eBdwg2nXdL0jlQU2Dx+85Jb8+8U/vt3dOCQQJJatxGbHdhxK0OhUMn7xkspDROTTyXLWuGOKyMnATwKf7Nn2YBH5MvD/aGwhJwDfTppdSoeQ0kOo6htVtfLLPzJeQ5d6ILyis20wrv8B13v1Vyqh9HmGLSSY9eM75Q1YswXfG+7hquFuhtYFJjZG+SSJY2dGF1x+h3USiBjdhduSRQg61DA1lVE9Vtim49LMB1VKUINJY6gPqi0k8QQTyIx1xnmaQMciq52Ukqi+ctN4fRVJ4GOUUEKEvfcEu2F+3Uh1y61GvSTUS524kRlNEONUVkHl1dj0mxbRJy8x0E88Vl+3euwun3zj5kkp4IwNM7oMn6eqz5/WSEQOA96Gs5eMxImo6tuBt4vIPXD2lfvS/8u0iMKXEgH4kM/6/mbf5mE4gurDX4nIYV5C+uvkWDcH3j/tWq6XpDKJKBYksjGcf/GPAYbLyhtw0eqNqFW4ariba8plVuu8lUYlBCsGAmmTinPXXCtzH8VuIiGs15smdREW782VIiWK+D/k7jI+QaSkthONhJIZt+SZU3cFQgkBj0vR0yukZLFJihaNHl+mY6gfSBUTbG41hrsNtnAqq9RHYQYtDjA7IbTJQPw67W0zYoOZdLwtRO0riE7CLOovABEpcITypmkJHlX1oyJyMxE5GieZnJhsvglwWWeXC2hcJwB+Jz0cjqC65/jbMef+OvDkSf2D6ympLDA//PonnDT/2zeGy6ob8PXVG3P56uEYlOuqJfZVBWUSvJjGmATX4DDYpwb4uvbR8t5OEpFIJJL8b2y2zQgUPjvjcds9OLYx3WM162NySGN9bSnFGO/pJY5QikAmUVKpPaHYlrdXJBdPMECUUIAW0RRSUerWv5r1ckIg63WH7XpwMUaqoJ8MgvTSJZfQsOWGnMSztI63hS68Ln/dZNKYxVAvLt3164AvqWpX1RTa3BwXkKgicgecCupK4EfALUTkFOA7uHRXv9Hqg+opImKAO6vqf07t0Ph+fkZV7zBL2wWpLLBhPO6CR4Cv1njR8EZcvHYM39x3FNeVS+TGRgkljXxXFcokcBEaCSQYz2vrhxb126a8vMH7qr0ulUy013oY1Vv+M8lnidudRCKeUApTeynFspRVDLykspyV5OLWLRlXfMz9r6ILsYthsVE6SQklwLWpp0ZrrxcP/fjjI7G/7S5/3dtGM+II3R3UR1e20dekSySzqLJSjzHoeI0lB2rVSEu+i8In37C5qi/XDZmq/pqR4+4KPAK4UEQ+69c9BzgJQFVfgws0/C0RKYH9wMO84b4SkScC78XZQf5eVb8w0g9VKyIvB+48W5d6MbNAuCCVBQ4IuR8gL147hm/vvwFXra1gVcjVRhIBopqr1ib3lrbUXqOuwhE9hOH+j5KJ29Bp58lppG2nXVBzAZFIUlLJRCmy2tlQTM1KXkaV13JWUogjkrAUpmJZquj15SQVHUMmYZ37P2CbvcESb6xZ0C99+HWeCCapq1pqrpZk0hF7BJ9G362L7fy2//6HzScU8BH1U9RfvSl/Rtrox5hyp1X1T3GlgPu2/Tvw71NPBO8TkV/G2Xg2ItONs7+MYOH9tcACOxTvvfjWm3Lcn//o72/Kca9PCJOgScsOS9PyFJwb8ZqIXCMi186QOBIAETkceIWIHJUY/sdiIakssGEcWeznyGI/Ny6u4bPXnshVayvsr4qxUeK1tqsrpjO5kACyu95NVLsG9UapHqWRCf10XkXtdn22lzyz8XtUeaHkmW28vEwdVV4reemSRZqaw7Jh9PZayYYurX1HSmki6b1kRP99ylBK//n8i3+MM05ZXxXYZ3zuoVgMpTWs2Zw1mwPLMTnn+BsVbkhz31KMvcd9AYxjghrT75OSFmhX5InqsEZFJmjLs+xTf781UgrM5v21hSaeqVDVPdNbtSEivwO8EKdyCzU4FTh10n4LUllgQ/jbr9yTPdmeWDviB6u72V8WPotvYy8JA/OsSKsshiSOLe/WxN5B6//sfU/VXF1X4UwaN+FYG8UHNhpRlrMqGuR350NfJtiyyxNJYWpWjPu8ZMqY36vJ9VW1VF2h0FMm3jPM212WpWI4x+zFwZV7aDPW6jGvfUoEXfVXj9sutMmjj1xglEz6VGTdDdJ3ABIPwGBrC+TSczmbiZnStOwkVgFE5AbALXBFEQHnTTZhl6cBt1HVH6znPAtSWWDDKKSm1IxLVm/oMgnT1BcJKeHBGZ8Duag4o3mwcQQSMXRnp9Iz8Gv0wuquT5GmoU9f/HQ/k0g/gWRCZLzEVCs2JocMFRyXs9JLJJbd+Vr07FoxQwpTkaEsmdJLKqUnC0cmQUpJJbk+qS4Ty4B6ZP16UKv4rNBN5uehzSh94bKp6EoZYyIiWqavZH3KJDGtSljVsZ/E/ZOfcex4nf7U1h8f4TN/e/aYHTYHtW2Xq+7DLDaVrYKIPAZ4Es7t+LO4dC3/BfzshN2+gStBvC4sSGWBdeGmr32Zf/t/njNvfyHXVsv8YHU3tTXJQJ0YoMVZUzO1Luuv2lYt+DoZUzMDEIhg1Hge1FIj5+iox7qk00WaWTjk60rroBhRBj5vl5FmXRGKbonLPLzLDKNay0klSiEVy6b0AY+VM+5LxUDqRkIZp/ZKCCbmA0P4+DdP5S43vYhrLjsJgMOP/9bY36f/em0k2LU658prdnOLt/wxX3voH7Tafe4vzuZ2T3pl/J7evb47KWMkmbF8MMYY39o+DV1fi22SBpT5uBRvIZ4E3An4hKre2yeN/KMp+zwb+LiIfBJYCytVdaJRbkEqW4yvXXp863uWvCWn3uTyre7OAocYnvX5X2FWt62bvu4cvvnoZ2xuhw5RzNGleKuwqqqrIoKILKnql0XkllP2+VtcQskLYcxMqAcLUllgXTjrzh/hq3tvzOH5KpfuP5J9lUsQWWT1yMwtSABWxbkeZ05tYKJ3jCJZcB9uVFVZ5xhBXZWqqsK2gHTdWImp0688sZU46aSK6wtfUx6g8CWAjWiMlM/ERjVXUHmFdPZLUkYJJai8DJ3AxzFDjkkzGktFjVCI5YvfPoFj/I257DvHc/wJ3cDpUWQoViwZwsBUHL1c8b3rDqNay7Br7mA3e4WLt/vGU7yRu9utCeNmt9BZXD9p90RaOWDtkHdT/uyrt1b1Ba6S6MGk/gIuFZEjgf8POF9Efsho9H0Xlaqu2/thQSpbjFvc5DK+dunx2ERZHaSVr116PLe4yfTBYrvw2q/enR9WTtL63toehnXmjNd5E1MR3CnDQA2NbUPUrautQXwsSrj2PkICopoqFsJCR9Ra3XOlthzTQ0DBVpISifExJi5VvbKUVT5QMeTn0qjqSgtttYptefvJwG8PKq+UTEK/ush8VuPu9RfJfrXqzNPFTBRMHeeXRxT7ec0d38hpb30Rek2BsTJGp+X/K00+tBkCD8YSTKrySs4xk9fXDkZa+2ccdpKkoqoP9h9fICIfAo4A3jNltw/5BJjvoq3+umrSTgtS2QGod5budSLW6jyW+h1kbWNyt9BWOpCThfopjhimqQ5SaSM3Ia1JQyxdBIkjtqNNJrmp4zpHGP6zqaIUEtOp4AgGvFeWH/DTio1GNNZFyVrr+8lknGSS2lHCPqHPQWJZEmUgQiaCncGlyIiCWoxAkdW8+nZvidu++ivP42Yv99LJ08ZPQkWbgMLxjfpXj3RReqLppzzyY68ydSXbxii7g8X7S0TuBBytqu8O61T1IyLyi8BP4HKDjUNI+fLsZN3OdSkeV/HMB9f8C3AycAnwq6r6w+3q5wJO3eJws23txwINLrn0OE4+QBvcLV/4SryGjy//UdtIv8BkxOzYE7EjJosvA/5Pz/ov4opxjfX+UtVTNnLC7ZRUeiue4W7AB1T1pT5V87NwlceuF9hpKrC1y5tJiXMhdtNDI+q8nLxqK7it2s4MLkoKPm1LJYahjMZfpGoroCVpjKi3OvPYoL6K55J2BuBMlDxKIY1qK1xTVDUFFZaXPIDo0RXapNKJoUm7EpJDpraU0M8gjYSYlICWazE6ogJz0hEsi1CIIUMoqRlOmAI3KWD6t9/8nFdiasF0ssDc+g9eSTfhvvTEpowbR6cNnzruy7gde9aPnFvhwpdvvT0FfJqWKZUfZ0yNv9m4oape0l2pql8XkRtuxgm3jVRU9XLgcv/5WhEJFc8eBNzLN3s98GEOQVIxQmNXwQ0gG1WDdWvAwIGn8E+POVTlu/VyHIAHpvJutk10eGmzFqlYNXFQDwNyZTOsEXI7ahkIBvK0vfvcXtdVa4U2mYT6JjaSR0o0S6aKaqtAHnHfeMxRNdc+u8SKdx0G4vqmfbMeHFEUNJ/DsSf9tiHgMfN2nlB+OGwDIcMFlRYi1H5bn7Ty4tuex/MudOrzceqZIJ14b28Ct9kC8KYYCJkIiHVmRg/UfJzmLjxuv9b+047f3dfCrZ/zSr74J9tDLFMllR2g/iJkfO3H7s044Y6wqXQqnt3YEw6qermI3GjMPmcBZwGcdNJJW9TT+cLsiInMZBTSfkQOy9YiAYYBGKA0mSMNJMahpMSSiVKbispm5H7U6komualbSRZTmGTgT/cLg2+6b+O1FYznGgMTU+JojtEQV/DgKrxdZMWs9Uoj3RQrwX5ieiSOSYiEEuJjqBNSdGaDrCfysJ7h8EaUF/3E20fWt26xukUS85gat+7zr3SD9U88tUctJpPTuPQa6Mc1Tvfpa9NHLqGf24SDyFD/fhF5MfAHaSJJEfkjnLvw3LHtpNKteCYz5ttQ1XNxOkFOP/30HfL7TcdFlx7HNGXBelRgfVJKWL9RaWXcMRdYYAEHq01F0nHYIS7FTwVeC3w9Sa1/O+DTwGP6dvA1W8ZCVT8zafu2ksqYimffFZHjvJRyHPC97evhfHHJpccBzDSLnYVYpg3+6yWWccfbbQzHsMox2bf4+uqNY3qWMLMHWNMiSiIwqu6JaqBMGNo8qqqAODNPpY26Zybo3HrbUsKIPSTYO6IKS6OEkdpF+pDaSoJbcJ96a1xEvGmprBrU+LLJSKud+2yjZBOklAGWQrrHCOo/ofD6pVrh299xz9SJJzRqsD7pBODmL3sFILGYVlBvpXEjqdfXbZ7pJBQxPeqsHu+rkac6RNj32Ga6bfq+j6i8pFkv2nfCLYTuDO+uaVDVvcCvi8ipwG386i+o6kUTdvuzSYdkcmqXbfX+Evornr0TeCTwUv//HdvQvU1HeB/T4elA7CqbiRuYXdzAQH7s19lz7f1YNi6JJDh1lFVDoTWlzahNuzywxcR4D3Bqg9I0NdrzxEV32bjcvLUan7eqj1TsiKE+qqsS1VaGjelSQpt4nLFpUho1V8jbBfQa3QO6xncgqgbD55RQ0j5nqCcv9bEutqX2cu06fUSwIs4et9EcJSH3Wsg7K6CZU4GFUsKty0pDWnx//vecs7nNs17ZJoUxKq9p9pKRNj0kMvJ9m0lltizFO+dd9iQyiUjStvc+kHNtp6QyruLZS4F/FZFHA98CHro93ZsPLvLSCSyK1yywebjCu30fO0Ok/Txwm2ddv92PZ1N/bVFnNglek/R44B5+1YeBv1XVcuxObK/316SKZ/fZyr5sJbqPoaGRVrpSyiQV2GbYPcyxX+33JEt6vWRKVlijxkRpBWDNFpSStWbu6UyuSCzBpWatoMHU2wqgxrBmC2qcF1nsR6LScu3c8dM0KeFcmZc2gorN9kgUpiN1pEb4tqTSPzrUSCt9fXcbEKWUUB44S9RdsdYK6mvah9T3jYSSIdSqrTfFeYERZ+rp2UNM0aQ0LqG7msFXnnc2t3n2K1up7rXHCD8uJf7MNVfGtB+RdNJ2YySVsG5M2Z4tgc6g/jrIOQXgb4ACCPWnH+HX9dpiArbdUH99QZ86YxYPnj5sliF9luMGtVIhNau28N5eBgwUWo9V36WkErzCWrVGvC3DerLKsJSatwfTHvJJ+xTUWsEesixuQpWJO1bdo4dJC2alHlxpVuHWPepMCwKhtFQhnXVpPw1KQR3VXoVYBrjo9y6hjJ5bMS2iDjYawaKOfDz6yOXrTx+NoA8SxyS7xyTVVPzsSa71SE9imCnuwi3y6pLLlP5uCWYJftwZhnoARORncLaUa/33PcCtVfWTE3a7k6reLvn+QRH53LRzLUhlk5FKIuMGiz7Mw75yoLEqfdhnl1g2JcsypMgqRyxiwEItplVHBaBr6I7rxxjEnQTkHktHUu0Zfvc4wMhxUmkjQgAaYsmigb+Kx0/dgQPJBHSlkWArAVqSiNs2ipSsBp5IC7EsJ+7HhaTt2799IAyTEEloF0jFiFKqnT2d7EYQYlaC3SXYZILRf8IjO8m20meU741NSbpBBl95/tnr6/+coCpTSWWHSSp/A6ReXXt71nVRi8jNVPUbAN7YP7XQz4JUNgHfv+wEgNbMcV5YuPsusB7MmtF4gfXBqlDbKaSys1hF0jgVVbUiMm38fzouqeRFOGq/KfCoaSdakMoc8aPLTuxd36fSCKqvcbPKIKV85dvHc8sTNzYoBAKal8RirziNs3/sq7zxaz8DODWTFcNQk0hzaVxzIaiVGtdjoCVRhJQm0JFSJIuqImi8rtLEjSlSdVVIpTJICl1ZFWqs848N/aBRd4Vz9NlPGonEjEgood/T0NhOKl+7vklx330+ulKKJfUWdCqwIKHEwEjf7ZJRz8I+t+MWery2JmYRTiPsw2dJtnWP3XeMvu1jpJOR9jpRINoSHES5vwIuEpHfx0knAE9gijeYqn5ARG4B3BJ3MV9W1bVJ+8CCVOaGLqHUqpTjDLw9hOIGPvc5RNrbOc10DiQQsg+PuMUneMs37khB6QnCWUMy2iQyLgK9a7sIGGoW38OyY9PIottt1bKDdI/p1jfxJvg1E91V6CeULpkA0TmhSyTj8np17SiuzHAdbSiTVF4pUmLpwmCc1Vpd9H1UldF+xq74zvGj3mHjXIKV0fK+0qxrBeVPUVWNvawphvi4rse4v/1SwHT11w7Tfz0O+AvgD3A9+wA+I8k4iEgG3B+X3DcH7iMidEJARrAglTmiRqPB1IJPAKi9g4Fl9pT3ByKtzAtdUrJqsGLIsFgvoQCtgb+vlgg0s/bUblGr8andnUThJJj2nYuG+p5jprEr4Zhdo/o0hPiSGqGm8Wzrs530eXyl5+/aaJZNxYA6enl1PbymwcT/bSnF9FxjK62LT9wVWqXqsNs8O3ELTghFvPRx4cucveInnvbKGBQZgyZ98GM0qE8hkw3FqvQY6GM/fR9u/qev5OvP3Hq7ymxpWnaOpKKq3wN+bZ27vQtYZVH5cXtQtwY14djjvwO041TASSmBULqSSBo0l6Ego202ggORUsa5GT/s5p/iHRfdPn5PJZNgTA9qKBjNyJtGkgPggyhrPxAPqKmxLYkgw44M2DB5gJ+FuC0SPbb6rJDTyKQbEBlUdsEtOUNZlip6eW2UUDKRHtWYCy91E5k0Ut+3E+K0ftZRQQW+8KfNQH3hy8+OxNLNCnybZ7+yN+HkRMmlr13adpoazBPKlDCRzcUswZc7QFIRkWeo6jki8mp6ejSl3vxNVPW26z3nglQWmIiFY8Chh3nUYllguk1lB3AKwJf8/09vYN93i8j9VPV969lpQSpzwg2Pv7R3fZhMpXaUVErpzqRrpJ0bqvPcjpMcNht3++WXO7W9gY+97Wkj21P7SWOkb0spMcV8x123iwzbGNV11K7StcXQCUCse6SOccb0mqDC6/4Ok20m6XWFPrtra2Jcgg3F5fXylRhRMplNQnHHC+eSKH2YHmnFoi1p2fWpkVZKddunxkYJfOGlo+qksXVLfLqXIK1MNbQzun1SzMo4o35wCtgO1RfMFvy4E6Cq7/L/X7+B3T8BvF1EDM4HxMm9qodP2mlBKpuIr116fCx8lA6hVmdTy2xlLrADIaquJxakxaL6o9KdDcW2Is9j+2QAz0RHghYnEdI4cnCR7abT1oB6YplwzHGE0nUMCNfp7EFO5RWSZaZ2lHkRSh3VWqOE4q5980e9L7z0bG79nFc29hiSiP2urWUdnmD9ajGN64Pd52av8KWRnzK+NPJmQK1Bp+nfdlbw42nA02iM7gCo6qTkkH8G3Bm4MHVHnoYFqWwSvnapi2juenj1/U8xax2OrcTdf+933Fts1v+epOQRri0M7lYNhVRxwE/ddTPvzTTN2N5N2FhjeknARnLpXIC4hJeTJJEu4YxkLqbxbnMBmsG21E4QGQglPVMflY2m8hF/nq6EEtLVNPaUWtU5PCTPUV+81Le/cxxfeElbBXabZ72yV0qZhljoSzqEklzIxPQsfW1an7XZHiSYTptT//wVXPTkrSMW5aBL0/IW4DW4NPhTAxg9vgb873oIBRaksqlICSIQyDi1V98+6feLLj0uup+ekO2Zc09nUKuJoD2vSSb9KpXaO7QadEQqaZ23h1D6pI3U26tWExM/Naqu8RKJWz+eDUP7roty/JzG2HRiWroOB2mhrZC+PptR5dVHn90CXS2yIJFUtE0iqWtxzOiQ+gQzGhi5EUIB+MJLvLRiGrVUSxUG09VhnTZpP3sJKVWPbYdAcJAY6hNUqvo305u1cDnwYRF5NxDjU6a5FC8S524Bgg2lz5MrdU2cVUpZrzfXAam20nOJgAgfvOSWbtsYf6K+pJK1jkoQGdoiFIu02ltMJIPaf3bWConH6+7T9EHaC2ZkCe26CKqtDFca2KBxycTbSqgppPJ2kyaHWXAbHuCTRnZcyp3E0gQtTnoB+yo+xuvz0kmXUGJyUu/Wbn3buiW5NAR3xXeO55rLTmLv5Tdl7+U3ndCbGWAd10c+9gO+miaWpeWCPLJoXFrtabcb2eZx6qtewamvmjjezQ8qqJ287DBSeZeIPEFEjhORo8IyZZ+LcfEsA2BPskzEQlLZRIwzyDdSy6RBo000htEElKVWcebaTjQ4n581JZTQ1T8+59x2P3uuIbVVQNv+YH2GYnAyeDdvljtmm1C625BGfk8DFPv6NM5A39h82s4DfQklR9yhkzryJpVGorTSDmwMA3i3J0GaMJ117hpSotDW/+Y6tSGRlgSTtumq3SSSTOZjXUradqyNoFsn/pYveiU2JYsOJqpRJ0k4s0g5W4BZIup3UpwKrjYVuNQrAQqcOm4HVf2jjZzokCGVU/6yKVZ28ROfuo09gS9++4RWpPQ0Y7vpvHTdyPouvn/ZCRwmAyw2Dj5pIFyIXdhMvPfiWzPp8WmpoJI4hq6n1TgbSLo97DeyrS/lfNeo34l1SY+VRvpn4qSSNC29a6sjCTKbBJC2RSRNm4YouoSSdTIL916zaut/H9EA/YQyZXYcbDu1j2SstSGXpTlNRiI8ocxsh5POf4/emJegZuvBqX/xZ1z0+5s8Bsyi/tpBUNVTZm0rIi9Q1RdstM0hQSoXfu+7HL/dnegglVDGkUqXTEL7gKEKu70xOKTpcAOCso+yJaU4qccmXkI2SiyzqstCu6667D/f8lTOv/jHYu2QkSqGnVl/vJboqmN8ChFLXxDhJBtISiZNqeFJ0ew9dh9qapURqQRo5RZrk0pNaidpjqUJqTRSZLsPoe0kO86oyspJo6OBirbHTjorkXRzzrUcR8J+ol6dNr/8xl953tnc/GWvmBxx34OxQZN9+/eua9+MU16dTDZ/76mtyeeBoUf/1sUMpCMiJwJvAI7F/TznquqrOm0eDjzTf70OeLyqfs5vuwS4FiegVqp6+oRz/Thwa2A5dlH1DT1NHyMi10zqNi46/wV9Gw8JUunilL/8s22XVroeXuNUXemA1SUfG/OJt1GiWG0bj206A/aD0H5foO3Idfa9S0LOhtLYMFpR7kn/w6w/kMQoyfS49M6AvlxfI30eY2QPaFRRoynuwz4pmaRSCPRLIuOSQE5y5Q1G9PC5RR5puxFV19hDjkUfoYzEsggUjEbqzwOBUGKKfGgPtLMSBfSq0JqTjOLUv/izkU2nvPrP5qcmm5+kUgFPVdXP+BonF4jI+ar6xaTNxcA9VfWHInImcC7w08n2e6vqDyadRET+ELgXjlT+HTgT+BiO0Lr4O6bbTv5u3IZDh1QSFQs06rCtJpcLv32TVkem5Qeatj21rViID3LtPYrc59QJoD/X2IGir8LhQKp+m0XPy9bdfxqh9JHVONfeLro17NN9x6m2UhtJiCvpOk40KqxwfmltmzTPb21LpJFxBLTRAm7jEM4TjhuuoUAoxGCQEfXageIbT3Muvqe+8hVjVVtu3QGcd732mnldYm95zPWfS1Uvx3lZoarXisiXgBOALyZtPp7s8gngJuvuL/wKcDvgf1T1USJyY5x7cV+fNmRLCTh0SGXM77uVUsvnvnUiRtpEcaCxKJEsZHSqF20vbE2gWxOY2MRpmDhASrsd443kMFnq6D0v/a693TauXb9kE6WTDpHEY3oiaRndR/rS38e+qxlLGOnnpElL8pHR7ZPO33uehED6zpN5QtkMKaUFw2jgoscOig9cF5SZI+ofIiLp4H2uqp7b11BETgZ+EphUjfHRwLs7XXmfiCiufnzvsYH9voZKJSKHA99jgpH+QHDokMoOwTRCmbS+j2yGGBdZr0FakRED/rRIpi9++wRufeJ3prQaj1a/xMb8vS7+wp19mNSrDzDUraDESVHro+fsz0LcRx5Nm36JJrRNvbbiPh17SReTUs5PkjIm7ddHGF3pp47XO+YYE4gg3bfWUemkzxvNohx5/LfHHvNAcNGTntKybWwrkczr3BaYUqTLX+h5qvr8aYcTkcOAtwFPVtVee4aI3BtHKndLVt9VVS8TkRsB54vIl1X1oz27f1pEjsSprS7A2Wb+e1q/NoIdSyoi8gDgVUAGvFZVXzptn3QmtNUP7me+dVIcbPtIY5wHUrtN1wCuvesDwUzad7OQ2iFSDKIqrnsNwZYynVAmqa0mnb9XSuk12E/uQ5r63rTWN8e12lZ1dYljnI2kdbzOIO/61h3oZ/s9+86fEtOkc/RlPd429HVjXsL3JlxiCKmZy7FEChyhvElVzxvT5rY4ddWZqnplWK+ql/n/3xORtwM/BYyQiqo+wX98jYi8BzhcVT8/nytoY0eSii8O81fAGcClwKdE5J0d41ULKYls10xoFjKZtL5v0GvZXJKPk0hkmp1mvZimqkpTqvSq9rx000rBknxP18XvY0aUvmSU4ySPdpv+HGTpvTKikVjKZH2QEF2bjvqq55jdGKORvnR+nj7JYaN2sfZ+MnZbdBbwfRyXEHWuWO9jOef3eO7jwhxIRUQEeB3wpXGR6iJyEnAe8AhV/WqyfjdgvC1mN3A/4IVjjnGHnnU3A76pqtWYfY4BHstovrDfnnRNO5JUcGz7dVW9CEBE3gw8iMR4tZPwqW+dzCzDQN9g3/b+6gQB0iaaWqV3oJpFSvnUt07mTiddMrVdH0JG4J++6cX8xyU3b227+8lfB+Dj3zy19yVrEU0nuWQmkxV3fWQ2Uf21Aemk1dco6k5opN1zrk9KHEcoG8GkiHugV+k/dZ9NQurOO8/BfZK0sKmTSyszqL9mOtJdgUcAF4rIZ/265wAnAajqa4DnAzcE/tpxUHQdvjEuizC4sfyfVPU9Y87z18AdgM/jnvAf959vKCKPG5Pe/h3AfwDvZ7qWPWKnksoJQKrgvZS2Cx0icha+HGZ21JHzk0XngPVIClO9w8g6xLP1GDf776LPQyx1M57FQWE9Bvyp/dngsazK2GtOE2O6tqNBqtO8xpp2MtJmMzCJSCzKMcdv3N62Hlz8xKdy8l/NECcy7XlL3pmZXrXNGhumHXY276+PMUUmU9XHAI/pWX8RzqNrFlwCPFpVvwAgIrfGRde/CCcF9ZHKiqo+s2f9ROzU3F9TNayqeq6qnq6qp2eHHTY2n9AlTxit/TFPfPybp8b8Xd0SoyHw8UCXUs3IOTayfPybG3P2CHmwwHtQJUs45l1uehF3uelFcf1WoDeuZwJmzq02wXjfjV0Zl/Wg1S//v+vJlRr6N3LHatVeN+Du+nGuwoYmpf6WIcnvNXZptacnEHKGY0w63jygMyw7C7cKhALgTQk/GbRBY/BvIvJz6z3RTiWVS4ETk+83AaYXae8hlZNf8/LN6F8LfUQw1CwmPZy0lJpTaj7yPV1qNe54B0hOwIj6albc4aRvAY48Uhyf7eeSpGRyIJegFuu7TwHzkEq6x2yTepM4chyM6MgCTeR8dwlE0g2GTJe+LAqzEMs42AmLO6a2Fjrbu21gtNDXVuGSJzxt7ASwdwlYzz6zHO8AISqInbLsLH/pr4rI34jIPf3y137dEq4AVx+ehCOWVRG51i+TIu2Bnav++hRwCxE5BfgOLiXAb0zcQzr/twAfueS03hxb4wL7Uu+i0W2jLrnptgzFqpmremgjuOI7x3Nq7gasYTID/vZ3juPEE9r1Oe5+8tf54CW3jKlQCmpKHDkuS0ntrye9Xy5rmW19b6HlhpvYmxK1VFd9FVLnd1VXfYj2njHR9OPapx5hKbFkHWmkmxg0k5RY2gb72WJfxnfOJY7s9lecrUW2j1h2isPZAWFnSiOT8EjgCcCTcb/Ax3BFu0rg3n07qOqGamxMJRUReSLO1e2HGznBRqCqlT/ve3FeqX+fim69aM1qtu7XbmXHneFtaWUrXkdm2DA4dPXjM6t0/BDVJ0GsB2mdjoEIqyHpIf3E8rMnfwUgqskG1PEeDKRmqFkvsYxDWvuk6z3Wyj7QU4wrEEtos16Mc/EOSMlgErG0kHZD2uTiztWn3qK1fVwsS1rCOvSvRln2z5BFt4VYLnlco5I++W83X5NwfYf3pn2Xqt4XV82xi+sm7PuLwD381w+r6r9NO98sksqxOJfezwB/D7x3vZXANgJV/XdcjppZWreJZIvek6Fmve6xXXTb9Bm0A7rJGqHtFdZyge2Ziabni9/ROBh/5JLTuOfJ66vHksIg7v76R+AIk5EhXOu9Eu0Vp/UmsAxqs8986yTQxPmgNUDO5t2WXk8gy9b97Lt+lZbTQ/Ssm2Hi3w08bdXFiTnXNv5KxN5GThl/rJRQwn4hdmbccZv716jGSHKQbSv6wut3kNPNWPSYa/ra7ASoai0i+0TkCFW9etb9ROSlwJ2AN/lVTxKRu6nqsybtN3WqrKp/ANwC50v9f4CvicifeB/nnQHxhYDCIu3lpq87Z1NO21csqm8pvX0F+qO9U6SDU7uYlPG2lTwuJVn/olk8Z2qPCQhFtjaCZclYImNZ3BI8mPZIHitSTioKdoeTvhUj2we4rMBdaa/PFpQiXW8xI0tqs+oes1QTHR9KzRjSLOn27jLELaV6mxnGt3c1c0pkxI7R199JCPuHKPjuMsu+6dI9b5PkdIeMdsAlZz09sXmMGakP0I7SGhvmZUVWGrficcvOwirObfl1IvIXYZmyz88BZ6jq36vq3wMP8OsmYiabiqqqiFwBXIHLqnkD4K0+m+YzZjnGpmPcw7iJCCVz+9K592Eg1UxPdUMsTQ6tJu18KrX021j6imOhxs3OPal98JJbRtXUNNzhpG9FojCYaGPopkrfr2vskqWpx1uWKkoky1QsS8WV9e6phDsSPDlGlZXaZcb9JlGd2LLfJANw93lS1za1aMa68KJknYzDXfTFs/QFTY5ei9+fnkj8HqklPVYXXTVcxoHFycwLlzzW1Y06+e9eNlP72euzbCJ5zmJT2TncDfD//LJeHAlc5T8fMcsOs9hUfh9n5PkBLk3A01W1FBEDfA3YEaQiPmldxBaI0rU2kkS39G1Aho0Zd4eajyRHHKc2yVpR6DYSS4hcD5hof1CXfcud08eLaEYxJehwEpakYL+ukZNhvHPBenXzy5208tfaActSxmvplU5apYLNiJEeuoPm+PvS9hZLpaRkaNZRqbLsxNqUePdjbSen7HNJjoSQ/t4ihJGn1SdGsx735RJr2VI69pNpNiPDNrkUT4BK/ys8E6ZMKuet6ZslTcvOubOgqq8XkQEQ1AhfUdVxXl8BLwH+R0Q+hLucewDPnnauWSSVo4GHqOo3O520IvILM+y/+Qiic/iM/65s+i8bBq+QUNF2Z8YCqCOWUGYX0gSLzdDRUn11Bs60gmHXsN1Fq/qhL5CFjAYDzmpf6VNnZRKkM7vugekWN7mMC799k54gwcnXdSCYLbmnST6NsXt1paloB0looGVzaT6OeP6pgrSlk0keaimxjEgY4pKOTvIcgzYx7QQppYtALFMJZdyI3r0t3ePMa5KpTA8u2kGSiojcC3g9LghSgBNF5JFjkk8CoKr/LCIfxtlVBHimql4x7VxTSWVShk1V/dK0/bcM8W3pN9if+k9/wkW/8Zy5nrLUjBqD9XYLCBJLQwgFNRabzIIb1+HMk8247LrBKG+8kTjDgtByxU0JJEhEmWhc31ID+aZGNaZe+Y9Lbr5uj7BUxWXERDVYfuzsx9lnC9cvb5cqvds0JK7HyX2cphrbiDdXlzRS+W2cETudNBhsS41WBrVjIrFk2qSmSdVrIc/YQG1nfSC6NtE050xcnZN+GSSpr6MTHNQdmbjy00Ihk1puMYybCMba7hsQBVo/2yY678wzoeQW4c+A+6nqVwBE5DTgn4E7dhuKyK1U9ctJvrCQGO54ETleVT8z6UQ7NU5lA2g/QJL84mI259evccGK0JBJMN6XqWcY4pVFjY3E7WOBysWhBMkqhZcuRsr3TvAea9pobBv76/cpxLn1hviRT37zFH76phe39p9kbG+1i2q89UkYzsidx8+O9GyLWOpkkD6QLMwb2bcrKfYfq9+9OUozipdgYGRaGyTWZBR0XmqT84nZeNxRleO4DMepYb4rnewk9ZdIkq5sRkkk3bf50kMmc79MmUuRri1EEQgFQFW/6rMj9+EpuBRYfe7HCvzspBMdOqTS0p9qJ25lc05p1UkKFtN4W2GihFEnUkuYfQeE9SEwr1SaioSpu21P36NXk7ZL+wY1GyS1RXDlc9NzW+8Sk4myLE6t6pJiwm4pKUS5WX7YTPeg9jNxI7OTyjsuuj1wOHvM/lbN+3TObDEMpIlpGUcss0goY/ftIWeLRGlgHHG3JwuNe3NEHBhtRz3WPpNra0ZsMN18YqMuzE4S6bOz0LPOeM+0vm0w3g18WyAwTtvQajbunR5Rg4cNcx7hZzHU7yx8WkReB7zRf384rq7KCFT1LP/xTFVdTbeJyHLPLi0cGqQijTSSEkp88ERbksu8ECSV4MJbak6NRBVJGHSM2JZxvNRG1bNi1hpVmW8TCGEgNSb14KIhnFrdTD8tjuUGYRtVWwNxnlXgVGm1d7kdas5AKoaaUaSeWNJkwP5WdS2ZNDPb40+4bER62a9rzhsModSK6X5fbey1Szzw1M/zkUtOi/crIJBdWO8GeDM1eHFcNP5Y8ulIcrPEm7TijXpHPX9eJXrctdSUKKHUWe1VZBntidBYF2Jvh3H/m1lHk7QyfG9qpUxyIS7ES9o7gViCMUVmII3WujGfaQhm3u+/6Kh5bQQ7i3QeD/wu8Pu4u/RRXObiSfg4LrPxtHUtHBqkgrZUXCmZuO+b++sGcgmEUvqB3tkKHArTDNhWDc+9zb/xki/+HEZt1LvXElQumbejGLfdx3W4c9l4jKEnsjC7thgKaieddF7K7mBZYzDUXmKq/TGFoM6P6jhRMoQfXXYih5tdcf/rrJvA7D6+rTabhvO+8ZNk0gz+77rothzuR0Rnf2qIYFkqVrX9iG7EdtIH0zd371EVTsIkFVmQYGaK/A9G/kQy7RrvW/DEYjyxZF4S6ZdaRj287A4b7QBOfsOfAjMa1vsIp08iSckkTjTnZ6g/yLy/1oBX+GUiRORYXKb4XSLykzSXcjiwMm3/Q4RUxhPJVgUNp4SS2laCKqwVA+EHmdA+GKlrTCSY1MhbSB0HL6PNIBakpKACG1D59iYerxngJLokB/RF76fXE9QsS151c43dz+FmVySUjWJZhq3Ynnue/FU++c1TKKRmNSTXRBiSsSwVe9WpfuflHZZKM+04n0TCnMFuNQldYonrO1JOH7FMKjUQCUbVxdd54neQVqR8IJPR1D47abjrwSyZhUfWjSGP9Ps8L3sW9dcO4m4RuSvwAuCmtAtundrT/P64QPeb0Caha3G1XibikCGVgw3P+vyvsGcHOd5sJ/794h/nhpvjSbzAOrBdKrCT3/BSdta8fjpmUn/tLLwOOBtnR5kYqKaqrwdeLyK/rKpvW++JDg1SERDT/MLpxGyzVV8pgu4/SABWhTU/yy7rbGQGWmoWJY8QQBhn4gomGoRNE2CXPMlDzaOtJJyvFtOy37j4Fo1OA9BE2s+arypVl6RSyuHHf2um/VNkohRSO++uJHj0Srubk/MfesnLoUzu5azoSgbraZOqxIK0ApNVYeNUYN3ztY+fOmr0Syvdy47u5Z1nKHiDNdmOg72le22hD5Lsq1722z5Gd4SSYJxE0fsYjBr0Uwml/Tk5/vUTV6vqu9ezg6q+TUR+HrgNsJysf+Gk/Q4JUhHcQ9MikC2a+FhCESwTDfQGZc3mztZi3Xoj1qm0kriUWg2l9YZSsZ5UkmsIsS9e/WSksb8AMUYmqN4CmazaIirYzQH8xGGoqf0gVWCwKEce/+2J+80CZ5i2hAJge8wqpZoR+0HqiDCppEA85oR2KfoG+gDjLRSzuiJPcz/u9iv9/VMbi/HkP0kNFu1epDaUxh09jbLvZjpwsSyp88IOw0wem/3v+CxkMtcJ5kGm/gI+JCIvw1V5XAsrJ8WciMhrcDaUe+OyqfwK8N/TTnRIkAp0vL/S9Wzub5vOtlOUmkVXY6vOWJqpYsWy5KWqYNB3to4Qu9JzjjA4qUbpJcCmA7FPHFloDRZKybBiWh5kjQHenc3iUrmgLmYiSC99BvFyagjxdNQ+kWPwSAoDa6k5eyHGrjRpR7oBitPsQP0p6sfHuoyXbA40Pqbbr3DMbm6yQEihDoxzM6+nlzVWbQVLGtrSivGxLLVvl17xjsQ0aaTTpm8SOeL9mdhYRyaeB9LVGdRfO0woCuXYT0/WKZNjTu6iqrcVkc+r6h+JyJ/hSGkiDg1SkfasbuTB2aQKbCFOxPbMsPfXAwAqmznvLE8oBqGsM1ayEtRSko0dPILqx3jCKXEElBJLGuHt5tfCqhaN0d/Q8iCrsd5byHhfqzAAe0nKSyUxqturVqzqXIaih9zsf3jXRbf1/W3ifGoMRUKy44qW9cWVBER1nvSrmfr2d21nv7KuOm7WmJbYH9qxLS3vsMSRopZGLRYqUkanj0g+0kQLJvEr7f5uT82UmSF03s/J3l7jtBF90klQiUcy2WpD/Q6Cqt57A7sFXfc+ETkeuBI4ZdpOhwapLLDAAnPBjohXORgwg0vxToCIPGXSdlWd5GL8LhE5EngZ8Bkcjf7dtHMeMqQiHZ1paqzfrJpilsZlOCATy3Nv82886lOPohDra3cEFZSPLQBKqTHSuPtOMpqnrhouGj6b2N6p3Nw5a+si9oNbslEbgyQzb4y2Km67utxiA/XRMH72O1T1hmBGKjtuBMENutScWsUb7zMX7EljZ2mu39BNhhnWx88dNVIKm9wvSzsLgXN08Cq/qQb30anu1N9uQlLKXpdjQslpZ1vprWKZHp9JCSg1+WwxM1pRYpmDLSOXoI/tlyZGNA99MScdldeIust/nqvMdnDYVDZUEthnof+Aqv4IeJuI/BuwPEuRr0OCVATFGB1RIYUHqrabo0NOo+gzlGffpqm0uVoXVGGQQzAqWHE2kUycId94T6hALgHdHGEpul5Ao0konUdZ9CYL5OLVYaEoViAXbMgFFtK6V06dSFMjxAiU6rILz+e+OSeGfXbAqi1YMUNWKVg2pYvw19HBvZt+BtrlBsJ36KSwj/vbmOm5TAIqm9IAbTIyrQE5iTHqVZWt09aUqrv82dx6mvVK9AYbRxoNAYk38gtFT9saxXgbC2rXlVJnsyGiaOKx1mvzkNF9utu6Bvmuyiu8L3OzqdiDw6VYVf9og/tZb0O5s/++RmLgn4RDglQAsqg/HZVWjKn57M+/aO7nXLVFNLY/49Ztb72hzcGEFCne+wvFqDBEyCXDiMUa8ZUQldq4WXs1YUYZ7Sw4G4n1508JtbQ5Viz42ikpuUQ7CyYZhA0Dalax3i26JjOOmEp/rp848dKRvmwUD7v5p3jj136GJSl5zK3+A4C//co9sVYwFE6i6iUG9dkCmqwCKcpkvHjYzT/Fed/4ySQwtKakbQcL0qNL/qkx+8G4rNGj9hwfMc90t+I2mrxfQD+5zEgs8YjqE1HGYEjx+cEam4odG3e/jRA3KVRkrN1jEtF0XYVNJ11TkE66moy54OCQVA4E7xORXwbOW08J+UOGVLYSf/nln/WD+A42gF7P8bdfuSfHLJ7uA8LCvjIes6S+PwRGh6cAu4FKRFbxOkpVPXzSTtvy2nl/6QcCQ+AbwKO87g4ReTbwaJwK//dV9b3Tj9e4DMIUT7A54up6xcWEAI+74BG85o4uAegZHz6bldzQur1JDAtA5VVhYcZcdHJCuevoiaEIF6m0Yl66ev2Qej9mSQ4SCwajGlPqOxuGn7mHAFKBVc19MkzdlBlXUGe99qt3j6UC9tmleM2xMmbi9WSSrMruGKNuuamEc1V9GEu+fSmJyiuouaK3mcbgUnce34dQC0W0pWZrQTqqq1ngD1WH6+yTWDYgrXRR+5QtLshR4zHXE/C4JfYVmSBJ9Eou6ZcxLsM9Uop0vEQPCJaDqkjXRqCqG7LHbNdc7nzg2apaicif4kpUPlNEbg38Gi6C83jg/SJymqpOrX8bHhgRbQ2w88799eIv/AKFLLFqC66pd1Faw5odvY2rdU5uU/1/o7YCoptoZWpyUzMUJbc22lzabZNcVcGWgndRlg4RYVnTPA7GRjQ5txtgjC8MFVRDrnaJYHS0vMLP3nS2OvbrxW/c/JOAI5VwXfvqwUgd+kC88XMScBHuRbjOEVuUQkkeVZThuN0Ej2hzr5vvDaH02XgCgv2mL59WNmYAs5oY56Uhl+BQUAMDb7eucaq7LrF03dC7CUQnod5BdpXxLsLjduifMKY2lJj3j1FCmeck81D3/hKRD6jqfaat62JbSEVV35d8/QQuUhPgQcCbvVHoYhH5OvBTwH9NO2ZmmpiLdEayGZLK1dUuflitMLQ5oSpjiso7Bgy9bURVWl5C4gnFkYrBiCOBgan9+maWnpKQ+9+QTi51i2SMj7kINpqKjJzaeVv5DMjheIX3tAowGBejgpNyCql54Kmfn/u96+Ixp/1H/PyC/30Q+3x8D9AiCoDCtOcWI+WIpT2bXzIlpW0Sbq7ZopXCJuzTHC9J5pnYVVqEk+6Ls1sFe0zXQ63PYSCcJ8ThdO0ygWCGmpFJMMQ7orNk4PufBnj21WCpaQIfM2k83FDIhXVJK5uOrn0EekfskcDm3oDHUekE+m2uBwTlYLGpBGnjlriywO/03x+IS38/Al8zZQU4WkRuQEP3h+Mm+xOxE7TOvw38i/98Ao5kAi7160YgImfhqpNRHDNRxQfAPT7wdD56n5cdUEcXWGCB+eHUf/6T7e7ChjGLTWUnIHh/icj7gDuo6rX++wuAt4zZ7XeAJ+MI5AIaUrkG+Ktp59w0UhGR9wPH9mx6rqq+w7d5LlABbwq79bTv/elU9VzgXICVWxynhlER14jGGcq8sK8e8P3hHq6tXEmq3Of0SjGsc2rbxLB0/SZCPzNjWfMSVmYsg6x2HmKJJBOuI8yWcz9bN6LRgyzz21MJJ85k/fTVikQX5kwtaTnhqEqx7fK2W42QMy0UMevLHHBksc9/70S2i7akCoAflIexkg1jkbR9duDuda+tqokdCd9DH1IJJqCV3NOrz0bsOl6K6SKVakK8ELSlloFU2DSdTTifhsSk/fnB0gSTwdfLpWlJXa8n17DfUnTiS9znfolkZNcJ9pOwn4kSy5xtKv4nmNpm5+AknA07YAic3NdQVV8FvEpEfk9VX73eE20aqajqfSdtF5FHAr8A3CdxV7sUODFpdhNganCEe5gSm0pKLMxXj3pluZsrh7vZVxUMTE3uSettd2mKqK1WOWWV9cbHdB/yoLYTgUFeRQIR0Xjs8N8RRx4JJxBablIyattkSl+uNpBKJU0qFCsGTDtrb2p/2A6s2Zz99YDCX1PfdnD9rGzWIlJoOy9YDGWVRUIpEnVhQKqyapGGJ6iQFqfrPJGSXuZT3KTG/qb+Tb/qrHTuEWSYSDIpwTT7NKowqwak8qltxKnCUidEH6TaRyzQrgC5U+wqfQkfW2qt3p26x+g3yDfHm79NRUa7Ma2b2403Av8tIm/HPTUPBt4waQdVfbWI3AVHPmkNlon7bZf31wOAZwL3VNV9yaZ3Av8kIq/AiV63YIasmHQIJUsG4dR+MQ9cXe7iqtVdlDZjdzFsGeMD9q0OqKosVn4dmXkFX3rAGBsf+GGdkRkveSTXkdqLMmN7SCVrSUwhI7JBo2RTSUZu6jg45lJTt7IfK6U0ZY7P/rHU7LU1WLM5e6sl9tUDcrGNVJYQ5veHh/EPd/oHzvr0IyPBdIm069gQAgTXyEckoLRdikBOwb6SBpumNpZwrCKxdRhv7G9JONomsFjhUzVJgW9aUkzIzxayHgRScNKMQyhHTJSSApSapipkXw6w7bar9CV8DJ/dh7Rt//sryXYRJTOTyWTWcg9TMYtNZQdBVV8sIu8G7u5XPUpV/2fSPiLyRuBmwGdpEnsoU8hou2wqfwksAeeLe5I+oaqPU9UviMi/Al/EqcV+dxbPr52Ahc1m6/DrnziLPTvBGrjAhnGzNx+89hTAZZQ5uNRf4Izv16jqP4jIMSJyiqpePKH96cCt1xP4CNvn/XXzCdteDLx4PccT2t4dqcorqo7mJKlcVy6xd7hErUIulqHoSKT12mqBLQ0gLlPqiP88yQzNRGnGGMUYG2dbeWaT6xlV7+Vio+QSPMe61xzclCuxGJtTGOc+XIihMo0qLFX1bBeuq5e4rlqKqsVU1ZdKK+AkxiqJ/elKaen6NB4IoOuynWJEneYljz71WirF9EkwXftMevxu2WiXl62RWiB4j2UMqFsSS7TfaONuHLJLO4nIicihhj2ASdRkIbJ+uxSdp/7zn4xIJX31kFouwz3HSbenkfTjJJS521TmcCgRORE38z8Wp60819s00jYPx2l2AK4DHq+qn/PbHgC8Clce57Wq2ql6Fo/xhziSuCXwD0AB/CNw1wnd+1/fr3Ul/DtE5nvNYAttl915qr4Arh0usX9YuCSMxo44AtziLX+MXSugdAFsNhdEQE0i0qcGydQVMlOMMVQ+j1lV22h3CW1S8T7zKjIjSmnqFpF2VWSBdIY2o86ESjJKDeqltrPBS2/71rndr/Vgzeas1jl7ywFrYiky1+c0/Xvqwp0GRXbjf8DfB68CTFO65Ilr8jh1SNeFO40Z6iOclGyCKiyQTThPL9n4GjmZOmeCELQa8rM1hv4stgnk0pCIm7ikarBQw96qU4ll0hTlCvVVttquMuLt1bGhuC/+X9hG+3tr95RUwoTLaPt7h0zmalOZcqgZT1UBT1XVz4jIHuACETlfVb+YtLkYZyr4oYiciXNQ+mkRyXDeWGfg7NGfEpF3dvYNeDDwk7hsw6jqZf58k3A08EUR+W/ahb1+cdJOhwipNANLH6HMTY8K7B0OWCtzUNhnCvLMjhhh2Z8hlX/prTZPoPjSEcY96JqQigpQK9Yo4pcsc8eoxERD5MhL4wmoNE0OsMzYeB+KQCaJ3cWqITc1uQ0Zim2czW83Vquc/WXhMhdbR5Sqrrpml8BTiQSaAaNvQtGyOdlsZN8u2oGFo9IPNHEzJiUXlLVgZ4m2vcY2092vMFWMD3KOBI5gYlyRqqutIuoljMbWAk3etpAINEos4L3D3AeXVJIRaWU70C73PUv7fkLolg3vOulk0nlX5ji5lIS/x2KG06nq5XhJQFWvFZEv4cIovpi0+XiyyydwDkzgYvi+rqoXAYjIm3Gxfn2kMlRVFX9zRGT39N7xghnajGD7R5GDCPf6wNMmbj/tbfNPWrnAAgvsQOgMi8NDROTTyXLWuEOKyMk4aeKTE878aCBkrz0BSGt7j43rA/5VRP4WOFJEHgu8nym1UVT1I8AlQOE/fwov6UzCISGpiKRpPbRtU0jW//LHn9By/V0P7vOhpwCGq/ftotzvbpuqYDKnAsu8BFENM8yacd6ehiSduaBBT5yJl1zcuqgGMIIajevUSyqSqLyM6ajMoGWHSVVkBqXMsiixBDflyhoGWU0edPR++9j8VluI0mbOHdu4fFtpZcU0BU86S+2qNtKZaeqenUot3X0nzWL74oWCKrHP3lP4/2u2OWdLJaaNZ1nh1V0Gn6Xaq8NCqQIjvt5OtLeE9Ynrcux6kFZchmmXO6xjX1Gw/v+secDmkffr1H9qVF9K8/u1ClfGjeOP05Vsur9bakNp2VTmLK3Mov7yOE9Vnz/1eCKHAW8Dnqyq14xpc28cqdwt6UYXvb1S1ZeLyBm4AMZbAs9X1fOn9OmxuADzo3BeYCcArwF2XpqWzUDrxe9RVeRmmqw6Hmd+9ElAxjVry6xdvYTU7rcsa+P8641iCku9lsHenGxN3PtrmpdGjX8CDGhNQzJGmzfFf1b/39pAPo39xSYqs2DwD3aYlGRigKV1pFcbE1+qKqsY2swRjJqRAM77f+TJvPeef77h+3UgqK2hqp3hObhkW9u8O+MSh6bbG/frQLIW9YQpolRi1kUm8XvHbtPnRGBEqVrt3HM3lHxETWbERmcJg2UpIZjCVLGNc/V2+y1LGYutYYiqMggloEuX180TR+1JLCbNFFopW2pvj9kK12JVcV5TRj13SDICNmwSUuG7LwoqUQ0K4xPHxvW0k0um7vlb6lI846lEpMARyptU9bwxbW4LvBY4U1Wv9KtnjusTkbOBt0wjkg5+F6di+ySAqn5NRG40badDilS6evJ5GumvuOZwrrtyhexaf8tE0TWDetuItYIpBTMUTEk0ohIHM7+PCGI8yUiToBZAjSMREW+PyRQ16tqHc7airjzRBDtMQjKBhLLaYoxSZXUcZGtrvHTlpJZg0A6z7+1CsOmoCrUFcNdR1W591+DaV4kxbBMJcRjuemsvqaQSTGg7Dn3Pzjg7jZu09EkuWet8YX0w/gdnibQKpBFlOckVt2zKaNS3ItFYj8VX8Qw1Y6qYKywY7wdag0CpQiGuiqfBErIrVzQBlJtJLKqCWkkkd6K0LuK3+99HVaLtUJFILIDf7g5hkanv96gH2PxIZZpNZZZTiYupeB3wpXHJHUXkJOA84BGqmoqNnwJuISKnAN/BJeP9jTGnOhx4r4hcBbwZeKuqfndK99ZUdejDPhCRnBmo8pAhlQUWWGCBLcMskspsuCvwCOBCEfmsX/ccXFoVVPU1wPOBGwJ/7Qf4SlVP91nenwi8F+fc9/eq+oXe7rocYH/kJZ6HAR8RkUunZD75iIg8B9jlVWdPAN417YIOCVKRVpxCjxosmSluBN/bexh7r95F/qMcsybei6tx6RQFqfx/S5QmxCaSiN8nSCcCTvIw4Xhh8ihRItFanHosS6Z3EidtLS8yd55EcvGSiuZOdWCtRHtLnTWxFWXmovhz78Ib3HTv/L5n8V/363V53zSYjhoOnDrM2iCpKBj3e9bWp5/pya8W1CDWSPSOC6q0oAqpw/F0VCIJdqbar07dmFMPw5D6JuzjrsHb9BSCu24303SaKSBXE72UQsZhk9i6mro37vdaMhLtKjHFjlpfqdOXMhDnQp1RMpTMx8G4ay3ElYgu1UkrztZSt/o7b5zyppc4KcWrMdVCzHMiwcbifyD/4wVPNwltvDrLWpNIGzqTtAJzVHt5iCqyvpjAXqjqx5hoRQJVfQzwmDHb/h3493Wc8nvAFcCVwDRV1rNwNpwLcUkm/x2ngpuIQ4JUAtqqh1GdN8DDP/lY3vTTE50eWrjPh57CVVcdg/lhQb6389t7QhkRhV3co3sRkvVCeDnCdk8ycZ1Xb+HXZ3gbTHPeaOx3FxzVCGqI9hdSY791xGStG2Bro2RWYvxLad0gWxgbB86y3h4VmPXG+DxLA1mb/BCj7RtCUZVoNwn7gkFVsaJN2WZpXGkDOXQdFKxXxcTv/rOqRCN3KwYlJRht1zppuya7z5Wa+ExWPjebwfUjuHeH9llQVyaxRFZ8IKeFWgyF1KyqUlBhyKkxFK5ociSlLBru3QA7EKFUSybSS6xzR0IqQcumjRllhGBUTZwwiXTIhfQw7r65Gbx3PxdizrUU88wBKN13fkybnQIReTxOQjkGeCvw2DHxLCl24aSfv/PHyPy6fZN2OqRIpQ99QWuP/O9H8/qfet3Ufc/48NmAoD8aUFzrbCUx36Kf4HUfHI22lGbG3JqHJDaRXpJJ2mnwIMva+7i3rLGvODtNmOnRIhWsIxy1Em0vmsS/ONuKoUoCLLUzyG4V1qyLoM+y5m1VVYxp7FLdwbohFmf0jQZ5cIl8BT/gWB8jZMCGa230+M353P61Nw67lcn9iFKMJIOjRuIxXpqKA3Ui7QS0Jz0NwVjEF15rvMis2BinYnwUfi0mGvJrjLOpWJ9h2oQo+1D4yyehJIjIzjNsqJ5YsBQYSq0pJIt2lSAp5Md+fZ2/Yhun/ONL3G9TN/YUCe+IBBZpE4wSnme3Mky+QtJJES99GxD/OwXJVcTJa9bbacIUwop4P5gtNNTvLNwU51n22XXs8wHgvrgofnCE8j7gLpN2OiRIRZEmFbqMirp93mCz4vvXHUZxjXHGd28vjNJJ98EKXQjifbAvptqrdHaW7IO0V4Pf1wg2kEqYMQvQkXIi2YWxw7dxpOJn7bUnFdu8pJoJtXGDW2bc7FuEbXEv3le5Al2DzMkmqs4YO47kRBTxEkorr6e6ZyIqSRTAEWhtgeAJp159MqY/qcdY+j0QjmhQ1Tj1VJA20gwAKVqOJF5iiNkP0JhS2KgkqWRciQJ3TIkzcGsdgYTyBTE7st8eSK/ZrtEjLEMToz0gKbG4vgYHgrkMECrRY1LFqb8kfS+gpQ4D10aRRo2L38dIdFoxGtS8gqqixvqJgpswOFVlMnEQ52A5FyjTJZEdQDoicpT/eE7nOwCqetWE3ZdV9bqk7XUisjLtnIcEqWwGnBvxIjZ0gQU2ilP+8SXb3YXNxQ4gjRlwAW2fuxQKnDph370icgdV/QyAiNwR2D/thIcMqaSG0j5sRGd85b7dXP39w9i15mYl6iWGKLn3SBcRQdQfXdV6GCVplLoXB/OIWjDRsCmNZOJndXEWbX0gZSvg0s3SxYgzaRpBraI+dUyUWoxTOZVVhs2kZQDfSkSDdBJTVFuD+sSaQVIoq4wsC+pM11erQl23ZVQFQowDNJJGyIdlZbQkcR9SSSlIIc7tuYl3saH/4tKh1MH+4pHe05YKzybPZob/bslVvCqqMcCDM+CXoRSxulT5btd2okqLbSWZNFgG1Awl85KSxYTrV7y0YinVSUdB/XWgUGvQStoSurYdK4IeOE20iglqzWS/8Dz7g1mvNggOHBptZc5eWItxMS8KIsa5/s9J/TWvNC2bDVU95QB2fzLwFhEJsS/H4ewyE3FIkIqqG3zwcRdpfqw+TMvEe8aHz+b7ew/nR1fuJr/K5fnSDKeGcu95fFkbHQutl6YP457nyAEdFU4kFh/XkqoIIrE0imgn21sSA75brwZETRNcmXmvMePjYBKDfmYlZgeYhlud90LXb/9if/GXXjDTfn141ud/BcMxzmnAq3tC7EJuLGtVRp75BJEDd6OCeswARe5ynJVVtmFC7JLPOKSG+EgUYRvEnyS9jamNJuxvvYoqqM4q64qm5TjCcE4BxgUwEsjLgFrKkGASV0my8B5cgVRqJNpggn3Fqb4sA4ShGAZqHSmJq3FfYimExjvsAKEqUDeqr9EG7RfGvUJ+XciZl7xU6mdxQS3miMl/zhSxCrl/7BUf72KjbTNNznqgSPlvUpudBBH5ReAe/uuHVfXfJrVX1U+JyK1wEfgCfFlVy0n7wKFCKgilzZyXSyhc5Wd1NhgDO3jMp/8Prz39/7bWnfHhs/1gIfzoyt3I1QXZmqB5Qip43a4Fcj9zCuTStZ2E/vU8Xel20f42dI8tuNlssO10j2nFp4bRhFQEUfdCBmIS5x7jDKA+wFKtUpks2li6uMVb/jgOinXtiDvrOInd9l0uG8XnH/jCnosZj2d87qEYSWb6iQuv+Jsj0kRKh4A2VefVdMTyfpftQHJE1CX8ZH0vdSvN+gzOCi4FffLd/w9zjpheJXn4WhJPcpxog9GGWCp1xveQfDIY2ksLRpydJZRcKPAVO4VmnThiCvVjQzCkVcPQJ6109keXyqVGXXoZL6kcKE5500tADf40jXdiivDgB0NlEJpSroldSSZPJL+PJxmDdW7+gDGK1QxVi/hJkirx/1ygMPVgO0BSCRCRlwJ3oind/iQRuauqPnvKrneiqfz4k+LsVzuySNdcoSqUtZuhBtfR+Hbjop1DqnDn7+9+7bM+/UjOPf31ADzoY0/EvZ5O7cW1RYxJqQegmaKZf/atG5hNRRTlu8b7aKBPRHdI3p+kfWv8GkdAGt+nEdICnN9tUH2FGZ1RP2uTllNBJBdPjmocydQCmjmigSRfk0DW86RUla8FY5Q8axx/b/OOF/CFB71gdIcJ2F8XDOuMypponA/SShViUpCWumqQV+zK3cTpv+73Uu72/mdQ1RlVbUbci9PI6lnQRyxdCSiVWKJqjVFi6UPg7SpRoVVqyHHStjWuZHAw/LtO4X88J6kEo71BoyqsVR4ZywBXjNyEV11qSjWxXy6S38WvlKpRXC7mYU+sHWE4tWyTRiWOxUrvdD/EFI1HstHvbmvnfGHVNASW4d3pIcsEa11+tbmguVUT2+wg/Bxwe1UngorI64H/AcaSysFW+XGuUMWV4lUh84FyVmts8gAZXDndNIiti33lgGtXl7j26l2Y0rWrB4oWxHooTv0s0S6B9QN2TTPT6iMMoS3ta0Iu6fZOm17VdiCrVNqBxqsmrghK6HAs8YSkcVanPigSI06dlDmCCen3A+rK5YpR2wyeqtK0G/jvolMGhFGs2ZwflSvsqwpqNS6tijUjg7hzG/bkIhql0oCP3fcc7vOhp7Ba5VjrbB7QSDYjyQU7UkSfa/FoH/ztjVqa5BnzRJQSS1jfRXwOtS21uEgTS2Uz7wmmSUkC2yKW1L4SVGG1d1FGXTzLUCHDMJCaobrX3cWsVKBZ4hXmU9r4e7KK5cQT1lWbqX2frHh7iHv+4rMUJkRh4tMz8Pa64veO0Cm5SJNnz5NSjUGspp7L0T39QDGTTWXn4UggeHsdMUP7DVV+vN67Nz3ugkfw658Ym416gQ3iNu94wUztnvCZ35zL+ZykucBOwClvOsS9vgJ0hmXn4CXA/4jI//VSygXAtJrOofLjunBoSCoIwzIjMwbjDXGaCXX0hJH43/rZbWFqcmlUNqt1zg+u3c3a3oErsmUUu4SbTeXaTIosqCpinaoNq27WYqQRiS3xoYoBisHQjp9J2eY/0JZkaNq2PF9SSaYHEiQlnx7GSS8+noVEgvASi7OvJMf2+nyMYjNtVGS+z0Eqi/006mwzhqg6M5mNEfGzqsH2+jLCa3VO5dWYIU5GE/VPtFMEtY+XAAZJJceVvKRcXmVY5ewv8xHpqU9KCehTd42bo4XZcLq9kYIbNZiM8aRrvMYkSishuWeFcZH2qlSqGJ/KxWpG7gMbUUOpGQU1JRmFjysptPbGd2dnKbwIO9SMrCOl1z5KP4uGDx84eACDoVOZSjOgBiklnb4K8cZFIS69R8FDRcC9VH61JO9hokJuDirtFDDQBAYT1GPzyRYh1jsGTGqzg1hFVf9ZRD6Ms5EI8ExVvWLKbtfjyo+KG4ysi74OwXvBdlLWis2FgVeJhdxKpbgB7JrhMlftW2G4r4DK6WTtsm3sEiH3lvqH1quVtHKeLeq1CZEoammpttQ4m0z6QogVN6AnOUhS4onyemKLAVpqrz5+CYN+JJhwqOQFbBn5BUIkvvhU+zGCObm/Lb4LJJR5UsmUWpxR1lrxagbndfMT7/xDAC78xT/q/emGNufacpnrygHDKqf2dpQ65IlqGbcdQQyy2uUrM01d+FDa4F13fzUP+tgT2ZcV1HZXNFy3Ss92Xva+QT/NhDsO3VQg4WtMG2JcSH+aWbl7zoYoO8QSbC0WX/fGZ4XAYBU3OQpeYKgz1OOJBFr2lUKg1NyrvJoaLAOBMs4+iP8P2J1cARIX4T4jfcCIoSWs9weShkya/2EXjSpZjW530hBOPA5t9+N5QMdfUtpmp0BE7gp8VlXfKSK/CTxDRF6lqt+csNsLNnKubVV/icjTRERF5Ohk3bNF5Osi8hURuf8sx1EFW7s4harKGJYZwzJnrcrYPyxYrQrWqpx9VeGXAddVS1xTLvO91cO4anWFfcOBm9HkFhnUsOwWs1QjhfVLjQz89iWLhqVQtFBssL/kis3V/ffbtKDVxg7cZ1uAzd0S9rN+P5uDLZyjgC3ADkI70IzoahwcaMIS72X6UCcNHKH5pRakBlOBlCBDwawJZjVZ1oTM/zdDQUrBVOJKJleCVAYqg60ybGmoaxPtGQGBXLpYq93vsr8qqHwtFbe4Yl1VbSir9ue9awM+dt9zWM6qVvGtgHfc7S85rBiSZ454cmO9DcYtKWGqtpfaS0m1mpZ9p7Ym5hdrjPIydglu7iGexSb7duNerAqVmiiVVb59ZZ3EUqnx7Uw0slsvqVQ2o1ah1IxSM2qE2m+vMc11qFBqHteVZAw1c5/9sUr/eVVzVnVj881WinvTEIqYcYv1xONH6WQZbQtZbsnymiyvyYsak1tMYZO0LgH+PgfS8XYctXMc8g4e1RfA3wD7ROR2wNOBbzLF4O6rPX4Z2OOXL/l1E7FtkoqInAicAXwrWXdrXE2A2wDHA+8XkdNUdVxOwQi1fv4Z3F596pFQmyHUOM+MZVhnMU5gfzlgtcqdy2FhMXm7oFPrHGEwCIOKEbQ2Lq+REfAGfDFBUgkz/0RSEZyRX8WrzWipCuJ/dfv0uRuL4my2QdrRZH3o64iE07ex/X2kaXfy6NV4YkNW5GRW6A39GEPtE1g6LU1TFfMn3vmHIxLLvnrAvqpgWOUxxsTaxvOrff6mQzf7lxfzjYf9JX141KceRS7LLGUVlWk8wcIMvLYmqq6CJNJt0xh9GwO+k0Aag3xfXEvMcIyQYZt9aGJVwv5dhPxUlsal2IhS2cxLKYpRF1QZEkpiarBZI5Xb3A/kLtYnk0B+Lr4F8sZDTJr8YKHmPcDwAFREwZGjJWkkWbPxq1MBMKiJxv3e4onJGMVkNnG8IJJ3pe7ds5VpHzzt2xwH+sB909rsIFS+Rv2DgL9Q1deJyCMn7SAivwq8DPgw7qa+WkSerqpvnbTfdqq/Xgk8A3hHsu5BwJtVdQ24WES+jqs89l/TDha9cnASi1F1KeH9i2xzRy6ZaartxVmhfxGyzM40wQjagtoYbK1oLagxTXrv2r+/wfMqqr807uw8yASt+sd7ICSVJbW3pGq1oHJrPMnSKXjSWdH2cYOxJ1GlhWOn+7fIJbRVUBMipJsNWjnJRzOf6M9aal/hD+zYgMrrygH7PLFXdTOjt7WMkHsoFpRWghwHI0qR1Y4A1UkPIU+YJnaO1GZjOyq3bgS8eB1iajsJSFVGdcit5vX40e1ccLPlcWoY6wIeXSCkYjKNajDjySo3Pg+YClnmCMfGCHyJUozFqSTD72uCDjNUivTrSzJqNGYrDus2gpu9+U9o0kK0CaWVVX/Ms9A7CCcEIv79zXwGiFDRs7bC/vDMRFVYoi4zbel0HhCdblPZYbhWRJ4N/CZwD59xuJiyz3OBO6nq9wBE5BhcbfudRyo+svM7qvo5af/aJwCfSL5f6tf1HeMsXP1k8qOPGHlobDBQqzPUaSm+lnuTkde1cwOZCK3o23FI4x1KyagzxdYuA7ATsz2xBJEbb7LI/IgcB3JxRv/MtMXlZDanKZOkwoUX5YNLpsRzaUMGbU1AW9pRvL6nQ2iJBJPyTfeWBHtN8HANB3eSlcsqS+YkFlXQTMhMBYxKK/u9anJYZtS1I/iY1Tb0K1aeY1168VQ1FlRKtVcloWEAFkL0tVNXde5Fc3mIiI/IDlTZvjPpvhp4O7hui0txGQM7O4Tlb2c08ocJDwaM1SbWyj+6RizUObmpKSC6IJf+P+Ai6pMf0iL99hUaz446iWFZD05764twgSHNuqi2EpyaK6xP24zTBtBpI+5/IJTC1AxyHxjqa+4MJfOSSnP+YIMJ559bBu5ZVFw7i3MehqsK+WhVvcJXk3zZlH1MIBSPK5nBZLJppCIi76ffHe25uMpm9+vbrWdd70+jqucC5wIs3+wElU76hUZ3rWAFa7yKzHtude2DIrTqeIRjNLNk1y5LjMOu1G1GLQZrmn2sbfTK4SE2wdgfXiJ1MyqbJfqt7pW2pI3ONgtqnNuVqrvGcHhNT5UQU3yfwvqkrWuizTltsq9N9ottccSJryYuSVsxYJ3E4n4HS531p39ZLQvWSuf1VVeZy04b9PLhXNEbyKkWZxkYjFiWs6oVsV5Z0yIr8CowTziR0DrHCtmIQ42WZmIxej2hb81/t18gkpRcoFGpQY+KrA4SkfprUiqMD3bMWm5mOU56qTGNd1z0fjSdNPxODRbyg9VYV7DN21gAHnjq56fe4y7E2OgFibhnXvxELY15amUvoP2+hU525kRxP+NV2HlmGWRuoqJGKIMdKnGICWQikp5zPiP9LOqvHYZrgVepai0ipwG3Av55yj7vEZH3Ju0eBrx72ok2jVTGlakUkZ8ATgGClHIT4DMi8lM4yeTEpPlNgMtGDrLAAgS7ynPj9ybmZZpUv8ACBwgLsTToOMzTiHPg+ChwdxG5Aa5OyqdxJPHwcTuo6tNF5CHA3XBUfa6qvn3aibZc/aWqF5KUsRSRS4DTVfUHIvJO4J9E5BU4Q/0tgP+eelBJJAEYmYEnzZJ+JOvFzQJD6dnWgSDGNYSEdGkbV563PXuubaPGsckstzu/Vlx6iaB+SXVULR98SVQG3nKv1gsnXocswR6AWxfvgU32i8d2M8LuZFuTZk7S0iYtTSLdtO6p3474Gb1x9hVnRxJQNy+uC4PIaPzK0KdVqcsMWwUJpX0e9UXJorQijEwT0yDKTLQVu2LVsFq7R73qeP806WBonAM61xiFPZw0163B0jXY9/2PbbxKLFSWlESCiCWPaRKklt6pJBjtW2WyVanCf6/2KpJEkDGLsTfa420ppZdSEGL8SsiEvFEjvTEaE7mqq55FljmvrHEpctKia6OZpEelURPUX+JsK4OsJhdLpYbSZqgKZZVFby8T1V+j7948cJAZ6kVV94nIo4FXq+o5IvLZ3oYiNwdurKr/qarnAef59fcQkZup6jcmnWhHxamo6hdE5F+BLwIV8LuzeH4JTbr0kLOp6z1kvOicPshxf2nqjgcCSZMBpmQS1F8WYZBDbZtSten5a+t09lU9WQUZVC/u+sN9GCUkd53JfipUglORWKFlePcEkJINpJowbVRz3QE0UX8FVVqw2YjVSFLpLZRAXgKxsJIKVMHWY6grl6Ywrer4U+95DmU1oAqEUpum74la0hl2xZNeo94wPeq0DCWX2k8QvPpHGxfd5v4297n12bZ/i9AHEafoCzXS1ZmN4u/dRXdQjOZrdba91Css7uN/v3DP3DolswYr4mxE2hCLyxUGlSqFtw+VIYAVl7rFqPueoRhsr73E4lLew8ZI5Y7vfi57drkDrJZFfOZzX7JgUuqePsLpetOlCKl5jJ845MaSq2WYOc/BtTyPE7r03HMv56Dafkh2PkRE7oyTTB7t1437sf8cZ6LoYp/f9sBJJ9p2UlHVkzvfXwy8eD3HEHGpz2Nq8RgXQBwEghQyzhgfao5H20mix86MjaQTssa6LPgNmaUPe6zvoe0cVt0kh+MGo+DqWlZZ6+UI1xquC/AeLyZ6vER3ZPVuzWFm7mfBLQNjMniPSCCpb3+tCbFIK2PA6H6+E15iEXW1XGzl7E6mw7Fl6Yyr0TU79CXcM1HEHy8gzOhTL7C/vsM/jtzLFKe99UWccNSPKG1GbRuDfeu3SSSG9m/jjQSK8+KLs+mGFKalzW8NaP6ZJPEk8xfrnh/Bk7drV4tplSt2rsVJCWKVaKA3qtHOUlobpZzMqPcOa+wr4dx10odyg/EpN9p9HRbh2uGSs4/Zxv1akveiD91JXtpOW7+Ru44wsTOi5OIkrhWfWHQ4yFoOF+m7njE/HjhY6qkkeDIueeTb/eT9VOBDY9qerKojRjVV/bSInDztRNtOKvOAoK6eRjB++rgUayUmgjTeFXFcio4+URwaUokp9ROHgPCihPV5kuAwBLTF4LZklpwmNkyXtK2qsGqKEbfWcOxanTdQLQaroUTw6IzPWtsmD2hLKV1pJdpK/XrrPbF8bI2GzAHg6mSElzcMyGF/64Iq3fzeBUZWXrOVZzW3eccLWCoMVZk5CSW4YyfHCgd0x/AqNV/3RWvhot8YnUyd/Po/bV+L7+BgBX64f8XFkHRch6cZ/qO6UPznoIIMqrAxE4T2MXyXAm+2vCYapAZ9rCuPWxlnnNdaKEI2aCF6hwXVGNYb9cM6k8VnPVPrScW1K6Ryte3d1tiuXKekco8PPJ3Dlyw32nUtVg3LWcVqnUdvu25Z5ZQwJkkOLZdvpNU2vJMusLVuZYOu1VDW2cjvkU7W5gFBndQ8sc3OgQ9a/Ejy/SLg98c0X55wqF3TznVokIq4uubh4a2tGzjcgOt+2sLUE2dOfYQS1hf+wY0zIw8b6jegUb+bkkr6MgxrHxtDs48Rt1/43CWhqMpLVHHgAuNqa6jzUHe9ibXpqhpaqh0aMom666A6izcz6MWTdj6FOVZckGOQVpJdUnfk1qFqRwpaCpaMCsiWneS3f63Alq4yYMu9ufuu+gE8nqczQ7zp35/jXLa9mqwPVZmxTwZultuRepoORyVb7EQ7yNFfqzMgRbIJxDINaWbjce3b6WFc5cKqzpxEnKRvCTbAxu04c8GTMSjSSS0ZzXOeiXXFvHDSSabq9/HEg02IZnYcvbyPYwbXYTEUpmatzhna3AVw0pMWhyDpyViSST9XHakSiCl6cvHE4j9bhCpr2of3J2R4mJsKLOT4m4QdIKmIyJ+r6pNF5F309GhMHq9PichjVfXvOsd6NC4R5UQcIqSiLGVVfPlrE1JraBTDg00kEEp40Celwg/HDvEOhrakkiI+3D2DhVWJBsWAQFADU/mANhO3O1JpSKj7solVP+M2VOIKZqWqoFSPnO6XEkyqHuz2OGrJgrNBcCaw4uJqrLflGP9ZE1VAUJEBqLhBuhYonTu3tbAWtElWILGjhP3DvrE/XhJTvK1ZhUt+65mAI5RW371xOL0Q9fYLteIHTTsyeQjGXCcTNeTUVBj03fLXpKSux6PE0p20pEQ/iYBSCSbkEMtEIaTxNxrHsrT+SgiQrMSCaVSDhdQYES+d1C7w0dBILe5UGLGsqfOaO/vH3je2f10YlOWsZCUb+u+WtSxnzboFiNH+ASFZaLB1jT7jbQJISSWV3HNTuzgdsRSZjYGhVWJDC8ceeullXpIKMFVS2RGsAm/0/1++jn2eDLxdRB5OQyKnAwPgwdN2PjRIBRc9HQ2Y1uU2csFSfpbmZzaRVPxLH4T9cSJ6GPyjx01HnA8IhBKkjmZ/lwbDiJKrxBfGiFOXLWWVj3b2RlWI7cMLUSV2mcrrxFUbe46qq6MR74c4D5mgJkivq0Uo3pGgT3WTtqszEyWcEEtia0PM/KES68mgxM8SHQgcsQi4qPFUZ94tNdsICUln/GqfgQDb3scFl1rEl0nO8roRWBIpqmv3aOxU/r+XSrTTh6ja01EVY7q+K4GMI49xnlAhpqWdH0x9kk0INhY3DXDqzxC3Qu1m70ObR8nWkEgixsWr5NTOxuLTvoSiVZnqulVf4VrcwO4koMOyNZZMRalZJJVxCPnMaiR+btRYzbuS5j5LpZ9cLIWfzBVSs+SzOZc2o1LDsHb3IhZ560g7BwSrbpmEHcApqnqB//8RHxGPqn5/yj7fBe4iIvcGftyv/n+q+sFZznlokIq49OdRLeAlisqaaMvo2i/6kJaxbc+IbPsYTB84AgqxzshqvdSREE9hagamik4B597hTTzugkdg1VDgpJVAItF+k0hLBXVDjqqRBILtKDOetFKVXKISsCpUpqnp3k3jHojFWhs/hzxqai3VMGs8z+pg2AdKM+IlJuoJJJyjo3Vr/6C4A0XpJcgQtIIiT37jSxExpEXFjFGWBhXG2N6gRqHx9us6bGSZbXnghf8q/YSivm9BmhFpq7bGRf63SxfT+pwSSzh/cC/G4q/X67cSN2OMc9qAdh9yU0dJIQskYpo21rpnqmT99hSAYZ37pJaGwlQsGWcwd6TSjheK9h0v1tYxkaXP+YaJUkyQ1Gv/HoQqmOFzuDbjVXq7Mnfe3NauPwj7TeHUcJLNnVSEGVyGdwCpiAsG/EPgibhuGxGpcG7FL5y0r6p+iPHG/LE4JEjFoCznVfw8MLXL7iqGKnE36qZJH4cgkoe2kVQSj7CpfRIbX2aDI5A6eaAzca6vhdQUSX9ec8c3xs8P/+RjHRlJu4450lxDJm7AT7Pcps4Fqa0n5rhKSGVoshbJBKRu2cE9WlWwucSqiiJKXRuvFpNIMCrWlwRoSCSZeHvbjCeJ5O0M0QQStU/JzkF86LoRx+y2niyMq1H/1V9+Hrf7t+chKmSGXo+gcfET4frDverapQLGcmKLNPqlktj97nZpztntj5WGZNQTiaq2PMOooRITn4/UHpdLHZ0UMlGMNjYWIKq/1oP/PONPeejHH+8IycKefNWp2TCUZtiSzMHZbdJrXrMFNT7LspeyanXllGvcpKD0Ex+rhjXJm3dTnOrLiLr3SGpWzNB5TtqMjF3sF6UUGzUGc5NUZnIp3gGs4lRZd8Xl8LoYwHt+/Y2InK2qr5z3CQ8JUhFRBqZqSRGVGqwxDG0zE2+psCbYVNIBNjXOG2kG/3GG/i7iPolKy0kqjQtywLM+/yu89LYuV9vZn/01ctkdZ5U2GYkCKYSAT6uujHIamxO8Y6Ivf4zZkNY1DrweOqgJ4vGTYwXCCttq28wos8ypYazP24U6BwkyaVRPQYLp/fE0GZ09uXi2SSiuaa/CNx/zdLdrSijGJWAMbuPx/kcSanI/pWqvcQN8NG5DK5B1WjJLM4ZQ+s7T54kYSiVDmocskIOXMMLV+ASUqV3F2Us0Si2Vmvjb18aXYUZ9sbom6NFgXYzLBrBau3LQRxb7AGe7WZYypnxxOcdqDG6iVUjV7GsLSs0dqZjME4lLv2992v4gyZSaRbtJIKug+nKTs4oV42w7IfW/qS1rkmMknyupiFVkSkT9DHPPrcBvAWeo6g/CClW9yNdUeR8use9ccUiQSjAWQmMUDPaLMENpte/M3Jv1zbogfgeDYDhPtz2MElMqpYR2xkc1G/8988QSZop9pLRkqsTO4q/HtM8ZtgW7SyCLVA0YHAK6sEG1kJBKahwNx846njNBMjI4/bW1ElPMWxWQDK3FD3wS7S6Skkswt/i05iM1yyUxkI8ZCC5++LNH1t3yvBeiKtzx3c8lb2lzgkv3+CqQffFLwV5l1aell+ZedAMkU0wirO45023BW0ulUcW2HQUat2OMo4RQ175OJNV0AmVNM5HIQwp9/w5kyTM7zQYyDu+6+6sBl9XgiHwfKwwxWFayWCyQgSeVgVQsS+UDMQ2rJmfoSWVVBzH/2JI6d/oa00gz3vgfJJjuvc1Qdpu1+E6VmnGtLLNmc/bXg6hKmwsmTZTSNtuPIiWUAFX9vohsSj6jQ4NURN0AnLwk4KraGXGXmBJLGmndPk5DQPGlJNhhgrqpOX4wJrZtLI5QUlVZ6FMmrs6G88jRRj3WQyivvP2bOfuzv0ZlM/aLxnONm2lVaqK+OZWyBqaKnmmpOi7eI2OiAbSSrEUq8bM0M854Pk80uXUuzdGN00rimeZsIM6e4ry8YnmAIKH4VBph5By5FV7tNS5IM8Vpb3sR0JQizlJiMm1JJer3TSI1jJla1raxV4UYKJOoxFJ0o7jT9QEh5U/qjdg6hj+XSGP/CgjllEPMTMhsHG1v6p/LaFOxLVuL9ROkwtQYdRKLuzFmw6QS8Nd3+Ede/IVfYNUUTvUapRPLspRkOClljxnGd2LV21SGmrFPB05tpjmrtmComSMeKZwkIzmFaUswAZlXcTkV2BoDqR05mZJ9dsCSqVizOaWZH6lM9/7aERhucNuGcUiQSiaWw/LGpTFIHEsYitqL/p3BtrEv9JNN4QenNkG0bTGGJtI5Hci6M8GW2syf37WzySzLtXnu5x8CwItvex6vvP2becbnHtrqV9lxSw6orKvcl3rIAN6eYlnykkqXePPE82ZN8g6pOKKIadcThNlvCNQsvcRTW0OeWWorDE3ujfpCXWVucAtpZaAhlfA52lLSc6l/gf23Meqn0976IvAD9fJSGddH0ggqcBkd0Ltu5l0vscxfv6pQ1o20kHrIBXSDaLvS7bRzh3sfMyLgVGFdaLxXbZVYdG1WcfY4//sZ6zzBwnZbB4mmmSzNYxa/rx5QSO2e58zHxlBTUDPwaqrdUlP4vi+rpdSKGmFZXVbpoWaOSMgcwYgjmFJzChuIJ4ukYtX4c6qXhmpWZA2TW3bbNfbaJa6WFVY1H3Ee2DgOGpvK7UTkmp71wuQgxw3jkCGVw7P9re+hLsSSBC+SRI3kPwd1QUCXbNL0FVkPsTQPtWCCbrpHrdCdiaaEEqvwdfC8Cx/Mi37i7Zxzu7fwvAsfHM9T+tlbSkgAlWbROyaQS7c/8fOItNVWFVrEBdP53C+NKixpo4LNBGucKiyzycDrCcaRi7MNDMvc2WIqgy0T9+coqbRjNCKCdJMUkRoHI9rKLZYa4g1EY3466OfSpOAZ5xmYxkikueXCtQWCac41KqmkSAmle36r4uJy1KW4qa1BOhce7HKBTKI7c9zurz+R2iDUug82Pfc85F5HVwHDA5RU7nr+M7nDDXd5zUHJqi3ANN5e3QlN5oNIC1FqVQoZErx0VzVjiHuWr5XlqCIrpGpsMNrYYIxYssRmsywlh5tVVs0qq5qz7CWWvXbpgK4x4GCxqageQBnPDeKQIJUVGXLL5cupMd67pJnZp+vCw7jXLnnjn4l1vbtYs0VT0ClB15hbY+KADiQqJjt2v4BAKNO8yV70E2/njV/7GQZSx77HY/hrHWruSSdvGTm7wV7joptTg6jF+PoUpuXSmaJWYTnLWhKNpRl8w/0J61ernGGdM6wy9g0HIwGFoX36HXVG8rrMGruMuIDHb/72M9rX5Ys35VkdsyvkSZaFVApJCSR4xqUBrt3fJHVuiLYrlegEYlVaz0o4TirxpK7q6fbQ1zDQp56HtbqMCVWdRYkoHserwdKMydafOzpYhImUL89cSROvEa8/qQ80PABJ5bbvej7LRcb31vbEdRmWFTNkt1nDZOpcvKV0kf7qyKTA+XQMRNgdM1QIFkutrsjxXl1l1Uvpe+3ASzDOBjP07/FQXUnlPWY/u2XI4WaNo7IKWKVW2Jdfzapm7LWDDV9jC8p0SWUG9Zgvq/4GXO0pi0sv/6pOm1sB/wDcAXiuqr482XYJrlZKjSsZfPo6rmJTcEiQSiE1x+ZX+7rgyrI49Uft3RNTv/hVLbjWLreMgulLHIyAhdSReIIXS0CWSCth/9JmkcDWg6j+mpCd7l++fidulO8FYNmUrUyy4XxBF12rsKZFJJkwkwv3I0VXGktdOp3p13l5ZWhLfQhO9YeBnNFsAN1zgIsjGtqK1Sx35QISN+WwX9fLKm6TWAps7Huq/l6GhIOZd1BISSTc73QQT3O2hXQf6e/SXIcfqE1DogOtI8mkXoZpXFPYN+bCCm7TCZGF86exFLmPS4EQ8NglkjbpTZuYBPsLEJ0sYjEvv2+wk937g0/lQz/7ZxOP13+OIE0bP+gXnkAsq1rE96zQGsRS4LMDeLWkUSi8/a7AUAjUXqW1LDWr6oIdm+NXTi3m1WQAy1JG77IMoRDnADJQZaglu2XUYWVDmF+W4gp4qqp+RkT2ABeIyPmq+sWkzVW4PF2/NOYY9+4zxm8XDglSyUQ5NrsuDpArYsn82BYkVAuUKqxqxkBqhroaa3EH0ii93naoGcbuakkzKZyo7W0pONVRKVmLfEZn9uPdNaN6oCNFvPgLv0AhNTf1k6tlqVpxBUAc8AO51Zjophl0z33ECYyQTmY0Xk/cLi5KOVWTAdTi4hysGj9AtFUtzbW5fQemYmhzlrMq2mhqa1rxNVXtr8Ea6tq4FOp+UHCR7k2VxBSnvfVFGINLGiqWIqvJxPYGraZSSnBkaDzl6pZNLOwbf9PgLJEE4gUHidw2dqeuGq3rqp22SSWlsL6yTZwJ1nuf4VR4tcrIc9IH6fQbceYr6/sT+2gTUlETc9Td7f3P4GP3Pafv0L2oasNS7p77NRuk5iYAcsU4T7Dw/IY+1Qg1UKqTWCwum3IgX4OQiZDhSKigphSL1Yq9WkdNw6o6zcIg2FaS6zcIK2JYEmVZ1zfpG4dZ1F+zmFRU9XLgcv/5WhH5Eq6E+heTNt8DviciP7/xHm8dDg1SQTjCACiZCEsUZMnoU6tiUVa1ZoUKI/sok8E1JNJbtTmrWrDqg8DW/IMadLfN+Rp7SJBsVrVoGf0DwQVJxyRk0Jd/yKATpRXXxrJiql5pKPSjRigl954zwqo6RgrSTVAVOCnEE6a4/Qt1+upaGgJyUpiNbrVBeslpp9mAUSkl1aGXxrCkFaXNmuBU6+KIQuaD0ri05bUoq7ZdD8MdWls265v/6x87zhEXL+OkFBdomqqzukSS2hQGPio78wTTZ3sKqsw04jvat1SoNGNvNRixY4V2lTS2t27+t7RPASEbRNiWGetiUnAeYSPPhbSDOPuSogakEgvQpHlJUG5ADWZ9ni2Dcl25zPFLV/sJh9+efC41ozBlfDZOvcnlfOXbxzNEvSNLYsv0trQlMldbRiy1KqUoRiusVgwxZFapRbyHWUia6erMAJGoChk/uVsXZld/PUREXpusPdeXQh+BTyv/k8An19mT94n70f923LG3EocEqQjCioTkdULuJZAsPEACpdYUYljVmlpqrNTOvRclEyfRrMmQvZqz1w6cK6Oto9dJSgSBAMJgU2ru1BJ+wEln/yWZjzBuq5lmgfGeW8bHFmRiGfjULFlnIKixMRq79mnNSzUse8+aVJIJ0lhKMO46Mgo/+8M06rGQviaQUC4hINNQq0aC6XJl6uW25Adkq8J+M6D0M/zVuogz5NVaKX1KjWGdtepViDhCCe/xaW917sPgjP155oM8sybYMxALkKiY2mTjXNGbHFKhv8HtG2hJh+lzEO7Hms2TeyQ+ytsSvPWqkD3Xuvrxaf6qrmoOcNwpLqgR01SBlK7NaeR5SRwTusTStaX1HGPWwMDT3vYiV3mxqHBFx5SjD19jWOWs5EN2541UEgzoQfKrk1irFLc88TIuuvQ478HWdWzx9kocwRSCl1ospSiF1omULa33o1bFiLQmmfPBzOqv81T1+dMaichhwNuAJ6tqn7fWONxVVS8TkRsB54vIl1X1o+vYf+44JEgFoPCzQdMjBYTttQrLAtY4b5Ow3nmhwKrWFFpSiNMBG2MpNKPUMPNpJJvwsrj1JZltPM5qPyurMRhtx8TUSBywu0g9y9LgyGUpva648eTqkkr8HlUKlmXBu2s2UkythlUKfz8MRSKFBUeGTG2jdlHTUotlauP1BYJx19fc9zRKO0h0hY90drEDLuFgZTOuEWVos5i2PF6PcdKR8zBWEIm5vcSrhvLc/ZfElpJLQyihpHCwl7g+tdVckVSMjWlzQor4oOZM1Z3pbxRId80WiQ1OIpmW1pBrRiXW2zGcumwWs1uUVvBF4oI9xrRJJVWndWNeRt2Z+z3bujCiDKucO777uYA732d+7o8BuN2/PQ+XrHYURyzvZ1c2ZMm4Zy48v11SXrW58wrDGesvuvS40X55NVgXQdIw6rQSBUqJm+BZiFK2e0dGySR4aR4wrM5Qo362Q/kgxLcBb/Lle2eGql7m/39PRN4O/BSuHv224ZAhFRgllDrRn2ZinOSisCLEWXVOFiWaXWrZQ80+rci4JgZmhcEY2gNmQEnGbrOWJMhz9oxaU/flhnCCqiy1XwAjg9ces8pus8aNsmu9PcVGG8owEpy2/gMU4rxr3HUrUMeXzaqwm2G8rmDgDHrpYOzfK0stFVlfbEDa/zQlR/s3cRLWkinjABO81PbZAbmp2V8XTg9P4+5aZk2hJVdsrZFK4gAaqgAaZSmvWMoqiqxmOa9iFoEgnQTpwYi2gk9TIlkyZVSfFN5+lYnzYAoTiTQy3CVizFi1BVdUR7LPDlrqwBABvuaN1Gu1qzGySjFWKnB9xNk6MiXXpnx1yG4w4iXnMVZKmWLETxFKFtemXYIZnMvwEbssNzn8agZZHbNYgJMEd2Ulxy5dw5IpWZaKPdn++JsPEmIpcXnCrAgrpmTZP9fLIlOH/MZ13323WJYlY8WruGvUSzpCgWmNCXMjFPw8Zz7eXwK8DviSqr5iXX0Q2Q0Yb4vZDdwPmJgkcitwyJBK36wmiNHptkAsYSaUJTrWsG0JZUVKClFKbauu0sEgDh6akaEMyRhIxao643SY6YOb9ddeZRSkABdz0pBI6mI8kIob5texx+xnJdE/DxOpI1zjyKChjRNB+j8cG4VMqugt59SA/h7gJISgwqvFSSfuGm1TyMnPzJE6xgk096ibRFCTwcUN9Ku+j0umiraZIGFYJOYus5nE/GKh/8HOkmeu8FphamecD9UAvSor1NroxuoUxkYpatmUuISfPn2I/x2WPQk6z6Nh7Lsj9ypeU6kZe2XAtXYXGTZOKvyDFx0PcqmpjfNqy8VGd99xA374nRCiY4P1kkp4Die5u08illnUXANfn0hLdy33/uBTgZwTdl/Nnnytle4eYFdWsmxKbpDv9VJ17VyJ/f1098wRZEHNsqkYUDPoiG2ZSOt9rb1EMg6RKMSSee+49Fgj7eaF+Xl/3RV4BHChiHzWr3sOcJI7jb5GRI4FPg0cDlgReTJwa+BoXN0TcGP5P6nqe+bRqQPBIUEq3Ueuq5Ptwzg1WSaGgozdpnYGflFqbONFFrzKonEahuJmd0UwyqPRG8x6MjHeRdKqc8V1nioVQz8AucCtxgts2ZQcafaxx6wywHqpwjAka5FK5l/S1AAxjgT7dPdITUFQ7TnyGmrGspSx7xm5Uy9Io/4K7tOBYFrqvY6HWry+YKsIhm8Rlk1JpRlWXbGy3LvrFqZ2mY8BmzeuxpmxkVRcJmYnrRTGxacMPJmktTaylsqrUck1UouN0kkg9JikUKqYTyodDIPUOBSXPSB4N0XVIYaC2t1DMb4Eglsqby/pyxnX/D5OYgnPSyCRaLsTovTS+k1bz/gEwhqDEHGfLqFq4lHL+zhh19XsMkNHxskzF9S0R2T7fOR8I+ll2JjvC2DZE/iyWJYlSNrTpRTXvzQ7hRn9LP3b3fc52lWc//T0NlMPox9jfMLr0OYK4CY9m64Bbjf1JFuMbSMVEfk9XI7/ClcA5hl+/bOBR+OCeX5fVd877VjuFewYIsOsH+O2qY1SSdbxAAlqsrC+kIwV8ihK12jjxUJjj3E6XG8oxHmflF5nPvAqp1IzL6V49ZA4O0tQM6UvfjD+Z6Isy5AVM2TZG/lD4JbFtAilTl6yUeO9tLZ1B6A4GwYyXGGrjDLxdvIZhy3R8BzIxRGmNLE9fp+GoNowoq3rg4pl4+KBlqSkNs7tOPRxYB0xhVoladR6iFgvsjpGpYcU/0FSKaKkUrdVXrht7tnokkpjT1mWMqq7AqEMpGZZKgZ+wI8PH0TCdJ5+7nkrybxnWeJwIcFobVo69y7hN/9dUa3ghJHGA/U5R3SPN+77LNKKNYKRIctZxUq+xmHZkBMGP2TFk2xKioVUZBISOlYUBELxcSaJ12IhNhJKSiZdKSVgnLTSRzCTJJJZJpszw5VNndJmfqc7mLAtpOIrij0IuK2qrnnPBUTk1sCvAbcBjgfeLyKnqero1LcH6UMWBv5m5mKg46M+8pAlxLMkReuFTe0zId+Xi/p10kyJpVRLTc1ucW6OpZoRm4zbz4x4ZIXt6cxutw/iDISSBpABlBD1+ss0KrL+magdIR1wL3hA0N0XUkeJxGJYzsrY16E2QZF9tiN3r0Zf7JRQ3CzWVRs8ItvniMU6QgmJ/0L55coaVou8pdsP1xiiwY0oy1nFIKu8bn9I4f8HQgmqmtQI766/jrmqgsqr+ewGR+coUcXBMNzHvZqxzzoX9HAfxqEwFqsWTOWDJ+2IpJEGXqZSQFq2oJuduvk82fGjD5MklkDMA1Nxo8G1HJHt56j8Oo7PfxjtStDYGEPAYZGocUO8iLOXuJZZcosCoQQyySZM2OvOrL9LMukkcktw8NRT2XJsl6TyeOClqroGMbgHHNG82a+/WES+jvNm+K9pB0wJJUU6y+mbqbT3a4inK82E77XaZDZlnIoCG91ALQrGOtdcLKveZlHL6MOeemQ5dUbjBBCCuJyU4n6mgdTxc/saDaWLbXcqtM4MOMOOEE47B1Oyg+DdNm2UhIyamGEZvFcbTVBky3aEGQnQbN1HmkEHqVj2lQJD6vXC2JgEtLIZlRlfCjaNRVnOymhDWTKVO04ipRRJDEqa5DOQSEouhVfVBJVkuBep111QR8bJwYTgVkNQu7lnJxRsS8vnht+mLxt2FuIuYoxM4yof78kUAknP0f4+er7gIVdIzZKpOCxbZU+236VAMWssS9W6D9AQSBfBw6uQhkQsLobEnbdfOoG2TbRrH50mvWw6uRwk5YS3A9tFKqcBdxeRFwOrwNNU9VO4SNJPJO0u9etGICJnAWcBnHhC5tVc44klvHTpw9Zt77777TNE3qbkUgg+hYZ6NVKYedbRxRdGB/A0cLAvgSW0B/gQ1Nj0eXyEdSCU8Lnv2L2uyeJsA5m4+9VHLjXGqXdS24E2Bv8u0hQ2UWpAWTFDQsqQMs8obE3uyzyUxuVVC1JLmvo/HYCNKEtZRR5IJLgHR/WXbbLYik3O71VT3kMtGpSjqi4QSWLoj9dDlDD7gln7fovCp16x4mxs1pMypDnjRl2XAe8M4SXkCRLGOGkp65JJjx0n9TwM93DZlKwYp4otfKXFQuyIgd0kpy39sxzUc5kngOberW+0Hae2mmTE777b8zfUW7BTFCgHR2r8uWPTSEVE3o9LktbFc/15bwD8DHAn4F99icu+J6T3l/GRo+cC3OF2Swq0iCUT6X3oxhFPd7tl/Q+iSychGBUK0ZgWwnZsH+OQppSJBKMa7TMGw7KUMaEe9BtjUzIJ6q10EDDjxkDV6BEWSLhIDMq1NCVeER+lL406b/K19d/LIquojVMT7jZrLqeTLdiXLxEKM11XL8UYkFDzI/U4a6QRp2JbMs5IHD24PJEEN+CYG6pFuu36H02q9ioOooVoVN/YzoBhxIJmjpzUghjn1i0uMM+5k9csicTy0d0s2bNiklQ0Cd3KpQCprckkZBru3ZIpuWF2HStmjcPNavTYMuICEMGptJa9JH6ttezTjB/ZXdTI/9/e2cfIdpYF/PecszM7vdtCqYCptLf3VoG0lg+vQg0KRIJ89A8rfkQSif2jiYlAopCGlFQRRKIShf8wUSEhCBIUKo3RCFEQExJavPaWW6+FCy3LpQ0VhfbS7ezOnvP4x/tx3nPmnJ3Ze2f37MfzSzY7H2fOPOedmfd5n8+XFdmAbML/lvC8q88B8NC5K13BMa7f17zx89xbLM3sMCeDtN7fMZTZlsohNVV2TKmo6iu7nhOR38JVmipwt4iUuPS4c8DVyaFXAQ/P835tyqLri9X0z3ZR0JLF1HLO5vnCysoVVbpEgWYRcZuKCT+0nGD1hMdKUOc4yH3AvKDaGbCKV5RxZd0WP4EtFEqQoeV1wTrJcPUvoeYluKWCNbYVbrqengzThAZwBZjL4tJTC3WtWwbZZqz5GGTl1GScBuKDMgmKJFUoMUXYu9yi7z9OsFXaa1QwhFRkZ8PmSOW6ia4Wrc6jlQtyIJugS+BrYCblktsW2meHxc4Ecy5eimilbb1CblolTTLqyjgoktRFGNKCw3iOpErgKBLrOPdurUKVl3ziNn79lf9OLiVPzZ/kuaOHXUxKnRI/uXqUgZSseBcr4De6Cbebcl6YYthxhQLzxVQOp07pzf3198ArgM+LyHNwJbrfBe4CPiYi78MF6p8N3D3rZJpkZDUJE/ykEcQPft1gHTQDiEDrT935hZvWj8bzTh0fKnxlenVFQ4bqfI7gRuiasIPbJqS6pj3BKkvH3w/vrzpTsUCHWwziD9+dvyqqnPX6SYy5dL/5ZdnYHeMTBEK84vvlEcblgHUdcL64pCrcTNrdhAyrUD8SJsb6ynvTZ3BtJC4vjZNlSOmu6mrc80ekZCiub1SGMNHS7wPisprKMvM7G5YxWy6kXw+0iIWjpbeQ3F7sbhzSa2i2gImPx7hJ59BF5il0TF1+QXGk49XMfrssezJmc4H7DHNVJiIce5Zb8137/um6vXE5cMF+rde0TKJyxE3Mwa2n1W8ul3ocZasgfv3a6scFb8MsD8W2WVydyoGjL6XyIeBDInIat6XlLd5quV9EPoHr0LkJvGn+zC+NK8jUB5sqEHc/dS9JZcH6/2HCTf3nSf4YQ9pdTuGYpqIK588axwZ5Jho6HVfPpzUptfeIGVeVhZKjyY+9SjeN5wouHu+TDxNC5T8P5566pC1JK/mbiqJ5bvdY4Ve47cc6t5uv0E4O2cC5lMbZgHE5cNluvrJ/IvWvb1vwPVhxQaGE+okwSTazldx5tObiGXmFEia2UtznFaxCd27fUl1dQkURJ8RgOVZNOUN6doHEnSnTBqThdeAUTT7ffFp7XZO0WWlalLo8lfFWz35z3YGr9OBgpWyQ8byrzsVzfuMtb/W33sofnP6F+B4uYzCPMa1wrS7F3dd9KZ3X2FQo27FemgplXg/FXJQlFLNiKgtWZPuEXpSKqm4Ab+h47j3Ae7Z1PpwlEhTIRlQkEldFMRYAcbLu6nu0lftoJAUD0Vp6ZKqoQkZQGlAOGTD1jBmJrfibyiBmWXX4zp0iKWJlN8C4XKptXlTJ61blYRUaXu8mzqJzEup63y7qtTNSUzr4scqo/PCt55RK+Q6Dj5xNniIbjDVnnC1xWTb2qdVZbIrpjmtJY6bq0TbKJlHRrEgVdB5JGZuKDpIJK01zXZYlQveFiRZkWoAUjJKJuvDndPutFzX50nTj0PomtOxJv5dte9+0xU+6lDhMB/jbPrOqyaPG/UeGMQZVpVFHSy5mDDolHGIjbdxx3y9xJE8LXdszwjKpFm7BhRbSi+HilEmgrcRgYbUq5v7q5IBW1Feuo5j2mUzczbqRlJySic94anMlDKIHvPIFh/cLLVRqab/qFMuI6TTMaj+T2cqkredY+po1HcYtV58oXd+ujJKNzLVXmWS5WxH6H/tAC0oRV40fr11bzx2emyfLKe6RDhA2lGq8rDYJpo9HKzGpX1BYFiWTwvWkwm2O5ar+q8817c2WZkDFrsNpMZ5X8EOqAryB1HtF5VJtET2QnCwZ/1yEgS8EHfiOC0MpYlsVcDtxDn08zGXQBWWhPp0ki1ZMQWWdNFNim5NgQXvleVvDS/f49Go5FoEmisTVRm3UCj3bvv+TOZMEQtB/6Pt+uYVVOVOhxPG/SIWyK5j7q5UDoVQCwa3UnOCbjRM7FYqU9Q25ku9MXHFn7l1KnHun9O6r8744caxLPFEux1VnWBVelo2TZoTVRJ4qkq4sqrZmjWGP8tDK/vFiFLsMP1Ycied5+/X/2Dlen33wunjdQE3BuPfLpuINrePmx+bGax4E4J7VY4TdM8GllKb1MdGdKBAGue0TCavLkQhDL1+erVOwQaniXGPJpBz3k0lchOE9g1WXibLi+7o511bGMjm5CMsymJnxN5ClqDxGfv+OnAIy4rYBrgt06I2Wph5n9bqeZgad71Lgrr2qRamNSYd8ecvn1GWFxrRp6kWeK9l6jCelC6DwnieOrm45NuB6uT01X+PyfI0V2YiFo0d8u5x5LJOdUCIhG3RR59ayRM391cqBUipNQpA7TDLp5Jy2sY90dNoFgrefkW8eiZSgGivnHy9HcYOvx4oj1QZYuFXbOF+LLSxWnMrDbThUD0rH9N1k8mh2SC6ihZPFIHDYu369HFAgWyqTwM8fPxNv//OD19fecyVb56XXnAXg3x56TuLrr/9QXnrs7NR5X3T0IQC++M1rgbRmJxQ/eiWjVaqzU9A+jiXVkj9OPKoMxe9djttoahCzkSr/fdokM5BOlOnWAUNvnYQ9eOZNIc8lo1RlIK4yvvDnI8a2hCxsf+Cz9vCxgyzGEJwyHOI/ay19fRP+utvidtJqeaTH15VK+7FDqfY5CQqlsiYqhZISPtPZY1MpqnRfmlShBDdjm2VyIZP+rmR7NbHix04OhFJJP7siBr7rG1JNyFsn53R3v3Qv+7iqjKvgaqfI0KnWVbK7Cf1/Np/CWjlkrVzmsc1LAHjP8z9Vk/MDD/ycs1rycayVCDR97ynBygot6N/43M9dzHC18urj/9X53MuPffWCzvmSa74x13EnV4/WrRmt2noMRchJ9tEICkQqZRJjWn5yaXaWTtOC3cTpJrbcB+DT7Q/mJaysB7FbQ8kk+T5N8O7GkI6tGhWJOz7zyQvOHozNRpndlaCLtOYmvV87xrsD03ZAwYobJd/J1EKZV6EALGcTlxIuk6ioXI3P4uMms5RJV6r/YrDsry4OjFIZa1kLmMcMKq9QxuWgtrqvvZgqqAvux+32FsljnCK4siYxk6WMx4xLZ50A3PHj/9Ap5yxl8KdnXg3AbddVPTTff+ZVALzlus9sc1T2DxP1eV/qXGj3rB4DnIuqsl7cpDOSfDrLT2CiVfZfM8sIIHW7DJIg/HYLXF2/t5I03TUjbIML+My6KuvOv7tUtUbOIgmbnTnl4uQNbkhHV71J28KjufVxUBqBZuNS9z5FbJhZOz9V3VBwac7Dbad+jWPLk9iRoC4zlQXqi5Jr9VxT13Nh1kfYOtxdh9LMBF0Yc2V/HU6lcyCUSqGwVlY1HWNdYuIVw5ous6E5a+XyVNZNSrWLo4vFnC9HrJcDflCMAPdjzURZWxomGVfu5/+OG+5ayHWkyiRwkJVJoDlxvejoQ5xcPeoC4Lj+ac7aqBQC1Fe2rk2OT+0OE2ysrq5WyeF1bfVGs0gVinPDaefqNyZ8+ELIgtzfDt2vqFku4RrS13fSInbT/ZXW36SPV+evMgADwToJiSPbUSjglF1YcBU+QWbDW2zBoRssxeA5GohbHGSIdyP6i+uYj0NspEkoKZhomcRW06SYbV3KTLRUdGaXYlMq+5YSeCIG4rOYXjtWV9uw4a2J4D7qanMRdjIsEB7bPMKTxYAnC5eeu5xtTh2fU065uIzFUODanGyIb74TiuQ0nUBbUsIBwgTVMvmGVjoXSlQoYSM0n77e2iEhie3EVOuoWKozTl9DSxrujIaRlUWWWirtk1raxielKwlgu4TuCYX6vnHiC3hVwcfH4uej7jNz96WmYNx11T+rZnucqt7LXc8kUSZpD7JZHR+2zVwpxaZU9i0busS3Ny+P98O2uBPNOV+4APq6tyrqLejrX7RJmcfCuvObIyalcwF8+MUf3PmLMGqUKoxZ8lluPtir9XqfAfX9OFKak9HFTJephTLRonVV7GTeumNA1ZWgXmzZpBlgn6VQ0nPVG4d2K5ZAGjuB7cVPmmwmv58NzVnTIRNc+nrhOz6E2FmO+tuJ7Dq9ENiyHT4aXd5BgYz9dgzBUxG8E2ntFnzrgq8xMs8mXYeUA6FUniyHnF2velcGiyPdU/2dN3w6Pn/7fb/CKJtEJQIucLpeOLfZppoy6ZvU9fKlbx4n1HRMkoD+UKuq92EM/s6m5maZ5/jE5ZXug562+km3bm5O1FPbEaSPJ9SLGLc3YaWWR7uCqaymWKt1AYH4rVgvlxjrgEFZdYEOfdcmZR5dcsOYEVZOpZu3pfGnpOM8SYpH3Z42EheUqct7ojnny1GMjcKpi75WLd03YetjDqfSORBK5cpLfmxbsYc/fv7f7aA0xqJp+vZdIB9foaJM/ITvYhKVsqi3WA++eiXbRhC46lrtXF5xN1B/O6yUu6yUmtur8ThMWxYXQ5cygXrBLcxXc7JdJprFGGRYrIUtmUOLHBdrKlwHZ0LTzbqsW7GRLALTrM610sVOHyuOxASa4J2A+qLydxfhClOdow7FlIph7AvCyvqe1WPk3orI/boxtFxJCZlH27FOqn5RJZsUMasoKJSSZh+5Ojml61Ct0jpZpq1P5qUrucTdriyRF1y9APfOBbBZ5nxv4pp/jrIJE12KvdaafcWCi2+YpDGnsaRac83kusM23KFcILqrk0aj89RoXSyq5UxLRC2mYhj7i6BcTq4eZax5tFryxo85FFZWwWE34QPepRUCwJU7I21CmLq80galqULp6ia9XTdWYCcsiZ3mIzf+FQC33H0rmZRckk/iPjeX5uPYvDK01U+7JbdRK1ZOXF1VaYDEpJu3Xf9Pu3ORji88qt/imfxI5wGFbnKe7wFcWJHXPsaUirHvSSfgk6tHay6fE0dXObl6lBXZjMolF5ctVIpU3akb1kRbrUOhTmm52/Xu0k33UpPm/i/zXMt+pS0W+caTb4ibpx3JXZPTgb8P3a6vZmPNVJEEpbOolP5t8Pl1xjyhj7MiT2k94Bxf50qu4at6am2XZesdUyrGgeLE0dUYc0lJU1o3vGJxcZBi5mZuzW0NgoWSxlHSpqCpu6apZIJCWVRwfL/wgRN/zS1338rK0jrr5ZJvOKkseZcYVE0ooU3JT39GaZxkN1FV/Ul5OQ9yhhu4cer5Qjd5hFV+wGMrPYjXO6ZUjANHc8J2/ndf5a7qK/CrTrld9QSVMmlTHDK3ItluEeFBpWnBvO3UrwJVUD/slRPa8rfx7ufdubNCzslJvpA9jWeUbdbKYbZSwJSKcQgoVVwBnkqMj+QokxmB+zRG0qZAmlsWzNvrzHC89wV/27cIF0yXtXLYrRQwpWIcAm685kFX6yIKvh/XPHvDFC0ZSGaFGIE2a+WwWylgSsU4JLRN/l/65vG5XtvM6jKLxIBpa8WsFIcpFePQYlZG/zznk+8G4Ku//Hs9S3JhpNbKd3nk0FspYErFMIyeuO7Od22ru8FeJFgrZznNkzxx6K0UMKViGEZPnHnd7/ctwkII1opZKQ45CK0EROQ88EDfcrTwdOC7fQvRwGSaD5NpfvaiXFvJdI2qPmM3hTlMHBRL5QFV/am+hWgiIl/ea3KZTPNhMs3PXpRrL8p0WFjMrjyGYRiGgSkVwzAMY4EcFKXyF30L0MFelMtkmg+TaX72olx7UaZDwYEI1BuGYRh7g4NiqRiGYRh7AFMqhmEYxsLY90pFRF4jIg+IyFkRub1HOR4Ska+IyL0i8mX/2BUi8lkR+Zr//7QdluFDIvKoiJxOHuuUQUTe7sftARF59S7K9E4R+bYfq3tF5KZdlulqEfmciJwRkftF5Lf9432PVZdcvY2XiIxE5G4ROeVlepd/vLex2kKmXr9XhkdV9+0fkANfB64FhsAp4PqeZHkIeHrjsfcCt/vbtwN/ssMyvAw4AZyeJQNwvR+vZeC4H8d8l2R6J3Bby7G7JdOVwAl/+zLclq/X74Gx6pKrt/ECBLjU3x4AXwJ+us+x2kKmXr9X9uf+9rul8mLgrKp+Q1U3gI8DN/csU8rNwIf97Q8Dv7iTb6aqXwD+b04ZbgY+rqrrqvogcBY3nrshUxe7JdMjqnrS3z4PnAGeRf9j1SVXFzsulzp+4O8O/J/S41htIVMXu/L5GY79rlSeBXwruX+OrX+EO4kCnxGR/xCR3/SP/bCqPgJuwgCe2YNcXTL0PXZvFpH7vHssuE52XSYROQb8BG61u2fGqiEX9DheIpKLyL3Ao8BnVbX3seqQCfbI9+ows9+VSluL075ypH9GVU8ArwXeJCIv60mOeelz7P4c+FHghcAjwJ/1IZOIXAp8EvgdVX18q0NbHttNuXodL1UtVPWFwFXAi0Xkhi0O71OmPfG9Ouzsd6VyDrg6uX8V8HAfgqjqw/7/o8CdOPP6OyJyJYD//2gPonXJ0NvYqep3/KRQAn9J5YrYNZlEZICbuD+qqp/yD/c+Vm1y7YXx8nJ8H/g88Br2wFg1Zdor43TY2e9K5R7g2SJyXESGwOuBu3ZbCBFZEZHLwm3gVcBpL8st/rBbgE/vtmxbyHAX8HoRWRaR48Czgbt3Q6AwGXlehxurXZNJRAT4IHBGVd+XPNXrWHXJ1ed4icgzRORyf/sS4JXAf9PjWHXJ1Pf3yvD0nSlwsX/ATbgsma8Dd/Qkw7W47JJTwP1BDuCHgH8Bvub/X7HDcvwNzuyf4FZnt24lA3CHH7cHgNfuokwfAb4C3If7wV+5yzL9LM79cR9wr/+7aQ+MVZdcvY0X8HzgP/17nwbeMeu73aNMvX6v7M/9WZsWwzAMY2Hsd/eXYRiGsYcwpWIYhmEsDFMqhmEYxsIwpWIYhmEsDFMqhmEYxsIwpWIYhmEsDFMqhmEYxsIwpWIcOETkRb6p4Mh3O7h/Rr8qwzAWhBU/GgcSEflDYARcApxT1T/qWSTDOBSYUjEOJL4X3D3AGHiJqhY9i2QYhwJzfxkHlSuAS3E7KI56lsUwDg1mqRgHEhG5C7cT6HFcY8E39yySYRwKlvoWwDAWjYj8BrCpqh8TkRz4ooi8QlX/tW/ZDOOgY5aKYRiGsTAspmIYhmEsDFMqhmEYxsIwpWIYhmEsDFMqhmEYxsIwpWIYhmEsDFMqhmEYxsIwpWIYhmEsjP8HJcwGapUqtlwAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACvi0lEQVR4nO2dd5wkR3n3v0/1zN4pIoIAJZCwCQYMRiBEFAgQQthYhBfjBBhjZDJIQkSDwRgTBDpjG4xFsAUGY0wwYKOESMZESSAECBFlJCRMMEHp7na6nvePil3TPTO7Oxtur3+fT+/OVFdXV/d016+eWKKq9OjRo0ePHvOAWe8O9OjRo0ePzYOeVHr06NGjx9zQk0qPHj169JgbelLp0aNHjx5zQ08qPXr06NFjbuhJpUePHj16zA09qfTo0aNHj7mhJ5UeGw4i8vsicr6IXCMiV4nImSJyHxF5qYgs+vKw/Tw77ngR+bKI/FJEfiIi54nIoX7fS0VEReSZxbme7ctf6r/fQ0TOFZH/E5Efi8i/icgBa3j5PXrs0uhJpceGgoicBPw18FfAzYBbAG8EjvdV/lVV9862/fxxvwq8HTgZuAFwmD/OZs1/E3h8ccrH+fKAGwKnA4cCtwSuBv5xPlfXo8fmx2C9O9CjR4CI3AD4C+AJqvr+bNeHgQ8HaaIDvwF8T1XP89+vBt5X1PkicFcRuYOqfk1E7gDs4csBUNUziz79HfDJZVxOjx67JXpJpcdGwj2BrcAHlnHshcDtRGSbiBwtInt31HsHTjoBJ7W8fUq7RwFfW0Z/evTYLdGTSo+NhBsDP1HV0YQ6vyMiP8+2jwOo6neB+wMHAe8BfiIi/9RCLv8M/J6IDIHf9d9bISJ3Al4CnLLsK+rRYzdDTyo9NhJ+CtxERCapZd+jqvtl29Fhh6p+TlV/R1X3B+6LkzJelB+sqt8Hvo2z2XxLVS9vO4m30ZwJPEtV/2tll9Wjx+6DnlR6bCR8FtgOPHylDanqF4H3A3ds2R0M+q2qLxG5JfBR4OWq+o6V9qVHj90JvaG+x4aBqv5CRF4CvEFERsA5wCLwIOBo4LquY0XkPsCvAR9U1R+JyO2A3wbOaKn+r8AVwH+3tHMQ8DHgDar6phVeUo8eux16SaXHhoKqngacBPwZ8GPgcuDpwL/7Ko8p4lSuEZGbAj/HkcjFInINcBbO4P+alnNcr6ofVdXrW7rwJ8CtgD/PzzHfq+zRY/NC+kW6evTo0aPHvNBLKj169OjRY27oSaVHjx49eswNPan06NGjR4+5oSeVHj169OgxN2wKl+IF2aJb2Wu9u9EDQGT5h86xG9Nw68MPW8OzzRffvOC7a3q+29z1Vmt6vnlg0j26mp/9xAfIzg1Pfvx+ev9778HvnnDVWj7GGxKbwvtrX7mRHmmOad+ptr18nXCu/bdlHXeMefTslWU2AVTMCp7/Gc+x6v2Y3PCyDjv7+t0v3nHa87Xc53a98ODh7za+q03j3Eftey5Q1bvN61wicqd7H7H1ouu3KxdevGM4Jc3QpsfmJZV1JJO1fgGPqR4zVrbsgXqOZJGaXIPJ2yr0e3ckl/VGK7n53/bc+l+X3e6DF34/jgnnjv51rqTyqN/aR0/80/348DnXcofbLvC4p/9wt5ZWNoX6C9zAlc9GELMmxLIRZnBtL1s5U+vEnAfjNSEQd6JVP8Wxezy2J5Y1wJKk8GXinJ3vmv2dWAJE5E4Pvv+e3OuIPbj1YUMe+vtX8vhnyGB3llY2DalAB7F0YQWEsxGIZBrOWXz3WNm8Xqo1I450wrU9X4+J6CKBpb4XE8mk5Td/8PB3W5/rWXHO4rvnTiyP/M29LzrxT/cDYP+bDHjQ/fbkWSfst8jamgg3FDbH2yoSH0IxMra1H2PGt02OcxbfHbelXvPU+7kStP0WG+R3OXavx02v1AOYk8SR/eYzvcfLaX9OEJE7XXOt5V5H7BHLTvrT/fjrf/g5UzJtb2rsFhceHsiGFLOb45yd7wK8rnmtsVEJvGPgOnavx3H2tdPW8to9MI04jjGPnklimdZOF4kslbhWU6uQSykBQVp59p/uvtLK5iKVcrAqVFzTZjvnLG58tda8EcglYK4ks1HIYw6z3J5YZkcY+LsG9EnG+AC12nhfN9qEMLellDj5yftx3O/tvraVTeH9dQNzYz1ycGx3hYJcVqKX3Z1w7NY/mL3yRiCQNbD17O7EMg9JYVZbilSV+6AWreslnXdSH0Rkxd5fweOrjVQAnv+XP+GOt9s9PcE2wEiwBggP6gbQ0e9KOHv7O6dX2ij3dI2cB47d63G9nWUJOMY8ukEiU0nJTwA3upRS2lJKnPzk3de2sgFGg5Xj1ocfNqbGGcNGGPh2QURi2YBGdMCRSTYA7e6SxEZFSS6dEOMIJfzPyqc+d2v3TD78Cb+378QK+99kwO1uvQBwh7Xo0EbCBhgV5oepxDJjnR5NzCSxrDUKMgnobR+bAAWxiBGkqtwWPMHEpLKqav2+mj3cumW6ZLx1q8BuaKzfdKJZTxqrgxAEeOwej132sUvBSlVMZ1/79qW1sYKcZbsTzrX/tqrBioE4cpW1DHKCcHYWUevqVN79WBW8mkxrkAp0tHrBz7XWLE6xwdsNliJqrbDpSKXH6uLs698xM7GsJBq9lDbmYsfoiWPXQCCUNjtZ/A0NYhLZqLVO7xKJZfmG/VlgActkW8/GsgStHXpS6bFkrEfqki6VVk42ZZ38+7F7P34+/bjmjLm0sytj1aSVoPYKZJJNAnICQQTCd1/n7P97c9yd5/laLSgWy7Rz7J600pNKj10as9pPAhmshFx6QlldNNRejfIuw7wnHSM85CYnAHDWT05fdSkFYISyOIW4pkkymxU9qfTYrdATw3wwd2mlJBPJXYotZPF0UlXRlrJesCh1r/5qRU8qPXr0WF9k3l6tCEb4aJxvr3bWT05flUzErV2it6l0YVO5FPfo0WPtsCp5tXLjvKrb6tpF1XtiUTuudjrrJ6cvyzNxuahVWZyy2U2QrWQ56CWVHj16LBs5sSxLHdYV7JhJJ7mNRK1Bauv2GUG8dPOQG/5J1p5F7equp1T36q9O9JJKjx495oKVSC5j6q8olSxhaM4CI1cbVqGesvWksg4Qkf1E5L0i8g0RuURE7ikiNxKRc0XkW/7/Ddezjz169FhllOlVckLx/xvkYiRKMqoWVYsMBt6An6LupapWLfW9s6lM3npSWR+8HjhLVW8H3Bm4BHg+cJ6q3ho4z3/v0aPHZkZQVU2QTBrEUtd+y1RcVRUX7JPBcFWzkdcqLE7Zds94+nW0qYjIvsBRwB8BqOpOYKeIHA/c31c7A/gE8Ly172GPHj2WiiW7GqtFa0AFRGNZ2q3pu5hkX8ljUQYDZI89kC0LnPWzt6zsAmZEjVBPSeulu1/aL2B9JZVbAT8G/lFEviQibxGRvYCbqepVAP7/TdsOFpETROR8ETn/xz/+8dr1ukePHvNFUHHVtdu8uqtBKHn1sg4kldgawZKIpWvr1V9rjwFwOPD3qnoX4FqWoOpS1dNV9W6qerf9999/tfrYo0ePJWJZdgy17VtZp6gvRpDhEAYDt60RagyLOnmz2ksqa40rgCtU9fP++3txJPO/InIAgP//o3XqX48ePTYKMmN+9PAS41RfC0OXC6wrncsqwCLUmInbLDYVETlERD7uHZW+JiLPaqlzfxH5hYh82W8vyfY9REQuFZFvi8iGsD+vm01FVX8oIpeLyG1V9VLggcDX/fZ44FX+/wfXq489erTh4ssPpvLKjdsf8oN17s1ugHyJ4SJzsRiTUrqIcNwhbkw+8/LXr2qXrMoMkshMksoIOFlVLxSRfYALRORcVf16Ue+/VPW3Gq2LVMAbgGNwk/QvisiHWo5dU6x38OMzgHeKyALwXeAJOOnpPSLyROD7wOot3tCjxxJw0fcPoUYYZmPFpZcfGD/f9pAr16FXGxNzyQ02IX2LlJmMVdd0aYNgU5mEWWwq3m4cbMhXi8glwEG4yfU03B34tqp+F0BE3g0cP+Oxq4Z1JRVV/TJwt5ZdD1zjrvToMTO2SlJs5F6u37riQG59cE8sc0FXpH1RB1hTA31ArRWLOnn4tEu0LojIocBdgM+37L6niFwEXAk8R1W/hiOfy7M6VwBHLumkq4D1llR69Fg2vn75QQBRFQWwp1EOOeiquZ/r8/9zGFsF9jOLDMVFTFugkuaMtSeWOWJSokm17Yt4rRHsDC7FfurxSBHJ/ZxPV9XTy7oisjfwPuDZqvrLYveFwC1V9RoReSjw78CtadevrbvT2XoHP/bosSxcfPnB8bMRGIqyp3Hv03evOGCu5/ri9w9lH7OTAweWG5iKrWLYKsJWcaqwYfEef+uKAzta2r2w7Gj2bL15qgoZDpDhwKW7r4z7wcU0F+sK8EkojzvgaSu/gAmwCLWaiZs6m8v7g5eq39oIZYgjlHeq6vvL/ar6S1W9xn/+CDAUkZvgJJNDsqoH4ySZdUUvqfTYZXDh92/BUCxWJU5St0pSMgTpAeYnMXz+fw7DCOxnlGGec13wahcXtGdVe4mlBctJOBnSrOBTrQRbSVisKy4dDD6Cvpiw+8DI4/Z/Mmf++E0ru4AOjDAsduXg97AzGOpFRIC3Apeo6mkddW4O/K+qqojcHXf1PwV+DtxaRA4DfgD8LvD7S7iMVUFPKj02PC76fpiMpZd0q1iGKJVAhbisseretkVfL0gstzp4eeqwC79/C6Bif7ODPWWA8e3m2Wm9k6svaxLLpZcf2BvvPWY22gdX4SCJ5NKIT3kvxqDWOsIx0iSW8H/kiOUhN3oSZ2VLDc8L1ksjkzBjRP29gccCF4vIl33ZC4FbAKjqm4D/BzxFREbA9cDvqqoCIxF5OnA2bpWZt3lby7qiJ5UeuwS2Ss2eRhkiVCIYP5yHhZKMBvuGU3/kMQLfveKAJRPLhd+/BRXKzQc7uIFZoPbGYIu2Ls5UCV6brSzupkFvy0buMuzVXk7d5aQUqSpUbVrt0aqTZsSrwzJpBvAxKxZdHMFoxLF7P37uK34qMtUQPwupqOqnmeJ7rKp/B/xdx76PAB+ZeqI1RE8qPTY8tkrNPga2SMUQEwf1GsUgWJRKJC6KlAb4pA67/AcHUCFxGLj5QeMSxMWXH8x1dsieZhEw3KgasacMGoQybQ0NcJNnv9wH37riQLar4dcPuWIFd2DXxTHVY9q9twrje6gTlwr2/0WcDUVsVr/C3VyTEUq46TmMxAW9HrLvEzjrl/84t+saqWGnTlF/7aaTi55Uemx43MDAPmaYSSeW7Vr7z55gAqGESZ+E7zTLgWGLN5Gz14ARZS+pMVKzjwziOepMQqkzF9ZAWhUSJaUhSg3sUGGn7/NlVxzAoctUw20KSFo0y9lJWlyFxTgJZeAN87lKy5BiUUL0fCCT1vM17TDzhsVg56P+2nToSaXHhsbFlx/MgZVhQEUlhkWtG5IDNAf5gKrlhTZAJcLQD/QXX35wNpsUtoplL9nBVkkSTZBMynN1peAI560EKlG2aMqmuxw13K6C427x7Bgv0hbNLlXlMhGTSKWBPJjRZMTRhmhrKY302XMQnglJiSbnqQYLaVomYd19e9cJPan02PBwUkB6gW2H1NAGQ5MAalUqIw2XZEjxJxXCUJJBPrefTCKU9uHFeYblXmmbTWI57uBnug9TJIKcVPAqrbQzkyqM8QZ4Q2eEfCuheKhGg36jOFODzQNWhXqKequXVHr0WANc9P1D2K4DtsqIO9/i8ol1L738QKxWbJEBO3SRWjWqourCGJ/bOoK0ECQTm5HBtQr/NxoBwj5SO/U9ElViwUYDsJhlxS2HqRptlYZyGN9eUIstareEsyviuIOe0UyT4v8fd8izOPPy13Ps1j+IRnfpyiBckJGEbMPBswtabSWYzJ4x41r081SF1WqmR9TvpjaVPvixx7phliBFI4rFNgjFSSqJSII7cRuGGPaUiqstXO3Hnq1i2UdqH8BoGIpgkAahBNIKW0CdGevzz23DWiXBUy0RXY1w2ZyDM9cVQRWVbxCDD6WqkIUFGA7c5gMaG3aRENQYgxtNUxIx0tyWmeNLrY0Sy0phkalbL6n06LEG2EnFVhmxjxlNrPf1yw9iUStuVtVA1SCUWpsDe0AglkWUfYxhUZXrtObajHCGKAt+oA/SSekm3KZSm8Xry9I+S6u8Xn8oYHzbu2pwZIxUL7IDNzByv61s2eLUWQvDZNvwDhQajPalbSV4f3W1DR1pWzRJS8aAKjIYoDsX/SFmboQCzlA/PU5l98SmJpX7n/ccAD7xwNeuc096BBxxi8u46PuHsI9XRfzyylsAsO+B3491vnXFgdQY9q9qbmi2skNHDUIZU0Vpyhob8oBd6weQSmAvSRH4pW0mtdGUOCJpzTIyRE8zmUIsXg22i85gj7v5UwuPrMw2kg/+Pp4kqrwCoYTNWoSqmVk4EMJw4FRbuc0l+GeXaFvPPrQ3GHDmFX/Teh0ib5/lcifCqb+muRTvnoqgTUcqx3ziREY25t3psQGxk4ohxAh1gJ9eeTA3PjDFclQoe8vAkcAMA7uzX2R2lUAiWWxKlQ18pTRSkomrM76/PGeoF+wm0+ws0D4WbnREg3yIC2kzlgfCFpydY5ANunVYZ14aHlljKNvVDkJZZ+xq3l8i8kjg1bjl2YWQaEh133mfa9ORyrxhf3ibzn3m5t9cw55sHhxxi8v4+ZUu9UoeUHjlDw7kags7MdzYWLbIgFptVE8FKaVURVVTxpwgPbTFlwS0SSZNW0rzJBVJYjIkYsnPt+kQbSGZdJKrohqDf9VkT+PzpIWyNmIRGY+Oz/cFrEOq+xJuka5dKk7lNcDDVPWS1T7RpiKVoz92MqoVIoqIrlhamUQoYX9PLMtDLqUsqmW7Ktf5l3R/Y7mB2YJFXVxKQShh4G8jk7CvTfIIqGRcrTWJQNoki5As0Ag4q4+6qalMl1ampUzfkBBJhvbwvdw/dkxOKp5Qwlo0gRjCzQ3SySweWpMknTWCW09l5Qkl1xD/uxaEApuMVEqEH/Uxn31yLPvXe843a2lPLLPjw9+9E4cO/48FLAdU6dHbKhVbBfbCsl0te8oQgEWtWSRIKolQkuQxfo5EJsHbKiGuu1IQT14/tlO03SaphHqzaGdyKanaUIqRboSleRFxqqwgqbShJJU2e4kRiOlW/N3PZwa5lNISvDgTmawR2cy28uOGIpXzReRfcWux7AiFban2V4pNRSrO/dRBVahkXBP+mM8+ee7E0mNp2CLKDurowrvoBwID7CMDLMo1upPF3MsrM8bbYgIcEMrrlgWUKm8gDwN6GQLRNkBMGjRypwBUO6Sm9gFuV5BUIqGAM7wvLCzNtpG/ermhvgrEUMzyyxT2beSStxWg1hv/M0eANVhWeKY0LRtr7rAvcB3w4KxMgZ5UJuG8o0/j6I+dHL8PjOVGW66fS9tBGpmmEuvRjf3MddEWEbyzFkSigXsoJnp5LaqyM/P0CmSSE0bVEp/i6rWpYtL+iuR+miSapQ9EDWIpsCvbVY677fPdh61b0gBdzXg1uVQCTRvKJLSti5LvmxX+uTrzqjfMfswy4CLqdx2biqo+Ya3Ote6kIiIVcD7wA1X9LRG5EfCvwKHAZcDvqOrPprVzzCdOxKqgahCvy12s23Wej/7MUzjhgE+kYw9rVzW2qbXMzb/ZE8uMuP2LtsXB/Ot/eSILUlMjLKqwXStqhKFY9jO1T6fibCeLPvo8l0oCmeSEYRFMpre32pRQagyVp6VaMwKQySQySyR0ft6loBLY6vv09csP4vaH/GBZ7aw6hkMYDtAZB3QpJQpoem5ZzWJVOgzxXRH0syITDVZzgS6Y0aV4A5GKiBwM/C1u/RYFPg08S1Xnnj573UkFeBZwCU48A3g+cJ6qvkpEnu+/P29SA5defQX38J8r417YMMNdjVQJvQ1lOu7w/G0+s2wqO/KW3+OL3z8U6y0dNYbKDwTXqbLoPb8COeQum+F3zKUUaLoRl3UgN6grIYyyQTAtmCa1hGMrlAp1gd6MOw7k3mHpWCeZ7ZjSh3WFEXTvra0pWLqgtnnxUpJHvAlCp/4Smvu0+NylAguqL2v9tvr31XZJxDk2VljDPwLvAsJqaX/oy44pK4rIL6e0JcBVqto6u15XCd2z528Cb8mKjwfO8J/PAB4+S1ttP7CqsNN2zyZCOoWPfO+OM/a4xyy4w/O2uQ+SbR5H3OIy7nyLy/m53QNwg/12Fa7Vil/qAtfZIdfqkO06YFENi2rYbgfs1IrtOmRRB9R+LQsn9Zi41Ygrz9cK9ydPhGP8f2lszTLT2JaKWaLvNzJ00JHMsSUdS4ShMZqoSFPKaRCMpG3FnR0nIVUbI/ZLHHXeKSs/JylOZdK2kSQVYH9V/UdVHfntn4D9O+p+R1X3nbDtA1zbdaL1llT+GngusE9WdjNVvQpAVa8SkZu2HSgiJwAnAGy56T5tVQC4ZnGB845uLv187vd+Lf7gyxk0erTjjs8tyKRlbP2HS+/HVrPIgYOKoRpgwHaF7XYwdc3vgJrK2WbUYDKLcLkSX9gXbB9ubXuNv3mVHVtPeB5yNZqTTLQhpbRJHG2BkHlyy4ANveRwrq5qk1JKSQYSsQTPYZFx1Vhef1ogZJtarQ25i7KXVMqFue55zvMZzvaITUWthtEU9ddGsqkAPxGRPwT+xX//Pdw692141AztddZZN1IRkd8CfqSqF4jI/Zd6vKqeDpwOsPdtbq61NTOnY6nEgrqZRDC2ffi7d+Jht/rKUrvRwyMSCsSBRZQGsbzx0qOpgEWt+L96b35u9wRSOouhuJxRlQTVVki1Mj7rHEZn4eaLHeo6hwAXjV+JHSMWaCeQUuLNbSdtaq9pKqwymt/gnBOcM8KGGnQAeMivv6g97XxXmvlyXzTU+++WhsQyphYLxy+FWKI6bkIuL59/LF9DRVWo7XwmkTOlvp9BYBWRQ4C3AzfHUfHpqvr6jrpHAJ8DHqOq7/VllwFX47znR6p6t45T/TFuSeLwov63L2vpt353Wr8n1VlPSeXewG+LyEOBrcC+IvLPwP+KyAFeSjkA+NG0hm6378FLyu9V64YTTXdp/PpztsVBRHMJRVP822svOZY9jR/IFa61WxpkYbBRIqix/n/lCKZ4OSuxLFI1JA3XhlKraZDIUtBlt8nPs1wDfUCQVnYZ+XhSJHtXVHwpuWQ/UyAYmWXEbevDEo7Rum4UWRVkTkSuM9hUZrzCEXCyql4oIvsAF4jIuar69bySd2h6NXB2SxtHq+pPJvZF9fvAb8/SIRG5HY58LPBM4MU4M8Q3gcdPC6JcN1JR1RcALwDwkspzVPUPReRU4PHAq/z/D8773DmhVGLHXAPbbCwPPeyr8+7GpoJYRyg5p5SSyg47xHhCcEb6JIm4pYJHXrVlsFiMWDcbzVKBGGxGHONqrDaURLMc542g9gqf28/THuWfpBQnoUSjvm9mI6nAZGeN7tGh1ulSX7WVTSAWKNRiOVbiAeY9yAQfqFlIMl94yF+5arx66W0X0DmlafGq/qDuv1pELgEOAr5eVH0G8D7giOX0V0RuBbweuAfuyfsscGKHxHE6cCqwN/AxnKPUE4Dfwkk7D5x0ro04YXoVcIyIfAvnmfCq1TpRHJTEUonl7O/dfrVOtWnx6yc5aVosSO3+mxGY5iSRHXbIdXaB6+wCO+yQRZ/mosawUwf++8CnFHdGUKvG769cmUo8Lhjsa+02jNaIC1IjGe6DgT/sb9vaUBJKpy1lhrGwEqFC2CI6N3v1PHDcYSfBjh3RyF5uEW2G+rbgxbzM0GrM764v49skhBQvgwEsDGFhiAwmLA62Qoy06STStvnJyyNF5PxsO6H7EuRQ4C7A54vyg4BHAG0+0gqcIyIXTGob5/n1HuAA4EDg30j2lRL7qOqHVfVfgEVVfbc6fBi44YRzAOtvqAdAVT8BfMJ//ilTmHClaNOlh9nu2d+7PRVOlTJLJtIejkygQzUu8NXXnMgrvnYeRixWDZUkxsltHBYBNcQstz5DscmkEki/lZNvkuTSaINkS3EIKzt6ybTFTtOGCtuwpcDyScBJKUlaWfA3bEOtBll392ZMuphF/dVWlkkueZvxc1k/fA/5w7pQquqqijN/8Lfd9VcA1Rki6t2z935Vfcm09kRkb5wk8mxVLV16/xp4nqrWMq4KvLeqXukdms4VkW+o6qfaTqGq78i+/7OIPL2jO7moelqxb2HihbBBSGUjIPfwaUPuMXbsYaVkuvvC2BZ3/MLz67kXPZoDFna6YLFsMA/33KpEAsE7UeTEUmvx24R9kFRjSpNYIJKLq5eiRiKxeLQ5AkC7/aQkmFlQqzbS7huCnjA4DGwQUWX7Dth7rzTo52NmmzcXzEUllkss0eay1L63SE5nXt5q754L3Iqg8/ndRGSII5R3duTiuhvwbk8oNwEeKiIjVf13Vb0SQFV/JCIfAO4ORFLxweQAH/dxf+/GvWmPAf6zo0tvEJG9VfUaVX1j1tavAh+ddj27JamUNpRyUAkBdQbFZCkJzRINv7sDLvrrE/n1k7cR7eniScZLKADPvegz3KC6jit23sirGus0ywvvZSaZ1PhoeQyLmgzzBksl6iUN591Tq5dcxKnRSkSiUXG/nzRHy1kJZilYShr8SsCqctkVB3DowVet+NwrgrXoHn4iamiSQ4s3Vyu5BJReXm3fJ9wYRSjnEeMSkGcm06gFwJmXbWM1UWvF4oQYOJgt8FocU7wVuERVS6kAAFU9LKv/T8B/qOq/i8hegPG2mL1web3+ojj8Avx0zX//07xp4OUt5/uHjn58G3j2tGvaLUllGtyAplPLenhIRij+BQ+EArDDDvjG9Qdwg8H11GoY+nQtIdYktNEwymvKMBzvva9TiY9RkRCHYkAzb7Ec0WvAtUSm+gpux2YGBdRqRb+HCHtY3yWGj7v5U2GPrSkLcWnvyF2FWySMMaN7V0LIUDZL3EkR8+LsJowbrtYhFb4Lh5nm/TWTJHNv4LHAxSLyZV/2QuAWAKo6KdfMzYAPeAlmALxLVc9q9EH1MHFrNt9TVf97lg61QUQuVNXDZ6m725NKHpsSvL4qbErvUaQD6coTtjvj4teeOHH/A25wCZduP4Dr7AJDqaNtJSqkxFJr1RjgQyBkVHtlarGQWLLKprqLvu6ipjbd8RLdkiux0ebS8AbLzpvbZ9zxTa+vWWJTujIWBxVYWMa4ygbDsMTwZVccALAuUovuu5eLpoduEigljBaCyTHTsDotbb5R1BZBlIFgwmJgucS7BlCfjWNynRnaUf00S9D2qeofZZ+/C9x5hmOsiLwWuOes52nBzH3cLUmlK8jxoYd9lbO/d/ssXsJwbO9KvGLsKTu4zi5EKQWasSBJWrFNOwiAeELP7C1h0B8LPpPkYmwzY31AM8FkN7EETHNVXg5sy1CzICmmZhbvsVXBnnu2Synhe9eaJqUKq8V1GCaryqYGR0IilnBOzUknM+DLJGXj/FCrYTRF/bXBljQ/R0QehXMcWM5T1mV/GcNuSSqT0BvhV4YPfvc3+PFoH2o17FNt5yvXHcJNhrcAgqeXl1K8+qphpPbSi8nUU22ogyG/RGG8DxMD1EaPrZAPuS1QclZV2DyRpBW/BIDv55U/OJADD1pDVdhwgFbSrZaaFNmeo4NkSklGVMelG0MjMWXDE0zELUkcdKJtucfWIJFkgItTmYv6a61wErAXMBKR7QRXkRnWqBeRfYHTgtFfVf9vUv2eVHqsCm40uIYfj/blRoNruXz7jRgay97Vdqz34QfGDeRRAnG5vYJkYmka8WHc8ybaXKBBLoEk8pQt4ficWEp0rpOixAFtVjvLLGuruP3rNwjplkGUVNpUWZ0SxDSEyXxBQEoHgWWT/8hhmPjFpdsSpFYai3NBvMlnfvvUpfdziZjF+2sjWWB9EsglQUT+FGf4vx53ycGv81aTjutJpcfc8OKLH8Fd9hSGUnN1vQeLWnF1vRWrhoEsAmkdirGBfEztlYzqQ19Uqq8CSlvJJAQpJ9jNErHUE49rbStLBZMTR/D+KpNKlq7F7W1OX+N+VZDFirTunsXja0K7nVmPJ8FLKSFTQ5Ra8rLgOCDCmZeuWpz0GGZK07KRWAUQkRsCt8alxQKgI6Yl4DnAHaalgCnRk0qPueKHo/24pt7q0tJbFyk/8OH1uQum9RleYyxIZk+pvIoslNUSVFjaGgTZJW248zRjXlLm4slxSW1oyyc2jVhiP2iXVsolh1eLUO56wrbG1PmCNzedK2Rnjd3Dn7uto7N4fLVhAnHMsgCYAFR+gLaZLFeB1hmxAA+5w4s462uvmN6nOaC2htGU5JQbyaYiIn+CW7vqYODLuHQtnwUeMOGw7+CWIF4SelLpMRd8/n8O4+h9FjjjR/dhaGr2MIvRNmJE2WHdo1ZmIA5edVaFYcjtUgQtNojBIxDMJGKoVXwcSDq+Dl5lhRos71MJ66fFFepsQNlgaqRwOgjleKN79BwTt69lIJ5FPbZcHP6n25glB6YuVM7O0ea6Bq0dXLHNYILBHrzdBYneC2IU9ZKK1Ariv6+Dd4MyN5fitcKzcHnDPqeqR/ukkS+bcswLgM+IyOeBHaFQVZ856aCeVHqsGJ/5n1tRAef98g7NTL+eHHL7qRUncaR4FNseud5irF+edJGpzEr1mcyQjDJPQlmMEa7cfW4jl1mIwhb/A1ZKMoc/uSmZTO3HHlvalwQuMU06WYLdpZn7q2W/L5TKndcFRDrXYrWZRcO4Pp118dpIKaFvu5JNBdiuqttFBBHZoqrfEJHbTjnmH3AJJS9m/BHtRE8qPeaCa3WBGoMRZZDZJ3LvruQ+7AmjIJNSjWWyz8lbLKV2mTUNfUi3n47Xmby8kmt5uciXJKmFRC7Jw6zpItxmX4Hpb+lPrzyYGx+49CXED39KSzT5lFt1zhdewrF3/XM3gk/ylF2isX6iiivf1WpzIZFJSA8TXIsrSeqvquKsL5eB5KuL2soupf4CrhCR/YB/x+UI+xkwzb1wpKonLfVEPan0WDFubLbzxp8cyU927s0elTPIW3UzuRAvYiRTiKvBtBjGJxnZk5txUql1ocs1OI/CL+EIIssLJhYULFXr+vaWfLEvTyJjRmz/PSOWSR5e+RA19JLcz688hP0OvLzzmGkIyw+IhlgfV363J57G+W9tjhcyskit2D2GM9k7mgdP2z9eIWo5G7m/isPyeBTrVY8V7rNRWFy6g8U8YGdyKd44UNVH+I8vFZGPAzcAzppwCLh8YScAH6ap/proUtyn4O2xIvzdNx7AT+3WaDMxeTDjMmBQt76KWB/BvvpxI7kaIyxJHNa3r72Xj9V8TfJmeUCeOj9E/cd9LSNMjcYtRxVdllcw09VxQhHvpd012p110cu7yUSmbLGetG5qGNtcuaDiyERN23ES92mVbUagEnTrgLO/NM00MH9o9vt3bRvB+0tEjhCR4/IyVf2k//jrUw7/fbxdBZdD7ALg/Gnn7CWVNcZR550CwKceuPq+9KuNd337SGAvPn3tbRlpFZcLmEQsgSgqcSoot967+5/nVssJpZRSZkGbtFISVG5XCdJJWxBkJIfQPRlXi4UqQS2W24KCfSU33HdhLJvxEtGq+iInmNSFIx/n8hd+/u0TNByTutDlftz207dJKlKUS76vSMuiNFcVXWc4f4Gp4tma9GUKTgX+qKX867jFuDq9v/JElktBTyrrhHuf+7zG9/8+ZuWr0a0F7vLUbVifyPZ5T4dFHfDN627GjnrAwNQus3OZ9Vk0koQRbSWUsFBaLqFMW863iraZcbLJSaGNjGxD1eVK8mSTkNbLSG7I/lwtarFm4kqPRsBgUxU2CQbxOctcxR1X3YotB3wX+8PbuP03/+bkBloGXhW3TEFUgU0YnGVknRRgMnbIVVRLIY1J+/OFaYLfRn6ejkFZgsfXCpd2XglqNYymSOQbZMnyG6vqZWWhqn5bRG68Gifs1V9rDKtCPcXAt6vgysX9uNQTSiQLTxz5NguhmIxITIexfqnrw1f+HCVCzrCmqsutHBmCKnPVVVg9Mq4g2aoWC2qv9oGkVIV1ecEG6ST8H3ir+eiHv5r648llGsISBJD+57cwqJ1ynP2ll4G1LibE2gb5RLVVQLlaY9ZmlELiRmNTI3ElSK2y1SVlXE1WbrYS7MBQb6n46CdfONO9WA2oysRtg0hVe0zYt9dqnLCXVNYJ5eBzz3Oez2cfvHYRwcvBn5z/Rxz5xJoddsCBW37BxVcfzEgNA7FsMSOMWIZe2sgxNDYSCcBQ6ihddNlQkrTS4XJcSCmhHfe5RXIZU325+x/T5fsZfE36bcZtHS7OxapXj4U2FcLaHrk6rM0rLIw0QR1WSbKd5LaUXA1WicEsZf5XCkdGuOD0Eznycac1Frws1V73e9ipjgwO2ps9fnCNuxkL4r2vQtsdRvUJ7sENO00ukQStYtZ2+pw10LLUpq5hnq827EKG+o+KyCuAP8sTSYrIy3DuwnNHTyobCPc4+wV87thXrnc3WvGw/3oGN8vmPD8b7clOWzEQy9DUURIJ0fO5u3BOKNF7K6Z/HyehWXNqTfIWG1tXJUMZlV9nK09WudsyzTV0ghRTST2WS6z9PDJGLAGT4liStLJCidZLDBe+6UT3PVyK/3+PP3hdlFw++66TG4def9De7HHltVArUo2rosbsIdk53f5xImmUS5NMUpvhmKwsaze1ub6qJatmqsZhg7gUnwy8Bfh2tl7LnXEG9z9pO0BEJq6boqoXTtq/bqQiIocAbwdujnvHTlfV1/tMmP8KHApcBvyOqv5svfo5b3z6Qa/hnuc8P37fIA/eTPjZzj35+Y6tLFQ1A7Hst3A9W6oRA6mjhOLWSxm3hQQEdRe0rLjZMkCnLMPjJDEpPYuLpk9R9w3XZojfLd7N2KdxCVJIjWFBRnFdl/x6mnEozg5jCClk7ERSLI34wXg/jDEviVByQ731VqCZ4Q+98O9PTEWKi0bv0PV/8sOncNRvOwcSqZXtN9uTrf97HajzthIrqMnsRLNKJEXd6CVsin3e06shweTSS3Ft64rCg3yjQlWvBX5PRG4F3MEXf82vxdKF101qksmpXdZVUhkBJ6vqhSKyD3CBiJyL81Q4T1Vf5ddUfj7wvAnt7FK4x9kvmBg/dvezXsgXHvJXa9ehKXjqhX/I9fWQgdmTnXXF1mrETluxdThqDPQ1Eoe8abEktY9TKUlhLB1+FlcSVA1dbeYJJZMRPhFL6Nckd+dQP11TsrnkEkyMY1lmqvyUar+5uOHk1TmasD+8TavB/sK/P7HTAywiHw39x3s95nVIrchAMCNXKBZ27L8nCz/d7uvpOLEwm1TivvsdJdFkUkkZuzJGMqHt9ZZUmCVL8UZgPwdPIpOIJK979ErOtW4WY1W9KohRqno1cAlwEHA8cIavdgbw8HXp4CqiYcyDhm/7RsZInTF7wThpZKSGRVsx0sr3Pz1OuUdXvk68VWFRq+ZmB06dQMs+rVjUAYs6oMZlOM7b2KkDduqA2vetPCZ8r1XYqVWMNdmpVfwe2g7l4ZjtdpgM92qiQX85cMvPppQ10bAf7lfHcZUED7T5vKoxf2fmPNUWu6KV8Ikzn8vwlzvBOI8r8RfgVilw66FolQzuuXSimXG+jEGJ5BFiTxqGeB+bYsBWmWHex6ZoJdihoAPQARzxhNPmcl+WiqD+mrTNlm9TDhGRj4vIJSLyNRF51oS6R4hILSL/Lyt7iIhcKiLf9pPwuUFEhiLyTBF5r9+eLiLDacdtCJuKiBwK3AX4PHAzVb0KHPGIyE07jjkBOAHgFre4xRr1dPWQP4B3PfNFXHDc7HmMHvHfTwPSLP5993rjivvzoq880s/MtzAUy866YmSNz9sF20fu0VkwI0eGfpo9CNmHi1EqeEm5SHvTkDxyL7AAg7olgr1KDQCt3CJfjekwvkxaMxjbTJ3kvjdT51vv1+X8rMIxbt9QRo1zBRfkKkvLHyWNjrQxddtsVTXmCquy9C1LjUuZJK20wj9ksZshGDKHOEL5rw88B4Bz//vPePDd/8JV9gGLWKdCE1Vs20qLpaqrNMAHycSMG+lDUGQ6NpdeMtVZJUxZeHFVoTOov2bUjrVqbFS1sVqgiFTAq4Gzi7I3AMcAVwBfFJEPlceuAH8PDIEwoDzWl7XaYgLWnVREZG/gfcCzVfWXMmN6CFU9HRe8w93udrddQLvZjfBwLsevPRBKjkd/5in8273+ftn9eelXjyewxMDUMVo+SBpGUh4s4wcbYyswMLIWDAypWaRqJHMMhFKrRK8rqylTcD4wp5iQXPpx323+HXyZU0UlYvBxJBoCFUNK/RSkGY51TlmWfCnasGpkre5zJe0rQ1rak1zmHmABjZxhnlhWii5imYrijSn58P7HvcbXU+SGWxj+bEfS0XnbTCtabCdd+8a8vloIyJFMC/mst1A/S/DjDJ30E+gwib5aRILGpiSGZ+DGySOysrsD3w72ERF5N07TM0YqInIPnC3lav99H+D2qvr5Cd07QlXvnH3/mIhcNO2a1jVgwotS7wPeqarv98X/KyIH+P0HAD9ar/7NG3c/64UNFVeu8rI0fdzv/B8vXlLb5Sz50Z95yrL6uO2SB2NQtpgRW80iW8yILWYU+3vd4gLXLS6wox6wPW5DttdDdtQDrrdDrq+HXFNv4fp6yA71m19bZUc9YIcdcH095Dp/zA7rNx1yvV3gervADjtgux3G/9vtkOvqLVxnF+L3HX7bnqm5tuswqr522GFW5tRZO33doDJrqsuaqrKw7DEkF+Q2RKmniFkBvErPrXbp1HYpziVHJdKZlmVeqq9Wl93odgzVTpdS3uwcJ8nF/bZQ7z1EBwYdGk8s6dg8XUsZpxIJo1B3xTQsDdUXaJVtDZVYU1U2liJmDTEtRkVVwu15pIicn20ndLVZaGzy8oOARwBvKg45CMgTw13hy9rw98A12fdrfdkk1CLyK1k/bkVafLUT6+n9JcBbgUtUNVeMfgh4PPAq//+D69C9ueLwj/wZImn98ZxYVBOhhPJZvUqO//TTV8Wzcs/K5Y5zA6xhSzXioD1/wVd+eiCL1riYEKPs8BLLwFhsJYx8lLHLVOxcjQe2+QzmywkDPhgyBUdCmt2HsqD+MqJu1cjMEcBJM1Uj3mUxb4Ns/Xmx1JokwiDNuDiTJMWEgcplFrZJrealmeDllSLwDXWQVrKYlZKIYup9JUpppdfGclKzzBxp76HStK2gMNhuXXmH30FImRIM5Lq1StKOCDom+hSG9syzK6rEDE31mHgiaZNgsrYaBv11ggtinmKod7fk/ar6kmntlRqbYvdfA89T1brQ5LR1oGv0kDxORVWtiEwb/0/BJZX8rj/XLYEnTDlmXdVf98bp6C7O/KdfiCOT94jIE4HvA49en+7NB7/xny+OA3+5zHcXocziZnz8p5++Gt0FYKtf+hdcoOKi1GwxIxaDAVIUaxWpK/9yWUbWsFDV7JSKgbEMxLJQjTDFI2aRhj3FEUrKBwYkkkGoVLEicfCvRBlR+fh2bbRlEUyQGkL8S5Z6pdaqQTBAUnvFATKp3FyAo4kqtKAmM7SkdtFBDIisVRpZjBsOGJ5wUixKrh5LRLgcLEUVpgKf87Ep0Y1YaebXKteVF0HyMUsTAY8vuBXKaScUaSGUNpLpJJUsN9g6YJ65vzo0NjnuBrzbE8pNgIeKyAgnmRyS1TuY7nT23xWRZ5Kkk6cyxRtMVc8TkVsDt/UX8w1V3THpGFhHUlHVT9N91x+4ln1ZLfzGf7arsEobSpuEMumBfdh/PQPoXk9kJTmHTvy1c3jLN+/LTh0wpGZoRgy1Yr/hddGjxfo3e4Q6TxdjMVZZtJWLW1FHKmXwYOhbbo8JhGLExO+AC6hUxfo16oPXlI1JJlMKeoDcJpPbYiqpG15plmSbabgrx0XDiCS0qINkyA/EE+wk/nMpsaQ4l/E4nVoNC9Qghko1k1bcssJGggSl/rxLt0TnKVxKgvncP59UVud+D30NdqtJbsSTbC0Gt5ZJTKOfSSNkpATpzY5ZhhkjC+cR1rSbxLKJpCLx/wWnn7ik+zM/yHRSmc37q0tjk5rJEjuKyD8B/6Gq/+4ljVuLyGHAD4DfxWUWbsOTgb8B/sz37Dy8o9OEvlXAsbiYwQHwQBGhq58B626o36y483+8OE7erLoYDrcEhJ+9EogkpcieRUL5zU89M0o+jVl6duxSc2QFnPGte7HoVUAL4ry6tsooenZZ2yS/xWgMF68SC7aFGmskqsZyBDvSwKTMxCaQTMgBhvood0ANQW5y56q8asv6a3bqtqEfrGttemK1ps6P0oVJg58mA39Qd7l7UDH0EkoglrogmUAswRkgLFncFhNTEwIlJarmwjorNibQTOTiAj+X6cY8g+TScC1WnGdXiyE+xJyI0Rh/ISGBWRj0s8+NiPhW6aOdUBqG+dBukdol37demC1Ny0yd7NLY3AJAVUs7SmpfdSQiT8d5hFXA21T1ax11f4QjnaXgw8B2+pUf1x+Hf+TPcDOZrDAQQUYmSUJJD18eu3L7f38pX3/4S8faLwMBl7IKYhfe8a17AIYtXvVlMQTTQRiYv/Kwv+AOH8z746QREXWeplikDgOqYI1EG0veb3+oT+uSJBqj4tK8SBiQQ3r54B3mDh3RJIuh2KQiw6nIBtTxfFVUf2WqsTCIt7gpt2U4dvKH608ZgV/j43FwdpmAoM4ql0a2KtG+5gz5fmRXL3GJYLyBIySMWa6xfhqx2KG4oEdPKLlnV9sj1Qh0DPaPNMtpTa+iGRGoabGfZO7EJamMEYlkba8nMkeFiXWmVZmssWmr/0fF948AH+mqLyLPVdXXiMjftvVoynrzB6vqnWbtW0BPKnPGXc98EfkzouoG3SCtBJQqr5xYZl3gJyeTUmr5wL3fsOS+G+86W2HZqW4gHUrdUGGVKjoR9X3XBiGCaRBH3kcgkaw2XZQDmTjyTfHmNc1o93zwdn139pdENhWIczYYUwf6QMY2u0vYj+9FkkiSyszmbshQSC05vFSi5TLJ4z9uWmtFlqH0mozluB3LtEFTmjNxp0Ec9y5rSCXZ/WmznzRIIyeUMaJZ0qWsGqZpFtbP4tPAJf7/1MW1WnCmiDxYVc9ZykE9qcwJR5wZUnCPSx1h0LWNfalOSSj5sSVyG0KobxqDrfv+m59KE5D/POpvpvY/kEkYNF1chh/cNc22v/7wl3L7f39pg0iCpBIIRlXi/D44nExc/jcQij+Xkcz2ghLIpS0xrSORigF1VJclST14iiWX39CXRgxMEQ8TFusKecfColzgaKLObCplQsp0P1PwZbn4WIm6qFOrYmV8TfuVYKqHmJdSojosqsTafzdFop3EVcwuvyQUWgiE5nfNtjYJpc3Gsp6YJfhxI0BVP+z/n7GMwz8HfEBEDLCIf8NUdd9JB62zY97mwN3PmrymgzNwS3wQg+eI9eVlmpawX1W47fv/otFWHteSl41t2f6cYLpQYRnKKBJLRVhBpBnpDo5YctKTsHZKRnSa9aO8vmmqupGtGFnnWRbclEc+ziNssdy6uBLr97t1TnxMiDUxRibEyYQ0LyGtS61BhSXZOikm+x/iVNKr4oI3Tdwf6oQ7ltcP96+iuY5MSS5LzyC2chx1fPL6ch/cv6CK+vg5z+Nj52aZP2zagsqsGRVPoe5qJ5Q2ySOPO9Fs+WGyuJQYw5LHqqwT1Jqp24YRqQARuY2InC4i54jIx8I25bDXAfcE9lTVfVV1n2mEAr2ksmoQgeuuX8BUlsrYMcmjqSoKZc19XUNvObNv2w/js+RJiOuYiDMOh8GxjGpv7QtEaWWpGFN/RftJU/0FNGaoYxIapXoxxKV4KSJc54zDt5PWihgbPyI22lXi90np9qehvMPLdSuehk5VmBGw6tRYuLxfJT52XjO11AOOeRUYM1ElVUoWraqsnMyydVbG7TGpbIUmxBWjxZehtc4Gwr/hgiffwgwBjB7fAr6ax7fMgp5U5oyQs+vW//aXbqDN9pVE0vZTtRHKbd73cr75qBc3joUUm5EjT6XStn8SGmugiGWrWB79KxdMPa6UWtr2W5K9x1Vss6dkZBjtUOqCEiWsS9KWEiXEfnjVl4QFskI2ZInX58iy+U7VJWlKd/p6i9CWrmUWdKXpL88VFuiaWyT9FMRB2hvZP/HhUxr7G9JK4ziBWl1SyYCORbxK8hh3LyZJKiXxmOI/3SS2ZpiToX4NMVLVpeZuugr4hIicCcT4lN6leA3QlqpeTKHeaJFI3Ofxt6Npi2mizThf7l+Oe3HycgrGaff9w9+9Ew+71Ve4y9O2AfClN5xY9NWp9wZq0czG0nZNgViAhkRSukTn1xmDCGOTXq00YXEsyBfIyvKJaZYKX72tRcaN6dYb7kM61uCt1bV+iy3Ku0inVsNwSr/XgkaWnS+sgMtcDKLja57kKrHGPmnub5KNjJXH/eF71sa6QgWdElG/wUjlwyLyVOADNAni/yYc8z2/LfhtJvSksgbIY1HK8tb6E9rK4zy69pf/z73/tql9DGvHA173n/Yd/pRtcbS7y9O28aU3nMg3HvkSbv/vL8X61e9GxjiHK7VBXnAygQr4vhr1KvnMttIgFG1GmAcyiG7HY+Rik8SjQlVp01AvNL53LfSVE4u7Fy2EQDLW10USypjKRTMVYgdCoGWVSUu5oT7kbHSflxcAOQuc4f5JIPCpD6bFuZaCj537fO7/kFcjIyX4SCc34aKy0PD4avP2KjctPkdCCVILcIcXbIt2lkv+4kTWCrNE1G+k9VRwKa/ApV4JUOBWXQeo6suWc6KeVFYRIup1r+1r7U0iD80G2rZ9oylLmS4V5cx6bGDt6If1b/viyA1+zgMMQBBpDuQ2M+YHd+MuSSoQiBGNHJHXH0TaSgSyaCvvZBAGaRuJxXm1BbVSsIeEa0wuxTm51OJHr4xAXJ8K9Rlptciml5jvXxZxH1RvdZh2Cz4VjbvHTiJy3l/x+lcQADkJn/pgGl8+9aFTJtScDHfrgrsYUR2WpBXJ1FspRUvDXlIsM9xQjZUEkxvq18tgP4v6awMhj8qfBhF5qaq+dLl1elJZLWgxU+kYPCfOdrJDbvPel2OMAjfgpje4GtPSXHDplQnqsS487FZf4SPfu2OcdYf8Xw849FL+TLe1qhxyNZ1VYVQblzjTd04IBOPKUUFDpLvRKLV0xdpEKcY0JRgAK2Hqmoz5KbYlJ5PaD+BZWpYWV+HlIqjUbNZ+VLPFiP1ELIlMAuEAkqSVEF1fR8nFp39ZQQBkF+ahBvvEWc9zafLDz+NdkhuEUqi8KP/TsT98LlRpuQ0mEg5w25dv49IXr5W0Uur1WrDBSEdE7gjcHtgaylT17S1V/0REfjmpKVx0/kvbdvaksprosp3I+P6loLbGzWQpVDpB5WXNzLaUgE9edhuGXtUyzBJKlv3cfswv+bUPvIxLHvHnrji4SFvnZis1qJcA8kj7QAqlh5hk0kcgklpDZHlSj6Wo+0xl5mf3IWgyzO7HVGOikVggrY2SpA83cFdFvrJgWymllYqQliUs2FWmbaGlLB3j2iQSy05cLjDXX0csuW1rKLCosGUVpJU8VxjMnuk4R+4pdr+Hneq8yMr02SWxlGghniitFN9LicVJR0vu9sqwi0kqIvLnwP1xpPIR4Djg00AbqbwZ2GdKk2/u2rFpSOXQt78agMsetzGWs59VApmGNqN37VVfIhpn/nm9kEm47dhJKNOJ3O/QNMCIhe0P+UV862/zvpc7ySN3KlCoaxOzMRvfB1UTySSWjapGnYDQ7zC4jwVPBqLIyhtSjSeaQCzBIywnljoYuPygbalc7rCMWKJk00IsLjYlc7cu1GMQ1F9OFRc+L8iIRaqU2gXLIgYYYb26zjkzhKSVTWJZDWll3vjkh0/hqONPxa9IsCxMklhKj7DcvqIV/Oqrt/Ht562BtJKLSJ11Vr8bS8D/A+4MfElVnyAiN8O5F49hubaUgI39hM6Ii3/6w/j50Le/ah174vAr7/6rItCxuVkrrVt7/aRrDnAp6CWuhe3Sz+drYwuL9dLe6Psd+k2/tO34m3DhP5zIjuN+4brhB30jmvU72X8UJylZK7GP4XujDHFBhNl1BDVaSchlYOc0pIBLd56RpmDKGkmfVXwaFxNXpkzLDAuLWcBkuZiXWxXStR/bUInr3jeCI9URy854rLBIFRcTC2Up+BK/7gvYDTYyzYJPffAU8J5hJSbmE8tUXaX3V2lnGSMWYU2XF3a20snbBsP16lQIIxHZF7f4YaeRfiXYNJKKw8b5JTsllQmDYtn7UtIQUQaVjZJIRVDXNBEWD9qxOOCLx427O3chl0w6+5h5lak1nbaiVD8FJpZ5wqJEEiWH5rFB8giuwW0YD5a0DXVaXCjL21hye0sex9403ge35TrFsDTWpc9VZz4zcUvG44b6K1vgK11vdzzMro6Q6kXLRYTGKrp/Yy7GubTS8r3VTuM//8rrTuM7J58EwKGnn5qy8VRKqzFyObDAVJfi6ROgNcT5IrIfTm11AW4VyC+sxok2GamsPw575ysRA8JsSSFzlD5iGv82je9ixY97JjOGJ4wF860Qv/6hP49pY1x6GUlqLgQx1vUvCSzFC6Vj5FdbEJ9ZOLyboskNOUhDdWaozye+I2ucq3Fm6B9gY6BkWDVyZP3qjqSMxyFPWJ5Gf5GwgJdP4x/KWnKEWXRc5ZWtHNlla6moI/kEu0zXUouV/4lXK7J+tfGpD3o1mHcftkLDaN+wc5e2klw6IZNSTJN0xtLki8af6lavPw07tOMj3Jw4JeZI20Wgqk/1H98kImcB+6rqV1bjXJuMVNxTGuwrsE42llJ1NQWBMCI5xMm1pCc3/PPtWuteJhFx1oCGTSWd987/8WIu+q2Xr+RqGrm8NKi8srVV4tmU5PEmKWuxCf0OuzyZBEklGPSDPcVEIs2CJX25ambAt8mobgIjAfkaLQNTxziWQC4Gk6LzPbkMQ9yI5FJICpDMicWEEa0glmiPAXJvs/i7qFDaryu63arBqb8qhFrVr+OyepH28wiIzBFclu/96NelwjFV1nhSyTajfCwriKW1zQq0lEhWgwF2IVIRkcNbyn4F+B9VHXUcsz/wJNIiXQCo6h9POtfmIZXc8ybDoW9/FZc9rj3NxLxx6Dte5QbH6LIyG3LXYwkeTGFsylyE29Pou335euhhMF+qoX5iHzNJpYyhUWtQsdFA7+JzUn/C0CpZv9zHRByhLCfJ0iVZxRHKALd8cYhbCTEto9zrzWnZWvKkmUhQNlOBpZBNIqFULc8TdHuFBWKZBOd11l4vOhrgYlUqcYGQyb04GO/XLoXLPDGLy3D+f8zri6Ie4wSjXmJZdViZQf21+t1YAt4IHA58BXe37ug/31hEntyR3v6DwH8BH2X2fGEbl1RE5CHA63Hv1VtUdRkW+LX7VYN0FAll1lP7wS8nDgQ3oBLUaO6TolhrGgNwPsvN24gR9dZlOr70kS9Z9rWF1WMb5zGgtScYG3JqBWkj1PPHl6SJxDQ2Ask92mhDMokxL9Yi4mJcKmMZYcASJZawDcqYE8FnLE5SCUpaVRKSykq0aWcRw6Jm8TGeRGo1YEa0eYU117NPfalpt60EldxiyJgsyoI61dwiAt69eIj4uJwRhrBomWEo1dzIZd5SSgPaMuPLpRRaCKdtvM5UZlMJKi/2UnJQ184N097xjUUqlwFPDCtDisjtcdH1LwfeD7SRyp6qumRVz4ac7vi1kd+A86W+PfB7/iZsSBz6jyH4S9IMRqdsuUyvTUkgfM/VaCEWJHpBZR5WoSx5gEnyMpuzsTCoqoxRBgu166MV7EiwtaC1YEcGW6etHrnNfa6os302eIOps9OMahPVbXn6/KAajKo4sv1ZvdJTLKXMN1kdw6JPmV/7spGtWFTDovcUW7Qujb1V5921aKssdX5KjV96hTkPM0cu0bPLly3qIHqDLeogeoO5z+7823XgN8MOFbarsF2V7WpZxG9qWdSaHbronZA3Nv77vc9p2CAarwDpfxthNNRhFPuz753SzFijc4LOsM0AETlERD4uIpeIyNdE5FktdY4Xka+IyJdF5HwRuU+27zIRuTjsm3Cq2+VLDavq14G7qOp3JxzzHyLy0NmuJGGjSip3B74dLlhE3g0cD3x9ac3M+UGahvB+tz3Ak0Ry8dMocC+QFkkZVaILo5NXhGbYcrPttoSUt3nvy/nm/3vx0q4HF48yqOIk33e35Xx+MhrXL48qrvw6wzW65JJRavHXlNuWLC4qPXdCiGq/LCYl5BML+xsdhTHVV4q8D98heIxFdZhAjGfJYlmiAV8rjKaVI2utcFGf7UGSTmIKqXAGuGWJbWMRrqHUjfiVCm/QD0YrL7U0Hmn1a96vQlDk3JH9JjFGFaaqvhroUIGNnWoNXntR7zAzpc4MGAEnq+qFIrIPcIGInOsH/YDzgA+pqorInYD3ALfL9h+tqj+Zcp5visjfA+/23x/jy7bgFuBqw7OAF4rIzqzOLrtI10HA5dn3K3xZOybMDtbMUO+N11oL6h1/Glvt9wcpJko0oe9hSpauJdR3bWTxLH5rSi1pi0Z1vJQzTfc77dKsoapsTL8fiE9V+N4fvqBxD6jdpiPjttq4a88kmPg9k1bC9SSJrSm9BWklSGRNKSZJO6XEMrKmKPMLfjWkGhNVUHGBLzVRYgnSyChIJV5q2W6H7LDDlngW932nDtiuQ7bbYVGeYlS26zDV8/9Dve068NKTsIiwiLKo6iQVLBbFoiy221lnxqqqvjyKdGntc6xJKi0pvlPYU2Z5xBVKT8llY06SiqpepaoX+s9X45b/Paioc022psles7fewOOBbwPPBk4Evgv8EY4sju7o2z6qalR1q/88n0W6ROTpwDtV9Wez93/FaHtEGjdSRE4ATgCobrxfs9YaCiiHvtn7watMtQ827NvZrD268YtGQ4Ra0qy78VJJtFuIQFTX51HpDV1B8X2JCEkxR3XwfnJt5ue77LHJEeKWb8vzQDmJSnKXJ1GnS7du1i2iiF/oyVQWH9DiY1pStH2wrwTjfXAdDq7HIgo1aRXKfKOwvUhYbyYlkRxAtL2EhJSLeJde9bEyYjHi11PRIN1ITHppvWeYRd3/kMgSp0Izoiww8ukng4uzu68L1E5K8YkvjZdYkuQVljh2BnyrUHvb6VAMVt05Ky+1bDRD/mfeczL3+IPXUU6comNdPhB3vMNRzRXQ0CbruApM/c0Lwt4aKy48HikieeT66ap6eltFETkUuAvw+ZZ9jwBeCdwU+M1slwLniHtR/qGtbW9O+LCqPgi3mmOJa7o6LyK/DRzlv35CVf+jq27ALOqvmwNfFJELgbcBZy91JbBl4ArgkOz7wcCVeQV/804H2HLowRoGMLdzlXtXQKLEMUUchgaZQHgpCoKR/K3yqiH/cmg4yJOLaTTeRFKDLfPCWpr95qNezG3e2+2i/D9/nPJAHfrmU730kjcmzt1TTRwIxGg0/FsTyAbEWJd40jsnBEO+xC15jhmUkWmSTFiL3rkW20gw1gRSMZFwbCAaFe8A4MlFNRKDQZw6ytQgzgGgkSsMSWoxBKSm9tH2Tk1GMuJnqrIKw05opHQJ6jAYgYQljN0aMUPUL08cAi/VL/+cG/E3HrF87p0nc+TjTgP8/MnnCMsd4dSScv9D+7s8hRyiei2flEEimXkgsxFNqgO8X1WnesmIyN7A+4Bnq+pYMkdV/QBuvfijcMb1B/ld91bVK0XkpsC5IvINVf1UcWwtIteJyA1U9RdTry316VXAEcA7fdGzROQ+qjrRnXYqqajqn4nIi4EHA08A/k5E3gO8VVW/M2sHl4gvArcWkcOAH+AyYv7+1KNaZjiH/tOrueyPVkcFdug/vNYHYZDcC6e+BFk9Cet85wSC91DJyEc1epWJLw/1rCXLTtw8bbk88XKgpFiR271sGwBG90YsmJ1wh/O3oQa+/lcnjh172ZNOcfcotyV7swcjzxyVOnWZUahMI5BNjCMZUzlyqf21CmCMjaQSPofElTnZBAIpV8MMZDIwNkoqZJKB1cqTR/IQC/tNfj+9zcXl9BKGxttWcHqFyk/HQ6BlnQVLBmKpw2whs8fEdV6ytDHuv+uHBYbi1GEu+aZ46SiL3cFuOMnl828/ibs//rQ0KOfPdnjk/b1ocxoLGJNKJiGQyTwllfydXyFEZIgjlHeq6vsnnlb1UyLyKyJyE1X9iape6ct/JCIfwNmjP9Vy6HbgYhE5F7g2a++ZE073UOA3fHoXROQM4EvAykjFn1hF5IfAD3GGpRsC7/UGpfHFrFcIVR15tdvZuHnL23LPhfZj/OS/OclfXYQHy483rqzjQcvjJ2KZ+KIknwfJRYxE4hlTicXrdPXUS2mdEonv063e9Vd89/dfuKRLzF2Rb/eVbY0mZwncv+xPn8Ohb3ytUw/6e2SuM41kg1o5otDK3wcvrVijSKXYyiBeChHjrtuYrIwqprAppZggoVQ+6t8RTN1YIMyIQkUMkIxBizZzd84kF4wzoIc1WoxIjMavrTPQG1EnbUiQIHxGAAtDGXmXYqjUqfyiKkxGjqSkio4HwYBfIwzFutT6+GBI78y9AA1yQd2yxEEtxgaSXL5whkuhcsQfn5YmSt6OFhI4h/dE1JNLJKFSD85kssjGAyfBzIlZcnXdpDpTICICvBW4pGuZXhH5VeA7fhw+HPdz/1RE9gKMql7tPz8Y+IuOU/2n35aK/YD/859vMMsBs9hUnokz8vwEl9XyFFVdFBEDfAuYO6kAqOpHcCmaZzyAqMNfC/XXoW98bRrcbWZP6ZJUgiqqQSqaKoQH35OIZoQSVWJGmrM3yU6YiSm5xKJFvw7751c2jetLwDf+/EQnrfj27QKRHCatZXHZU58TP99qmx9IRm4AkZHzorFDsEP1NhWvH6/cYK9DCyak4HCEo5WNBBNUY1ZlTIqpjThbjDVudUtRbCVRNTYS0yAXR0LGD9AmpntBM1VZlHQ8YWmyt7jBXDFqo0qt8itLhoDH2qvRglrNEU0d3YMtlspH0IeFv4LnWa01ldhILuCkoUWIarEKr8JTocJGm8tqpM6fCzL7SiCOQAY5oYTPhFjTom6s0yAREktN1VfNDplB/TUjfd0beCxOiviyL3shcAsAVX0T8CjgcSKyCFwPPMYTzM1wKjFwY/m7VPWstpOo6hkisgCEtQ4uVdUur6+AVwJfEpGP+8s5Cpg6eMwiqdwEeKSq/k/RSSsivzXD8WuGGNxU/NqrpgLLxfXslOXDln/NeSRIJnijdbA5hPlUUAuocVYVV69payEz6EeX3JZ+RrdfXOR/blxfFjJJJRDlbV++DRX45p+1kwukeyU5GSuYRdeoGn+NVXaVnkyjqcmArY1bI11whn91a62IUdS6jFlhYFV1UoqaMLBXVCYN+kFdNDAWWyc12cDYqOqK+cRQbC0MTB0llxEwMC5mJzfog5ceNEX1h3XujTjiGGZuUUHFVSMYbabNB1jASTgL1NRqWZBgqHdthVSYw6j+0riYmcFJLEPZOFEEX3zbSdzticHG4hw44sObvVOltBKf71x6ye0l2kEg89SA5dqJSXWmVVH9NFO6paqvBl7dUv5dXDr7qRCR+wNn4IIgBThERB5f2l+K9v9FRD6Bs6sI8DxV/WFX/YBZbCqdRiZVvWTa8WuGTAUk+VRlNc9HPruS5kOUkwwuCNsupD5FblGcZBKkkUAsIemtaCIfQ9OQL5nkk6sB2h7R+OKtHCtp5jsnncSvnnqaI5TwUhowO/AzTnG5m2zKTOxt+mGdKzdTrdz1ONJR5zZdKdgkueDJxlqf3sYoIzFOTWad5FF5FdpIDQNx5BNUZgObMh43ljIWy0BNw7NsUU1cmz5IMcGeA1568Qb40J6TOGqGUjGUGuO/V4SVU9yCYmF1ykVfzyW/tCxSM9SaBXHqvArLEMsi6lsg8xhLz+dGIpbz35qIJaLjtQ3kIk7r55w7bKbtTiFGhZQSW+hufImYRVLZYHgd8GBVvRRARG4D/Atw17KiiNxOVb+R5Qu7wv8/UEQODC7QXdg4T9dKkIvHXmSWTOW0GhibcUebSvEfnHeYqFOXG0cGuRtx0HTlHmExU6OE+k4y0YxQJBCJbyvO1rouO/ZNOPSMV3PZ42eX3m778m2uu/GiWpqf8XZ/+5STGt/veMo2dIBXa6UTSFD5WUesBHIJv3HIUhttD04l5lyWcffWkwYC1oZFw0ISS7fmR5BKRt72smiVgVhGZnZSiWoySGoyTeqzyhPNolSOfNQZ0o0oW80iBmVoRs67S+roglx5N2ODMpTKE4j1aq3aL/xVO3UaNhJMzSh6ii2i0RaEOmP/UJJRa72VYue/9STu+qRt3RUyFRcUkgvZZxtDg1F8KiAbJmS5imAekOkP/MYinWEgFABV/aZ3EGjDSbhwjTb3YwUeMOlEm4NUArJBddoyDvM8p1iSXjgbuMfrhbcglzCSzSSXXpxHWENxhmgmteClsoZB37XXMkWLbeQ49B9fw2VPWJpJrOWyUus6/T0LuMPzPUkF9Z11KrB8bbE0ePh74cLwA6e6fZn0ljIku+9ignec26w4IqqtkGdKdn32qz6qU42ppCWMpSQWQ0NNVronBzUZduAIIJKPs4WMwJONM7hvt2Rr4zg7UG53qTRbI8bHyFSeOIBodwluyMYb/13si3qicp5iLvIf35abCW2kQWCqSbQkl/DKBykmI5yQ8Cs+K/NEpp7bRXC+iLwVeIf//ge4dVXGoKon+I/Hqer2fJ+IbG05pIGN9DytAJIetky3mk3+549Mn0uhAittLFGSEJ+SRJKWC7xKpwyCtL5CmBCFN8hLLVGqiYTSHkTZ1m/fGQBu+dbX8D9P7CaW2/zltqaYP+F+TrOndPfFtSs1DK6FnTcgBbUFdUfLvRBPRmFdjTBD9WJAnFiovzdibMqUTEpa6by2LbU4o37t3XIHVSIeSK7VIzse+9LImEzlgywtA1M3yMaGgMtMshmKYWgsi7U7bqhOzRVtL5mUE9RjTnVWsSgDTyijqGJbkBHWGrZnksuC1lip2SKWRdGY6n9Rlb1m/8VWDRe8+UTuekImrYT3qNAq5/tLycX990Ri0/uveClmXgt0+XNOSUi90UjnKcDTgGfi7tyncJmLJ+EzuMzG08oa2CSkglNBRXuFxClP+F1v+bbXNALz5o5MYgn6/4hMTaXJ4pMG6KjqCoNmU3qJdpcg72fLrzYIJgy4Mh6zMtbdbDZ36JtPjeWXPemUtkvr1B/n0smSCGVCOwu/gK+96kR+5bTT3DVmq3i5eYN4MvHXGvTrkDyDMnIJkotqcEP20l5Qg/n7UZkUxV9mWs7JJdhK6hCUmREMZOov4xJaGty6LkYMo4xggg3GirCoTqIYmJqRVCx68si9x7aaRac+IwRnBptMTSXDqP7aLkN2yqIjnuAtRk1tdrITy4I6iWkosKhw8eUH8+uHBLX5OiKqsYjaBkiTtOjZpc36sSzTFoT3RjXklpszsWj3OxGwFoqSWaGqO4DT/DYRInJzXKqYPUTkLqRL2RfYc9rxm4dUFK/fyDynwo7V+HXDg1y0HQhFygee9roaRBYJ6ex9r3PpJZBLXczWAULgZEYwjSj9lvPm0kr5Yhx6ekYwJ5zSIIrbvCJTWeHUVSEw/BsvXRqhfO1Vqf4dT9nmZpaBfIE7vGAb33nlSdzq9acho1Au6R6ZJLmpl1gE15/cUyxOMLK2bUOqC8cb50GWRe0vklLBBOkFiDaZPHI/OBXkEksecDnyNpiBlz5MDEr0bs9e4ln09YaS1oapRBlIHdVjuQQzLGwsO7yxP5dggtRjrfHfLQtaMxTL4pxXCV0JRL29K1Nhxeci/27Su5P/D3UikYTJnWkSy1wwi/prA0kqInJv4KXALWkuuHWrlurH4vKCHUyThK7GuTtPxOYglZYfuKHfX6Ufd+IMPthZJKsLDRdggpCRqWgiuYTZWia5uPQmmeQiJHfk7CRimotkJXEnqzd2MeNFOcEs/Dg9Kiv1f7jzs7aBwEV/7Yhl7B5mxLK1EnbuS5N0g8Tn70m8HxY3eHjjvrM3uR8h/lX8omJB8nD6Ea3cA2O91GOgsbqmu25/jIWwvktYPCxYu/OVKV076lO95OlgmvaXEGSZB1jGGBeci3Lt+xCM+EF6qU2yvdQYKrXUYqjF2Yhcyn2vHjOWneqM/YsyYjjVJ3btcMQTTouOGNHDK/x84ZlvSCA0JZb8XVeyg7PvUw02s2Mm9dfGwltxiSQvYMqCW6p6BnCGiDxKVd+31BNtDlIB9/aHOI5sAag4U10tiDo9fUFsUmffM/VXKIvLk4eXIXgyleSSzagTM5Fm30iKbM/KJHyPHZpCJG1M0cmYMLjeXcNSJZQ7P3tb43Mglqi2yEg4DNROIhK/aHuySTlSd7+3gsuQHAagILGE6wiBo/Fk4onZE4P3EgrEH8gkSAv5apVVIHcvXYjQUIWF/3lZSmZpx+wvqay00TSN/FaFkakwBLuMUtkBQ2+3CS7KRixbZTG5GXu35Rrj1GPq7C5DqaNt5SPfuyMPPeyrS/ot54UjH3ea8+TLCcXdavcvdx32r1qo03Af9qrPYGcLXpdpJej52lV2MfxCVc9cygGq+j4R+U3gDsDWrLwrah/YRKQSxWTwajAISrC5pWbI8L2nn8xhf/c6qMVHhdNwKxZLTPedz7Ct92669CUncrs/39acYfl6QTpJZJTlywz7/Uy9saBINN4HdU923V23oO0da0g+rsLOm9Tx82UnjNtdloSsL3d+9jYnFRh3v6JLsb/OkME2zVyTaiMQC5ol3AwqD8THr+AkFuuJJZcUJZGLxfr76YVJr+KyBPfjpN5Kdpds6eOMYHJiiaTib3RwUzZZeVuCS+ODNHOScSn6a5dPjGTsr9SpxxrpYYzJVGQjjLiU+sGgP5QRC1K7lDEbQQXmn8NGkslAKjVhteb07NjmoVGCLYglV5m59ndP9RfwcRE5FbfK445QOCnmRETehLOhHI3LpvL/gC9MO9GmIRUgKV+LQXHVBBV1D7wZkYgkqL3wg2TgN0MItQCcS60MaZFU0guSjPfd0kvuUZbbSsZUXrO+S3k7SRyYi7QXpJQ2taHJXvyG0FT2O44smWqjofrI1Bz+e0MVFtRkkrI/azypxglJ+N1i014ycXYNol0lXk+QegLhFeqxGqLqLKrHSIuIlR5kgWBCnZCPLE8RgxqG3qOsFmeXGVBH+06wvQT35Mp4t2VVahEWZcDWNfG778aRjz2tKcULzraCRDtZIyULjNlcICONIO1AfAaiymyO/Z5F/bWaCpJl4Ej//25ZmTI55uReqnonEfmKqr5MRF6HI6WJ2BykEsY869UkedqT1dV8YXYKZpEY5Ssh3mIPd24THvow+OUvh5dkxKRZuRgydRbd0kvoABnphGNKz4Bi3Oi0iYQ3r3jJJxqPlomJdpkgoYTrD2qxnEBCG23thK56j0DFE0tozBADJpv3s1irJiMXILojB1fkKC1CHLDbUvLnHmQhI3UuweQG/VwyCceE/2GBsXz/KLoshyDLAQOTgieTd1hISBkkmqHLJZatdfPGS4/mqbf9+IQfZvWRHkH3o2s5eAdVWJi85UJWWHzTpt8tvBvqf4e5CWWzSCobCKp69DIOCzEq14nIgcBPgcOmHbQ5SAXcDLPy/ul54OBKrcpTzmkWfd6q7AG7+HUncvsXetVWIA6vacmDsOIsSxKx4ElFqzSeE16QEOgXyzPJrDGtboyEY7eilR/8yUJg5di+eSAnhZLoAB1kRCHjP1001k7oj7vc7PcPxNIw3mfnjdJdkhIbcS3ZfY33L/sSuhJSwQRCyWNgcruMC7xsqshCzq8QaNm0uaTjrYqL5M9UZKPieyWKsY5YhlIzMs49OaSHyV2SgZgt2a7me9KBe/zB6xARbFBTkc1joKG6KoklOLw05hnhd/IeieoDX4N9RY3Oz7g+H+F91SEiJ03a35UZ2ePDIrIfcCpwIe52v3naOTcPqWia0TYGltWUVILdpGXWElVipH1RLA9dDgJA+TZlJNCYMdu28qZqjNBMNvsOhY2XIFPdkPXRdSEjqwIrsqdkzUazVzh1OYtsjC7F/1l+U81/f4m6elWNBtyojBeaywr4+wmmKbl4FVieQy303R0i0aA/HrHPmIosSDox4aSXUoIHGdBKLCEuhoJQjJjosuzUbIJVJ41Y/xyUGZOBbEEwePHFj+Dlv/6BGW7w/JBLog2B1KvBok0kqLyUZDvJVGFxfyAifFlmuJ+roX5aUxuDdPZZzkE+C/15qvpz4H0i8h/A1lkW+doUpBL0myreOEs2OOYut/M+b+3XcWqZ/VQ7vfE5t7EI0cDYsI2Q7feDa0xILKlurhIK1xQWUWyoxrJgStdwOmd2tjgYhkG0TcUUMYeZ7EV/fSJ3fqaLSZGib+4cxYCRz1LjtbnvNlMRuvEwEUUi6mbAqChuQbBBbgUmGuidtOJOouLS4uSSS2o4uyeZFOLIR32b2pBQSgnGlQfDP43vjSWSaUbyxyh+Ox7Jn6vOBqb2+ctqBmoY+VxfMfYlJKn00fsA221XKqjVQ24LgRZJhRS7Et8d/Ptgm4/P2PMeko82yuczGDQcczYwVPVlyzzOehvKPf33HWQG/knYFKQCaeBpi18A560193PWMpb++quvORGAagcwpBkESXoYVXDZeIWk+gr1rB/jShLxBJKrZCAdF2wvapopW6IKrUPtlcfCpEwE2QH+32VPfk5LA0vDRX9zIr/xjG3NOJ7gOlwT83lFIUJTGSRyFe8+3LADRTuJNlfijNfoB/yRSdcW9tl0D6P6TQOhJHdiKW6i+lExkklIYElI40/cL+G/NO0sdbSzdNtigEayy1JNVqaLGfisyy77csXIhOzIKfIfYKgpw3FQhT31wj/kjYf/85J/26Ui08w6FJwdf9pCMok5/ktiaZuoRIYqyueBXUNSWQnOEZFH4ZZEnvlqNg2pYAWMZjrYsBb66pzu1168DdmakQbw1VNPjPtlBMYwdn4zArOo2IEzQtpALKUarEXVRTb4RdtDpmILBNWog5/llequDPl71/i2Si9jUOWFmZ6tHMG2qTBCPxqqvzD7rDyBltfnLLO+SJoBkuFmRTEtk1TI7mu4l5KklzRpcbNnU1l3360Qs+JGIoI6S/kSjkOkQTDOG8t1ZJItxhn0q2jszw39bQRjVbBG/H9PKOQGfS/9UDWIZoddpyEhcHw+Rwj/8wJNZTE9T67yKlyJgyTbaptZASQ+XxPqzOdU64mTgL2AkYhsJ9x61X0nHbQ5SCU8QH6t8zhpzQ3WqwCzkzj454QCYEZBf+W7GD76h1GsQi0pzERSnUgimqSPxiwsDILhRTNpku4CJ7J6YcIuaTbcgGiDuOILWfR5nrjob5r36vA/3Ua9JSPXMADU2TWGgd73RxTswPfX+OtT3JoqwHdO9uu2KC6VjXHXKjgScNfuLy8nkkBKngCShJOkv5ACp150r49UitZuUpOvTpmrwiKBhcDcTF1Wexfn0KW4HgzNnGMxhYxfC0bESS9lPExYE2agNqbpH9kqrniZ5x0Dousy4BcSE/7g80/inUdOtcnOFdG2AukZBESd5FmSQySJnFiyZyR/L8JkZG7+CN7bcyJ2cUlFVZdlj9kcpAJNCYXMfXAVftg7nrINWXBeX2bUXsfUNIyC0V5u88HTjZYNm4EfGxszslDuB72GnSG4WIbrzQSNhgQTOlLcj4ahv7xfWfBLviTwvHHhP5zIXZ66DTsgCRG5d4+m6yD7LtkAFNVjtfCtF5zIr71kG+zl722VJAjISFvyG5VuUiSZUtVYELxYcRLyDk8sFUnizCQc9W2HyH2nTkt9EeMuNtlk3NryAtFgLxKWLW5KMuH5KG0xqlJIK4lQ8iDLNoy8iPiozzyV991rWiLbFSKTUML3xoQmlrkHIKrDcmk2PAuBYLyqrPE/vDdz7Po0SWWmNkQOAd4O3Bx3Baer6uuLOscDL/f7R8Cz/YqRiMhDgNfj1kp9i6q+qjh22d5fInKeqj5wWlmJdSEVH9n5MGAn8B3gCd7LABF5AfBE3Jz7map69kyNNkTgzH1wzpLKr5+0DSqcemsxxaHkuO/DT8XsaZxrc5cKSdMHCa5QhXQRJQ6a5BLai2TRQjRxEA4E1nIf4iwuNqhJz91xzLxx1ydtcwbxKp2sYbQN/cmJ0evRjXFjerx2f9yvvWQbAMNrXLyQDQaS7N6FG5cHp8aTh5tqaUgxsQ+BzcI5g3uxemnFSzqSOxAI0U7VIBkBsWm0CwRvMokm1tUmoVhJ0fhlRL8atx5MJBZ/goGxMWsySlSV5QjxMADHf/rpfPA+f7eEX3RpMHWK3RlbBCn8FOFZLlRfYxHzucoLmqrgXDU2D/iJzdQ60zECTlbVC0VkH+ACETlXVb+e1TkP+JBfl/5OwHuA24lIBbwBOAa3OuMXReRDxbFB2rgtblngD/nvD8Olvx+DXzNlT+AmInJD0puzL3DgtAtaL0nlXOAFqjoSkVcDLwCeJyK3B34Xl2vmQOCjInIbVZ2YAC3XuUcROjfazhmmBtmJSx/R0bzZqe0PlSeDQDhuMPSDjn+5ghE/nxmrSc9xMOxH6SR/YQJLFATUijBQhnbwUl5Gyt97xupJKKEPwW00n602qmQEGfeLm4GakU99E37u4jcxi/j0L9Kc/ZZSSbTJZGquMNZLepbyNiQjlHDvg2Hfje6hUmLEYLwP2ro8N1UYNUXUuVxLqhuIJicZAaoqqb9ywqmsIOIWHKuMU4PZgWC8od/YqhELA+OxKqsdu/LZd53MvR/9OuwwS0Ok6fFtqMIsPsdbJtn7Z6YhYWcTKc3K0rgwn77PYlOZBap6FXCV/3y1iFyCSzv/9azONdkhe5Gu4u7At/1a9YjIu4Hji2Nf5vedAxyuqlf77y8F/q2jW38KPBs3Bl9AevN+iSOxiVgXUlHVc7Kvn8PllAF3Q97t3de+JyLfxt24z05qT8hmKF7UDQ+bynxfDFFvbPdxKF0wo/H0MMGI7IIbXV4qNc6u4gYkTaQT0oWEwSq4GQf9sWQvSXwLaRJIC7E0BkWIs0DJCt0CgcJ3nz1Rcp4LLjj9RACO+OPTkFqSCinrerxeaBjUxdnJnWCWDUoNo342HclvTcN+5T80JL9sME/EI402XEP+v7fb5KotLSQVwAVfZheoIikBqn9wg6STSzTuudHoXSbBKw3ju5ZIpTI2SjCqoCpuwjJq7nMSSxK1A4mEWJjVxn0e+VqoJEkkOYJU4u9TKstSuAQvweANlsWnxOUPoOFNODcoc7epiMihwF2Az7fsewTwSuCmwG/64oOAy7NqV5DSsZS4BU4zFLATOLStole/vV5EnqGqfzv7FThsBJvKHwP/6j8fhCOZgCt82RhE5ATcOsoM9r3huF0ivMtznJ2Aiz+RERNVa6IgI0caqdD9s5UfDGsvmYhG1+JkGHYzWm2QSgoCC+UiTqLRTMTPXZOTYTm7J0V/GtHHfodBx9aRX22IdRKgZXwGGNVhhuSG7Y9Rk0kUAPlgEgbyzMsslI/dh+x+he+BSPLvXZN38b8XRuIsW7yk0pjYBCLJpRDTti8PapX4IwWbTDjWVHbMq8xaYVDZqB6r1UkuDIgqsegl1vIQW/X5xdbI0tyUsn1GtvyW5dILjlhQSTaT0IbQHAcgDfxh9jGvPmenmFQHeKSIvCUrPl1VTx+rK7I38D6cveSX5X5V/QDwARE5CmdfeVBHF7p+tHcAXxCRD/g6j8DZcjqhqn8rIvfCkU++BsvE41aNVETkozjjU4kXqeoHfZ0X4XSK7wyHtdRvvUn+hzkdYI8DDtH4UEk2yGgaBG778m1c+uITV3BFcPhTXHyFGRVT6ZYem5GidaiXBqbK5gNUmIGOD1pahRfN7zfqvJ389+DZotkLGQmnUBcFqSa3yYx5lBmcFctLKWuNL/zTSRz+5G3p/oR+ZSRh8cQzJKk28uC2/EkJz0L2DMRJuTTrQfN+5BJLQ2qBcVKJ5CxJegwcYBI5xOO8NEM2cGomvUTvMxOk1kRAGONn3UkFpmoi+USPssweE4z71ghS0zTao61SSZBYBm0GwzkiPvexgOZvE6QVGSeWuK+UWIpnPTYp482vrPMwI+e+X1VfMqmCiAxxhPJOVX3/xNOqfkpEfkVEboKbdB+S7T4YuLLjuFeIyJnAfX3RE1T1S1P69Q7gV4Avk9ZgUaaQ0aqRiqo+aNJ+EXk88FvAA7PAmplv0hgsjUFzbGY+J4QZdWNQznC/33yNe/932mSARJPaps5mYeLSdlAF0snUX0aaRFG5wV6922ogEltJyhcW6lvGSCMnrsbm1YRBXbieUcIxwWYcbGm8uCYLUIwDRXYdqaH0vzFw1TQJK0Pj3tBy/6T5v2xjLMNy/hvmpOSJJhKPkMXD5OcTTxREkonkIz5zhIR8ZpmkYnB60sqRi7VgjKVSZeTVYbU10RU5ZD12972ZgmbVkUlw0clGIeaPzicL2WcBYgoX9zFNIsk+h4lFCJy0s/LADMjUrJPqTIO4NRXeClzS5YklIr8KfMcb6g8HFnDJHX8O3FpEDgN+gLNH//6E0+0J/FJV/1FE9heRw1T1exPq3w24/VICH2H9vL8eAjwPuJ+qXpft+hDwLhE5DWckujUz5O/PvT7G1Bn5y7pCXPj3Jzrdf36u8nar82gxizalTwm7BMK6HHHgALTKy3zdMCBVgVwkxmWoD/pTAVMlkglSTJ6YsWHozz4n4zxNI+YajiklTK2R5KD7pY3rbUBjsAnfmwN7C5HkxEHxuSSS/PMEYgnnCWRX1kv3vvlbu9/B3fiG67hpthFSECUpxtuAKkWtRglGjCOWGoNYZ9xXjFvREtxKkSYtjzyokvfY2LO8VhOMINBb0no62b780WwY70mG+zKdT/wtguo0I5a59Xk+DHVv4LHAxSLyZV/2QpwNBFV9E/Ao4HEisghcDzzGD/QjEXk6cDbOpfhtqvq1tpOIyJ/jSOK2wD8CQ+Cf/fm78FWctumqpVzQetlU/g7YApzrB9nPqeqTVfVrIvIenPfCCHjaVM+vAE8sk1QX84BbP0XjoN5mz6yuHyGjOhEIflAI/YLYKTXAyH+WvFxSUJ8fjGQYVGESZ7x2QNwfpBg7as6SHTmRyCcMgN74H1yX5+pyuQxESaW4p/ngb2qodir1MCNDmp/TTL+DAPLnoRz087rlvqx8TF3WUr9Nwom2g/zacq+/SPhN1Vmwn7m+eaO9kJZ7EJeBWdUvTKY2W6TMYowyqg1iBeuN/cltuRm9n/q2ejOMo44/FYZCcH2Ikxqa0krYN25XCf8LYiGrUBJ0IJY5QGh/9xt1ZiAdH28y8Uar6quBV3fs+wjwkeln4hE4J4AL/XFXehfmSbgJ8HUR+QLNhb1+e9JB6+X99asT9r0CeMVS24wBURA9wMJgGh7WX3vxNi55+YnL67SHqUFGwEDjQDzWl5EideF+GlRgueGXMLvyAwhpMMFHEQdvIqcnN5mkQvZmeUKp0kxYfSLNQBJWxZGIvx9ivFHc0AwOW0/1V5j9FYNu/nJG+0iw/zTucXZfQwxIIJisUmPGG8qKCcgYGWV1SpJqLQ/HQIN0cmeBMWk3DJ7xIH9TBK8+DRMM9arQdEy0tWhSjTnjtNtpsYgRF0uDpTJgLdRiSAuLJVu2VWkPwpoDjvrtU9O98pqVqO5qqLrCu5DdGxj//WBMcmjUyZ+rOem/ZkooOTdd21yw06vP3NxIZK8Zjnnpck60Eby/Vg6ldeleleRuOg8c+djTWLjGnci6QAKXbiWDKJidI2SUW5A9MlKJeyLJ+HKTyqPXj1drSZCQMpWYMYARlz/LSyumkoZHGYAdOCnGGGeH0Qqk8vF7+Wya8ZQzawWptSlx0DKFi6N+qhu9wyTVaUotxdtdSgoFKTSknFA/+x6luZY6jTbzcxWz5jaVWp5ANKkrU19c7JLSsLflwX2+3KWuVjfRsEElZly+MuPzgtk8W3JzYbF4b+r5i633e9ip6V7kk4UgmWS2FXcPfXn4rV3l5j3P3f2y3yDcvjydy9wwP/XXWuE9IvIPwH4i8iSc1+3EPDyq+kkRuSVwa1X9qIjsiVOzTcSmIJXwoI3pVCU9XPMilmqHYochWM+9vGane7oe+IBXwpYKagVrG+ovRJqG4oCgggh1LHFQbEg31s0wxYpLYGj8jNQ4wjFeH62VYPEBjP6FUwMGV89WLtdTcCWVipQ7aT63aNmQMDnIpbAxeAkxqMry4wkDvibpAZq/AwVpZUSRSzmxnmSEH56n3MuI9Dl0IjxvpU0vGI2jhBHOkakfo3Sp6Xw5YcVnJE8aZ9yIq1EyETRIcgYUpxYzYmOCX+sJLhjtIS2VHDCv5dwD7vewU+M9AprkQCprRMjjJTBw0kxej0KwVW+Tk8yA7wd/hbmqdxtctgtAVV8rIsfgAhhvC7xEVc+ddIwnnxOAG+G8wA4C3gRsvDQtq4GQNr2hg84GjJWqh486/lTMXoZqR+0S+i1KEt0Vjj721Rig2l5jdiy68+YnDcZnaHYmWIwKAorvnddJCKCjynt6mTgNswPxkoygA4nSS5Rmwj2oJBKQHQrW56oakaSa9X5JXPyPT1sTEH9UHbOhpDp5I74oH4TR7klFvD8F4Qdpx89Y2oz2DUN/ZoCPZQUh5NJIblsJ2RIo9o9JLllZkKasJ+G4L9jbKpxXoXESixjxwbPhOz7nmJO6Q7JK620t7rbPj1Xu99DXQJHVIEr5USLX+FznyR+jU4mkZLHh5jWIN9pSAuOEG1xMCOaBWSSVDUQ6InIi8G/TiKTA03DB558HUNVvichNpx20OUhFXTqOsfVJ/EA55g+/RNznUa/FAMNrLGZH7VRbAZmqxSxaqqu3w6LLex9PaSR5nUjnFNxdSkFE8ZuIt9MIYmr/IgpSG088go4ycilUOGoEKqcmM4tOhRbWZArqsNCtuz/+NL5wxknLvFvLh1h1thK0QXJibRpgQt3yFrYQC0CIBZoEFWBUkkpT+oBsltvYJ9l5svby43JCyp0vMsIoVWBaJaKJx1Xjx7hMzpL2B4IZiouTCt5iFegAT0BuCu8M+0JVWaymZJSVnyyZedtU8uWcw7uZkwCOyMK9jLzQSjIa71kgv+iAEsud9JXHsM0NQTMyAes9SSuwL3C2iPwf8G7gvar6v1OO2aGqO8P9FZGQ8nUiNgWpSKn6wj9AwQgNTRF7OVAYXF8jizal/si5RRXZOUJ2+LTFuWt3nQ1sU8RvyZcBjHYiT0TqPcrUeLWJOqeBSlCMO7ZyF54M/Kk7ql5NNgjdE0zldobTmsWl35p5wf2OiVDiS6ndL2hr+RjBTNbthcErDk7+mIbRnmwAl/yZ0oYkHPdBRjjpRG7gSwOiK5M0GfLPcbnyZ0he2ZDEDWkxNz9zFu8daEXdZKZKqjERiUvvRrWYVWoMFRbr24sCxLx0xjlspu4FR2zQbUPxO9Nnib9v8vYKiTkljgFhMxQOG/O6pF3MpuJzgL3MJ6R8DPBJEbliSjzhJ0XkhcAeXnX2VODD0861KUgFSGtvFLPEPDX8SlBttwyuWcTsHBGWmgXc6GytC74c1cSAgK54oZxgJiEjn3Su4CFTI8ZNyxTrs+MS8yjFSFDRtBi8xalEwqDizW1m5AYPm7/E64SQaTjeHU2z2dgvO6GD5a58DDFT7nlGPqFmm00mrFnf2G8TeSRCSR1qSDgmS8UTScXHGtnkQpzywSUCCdkBItnkHnxBUlH8z58IxZlWFR35SYYnHqlShmArzp5iTfa8zRFtYTDuxE6lRSbBlCSSk06DQMI9iob9pD5rGwvSCp7zuB5dlfu0BvgR8ENc8OQ0VdbzcRnjL8YlmfwI8JaJR7BZSEV97Ig30sU0JrmueZk4+thXY7YatvzoWuS6HU4UN34qqdkWkA96YSCz2hzUZiGVjqdfvKor5IQS74WGUaj9bNQaGt5j4GwsQT3mPchkEcQa7ED85rvdsUbMasPs9ISc3zeaRDeR9Ca95G2qiqx+kzh8WSppznCNFD9Pi+orNdwoj2vsZDYbF2uU1D55LFFuPynVXypgfKBrQ/UV8sv5WCfrnTHs0D0nwU5H5Uzgat06L1qpW83So7aGSx85McPITHjAMa+CSsYy+zZUiFE8cpvE2J0WEvf3KkptuQTpyXxMVdmwka0cUTsypc5GgYg8BSeh7A+8F3hSkSK/DXvgAirf7NuofNl1kw7aPKRSe2+VkFeJ7EcNsxzcKoMX/sOJS2p+cF2NXL/TSSHB+wbSoBReiDyDZIwspFkHVu7a6F14JOuCWBslGYmSijTcmOMB6uIVtBJ0UVN3tGlbWXNkv1Mbmsb5TE3YVafR9pSL0jSL7WwjEIRfQGusr6aZxTio0WJVCeqt5qBo/LQ82gRtmQ/OkY3VLBjS74+SimbkkicYrYJnYDMlv1R+Ia+B95TC9cmGSdOckexj2QJlmcor1vPvrpPoiTaYJLngLrYh2fiyIKWk2+7KciP/vK5tF1N/AbfEJav88hKOOQ+XuDKk3t8DOAe416SDNgWpiJdUgv4hz/Cr/gUFlvwQHH3sq7ELhj0uvxqu3w5bFqBumZ5om8prwjTGzsIq2q6yaeS9B9FMKgG32JU6471TK+AHEuOTGUoy7IecY7UgAx+x7z107vuI1/JfH1jltVTaMIvtJI9RsS1k0JBsZv/Rpw83Xp3V8NQb398oyfdHpw4/AHqJJwS85iSSx6KEc4R1Y/I8b2YkDYk8SOnWrzOjQUqpirqVoAN/niGAwYoPkxQpuXrZOPrYV6OVuBQ84GKRyDI3Z84owXaYe24mB5fifxVvaUSbJNJUNbr254JC6uqqs94QkRv5j68pvgOgqv834fCt+VouqnqNj1WZiE1BKoBzRw0zsfBP/XKsQdm9jB/Z7LBOSoH22a52kEfHTDoeU+aLKNspJZ3YIWm27fM+xRezBvAxMuJiWjDalGRMtg7HSGHgVAjGSDTBrBcauvdAqnVBHJmLcSyDsd+3k1CW6NSUt+PI2n8PBvKJB+cElLvEElcllMpLLkC0u2ggMCLhGPVOAUGSsU5qSql73PG28vMIS4yLMbawv6g3t1mJ7Yg6bzCXVHJ+I6IEO4+mHzfewzqRdIjLUmTchhJ/96DyCr9BQfBtga4SliPQ+T7cG4A0ZsAFNOW2HArcasKx14rI4ap6IYCI3BWXe2wiNgepqJuxuplY8+WEJLkE3P2PTuML/zTZZfa+Dz8Vs2DY8hPvIlwtU2dVDmxRPA85u5c4wgX7TMOOQyMOJt8lXi8S8kYJTnpzIZIu6WC0xdSa3LHXGPd51Gsbobp5H8Zmo37AWZLOuuTsWSWYNqIK/ZmSla5BQJDUnlEdqWmyE2bZxmVpSO6xmarMTwq0Uj9xEkcUNpfOJWZXicb97DHTijTLD8+Rxa/L7Ad9lbmMlw94YLClaCIUHR/f8rO5Z1MjYTunGFoJRgWnJituaxvRNIhpDthV0rSo6mErOPzZwL+JSMgUfwDOLjMRm4JURDUa6oGMlzUaoINaZykD0dYfXof52TUuwmzQcatKYiiN8pMwiVBmyX5XEgukcGmUkM3WLXyUuSFH/YJ1aTvVrT7pvMAMdmF9ZJUYU5RdtoYZQqMiLq7ETyZizrBGWy33JpTP+gzkhvwJx3SRcGNozmxxUjQWDOfRdTyfEMXcX9IgjqAmM1VSaQVbTZ5UNHqFVe4xVuMcA0KMkoy8aFo50SWk05/L4GvAjGyc9DVnO82qyTlC070Smqoy0ivRdOsu2snXMZLQDv69nM9I3yYUtdXZSBCR3waO8l8/oar/Mam+qn5RRG6Hi8AX4BuqOjXoYFOQSjTU0xwEgqct6ublYbAv83WVOOq3T3Xv8TXbYTQCU2USQouaKsdSDIHxDZlDkJmmgUDUv4ghnUckFqI6DMAr0eNMN85W1+F1iANzlrEXcAOlaS7NrEL0JlKIbqnhd11Sdt0pEst4kOV4/WkzYC3FxzjpydQ+wSUeklotSC+5mtO4QV+DfUxTxuxo7LdugqBGnV0lqLgEqIi5KUNOLOeGLD5PmFN/zUVW8S7iqCZ1VbgFpvk9v4fJcJ+e5+hd5923w0JkNJ6LTKoBSuP9EpcFmYyG1DWhzgaBiLwKOIK0IOKzROTeqvqCKYceQVr58S7+mXv7pAM2B6kAMgpWgrwQIHg3CXY4+Ve+78NPdeqDULB9Rxosghtx68mXocbKyajr+Hnl6s4Ip9EF1Vyocy//FN3XA49+JQBmZ+08iopun/vpFy25e/d55GtdBLgXoDQbCOIlSJoouA4TB16tHIHmnkWNWCLDuB1lhgEm2WpmGB3a6uReTh3H5OaLeMlhYAwefoFclDE7jJMCiIb7kPMtkE2YMFjvdWaDbUXcXElqXycEKoX8WSucWBz94Fc74q9tfLYat6YlsVggmuhDl3nk4UknEkwjMNi3WajNIAwBGj/PTbWru4b6K8NDgd9QdQONiJwBfAnoJJUNt/LjWsJ5f1m0DnIuSR89cLO5oAMNHk/3eeRr+fT7k3fTfR/x2vi52m5Z+Ol1UGVa/i5CafX8Ch2T5j6RbpKYRWqZRQqyGvXYSVqh+WJl0oqEaHqvS0dBFnVsIDzmXn/pjP17BL2JOCN/0a9j7vOKZRFLYyZbxIy4COvQ37CDeO5PfvgU7vU7r2N4DWmpZwpi6TrvpN25+su2l483mP9GWV9MxyCUlecxLOIjwcPn9Fx7VZlf8tlJKZmKzF+QVkkVpj4NTz3yqq9Fl6KnrqHaAo6lxGtNTRx4L3v88ybcnG488OhXwtBgFq33ymxRObZJfCErRlCB+a9JHZrKG+oyf89ClUY5JfHMBzPZVDYe9gOCt9cNZqi/66z8uBqQOr14wY1WfSbXMCgZQgZfV+2o40/lUx88JbWhMPzFiMG1OzFXb3duuGVw46xSScPrZ4kqsdB+TkBLUat5ySQSy7S6mma0kkkrRx/r1gUSq9GIbnbUhOzMgbAU0+jfg456BR/91OzEYodCtcO6jAClsBklKBhz4/REdL+HvobPfOS5HPXbpzoVziRT1QxE4youg1DK/flg1tEnl0XAE2YdjtEsSjz0O2sySCx+Vi64es6gn2yH0UPMBrWR+23FqzjVuLQ8gXiSqW3lQ6/UitQ2C2CdbVzSTEoJH9N9cTXSvckmH4FEWlSRjXPPU7M77ZI2lqTySuBLIvJx3F04iglSiscutfLjfBEGnMxN0aUkcTN11RSVa4qB6QEPfBX1VkNl3YqNg2sXket2wuJi0zifq7/apIp5Ofbn7c8LIUULMGZbsbj0FUGc9y7G5eBpFp30K3WdiDYz+CsGHSxdYrnPI1/rVgAMKpzyNpaEYjWphzLV0f0ediqjPQwLi9kPnF9CqQILPudtWCqhlMW5Tn9WaPNDUg9lg6hvO0aOh98uzOpN2hdMY1J5u0tY4jNESfpZv9mZSCUu6DacvdslHvDAVzkPttr69XHCbzHbvWj8/Jkaq51kUuR8g2QaLuATz7BsuGzaU6TgDcQqqvovIvIJnI1EgOep6g+nHLbrrPw4f/hZUQa3Mp7EVBUqAn6RKzt0M+LBNUExC1uvvBrZOXLBjaqwsFAMntqUFlwe8Y7utExLQ91pEkf5oHald8ntJHkfi7IorZQ6bfBaUpeKIAVF1lTbfZ6WOsS3KLLY4j9rfJCl94gQFezQxIH4Qff7KwA++skXdl6uVk5KaeT4igOR76tfuz56euEyK8fxwas0B9utU3eGHGJW3bWVtpWMjMbOmd+jLkKZ8wxVWtpuuFQ3yNB77/mKMakikAIoxZOPxDxf6n5a7/3lIunNyN3/0aLPATcS7IJgdgrfOXmyy/3Ea7GK2WmTRBswk7qofE51PANFIBTJbHpSHJvbVChUaPNAKTV31JkGETkEZ6O4Oe4Ona6qry/q/AEQdJHXAE9R1Yv8vsuAq3Fv80hV79ZxnnsDX1bVD4nIHwLPFZHXq+r/TOjeS6dfwTg2B6mEWXY2qKrRVObjMFy5IHVzYF/4xc5EKOCjz6WZjqWcBZUEMwlLkTy6SKeUhCZJRl1uzTn5xLp+gAquxvk1x4A1bR10o9RTk+JeQnR4lc7/wPv/Fed9YpxY7v3o1yVJJLbpLy+U2fQ7xoXRwHkpBWkl3P+wXscgs/eUMDTXsOmYQS9J5TUDpqp/2ki/rVpmX0JIGbPDQc7d0T3nmarMLR/tVIwxwYQBs+gyVduByyOGEO01y4GKUI1mJ5RZ1GI6po5TP4nJ30uaqt7sHkFxn+aF+fDTCDhZVS/0a8ZfICLnFnm5vgfcT1V/JiLHAacDR2b7j1bVn0w5z98DdxaROwOnAG/Dkdn9ug7wKz/eDCfdAHxBVX807YLWlVRE5DnAqcD+4aaIyAtwmTFr4JmqevZMbXlCiLpnC6LWzbbLBzwfMK1Ns/BBsVJm8L20xbH5/1jPI0gwuefWUpNJjl3c0u0pwQU1SivefXjcC8e/7V3eUeF/66BgXfsSUu/XhEXEBGJs0DSEATxXb+W2FCdxpFkwQLVoGe05aIy+n/qQs4/d+9Gvo8JG43/KNZW+CzourbRhVrXNUuw0XWSW32PT3l7reTJ7g/gI9RgLIyHSXpwqrBKXrXjgJld24Jk5qIdH+ax+6ah21C5bd+jXBA+8sWvpIviyXCQLPB2XTiLmrEVu9mm6pDJLTJyqXoW3Wajq1SJyCW6Fxa9ndT6THfI54OAld9hJMSoixwN/o6pvFZHHTzpARH4HNz5/AveE/K2InKKq75103LqRihf7jgG+n5XdHvhd4A7AgcBHReQ2qjp5npGpL8qgN6nrFHRWzrqDsRk3EI71MXyopDm4tqmewud4cEEobcSwJAN+yyxsWr2yf7NiKXrw7L6rlYaNJhpNRTqlFZP/srlU4o8X1aj+iiTjyeKTH3nuxK6VL3WrkT5XG84qkWTqs4ltNyq0TEyWii710VjMh5cWQ3ySkumB8DngXFoeUzsiktqpw4K78bLRNgGL/ZxwDTD7bzCJfPLO5ylgdAanlSVAdLpNxeORIpKniz9dVU9vbVPkUOAu+JUWO/BE4MzsuwLniJtF/ENX28DVfsL+h8BRPuPwNOvZi4AjgnQiIvsDH8VlOe7EKnL5VGwDnkvz9TweeLeq7lDV7wHfxi1nORGCH3gscZNgD7DhAbCdL7b6ZIuNDfdAxs2EN1FcyhZpIYuwP9/8oBr3S1HWVt62QZOgJtVbCnIC6VJzdaFQEaV0HBpVkrm9IsS4tJ4/GOCDmsuq9yBSTzaa2prQz/s97FRXd5QkkVyayeNYxnRMKxx0OgetWe5pOdjalrJJx5abf+bj4Bfup7+Xpnb3SEaO2M3Ib4sse6G2B97/r+I714lGtoRl3u/yec+fifCe+y1/JsP9mAt0xg3er6p3y7YuQtkbeB8uk/AvO+ocjSOV3Nf73qp6OHAc8DQROaqjx4/BGduf6A30B+GkkEkwhbrrp8zAGesiqfh0AT9Q1YuKdbAPwol3AVf4srY2TgBOANi6cAOnxiorld4+bZ8LjVdDXB/blQZgN3v26pg2qaU8V7FGSIRZIhlUM9RtSEzh/MX3cn+rPjory2fD4b62PV6qXn/tbSzgvML89T/w6Fdy3sedJ2OpdhIvqZSpPaJ9Yxb9u4FqZxbBHS4hly7yGbO4P0qY0bvZcmdcCflx4aTZx0LV5r4sQQqimFUH1+GWOhMRZ+lekjTqbrgVH5XvpMrBDsEvA+kklUqwCzN3NeKB9/8rp2ILKkdbPHc5cmIp7CWtT3duK/XOB0ESE2vd8t6Z1qHxrM6oYlsqZlF/zdyWyBBHKO9U1fd31LkTboGs41T1p6FcVa/0/38kIh/ATcI/1dLE1cDrVbUWkdsAtwP+ZUrXzhKRs7N6j6EpJbVi1UhFRD6K82go8SLghcCD2w5rKWv96Tzjnw5wg70O1EkD3SwzoqhvN6b7hY0vuvUDoiZXY+N1013eW+HYqn2Amato3tV2F7GONdBBMBMIt1G/ON5lv205TUNVEl7UJLFEQgllU3DfR7zWe7UVhLISzEIIs6jDprUzTTW0DDSyK4ds1RCX2BaxyKLBVOqEbysYo7B9mecL+b0k8zrsIMWIsG+aWqz4HhcuC0s61HWzvdWGpZHMshUzEJi4WfVbgUtU9bSOOrcA3g88VlW/mZXvhZMmrvafHwz8RcepPgXcV0RuiFsn5XwcSfxBd/f1FBF5JHAf3CNzuqp+YNo1rRqpdK19LCK/DhwGBCnlYOBCEbk7TjI5JKt+MHDlWCNtCC9lTi6zPGDBppLN6Buzp7ZZoj9ZXBc+nznFGInm4BpnWF5pXaZTX9HLULx0UyxQ08mlTdJZqm2miKEgEHDejfKdUzLVTe71tYQpYeCTWVTz4XfwpNBMsb58SaMT82qHFtKadupg80Lj0gdO5aWww438ZsSy0phEKSU4vCyVWEj7xySXrvfEsaJb5dJLYK0zjzlO1saanjbXmO3nuTfwWOBiEfmyL3shcAsAVX0T8BLgxsAb/ZgZXIdvBnzAlw2Ad6nqWZ3dUb1ORJ4I/K2qviY7X7OiyK8CN1PV//aS0/t9+VEi8iuq+p1JF7Tm6i9VvZhsbWTvZ303Vf2JiHwIeJeInIYz1N8a+MLUNkXQqkLKXOSTjOPhYS3VX3lZLnLn8MkXxSgadLje0K9l+7GTflD2kormdTL9cBwsZjHGt6mpID3NbeRQfG6VkFrKmrEUS3t505ogrs4DjnkVoz0qCMGSNhngg+1EbCjXNCPMVXgtfRCrNAzS4tQ5DU+yXNqyObH43yUjluiWXl5f6/WXF928t9L1W+VtZn2KmDAYt6rautrO66k424OBajuYRYNZ1Jm99XIcd+vnYm52A0CRRTs2+Wg1kE8a6AunA0XapRjxnmxGqI1QAaKjsXdpvP3Zrmsqlmp/7GxGP80UmVpV/wT4k5by7wJ3nvFUIiL3xEkmT/RlbaMfwF/jiK3EdX7fwyadaEPFqajq10TkPTh3uhHwtKmeXwF+xcOxH7rrAZ4yg8kll7K+KiAVUBO8/seljfRwN/W9xDQYuYtrvuyvKlP96rXNMB9VCVn7EwazWQcvKGaQHbPkzvZyo3hWLtE4D8GoWhpZG79nmPF2vMx5yp0c9z/uNS5rwnabgiEnqFtyW0+rbaVr4tCoA1NtLWWbGbG0ou03KkkoNDepb5qyKrh4Hutv6/Jm9bKzRgemQZzTJivjROP/ld6VEDM/jF2G4JcIENQ0barlOzVv7CrrqWR4Ni4tywf8OHsr4OMddQ9V1a+Uhap6vvdQm4h1JxVVPbT4/grgFUtuJ0gBdnzAG5c0mM1DJZ/xNJ9Yp9qhaj5Z+cuUP9C5YT887KopkM0YFywYBp6RhbqebGdpjTL2qOJp4/3obKsc/DvPV9zTNmJsa6MwsEbvKz9Yu1QeaRCPUko4nW05xwQ85E5/5u7nIF2YHrAXg+tto7+t6JCAOo3208gll5rCx0kEMAuxlJilbtt1eWLBWhhFEWnpg7Aq5vod2D22xHO1qXMbLvv5KUrVrWFcBxfUyrkqzABGYmogHZgopTSM+fNak76AoFMlxNVTvC0dqvpJ4JPZ9+8Cz+yovnVCU3tMO9e6k8pcIKBDg4bEiDa5E7fNVsqHvpOETBoAx9QfVqACjcmHUu6k8DCHFDHBNVZG7W+/XaiadUfW8YInocYst5A8WqWDfBCJhm4dvway+m3X34FoRwrEWLYXzlulc7ss7Y6cVcAsOikl2E5iYGMhpeTXHFex7Ojfcb/2Ahi2S/R2IE5SKa+jceG5/p6Ugh3G1v8A2lVjJYLNpnN/IcXEZ2+KuiyHKX7LaD/JikNfir5JjfOcnHBfJ2HnITdCjVDtqGFUo6Zy72KQ9sKEIHg5ttnmGhM24vMSi3xbeSZrrQz1gsEuGPdMmeZzGH4bO5Du534lmMXlewNIKiLy16r6bBH5MC096sjj9UUReZKqvrlo64m45YknYnOQCpKJwV4PPjLRaN4lage4ILHx/Wk1vVAedvg6qoQgxzLnkvrcVGqc7cV0WCvVCHbBxOPFp0tJWV5Jsy4veUR0SCu5aiwGIpapLop70pBmpqnCwg3KpcK2AcOTQJxkWnff3AzZ7Q+EEiWW/EUtXYmzwffsL/45AMcddpJbosAYFz8U7QaKVhWjGyw4XX92nS0XNB0tUkkZeT5RmokHlerZ1Idlp2gv1EoCiWhsUd4hsWhNWvhqCbB+YHeZpv27MJBoq4ouxtEVvtnX1ssJUn1ezyZ7V1B7xZUtjcAC1HUVVZu5J1ourczLDdi1Na2xDcAq8A7//7UTazXxbJwDwB+QSORuwALwiGkHbw5SyWcqhCmSdakcNBVPnPUFkiCrFwilVH/5uIa8HpJenLgUbMhPZQQ7MJ5YHKIayCf3C67JzoMMxFaYRUkuygJB7UbHQJ5UUOkaVLPjSuQvbltcwbSZq8kklRavNqBpaA/nqiTaU6J9I69SdjXctiD5eBx30DNgoSUoWAPruwEqCnCq3e95q42oZRCaoPJqS2/SaY8pz1vM1qfZSSZJFWMLlEEWlyPjfc9sLEuFCtgKqExctC2mSlJxyxSH887apvHH5u+uhbAyqYpXe3mVsRqwIsgWE4NozaiN0JjfOO8DSidfyJzOtQKo6gX+/yd9RDyq+uMpx/wvcC8fbHlHX/yfqvqxWc65KUhFBeotJnn5WJfbCHDrf9gOqSN7udzgkZWFGY4UDyV4PX92/kqaA3rYF9VXQCVYSRJJKHM6ZF8/kJI/txmaGAjorks9UWb9aZHCgleMu65ALh3qm2zwmWi7mETKqsmPpFyL3Ku1RNUtHmbFuTwHos7vVa7eK/6LqptN2xZxYDhIWREkZT8QVcyOOg48iXzbL6P10kqd/JjUNOX4ruDaiPHVM5MU3CSwpaingg0jkkuVpMXYSn6PNXm6nf2ll81+nqG717bCZ6ievJ5NeyPaeB9zQskTi5baBDWZ1BJulb9HZqSYnf6dyd/7OVk6hOm//UYgFR8H8+fA03HdNiIywrkVd8W0AKCqH6fbmN+JTUEqhAEafKI5RcW4Gc9Im/rwXOrI1QZ+4HaDkR94JJMoctVEmKG3DQb5/wxBYgGSkTHzuS89l+73m6+JBOFmXL7fTodRNF72o5C0vDNAutC8nxIHFHcP2vvfsBmN7xy72NIWokhaSK3ykl7elVL1JZ5xRBB1nRPVpsF3zz0coQQjbTj91oEjg3A9uImGGqWTGGcdsEv704SRo3XQadHvt0s46VmJa6uMqc4m9VkbEk+01xhnb5FiIF9u4KWM3ITC2WTCAD++cmiSXlpbafxXJU4QNRwTfk//PS07nb7bqHL2x1T+Nvj3ba7IJ0DdleZ7zuXh2bhYmCN86iu859ffi8iJqrpt3idcq/jTVYet/MxlkOlaB0Ha8FsmeYxtWa6ueIxH9P4qZkMhwFIbddPsKQ3uQCynQSjhZTvq+CINj5HZZ9RCo3+uLOtz1D/7a/RbuG71qgut0j0ot9wJIZW1bAOT/QbNwT7dpOTxNUu6izz2R+o6Rk/rnluwW4ZoVaHDtJ3z2RdjdozcLLpxnwpJNd+67uekrWxnrN/tW/M36r7f8RlpufdR6up6g/Pf30+Ooq2teGbjIda2S4ITYEYWs5gCVZv2jvHNVt1b006SJO6yPLzrYwTvU/hrbDO1YyviNg/kuek6tw3BKTwO+L1AKEDw/PpDv2/u2BSSikpI4e0gA4kvvR1KnEWBn9UEiUHSgCY2uPjSVAPFGVFztqhI52ws2WL89yzvVzTgTyEM590p3gsp06UbXMPSvKZcfZG33XDlFZINJFYIbWhy3w1SW7gcZXww9N0ojfvq23AOE9q0a4XDLa3eVKltL9lU+LVaPGpFduyMVc+66OWNQ4+5j/NEf9BRr6ACzM7aEWab6rON68qBtmPAHotm9/d98nr3+fET6kVIJukxrkbLm+7al0uC4dlQ14G42mfIUq+W6TPvcXzs3OcDTrKWgTDaKthsVCm9uNIOGTtfrKuZSlDJMipMvnHBaK8G7J6CXaiodqzSyB6l4Cl11h/DtrVWVPXHPufY3LE5JJUgffjZd1jZzlbpuw5N+uylGCrxs2qymVLzc5wl5eSSz9Sj9BL60kEo5ecW3PfhSVqJM9XykExCiBKHSdfeWHq2Bbkk1ZgVhuOrZtsN75l8Rh4IJcwo/Uw4SX+mRVqbPiiMwUuDQFLZzKCqqvccYocp/mcSocRZfH4+k8qb2ao9OcfnIkh4RTsUJDWj9BN/2+xZyyWcLumnVSJqk3zC5MJLkvPKOffJ/3yuy3pcN7MQ5JJG8/skicYRZdw6pOfyHczvdXAgsEMnvYRtJWvFNOAnn5O2DYKdy9y3bGwKScWRSvsut3Swn/Frx+zIeK8ViJ5IsVb+wJYzdkCCJxg0CaUgkDSojfcxbzMQy3/9+ykc9dunuiTI1tkjopHfE0Bztizjxswu5FJO0GMLBBfghgG9YxZeSkChDdG8zGBx6pFOdU2LjaEhrXTV6UBrqpFycA/9z5H1q+F0Ubafk6M6G1GMwam8lJZ5US1p0M77YCWTUN1zO+baPgUNe494W6FxRjM38KuPN5Jx6WsZ2PLj7ejN9wAR7NCdv+HokE/A8mcsddhtImlfsPfl9ctJQRtRCHGC2JCWluE23Y5dxqZyZxH5ZUu5MDnIcdnYFKSi+CCnUs2iMNrDpIfQD9ClgRjIXFzdCxwWicrrQIvqQkkusZ5M2mZOjUPaBofiAb3vw0/lvz50Ckcdfyp1VaECZqcb4WNwWVi8KoyB3j8/qAvGMgG09Knp2SZoeR+Cd1rL+5GrEcO12PwFHzhvr9zIGq41pkFpjDniJgeaBj61IGFWWgnsscBZF48nXDjmPq9wkokPInWdabnuNvIo70n2+7T+lrn7ug153Iie7MtyMJLiXoRBNLY3+6CfjPNFuYYT+dT+0cvK+lxry+h3gWqHW3Gz3uJiV+oF0rXl19jyTqSF2ciM9YJWLZOl8reCJOVk57OD4j4sxfVvAoJNZWKdDcApqpMUp6uDzaP+8jOTUmUUZitJFeZF4iFoJhLnqqCGxCHpIY0vhmnucwt3SSKUcsvQOdvsMPh+6oOnYAdCvcVQbzXYLYZ66NV43nakXo1nh0ntZzNVVq7CawyUmVovbpWktd6z+9CmCorX0/icbZVTO9YLBjt0W1hbpWG0LtU8mcoGk84nI7d2xnG3ek7rYxBVeGOquGzL+1/0Nz9/eB7ya8l/4zh4BQeHShrPUdNpYvIWA/hy1aZk0mChXpu2danv0jnT/SZ3qPDX8ZA7vKj1/k7CQ+70Z5gdiz6XWPhBSPaQ8n5QvFcUxNN43yb/Vmlrtt/2/s5T/dVwg+/adkNsCkkFaKi/4szRAmQveZiBkx7kkBhOvNFSajDBBZW2F8IPKqSZiPqZ9xhhtD1UBWm0TZwkM9IC/NcHnsO9H/26KHWpgBm5fnntRXrxhmmhpLwf7hqbg3/npM3i1jO37qLya226JKcGGm1l5KoCDKpMEgQZqUvrEY+VRqJNorOAawOfrFAXBsjOEWxp2hePuc8rQBU7dANyo6+zqorKAanFQ6+85sbxIQ7Hz64btoWWmJPGvctcXqMK0Q9awbFCkVkvJWEsRib77J95O8BLhAbZyfQ1Qlpw3KEnwr57oQuDKPmKJxQzEiw6JjVPFBgk/fRBuHLSbsu9K9rM3fTBf1+NsX03Jo1p2Byk0jUDCU9ltj+I1fHlDeWAwUV6hwFRGH/y88Enfo5qhPQ1rssxAV0vVjj+vo94bZr9Z8ZNcJJWIM4kpbV7pIm3k2j2UjZULWOqBR8f4KP8Ibs8KXTU5Qy0dEYIRuKg01e3HqSOJKUQCQORCeeSOOipun642bqBQfOHPuZef9lwj46/ywz3v9lPGgN7mik3JyGxbuOmZPUIvz0+CjzTT2p6prpIOO7zs4X8WW3Vp4SiGS419/wLsVbhVjm38grR0fSG2iDic9j531PT4mwNVeekyQzZtTbaDq9xxyRm2rXnv9dSibmryRnUXxvDpLL22Byk4jFufNXmvvgGpYFSIEoyliC5SBxYx5C/+HlZOZgvpePlg94yIJbnU3HEIj49ilPF4Afq5sDlmtMoqeT7xtyF/U2Jl5QbOqOtpll3GqLt3/+xAsZ4F4fgjRQrZPfE2xTU4OwqlUSjzTH3+stssFDslkHMWOtsG77TbR53caXO8X6Gczekv6JreR/bbEMh6FBEHTH7MqmLZypMFkpCgXjfNb/nbYJv1zW0dzfrosRCMbgA0oFBvAvucbd/IWd+/a9a2znuts9HB04MOutrr3CEsscwBqFG2xIaU+pb78nV2bfyOWzp/Njll/VbnuOGA8KcCCW2P01S2U0lmU1DKm1Gae0ytEb9VTbRsxo5qGEbyA8ND35Lu3EimT3ArYa6lpllex/zvviBN9PXq7gZfHQoCANhyKtFcbwW/QlSTq7NKvbHjyFeIhsgp6KYkTZcPwWkNj5TsSYJo2hb1EuO1vjUYoIMK1QEu6WKLsPBLbxBdpPct7sIpZBKoieZECXamPInv9Qid1n6mJ5JM1LnoZ3bHEo1YTxMUKNNUo8qvbLj7ZfYJomOPWdeLacIDNxvVA0M1S+uB+C42zyPM7/56lj9IXf6M2RHU5I59q5/ju6/n5MsvYdiTpLxUn1WCK2I71Y+sSn7Hl6BBpcW1zSRhBrtzZNNYqu7LWlMw+Yw1EPrLGTazCcnjtbEgaVPfEkoRRsNw6H/3koYbYTScq7moMzYy5gbHxvxNKXfvy8bi1rOYgHCwJkPcqn9Zp8aDhGNwbClLL/O0HZFjKlp5FcLDg/B8D3IVFrGGf3t0GXFrbc4pwW7EGKPpHGuJW3F9Y3diypdr2ZR2ikmisZgGesFR5Aq/SYzY+y5I2aEKJ+5tq18xtrr5A4cLndXvXWADisYOZvXcbd+LuACSmN7C5VLhbOQzUmr5DySx4jlHllAtF+2eVZ23wtar3ts/1rCqrM/TdpmuDYROUREPi4il4jI10TkWS11/kBEvuK3z4jInbN9DxGRS0Xk2yLy/Ple5PKwaSSVuULanwehSSj57DVMqcbsKXl8AR0vUdtMqjRGtlXx5xmb7eYz2/Il9PtCfE0s9nmSYkyANPta6rRdWbtUNlFn7geYeug6HO5dVO+UktxAsLVJqiNPRHbBRGIKHYwODks1zmfna5K8J4QwAIc6pvmbqBGqRW1KMIGsCMSlDYN8ibaZd/4suazYJGkxXzq5C5P2Z+eLz7WqS2O/ZYgYg7nGSywHPA1ufSA6rKj33YN6S4VWgtmZLU9qhNqTfcM47u9heW4pf+fiHjSklRYby3rDpReai/prBJysqheKyD7ABSJyrqp+PavzPeB+qvozETkOOB04UkQq4A3AMcAVuHVQPlQcu+bYlKQyTSweE7vDzDQawpMeuzFYtrwIUJALNAipcyCepd9xZtyixvP17WC8bExVIuP73csqSVuXq+78yeLhfl/je+xgOlXXrDPMTPNrqLcKdmicF5tvIC3YVRKpiXaQ8BvVw+ba87Erk2Jz8nsw1slEAOF4O4DkaJBdct43P7Zr7p3UAjtIJBPiiSb1KR9c3WmdSiwSb5k5e0Z02vq9Q4ECizfcglm0cIMtDH6xA73h3thhxY5D9ma0h4nPe7VzQO6RFaTfsetocQzpmii1SfG5sT/fN6auze/ZlLZXjDl5f6nqVcBV/vPVInIJcBBuSfVQ5zPZIZ8DDvaf7w582+fyQkTeDRyfH7se2HSkMquedeLx/kVotKfdM0MBN2iaTGoJZaWUIpMHn7zRpDbxzbUoK/OXa3wgan4f66+kz+V549ewymwjSpx4DXnTDUJrQ2SlFCPhvNg8MYwS4+WDkVTO4K1CI63/GEppI5ZPfyjGJNDs/A2ppGPAcvdy8nlCzJSJRrCWm9XlsixpMF72Iz7BDiHZPbUDsFXlXI4X3MMw2qtitIdXcfm+2GE2klNKfs3y/NmdJNW2BqSGCU/5nObP20qktuVAdYb1VBTgkSLylqz0dFU9va26X//9LsDnJ7T6ROBM//kg4PJs3xXAkZM7tfpYN1IRkWfgcvyPcAvAPNeXvwB342rgmap69qxtzoNQRGh4/ZSNj830cs8SLaSWjFxi+7lqrECpAin10Vk32rqWNcTEASSvEz43JI1GH1qO9dfQ6G8LyTT6NxarIUlNor4DA4VaxiRCrVxZylFGTITYuP6W+zrzM5EPfH7AGiOT8gLLQa6r6ew310pRHf+BWgfa4vkJE5LlPueTDmv03XvROSdIRyKRUDIX/DIFSqPveZlJ91a05T7Fe1zMhrL9YSnqrovqXBK8rb15QBWmZXR2XXq/qr5kWnMisjfwPuDZqtqWVgW/aNYTgfuEos6zriPWhVT8zTkeuJOq7hCRm/ry2wO/C9wBOBD4qIjcRlXr7tYclvKidalp3ApytP4sKdAxOz5KHmFHqhtsFPH4PIPwtJ9d8NHxM1yMrz9T2Ri5ZWTiybTsWrzuYtXFODhkqrDcm6xTFRaWFA4kEQYUvDQ0cF9ydVxKaFkQbDimA41AuCkz2iAZxc/h+IJcmhdD4obMthN3Z2q/UtVaSioNUs/6EGNeQtPL9GTq9JbKJ0WFClDDMzGAekHG+qSm41EunvFGGn/y376DRMJxHbzQfh3N367L421uqVNmUn/NdjKfLfh9wDtV9f0dde4EvAU4TlV/6ouvAA7Jqh0MXDnTSVcR6yWpPAV4laruAFDVH/ny44F3+/Lvici3cXrDz05qbB7PiVvD29sNigezHBjyQbkxi3QX09wfjm+TYCZcQCSf1Zhl5chm2BPe1USgZANUB5HmS8ou5cfJ1XYqjDfSiELPBsOxhprlnaQQULqIZ5LC9GNpCB2xatt15yQizGRv6xpYl4pOKYrmYBxOFEk2EEtxP2Xas1m2l3vnlfu7mljGs9P1fVr5kjGn5YT9yoxvBS5R1dM66twCeD/wWFX9Zrbri8CtReQw4Ae4Cfnvz9D7VcV6kcptgPuKyCuA7cBzVPWLOB3h57J6V/iyMYjICcAJAMO9b7iy3kSyyDLDKmPkkdsgWmf7rmNNYoFuciHbPzaTXV10zoS7UJBqK8kAY7anMPYHSa24trZBM+cSN6ttGQly9Vs5Yyyrz5Aap81AXKJz1ltIT6Eo3tpSRWQ6iFfG1UmN41YwfRq7pPy3LAfkhtda1s+262yRgEqJq5WwV4ClxKisGtSCnaJAmc2Qf2/gscDFIvJlX/ZC4BauCX0T8BLgxsAbHQcxUtW7qepIRJ4OnI1LyvM2Vf3akq9lzlg1UhGRjwI3b9n1In/eGwL3AI4A3uOXuOyad44XOmPX6QB77n9I5683dbYT1TXjFRtqrrZDC2KJx+Wzv1xllB+bqcdy6SWRjkZ9dj5jbn2hJs0ap02mihd+4qDWQhb5R/FTUG2pk+5lIm2x+MSHLe37/pRqofK84ZzlvjFMI42umW5X31rKxiYg+UQBiKpSnKTV9nwpxYRj0gknoNXW0Yh0Df/HCTc6agQppUzSWj6Lxe9c2gHBPc/nv/Uk7vqkbeN9WAZmseWsKpTpksoMkwBV/TRT7oSq/gnwJx37PgJ8ZOqJ1hCrRiqq+qCufSLyFJwBS4EviIgFbsKcdYSzEsrUsrGGW+plZc0BReLL3CjPjhlfYyT0xWVnamjaWgb+dh3zDNfRdljH4z1LrMDYKTNpKM3Kl/72t0p9Leec1PKss+W2ekvuctuzkJGNq5ISlo7NETok1U6yiQdmH9uEu5YLn6j2y/d3TVw09esLZ5zEEU84bVz68f1qEMqkNpeBLolp1chmFpvK8gXLXRrrpf76d+ABwCdE5DbAAvAT4EPAu0TkNJyh/tbAF6Y1JixN/woUsysdK5u5mXLA6yIWYEwtVhyzYqV5qU6ZI8b63YaGzqd5bJTKynJme/mXonrK9y+bJJZLKGUbXb81xOeiVGt1Cp3TyGYiq06W0Bqeb0Vizc4mBc5/20njfWyTOLscDOZILI1TavP/3NFnKe7EepHK24C3ichXcUtaPt5LLV8TkffggndGwNNm8fwCljWQNlReraqasn7+peOcBbE0jutyCe16qXKbRahWDg4dKqlx1+fmMbMOlkt+KTsG42mCylJnlZMGyK7o9LHOLKXtruOmSbsy9rV5DmVMBdVp5O8g1lnWqO9EeBaKjAF5Z0tyEYUvFmSS72sa9Sfc7DmQiRb9WjNYC/U0m8ocVj3bBbEupKKqO4E/7Nj3CmB8ab8lYklLo04ajKeUQ7daq3V/W/DjrG6inlm63CXH+lrO1vzxDaGmTU2ylJezQ8pazgs+M7F0EXro0qQ2JpHNtHPOigkSyvhEI+/MeJ/GpF0gV6c2TjuDirJEg1CE5v+ijVB2/lvbCSVVnOHccyaUNUev/urEpouohw5CmfIDT5rZtw6Qs6qCQvU2dRgd+5eJNoN2KPv8291AcORjT8P4TLvRm225yO9RljNsJZhKLC2DXVefOo9llcik7EqpGoUpxJEfPF4v1h2TbNpJpkSrBFfGAEn37ziVTGbFEu/punt6daFXf7Vi05FKl0rL7ZuhgeUcQwcplAPJlFXoZp1hl7PINgPuF85oHwA+/4728iMfd5pbrdD377PvOhmAu//RaQ1pJL/OrnPE46BTkpmEicQybRY86+x8BcfPBD+pmCiZhP4soRtjbsgws6Q7dp5CIpnk8TYroeSE1JpyZYnYqISi1qK9+qsVm4pUptpIpmEWQlnC5CRIBwFHPq41tmnJL1tUf/nvkwb3WVH2NeAL/7S8truOu/vjO+4BjOntl00sE7CahDJJ2pwoibao86aqJZcqqbWRWanqyuoth1Du9sTmbyuqk20qM2AWleiy1LUrxZyCHzcjNhWpRMyBUJZ1Wv/wd0oJbz+pm1g62iv73zX47ypouzeRaIpBc6LtaBnEsiYSypTzTySWRuX247swSRLqPL7DdrJqmIUUW9CWvqYsX9K554IZbCq7KTYNqbS5BU8LXuxuq6VwShuzSgu7OimsBsp7d/fHn9b8HbN9XQGYazIotmGi7Yyx52bmWfdyCXPKPZnmeTizMX5iZ1K7Eu095Ym6+zAJS409W5LDzlIwk/fX7kk6m2flR3WbZFssnxGN4zJMUgF94YyT5qJ+6pEwdj9bfpM1dR+dhGkq02WQw3K2xvkado0p9crudrwDs2DScRMHd822lSA6p2jcVgtq1dlVJmy7K6lsDkklvAirMPgEQumJY22R3+8jH3daNHqbLNuzUMzQl+H9FLEUddpSn6k1Uq0tZ/a/HNtJd2PZb9Iicc1kY1nB+yrFmiurOvGYyaW4J5VdGy0zrEkSRvROasFyjdM9VgfBFtWYOCzTzrIiYtnoY8QyiATm6CoMTWLx34ExdVjqy8oZt1R9d+WKmytmWaRrN8WmIJVfO/RmfPEfl/Zi9MSxayG3RR352NNSEs5MgRtnyB0D2oow4/gxj3ijeWCS7WauJJJBfPxTIJZGPzp+iy4VlcZsEjPczJxMWqqXY4P808nT25x2SmtRJttUdDclnU1BKj12L+SxNvd6zOuwQ5dJtzGQSTbAayqbijl6AbaRy3LT40yLnu9Km7KW+MIZJzknC8k4JCOTMdKfgFkDmMfuwxInl8uGKtPjUHpS6dFjl8Nn/vVkRywDiGvak41d/kPIn7aWXmJt7q+zZJgOdQJRHPHHp4251aqsnsSxEuR56lZTzbjepKpqp0oiupvaVGQzXPjd7nY3Pf/889e7Gz3WGff8vde59ewzqUQs2Hx9EGFNFkELWEpGhoCNSBYrwRFPcPbLldz3rvu4HDIRkQtU9W7L7ovI0TfnkI/dUY7srFPriC/yca7hF3up6nXLPdeuiJ5Uemxq3OMP0/oecfGo0r12DliKHWUjqKrWC2XUfRum3cuV3r85kIrckP3t7bgLe8m+rXX+Ry8FhG/qResVQbVu6NVfPTY3VMnTugesdAGnpRrjd2ciyZFLYUf88QzZJbL7vGb2kilQVb2r3I/vcQl3ZFxaqXXEVXyfa/jFXuvQvXVHTyo9NjWil5gmw32bIX2e+aV6ApkNk+5TUJnFuhuEUAIu5FPmhuxvr9VfjkkrV/AdDuCWfFMv2q3UXgG9+qvHboMjH+s8k2zFXAz2PXnsmlip+ivgrnI/vZLvkdtWdmdbSkAvqfTYbdCV9n8mNUyGnkx6QLu0srtLKdCTSo8erSRREk1PJD1KlLaV3d2WEtCTSo8eLehJpMcsyKWVn3DVbi+lQE8qPXr06LFsBGnl23yV67l2t5dSYDOlvu/Ro0ePdcCFfMqMWOQAbsnuapzPsSm8v0Tkx8D/rHc/CtwE+Ml6d6LARuwTbMx+9X2aDbtin26pqvuvVWd2N2wKUtmIEJHz5+G2OE9sxD7BxuxX36fZ0PepR4le/dWjR48ePeaGnlR69OjRo8fc0JPK6uH09e5ACzZin2Bj9qvv02zo+9Sjgd6m0qNHjx495oZeUunRo0ePHnNDTyo9evTo0WNu6EllThCRy0TkYhH5soic78tuJCLnisi3/P8brnIf3iYiPxKRr2ZlnX0QkReIyLdF5FIROXYN+/RSEfmBv1dfFpGHrnGfDhGRj4vIJSLyNRF5li9ft3s1oU/rdq9EZKuIfEFELvJ9epkvX+9nqqtf6/pc9fBQ1X6bwwZcBtykKHsN8Hz/+fnAq1e5D0cBhwNfndYH4PbARcAW4DDgO0C1Rn16KfCclrpr1acDgMP9532Ab/pzr9u9mtCndbtXuAUC9vafh8DngXtsgGeqq1/r+lz1m9t6SWV1cTxwhv98BvDw1TyZqn4K+L8Z+3A88G5V3aGq3wO+Ddx9jfrUhbXq01WqeqH/fDVwCXAQ63ivJvSpC2vRJ1XVa/zXod+U9X+muvrVhTXpVw+HnlTmBwXOEZELROQEX3YzVb0K3KAB3HQd+tXVh4OAy7N6VzB5EJs3ni4iX/HqsaA+WfM+icihwF1ws90Nca+KPsE63isRqUTky8CPgHNVdUPcp45+wQZ5rnZn9KQyP9xbVQ8HjgOeJiJHrXeHpqBt7cO18i//e+BXgN8ArgJetx59EpG9gfcBz1bVX06q2lK2Kv1q6dO63itVrVX1N4CDgbuLyB0nVF+z+9TRrw3xXO3u6EllTlDVK/3/HwEfwInX/ysiBwD4/z9ah6519eEK4JCs3sHAlWvRIVX9Xz8oWODNJFXEmvVJRIa4wfudqvp+X7yu96qtTxvhXvl+/Bz4BPAQNtAzlfdro9yr3R09qcwBIrKXiOwTPgMPBr4KfAh4vK/2eOCD69C9rj58CPhdEdkiIocBtwa+sBYdCgOSxyNw92rN+iQiArwVuERV8yUe1+1edfVpPe+ViOwvIvv5z3sADwK+wTo/U139Wu/nqofHensKbIYNuBXOu+Qi4GvAi3z5jYHzgG/5/zda5X78C07sX8TNzp44qQ/Ai3CeMJcCx61hn94BXAx8BffCH7DGfboPTv3xFeDLfnvoet6rCX1at3sF3An4kj/3V4GXTHuu1+j36+rXuj5X/ea2Pk1Ljx49evSYG3r1V48ePXr0mBt6UunRo0ePHnNDTyo9evTo0WNu6EmlR48ePXrMDT2p9OjRo0ePuaEnlR49evToMTf0pNKjR48ePeaGnlR6bDqIyBE+qeBWn+3ga1NyVvXo0WNO6IMfe2xKiMhfAluBPYArVPWV69ylHj12C/Sk0mNTQkQWgC8C24F7qWq9zl3q0WO3QK/+6rFZcSNgb9wqilvXuS89euw26CWVHpsSIvIh4N245WMPUNWnr3OXevTYLTBY7w706DFviMjjgJGqvktEKuAzIvIAVf3YevetR4/Njl5S6dGjR48ec0NvU+nRo0ePHnNDTyo9evTo0WNu6EmlR48ePXrMDT2p9OjRo0ePuaEnlR49evToMTf0pNKjR48ePeaGnlR69OjRo8fc8P8BW3Fp8d7L1cMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC1WUlEQVR4nOy9d7xtRXn//35m7X3uBQSxVxAsqGgkImgQxUJUSMMSY9fYsBewa6KoMRaEG3/RRImar0aNsYAlESl2ExsgagQLCpaIUYyFdu/Ze83z+2PKmjWr7L3P2eeew7n783rtc/Zea2bWrDafeeqIqrLAAgsssMAC84BZ7w4ssMACCyywebAglQUWWGCBBeaGBakssMACCywwNyxIZYEFFlhggblhQSoLLLDAAgvMDQtSWWCBBRZYYG5YkMoCCyywwAJzw4JUdmGIyCNF5BwRuUJELhWR00XkHiJygoiM/Pbw+U1S7xgROV9Eficil4nIp0RkP7/vBBFREXl2dqzn+u0n+N9/ICJnicj/icgvReSDInKTjn4+QkQuyLad1bHtxcnvv/TH/IuWNg/wx7xMRH4rIt8UkeNFpPD7l/y5fF9ErhSRS0Tkncl5fta3fVDW7kf89nt3nMt+fn96bb8hIof54+zZUufrIvJM3+eP+uv1fyJyhojctu04CyywXliQyi4KETke+Dvgb4EbAfsC/wAc44v8m6peK/ns7evdGng38Dzg2sD+vp5Nmv8e8LjskI/12wOuA5wC7AfcArgc+OeO7n4OuL2I3MD3YQAcBOyebTsM+HxS73HA/+V9EZFbAV8BfgL8nqpeG3gocAgQBvUPAX8GPNKf50HAucCR2Xk+Nmn3esAfAL/sOI8UeyfX9iBV/RLwU+AhWV/vCBwI/CuwN/Ax4La4e/ZV4KNTHGuBBXYeVHXx2cU+uEHyCuChHftPAN7Tse/PgfN72j4BeA9wIXAHv+0O/vd7gBM66h0MXN7T7g+Ah/jvdwU+A7wr23YVsOR/3wJHdA8BxsCNkrbeA/xHz7H+ELga2KenzGeBl+OIoPDbngn8o9927456+wEKDFr2vRT4dLbtDcCpHW1d17d1vfV+phafxSd8FpLKronDgK3AaSuoex5wOxHZJiL3EZFrdZT7F6pZ/ONw0k0fjgC+3bP/875MKPsF4IvZti+r6rL//VjgHFX9MI7QHpW09Yc4SaQLfwh8VVV/MqHPPwMuAO6fHHPSefbhX4B7isi+ACJicJJSV5tHAD9X1V+t4pgLLDBXLEhl18T1gMtUddxT5i9E5DfJ5zMAqvpD4N7AzYAPAJeJyP9rIZf3AI8QkSHwcP+7FSJyJ9ys/wU9/fkcFYHcE0cqX8i2fS4p/1jgff77+6irwK4HXNpzrEn7U7wbeKy3beytTo01DS5Lru3zATyJfQ54tC9zJI78/yOvLCI3B94CHD/l8RZYYKdgQSq7Jn4FXN/bIbrwAVXdO/ncJ+xQ1S+r6l+o6g1wg/kRwMvSyqr6Y+AinM3m+12zfm+jOR14jqp+wW/bNzVk+6KfB+4kItfB2S2+pKrfAW7it93Dl0FEDsfZet7v674P+D0R+f3k/FudAqbcn+JU4L7As3CSRn5+qUF+32TX9ZNr+8Zk+7uoJLzHAO9T1VHW5g2AM4F/UNV/nbKfCyywU7AglV0TXwK2Aw9cbUOq+jXcwHrHlt3BoN+qvhGRWwBnA69W1Tggq+qPNXES8Nt+iFM3HQv8WFUD2XzJb7sW8GW/7XGAAOeLyM9xRnmoBuuzyQziGc4G7uqlgV6o6lU4UnwaLaSidWeHH09qD3ctbyYi9wEeTHbtPIGeCXxMVV8zRXsLLLBTsSCVXRCq+lucuuktIvJAEdldRIYicrSIvKGvrnc5frKI3ND/vh3OS+rLLcX/DWdv+EBLOzcDPg28RVXfOmXXv4BT93wh2fZFv+0cVb1aRLYCf4Ejmt9PPs8CHuWls1cAdxeRE0Xkxr4/txaR94jI3qp6NnAWcJqI3EVEBiKyp4g8VUSe0NKvlwL3UtVLpjyPTqjqlTh7zz8DP1LVc8I+EdkLOAP4T1V9cUcTCyywrliQyi4KVT0ZNxj/Fc4F9ic476WP+CIPy1Q3V3gi+Q2ORL7lVVOfxBn8G2Skqler6tmqenVLF54E3BJ4RYuqqwufA26II5KAL/htwZX4gTjPrXer6s/DB3gHUABHqeoPcM4K+wHfFpHfAh8GzsG5NoPzcvsEjhh/C/w3zuX47Jbz/JmqfjHfvgq8C+e9lkt4DwIOBR7fo1ZbYIF1haguFulaYIEFFlhgPlhIKgsssMACC8wNC1JZYIEFFlhgbliQygILLLDAAnPDglQWWGCBBRaYG/qC364xWJItupU91rsbC6wWIiuvOmP52xy8/4qPtd74/nkXr1nb0W0nceA54C63XLPjrRW+d+4PO/ddzq8v84G7c8NTH7e33vvw3Xj4sZeu/CHeJNgU3l97yXX1bnLk5IIbAGfZD66o3v3MQ+fcEw+Zj7AqZg7v0pz64ppaeX/O2P7eufXjmoL7FQ+rfqht7F/pc7te6HtfztYPnauqh8zrWCJyp8MP3fqNq7cr531rx3BC+qNNjwWprAF29gtYe4E2EklMPsgaN7+6c9gVyWW90UcGq3mvUtI8235grqTykD/ZU497yt58/MwrucNtl3jsM3++S0srm0L9BbgBqmWGtdbYCDO4tj7UZp4d2CnE4Q60c45TO+Tqz+0BWx+1IJadgDWTwhOcVf7bVO/ErBCRO93/3rtz90N34zb7D/mjR/6Mxz1LBruytLJ5SGUnYiMQySScVf5bY9v9hw+fT+PrQBLTYKeR5C6OLhKY9b24X/GwmSaCqyX5tSCWB//xtb5x3FP2BuAG1x/wh/faneccu/eI2c18mwYbc3RYKcS0fxYA4MzR++OnE13XcINcTzHS+ZnTAWqfB+z2mPm0uwtgZoljGkIRgwyGyGCI2tWr6uc58RCRO11xpeXuh+4Wtx3/lL35u7f9JqxEukti05y4GOl+6PoGwnVQmW0EBGK5/9Ij17kndaybtNHzjDxgt8dwxtWNBMS7JCYRx/3MQ6eSWKYiIDGN52FW6WYttQqplBIQpJXnPmXXlVY2B6mI+Aew+2GbhnDaVEabHWcuv6/2e54ks6HUUauUsB6wx2M548rVLOq46yAQRteA3ksogUj8/eqdLK4E83JkSWwpOZ731L05+hHT2VZEZB9c4tAb45a/PkVV35SVuTfwUSD4kp+qqq/y+y7BJUEtgfE8HRBWis3h/WWup38weED7zpZZTa/6Z4GIlGA2FEG0YS3Vcsm57+rEMquKq9WJJLSR3bNAJm3PmlqtvcudRDOFO7SIrNr7K3h8tZEKwIv/5jLueLvJnmAichPgJqp6nojsCZwLPFBVL0jK3Bt4vqr+SUv9S4BDVPWyFZ/MnLEpDA5Cz6CX2gE2gE3gmoQzl983X3vFPLEz7DxGaoQCTmJ5wB6P7aiwQI77FQ+rGcfbSGnqZyy51522taJAimJu/W/tRostJcfznjqdbUVVL1XV8/z3y4ELcUt1X2OxKUbY2xy8/2SvkAWZrAg71aV2GieBCSRyxtX/UpHBaj8LrAwt9+l+5qF1CcVLJDUyyaWUpJ2UMGQwrP63fZIya4QHPv4Re/UWuMH1B9zuNksAd5i2URHZD7gz1UqlKQ4TkW+IyOkikrapwJkicq6IHDvtsdYSm2qkze0DKcID3FdmgXasObHMUdpY2D42AKY0pM9kKwnPRyD8omhOAgrjPoPBWksrsnXL5EnH1q0C8BAROSf5tA78InIt3EJxz1XV32W7zwNuoaoHAX9PtZAewOGqejBwNPAMETli5rOZMzaHoT7BgjTWBoFYHrD1USuuOwtW5Mqb2T4Waqr54yz7wensKoFYUtVzvl9MJBYx4usU9fI1yaX6LmbCJMTvl8Fwcl9XgFJLRhPiG627Bqeq6sv7yonIEEco71XVU/P9Kcmo6idE5B9E5Pqqepmq/sxv/4WInAbclWoV1HXBpiOVBdYWZ2x/79TEshoJJ3fh7SWZhapq48KTR2Nb1z6YSCj1si3bVdGynL2vM8ACln5Jaxo5TEQEt9T1hX6J77YyNwb+V1VVRO6K0zD9SkT2AIyqXu6/3x941QynsSZYkMoCM2M9Upd0xYmk0kiu9kp/z0tqWajWZpBWAvrUYSmx9MaTKQR1WSAbkSiRfPLXb49FH3Ctx00+7iqhWCyT2p9KvXc48BjgWyJyvt/2UmBfAFV9K/DnwNNEZAxcDTzcE8yNgNMcLzEA3qeqn5z1XOaNBakscI3GtIN8KPeAaz2ulta9gXTmm5VbEMpORmpzSQnCGlSss5tYC8MBR13fmSo+edkpdQJaI4xRRhNIa5IkA6CqX2RCkKSqvhl4c8v2HwIHTTzITsaCVBbYpXDGFe9a7y5sCswsrcyCIL34QbsWo+KDnKUYOimlTf3lCSWPbZknLEo5B/XXZsSCVBZYYIGNhzZCiduDMb9OKJ+87JRKzbnG6ZeU+dhUNiM2lUvxAgsssPOw1tm6p5Y0rPLJy07hqL0eX23riMyfF0pVRhM+dhNkK1kJFpLKAgsssGKkxDIPdZh22VFq+0tnhFB1cSkQbSrOeI9TgYlBBmszby4X6q9OLCSVBRZYYC5YteTSUHOFrxo/1caWIVvExa+ID4ZUu3Y2FYVywmdBKusAEdlbRD4kIt8RkQtF5DARua6InCUi3/f/r7OefVxggQXWHpEwMiJojboPrsfWRqO8iHFR9iH3lwgMBmvm/u5sKv2fBamsD94EfFJVb4dzjbsQeDHwKVW9DfAp/3uBBRbYrOiQJvrSuGhZugDHsqzHr/jYFRkO19TTr1RhNOGza67UtI42FRHZCzgC+EsAVV0GlkXkGODevti7gM8CL9r5PVxggQVmxYpdjdWiJdPlgFOLjsbuvxhkaQhLS8iWJU6/9C2zH3sFKJFg2enu5q65Rte6Siq3BH4J/LOIfF1E3u5TDdxIVS8FlxYauGFbZRE5NiRp++Uvf7nzer3AAgusHaawg9S8wtQ6+4oqun3HTuigg6Uilq7PQv218zEADgb+UVXvDFzJDKouVT1FVQ9R1UNucIMbrFUfF1hggRkxF1fjWY3sIt35wdYAJYaR9n+sLiSVnY2fAj9V1bB2wIdwJPO/fjW0sCraL9apfwsssMB6okUVlq/BIkWBLC0hwwEy3HnafItQYno/C5vKToaq/lxEfiIit1XV7wJHAhf4z+OA1/n/H12vPi6wQBvOuPhAjFdu3G//C9e5N5sUCaH0BjGKqRJLDgYcvf/xAJx+cWvC37nBqkwhieyaksp6Bz8+C3iviCwBPwQej5OePiAiTwR+DKxRgqEFFpgNH//hnQBYSsaKT19y2/j9vvt9d2d3acNixQb7NjJpM96H/GDpKp3FzlO8BJtKH3ZVm8q6koqqng8c0rLryJ3clQUWmBpDcWt1lFofxD59yW0XxDIn9BJKvn2NMxK3odSCkfYPn3bdIzbWB+stqSywwIrxuUsOYChjtuuQkbokg1tlzL32+97cj/W+i+7Gngb2MtsxWDdgSFNr/rlLDliT4+9KyAklVX81YlesRu+vtM5aw07hUryr2lR2TSpd4BqPz11yQO23Qdkq49Z9q8WpP7gz1ysu58aD37Gn2c5WM2arjNgqI4aUFGj8QF0ltitjZi+wkARSTPye21Ma29S6AMgsbcvRt37BSrs9FSxCqab3owvvrwUW2Ng44+ID+fQlt+Wsi28ft21Xtwb5ktSXj/3CJbeeyzE/+IO7ALC3uZqlSCAWI55IxDL0ZJYGxC2IxeEs+8H46YQnkfom6d2fQpN0LamN5ehbPn/F/Z6EMYYRRe/HTmGoF5F9ROQzPk3Vt0XkOS1l7i0ivxWR8/3n5cm+o0TkuyJykYhsiOwjC1JZYMPjExffkY/+8Pdr28IAHiQEg619wA3sq5FawjFvUFzO7maEEcVINSOOxOKPX2Sm2XlLTNdk3K94WPuO3DCfpqzPyaSPWEJMi9XqAxy933Gr6ncX7AQppVQzbUT9GHieqt4e+APgGSJyYEu5L6jq7/vPqwBEpADeAhwNHAg8oqPuTsWCVBa4RmCrLLNVnNppD7Mjqp/CZ0lKlqSkEEvhbR1DSkpkRVJD8PS62eDXXK+4GqjcSMvktQlEsyQlQxnX1GELtCAQRUIYUaWVE0pAKrUkSSMl/Z4TjlqwJZSWo2/2rLmfhiLZNKb5mYZUVPVSVT3Pf78cl//wZlN2467ARar6Q5/m6v3AMSs8pblhYahfYMOjwLKn2c6wxTDeQBjLfdlgwM/VYffc76JG1TMuPpDf2d3Yy1wNDLiuuYI9ZERJFZPQZ5wtUHdcdZ4/BsvnLjmA7TrgAftfMLnvmxD3Hz68IogWw3tEl0QSykay8entC+JvRzQd82PrnoOj93kOp//kTSs8iybGaljWoreMf2YeLCJvTzafoqqntJUXkf2AOwNfadl9mIh8A/gZ8HxV/TaOfH6SlPkpcLdpz2GtsCCVBTY8rltcxVYZU6BxgO8a3AtxKTRCcGLBcq1sqSZKMik+/sM7sSSOwLbKmN1lmb2MyyWVHi9IKV2Bb87OUlJiGemA7d7t9Gs/3o9D971kZRfgGg5HIskAnKZfyYkmxJ7E/Un0vHHp7WUwqEgkkErXevVrlL7FYrDar+jxksqpqvry3oKAiFwL+DDwXFX9Xbb7POAWqnqFiPwR8BHgNrRHV667iLwglQU2NM64+EBuXJQspQ6aQuPVSYmjwNZUVEEVVSIsSRntIkHF5UjGOPVa4VRsoXwgMvd7em2xk1pcW+F4X/nR/tztFhdP3cY1CUdd98nx+yf/759q+xpuwF1G+Zq0Uk/FgmpFEIWLno/lwqJcbTYXkegZdvTNnsXp//P3M55ZO0Kalj5MO7qLyBBHKO9V1VMb7SQko6qfEJF/EJHr4ySTfZKiN8dJMuuKBakssOHh7Bbue9nxpqaDv/vtiMWIRqmiQFnWgr1kB5+4+I6kJsXrFVdE8nEGeEdibRJRX3qO1JCfjiqhzmYjlqOuf2x/8GG2VnxOMA1C8WuiiEkkEWOiGitdMyVViU1EIJabP3ty2SlgVSgnuAxPY1MREQHeAVyoqq25ZUTkxsD/qqqKyF1xD+6vgN8AtxGR/YH/AR4OPHKG01gTLEhlgZ2Kj//wTmzXIVtlxJ/e8pu9Zc+6+PaUFCxhGSUqqHRQ75MirEo0pI+8quIqXeLycisjdTaTQpzX1jBzSZ5FKulC7im22XD0jZ5W36AK1nLUtZ/AJ3/7Th6w9VFOyoCo8mrYU3L7iYirkywLLEVREVfhV3gcDOpqshStq0XOVwVWqpkcUT9dnMrhwGOAb4nI+X7bS4F9AVT1rcCfA08TkTFwNfBwVVVgLCLPBM7A6Rff6W0t64oFqSywbvjCJbduNZincBKH1IzlEFyKTSwT7B5dXlfbdRjTqmyVEXvIMlvNOGmvnZQmIT9mILI+fOPH+3DQvj/pLXNNx1F7Pb76YQTsBJL2BCHGOEIpTOXRJQKDIMmYdimlbc36NYRFJsahTOn99UUmZJ5U1TcDb+7Y9wngExMPtBOxIJUFdjq2yoi9zVW9Zc66+PZs1yE3LC5v9b4qMVFFFVCqocQZUbfKyAVGal2FtVXGzvVXbMP2AlPPLrO+dBNL3sdQ7ppKLFF9VJbdhdKUKX0ZhgNSgvA2kyjhBEN8UHmBk1ZyySOxndS2de1bJSymkfstx+aTTafDpiaV13z7TzBiecmBG4rId2n86S2/yak/uHOUEr71k5sD8Hv7/DSWOevi22MRrldcwd5mB9u1aFVzBXfhNrvHshYuIFEsW6kHLVb2EjOVq/A0qNtztFNi6ZOmNjra7BEiBjU+oj0fxAuDGOMi3rvGX0kkFECWlioVV2jPSy61bSmptBGGGE7/4Rs7Drl6Y71Tf01yKd41wwA3Ham89oI/Sn7tmjd1o6PEsER9pvutn9y8RixAjBGZZCwPRvrgKhxIo0jIJJUYcrfg0udxakOb+zE0MxSn5VPiSFV01fGveTmhjt73ufUNxrjB3IDYhFiCNGFtlDYisWSIxnioJJGUPFLiCOumtEkfuSQyjXS0SszT+2tnQEQeDLwetzy7+I+q6l7zPtamI5V5w/68O9WGufEiG+1K8NBbnct5P94XIMaTgPOM+pXdAyjYU1yw4yzxISlyySQdABqqNE8Qeapyg52o4sgR4mBKpHZuKbnMwwlg3dCmSjKCWBeQqOrJJbgBQ41gWpF6erXFnIR8Xg2imb9aa1q47ApTxalsFLwB+FNVXfNV5TYVqdSlFIfViKB9hBL2L4hlZYiDrDop40q7xP/ZazGUMXubq9jTLDNSwzJF9NyKdZMAxi4yScnHUkwkkHbpYfZnJxBRIbZBgNdoDzAj1K5HOrgn6i0JQY5hsFdt98ZqQ2FgOGixlyRSSpBC1mENlRRuPZUJ6q+NRSr/uzMIBTYZqXRh24X3j9+Pu/2Zc217QSzT423fvRf7LP2KISV7F5VnV4Gyl9nhZvhqGIpl5HXWbaopi2mkY4HKlgF1ksiJpI1A8mMUiZTUhTbbSEjPshkQbSjB2yoO6HjVVyJhpP+hWuPEWugi01TKSA3yXUGM06q1dgLhTLfy44YilXNE5N9w0fg7wsa2YMvVYpcglRTbLrz/3IllgdmwJCXbrXv0ApGE7UMzZqSGq3QpEkpapkKYEXfbPQIqUpkuMt65KFezUNOlHZd2z654TKkyF7c5CmxkHL1PkoG9yLMFt/S/LaFjVH9l1y+VYmJ9aRrj8zKhHDjJqI08dpIEM1Walo0lmO4FXAXcP9mmwIJU+vCSAz/RUIHtbpbn0naQRiapxBboxnUHVwDOM8sywPi1SSqjtqVUYaQDX0YyD63qJQ5E0apm8u2l6odQd5KNxEkodeN6rsYI7ad9cMfo9+wK57pMv9pkvREXuFpaqjbWpIRp+p8ELKYkpEoMy0gJoM1mArPZTazGIMvTL24NTp8bXET9NcemoqqPn1xqPlh3UvFrApwD/I+q/omIXBf4N2A/4BLgL1T115Paec23/wTwcVbJzW570d/0nT/k7rtfFHX1d7/FD1vbbFNrmRt/b0EsU+IBh5wQB4kzvvaKuJDWiIIr7ZY4aO9ptruB2UcoL6tf6Mj/LuPgnpKKxG1hfzW4k5RLDPSRWMSXz+wxuWE+GRNS6SKQTEoufdJSSPsSnsPg+Xbej/fl4H1/3FlvXTEonH0D6oN6Ll10QdVl91SlTjBhv3X7Y1umIpa8nfy4U+DofZ/L6T/+u5nqzIKpXIo3EKmIyM2Bv8dF8CvwReA5qvrT3oorwLqTCvAc3BoCwbXtxcCnVPV1fiWzFwMv6mvgZ1dfBNwYaDfMp8QSVulbDRY2lMl4wF1e4RTPyXt3zC3P59Qf3Blwg/Rvyj0a96P0aoV6Qsimx1Sad8klibSdPpxdaoqR4urFY7jORrJJ2iupE0eBxWYeXunkJaR/SQkldSLY0G7FwwG6m5dSLEiLO/BUqEkiOTG1GP3bCGXW9CqzOAasAjbL8NDelw11j/8ZeB/wUP/70X7b/fKCIpJnSW4UAS5V1dbZ9br6Nnr2/GMgXW/gGOBd/vu7gAdO01bbymut5TBRpRLKLVbomy+OOuiv3ZeBQYcFOqyY5cG3+joPvtXX+fl4byxO1XWl3cJ2XXL/7ZDtOmTkvWtGWjjJJftYXO4ll15+yEgHWDW1T9hf4ta+CJ/wDAQCCyRWJpJMqdUiTAHpcxVdnBuqMduQWipyuWYs3qWDlpiQlXxM8ukskx0rRe4+DGibeqxxAtop2Zzw38es5JI0EFSzfZ+NJKkAN1DVf1bVsf/8P+AGHWV/oKp79Xz2BK7sOtB6Syp/B7wQ2DPZdiNVvRTcqmgicsO2iiJyLHAswLVvsltj1ghuENhhh7zsDv9e2/6FS25dJSe8JscMbDAcddBfV7NLi/P6ydIKhywHu5siRp2PtJhgbJ+gw/eDfZsU2np/NajLtJKAojdZOKKz7xSiU3l05WSRSin5fiMaj9cW9LnuCIO8D25U2z44ih+404FeutRj6W1IL2WbR5ftaCMhFplCHXb0jZ/O6T//h/h7XoQCbmwZT1B/bSSbCnCZiDwa+Ff/+xG4TMdteMgU7XWWWTdSEZE/AX6hqueKyL1nre9XTzsF4KZ3uI6ObMFr7jS9I0MuyXzukgO4134LtdZKcdTvvazmYiqqaEntCTvhv49hKDCyA35rBwzN2A++toqK979zNNdIqZcxoq0zwzZXYROljGyNFmiQS1xQyns35eRiUN9mZdcpMpVYFdWfDpaNrm4IHHWHl1XJG8F7ZSUFksG8bdCsbWu5vEDdltLSrjeMJuWdNNOQUvJyKcZjEOHomzyD0y99CwAjW8wt8HSq1PcbSyh9Ai4p5Tb/+z/9tgZUtd3IPGWZ9ZRUDgf+zK9kthXYS0TeA/yviNzESyk3AX4xqaGb7narmQglYCGlzAdH3emv3Bdra946ArDDGaVf/M0/Z6uBy8utAC7VvAXMmFILbBhwxVJmM8ACrcWYpL8Dpo4NUSpvpMR7K0glIVGlVdNKbn1oqr3qMTRxUq7VCpbXOEwyzqdIbtEkaac31Uou8disfHQzFipX86KR9LJksnQxLXSK+7eROEVVfwz82TRlReR2OPKxwLOBv8aZIb4HPG5SEOW6kYqqvgR4CYCXVJ6vqo8WkROBxwGv8/8/utZ9yY2mwcaSbr/vft9d625csxHHT3VGWa9CkeTFvqpcih4zhbFYEUZ24NyCcUbzUovGgls2ez3zoX4opbOhJNs6Y0HExNiWoDJ1MSWA2oZHWFs25L722+NSmsOLI0Z3jhvJC0x2LKPD3fqN5F1T8C77BlQEk122miqrIz4lSihtc8BUWhHxZQoYSt0lGnjdnT4EwEl8oL3/M0CvYWlaROSWwJuAP8Dx3ZeA4zokjlOAE4FrAZ/GOUo9HvgTnLRzZN+xNuJU/XXA/UTk+zjPhNfN+wC5ATbg05fcdt6H2vQ46g4vQ0Ylsjxyn3GJlIktxa9/8X/Le/C78VZ22IH3fjKMbN34vsMO2WGHXGWX4vcddsh26wz32/339DPSgqvsUq3OSItovE+N9cFBwxn/B5RqautiuHTmkxMFBkIJqq8i+Q/U1F15apYgsbiFwSZH7e9MHL3vc2GHj+vqNcCb5mda433hP4Y4+qhXbYVP4/gGVychF02N+ybr2yBZxGuNkkuOVXzWh+7PNJKoiOwjIp8RkQtF5Nsi8pyesoeKSCkif55su0REviUi54vIOT2Heh/wAeAmwE2BD1LZV3LsqaofV9V/BUaq+n51+DhwnUnntN6GegBU9bPAZ/33XzGBCeeJLikFmkvULtCB0dhnqG2/Vp88/1U89dzHNAbR0lmBaZvbhBfSiILUI9zr5Yqag4ZzLQ42E6K9Js4qpVrUK5Va8liTssU4n/7ujLL3aJduEtuKV98MMxvMusPaTkN4GPBbjeRdUfBdcSeJI0DjOFbqTgB9SSRjO1KXgrykdfr339B2lquG6hQR9dONHWPgeap6nojsCZwrImep6gVpIR/P93rcKo857qOql004jqjqvyS/3+NXjWxD+rLlUaRLTMCGIJX1QBtZVJHdzYDJVIpZqMIqyI4sY4Hxs00D6g2yD/vSU9l/j6u5uhxSahHXjTfB+0qbA3Bl2xDykae2CJZXY4F7E6xPj+J+V/cz/LZe1VVLRa8GI+2LTjUW2UpjVWawuXRNmAuqpY7XHdbC0hBocd1N0LWvVY1Vq5io1LrSr7R5nOV1RACtyC9Xj/kU/Kd/d+5KjgjLfIIbvadr8Ha9XEQuBG4GXJAVfRbwYeDQWdr3weQAn/Fxf+/Hqb8eBvxHR7W3iMi1VPUKVY3ucyJya+DsScfcZUmlDYFMNtTMcYPj9ItO5Ojbvhgoo/eXWAsWPvmtVwKOVK49uIrfjK4XCcWKce8+FtvhMhy2t0kFpdZzdAWSCTaSQqwjl1pEvZNc0iF8GptJM/K+216Sr0sfniergEirtDICLvjJzThwn/9pvQ47DaMR7LnHipXicWbexbVtkk4e+BiJQysSSstEG41Wx7RVW+Ij+U+/4G9XdhJTotSCkZ20SJcAPFhE0ji8U7znagMish9wZ+Ar2fabAQ8C7kuTVBQ4U0QUeFtL2+f6MoEBn5LVfXXeD1V9W1v/VPUi4Llt+1IsSIV+NddCBTYFlpddIsBkmdf0pTZiueDym7L38Gq3zoho5Y7ZlpE21MP6xH0trrxJjEmQaAqhFq8UpJZ84LdJavp5pKNfaVbiQCxDX389lxg++sZPh8EANR33Y5rI9twonyO/TJlqS0Xqb1pbXEoglkyyCe33SVjzhNXJS097kj1VVV8+qT0RuRZOEnmuquYR7X8HvEhVS2me3+Gq+jMfz3eWiHxHVT8f+6C6v4gY4DBV/c9J/ejp33mqevA0ZXdZUgkDTRqb8ulLbjuRQBaqryYmJe+753W+z/evvhFXl0OGXmUU1V89L2aZSDAlRV1i8Cozk7gBd+XgytWZxieNnCVbcB4p36f6WkkW4qAC++5PbgrAbff52cxtrAqqsNe10KWW9UxgOlLpsqsEFG672rrRvdaN+P5J+3bvTiyaSDKZ9LIzoImDR3eZ6SAiQxyhvLcjFf0hwPs9oVwf+CMRGavqR1T1ZwCq+gsROQ24K/D5tLKqWhF5I3DYlF1q7ea0BXdJUukKcrzvft+t2U5KNdxv/52yrs2mxlYZscOnujfi3HbdynnTzyoDAeWqqGmRE0sV6e7IYlr7SB570va9DX1OSM57rOyN5VtzLC05KcUwFYHkEkHDeN/XRjr4zypZGK2pu+qd2nkXr1TDeIL6S6fz/hLgHcCFqto6O1PV/ZPy/w/4d1X9iIjsARhvi9kDl9b+VR2HOlNEHoKTnFZyobrsLw3skqTSh4Uksjq86Tt/yA47pEQYSsn3rrwx1126ca3MpEjklWIWwzk0V2JciRqrq05qO8kJJZeGA5lYrfZd8tObsN/NL525PyvGoOi1pUxSK02jdqoZ1aFBCm1eZ7Vtob7RhiFfcqlljaFTTIqm9P46HHgM8C0ROd9veymwrzuOvrWn7o2A07wEMwDep6qf7Ch7PLAHMBaR7TD9GvUishdwcjD6q+r/9ZVfkMoCa4LdzTK/He/OdZeu5LLlawGwm3HhiZNmeDnaIturWBBb+x1iR+aBzgDHPHJe6n2o6vcPcEEqMQJD0biu/XA9HEUGgxhv0koQ0xrvewIgKxVWpvpK7SptqV/i5XBGeQl2lDRAsvT6GRE++c2/mbKzK8c03l/T3EVV/SIzqJZU9S+T7z8EDpqy3p6TS9UhIk/BST5X4xWPuNO6ZV+9BaksMDc8/bxHc9vdHQmEJJEhLYYJDg9qWl22U7ffHJX7cCCOSnU1DVbjzbdSdduKjuWv0VXr6WIcgg3DpW3ryqwqq9zWkqjYpjKsp9KK0crjK/UmGwif/PorZ+vXKjBVmpYN5kQqItcBboNLiwVAatRvwfOBO0wRA1PDglQWmCtCZLtBG4sYuYDDZp1pvOv6BvdpPbhmzeUV663Qu6uPPJvHCFBGa+BteJcnb6upls55+/H1AqMRyNbqd04mLYP/SjytJK3XVz0jIhUBTaokdpmgCrv/XV/FmV+d6Gg1F5TWMLYTgh83UG43EXkSbu2qmwPn49K1fAnnptyFH+CWIJ4JC1JZYC74t4sO5bA9C87+9R3YrVhmt8KpunbYgU99IriwupD1t9lGu5TSHtVeYFdEJi5upLtuF3n1qdSc11l78KSTzryElZxzUH0FlZc7BqCwdY7pW+7y5G3TFRwMqjQp0xJIWxcn2V58pZowNpGcEluJrZONq66NJRbWGsrULsUbBc/Bxbh8WVXv45NGThLtXgL8l4h8BdgRNqrqs/sqLUhlgVXDreY44KuX3ypusz7hXm4/mSX770oli9S1eBYPrZUgXWsljXsJZNGm1ksJpbPdVXb14KdsI+XHSeuP6B5bu/flg376s42AptHeRfVX+/Z6g+pVYBCFX7/WvbvNLuDxzC/99RQHng/m6VK8k7BdVbeLCCKyRVW/IyKTkh2+DZdQ8lt0h7Q2sCCVBeaCZS0YGLesb1h4y2r14hV+vZNJObMC+gglXZa3T1ppN/DXlwRuw0riTNqQ928aogjSCsD3f3pTbnPz2eNVDn7KlNJJgk9+49VukTUraFFNBHpVVamBfRKR1IIcm9smqsLU10uCIEVBjaLGcPbnXzahA/NFaeUapf4CfioiewMfwQVJ/hqY9HCNVfX4CWUa2CBJhxa4JmNPs52vXn4rfrFjTwpRlu2AZTtorF1Ri3TPkAcnVt+1YaBvQx6YOK2U06XW6qvftlR1I1Fmtm9adVaBsCQSVWXf/+lNp6qXoyGlKLXPoU9ohkTI1cuYq5ajDaNBKEnmYC0E9fndtEi2mwmfQlx+uMK43wP/KQQ7MN2foXHlhiZ+7FLPUsRrjBBn1ffZSJKKqj5IVX+jqifg1kd5B5OXav+MiBwrIjcRkeuGz6RjLUhlgVXhzd+5L1fplhgRHtZ3nyUWZaVqqTSpJDRzhKWrSK6F6quNKIKePa5hr9JbPvQrpbC5vZRaEYpP9uz+d1yK07/3+mYm4hapQttcgSVTZaWp68U7aAgVWfnU9zHlvXFl1LR/3L4mSZVbC87+3EvncLFmQ/D+6iWVDcAqPl3+0ek2Vf2c//p7E6o/Em9XweUQOxfoS68PLNRfOx0HfuQEAC544Anr2o954O3fuycw5L+vvjnjoO6qzeKtS8sizQE/qIaaCRnrUkr8nsWjdCFIKW22lC7pY1qV3CTk3l7p7zZPsPa+QCHCViyjFXSrT/UlWtfz3/VxTlr56rsyDYelnvw8QU4oDSJpPXCiRkvWUEk5tlUlRsv+vsXDdiJclpgpHAzWHycCf9my/QLcYlyd3l9pJP8sWJDKOiGQC7h35NvHnNBZdiPhzk/fhvUrKjzr6XC53cpFV92A7eWwltLeiCOUPCtwIJ1GNHsLmaRqrzzYcWhKvy+TVmqLZdnGmvezeI2lCMZ/t85KWXMGsFTrsrhzrBvs0ZCjrG60r0Xd41RfhQgGYYhQ+v2//NnNuMFN/4crL70FAHvc5Ecz9x+ou+T2XAIZlY49CnGpW6TdW0sFuuwiuXE/LIMQyqR1K0Khkc8mHbfdJZW4TXayx1eKUg3jCYakeaTGnwOup6qX5BtV9SIRud5aHHCh/lpgxfjleE8uvuoG0cPLpIN5IISWATxXSc1KKGn0vCs7PaFMi1TiCrQYbCm2Zj+pDxxdtpMuNVgYQ6vFEN2GoRi2irCHzxr8y5/dLNb51c9uPvV5AJEUJNhUevDJb7/GLQFtLVJqVIPFy9hGKF615bZnEflhhceo/qqIIn6XcAEkbkvVXrFuphKzQ+Fz//HC2a7FHKEqvZ8NYlTZrWffHmtxwIWkspMRRGZJBltVJ7lsdJXYo77yZO70l5YtZswNli7nm7+7OWPrvL4GftQZmJJCFIO678n02KrEbV1qLle3Th6pdBEIZJjEhaQk1WVD6SMUi9S0PWkG45DEMrgOBwnF+lGuiDElySqSXjpBfPZkr/qyWULMQCj5zK6IHnNFlFa2SkGpymgWzzSpYiXO/afj+INHn1wjgK+8u672utefnugG+f2uze6X/BbEojJ0AYtFRRR1lVfY1jwZzWwuXZKJJn3qLJdgIzhVTZMQdWNwCmeLyGuAv0oTSYrIK3HuwnPHglR2MtR7hbQF2W1kYnnIfz2drcnI+8vlPVm2AwZSDfj1Baoq6aHMFtJK0ZWCxdlbMnJpMchP6+XVleq+sYxwMvDndSKx1Egnr9+efr/qR54tWd2y7XmSSf/bIFiUUpVCZsvsDIDAuacc576rIlReSYc98qQ48n3pX59Xq3bVftdm9x9fjpQlagpX1wpqfBuZdJJC21RiIk0ySghF28q1EE38vc6waiivGS7FzwPeDlyUJKw8CGdwf1JbBRHpXTdFVc/r279upCIi+wDvBm6MMw2eoqpv8i5r/wbsB1wC/IWq/nq9+jlvfOfBL+e2p3Zlp97YWC4H/Gz77gyMGzT3XtruYlNa5mROfeQW2Wpb6CyXTqCbUNJBehKhhODKSjpIXvxo7LWNdVhManBQS5iYp8sdB4kl9C2Pu0kDIavgx7q0UvW9sqVU10F8XY2kUogw9HLUSEuGPYuaxXPUauA9723HVbsU4nruLa5Jn/v4Czjiz06MZa/eZ092+/Hv3Nu51Q32MQAxz92VGuBDP6irunKbiZqKMGK5FkeAmme6bAxSQVsv4YaDql4JPEJEbgncwW/+tk9G2YWT+pqkP7XLukoqY+B5qnqeiOwJnCsiZ+E8FT6lqq/zayq/GHjROvZzrjjgw6/udV65/Wmv5MIHvWLndWgCnnXeo7iiXGIgW7hitMRSUbJcFmwdjCcavK0aymRJ3Wk9oKBbssjbD0gJJieWRnmhQSzQlDIKL5VU5NMuxfSlacnRd/6lqveUc9KJQTCYGsEE7Lj0lmy5SXNcOO+tx3HwU7e16140nLtGt+Jwund/2EnOhjIUzEjBKmJh+033ZMvPr/RSjlOnic9Xa3u8vSDz6EoIpU40mWTSpvrqkmTWEdNlKd4AHfXwJNJHJGnZ+6zmWOtmqFfVS4MYpaqXAxcCNwOOAd7li72LyQE61zjkg3EqJsuEgXo9YNWwvRxw1XjIjvEgixIXxt4TZuzTsoxswQ47YKSGZVvNW+oDfKXKCXEtwSAe9pUY919N/Iy0wCK136UabPjuAw1HWrR+Spzbc4mJUf9hX2jXYljWgivtlkhEaUBjGvwYBpZa8KNW59GGpr2nXi4QSvAEK8QwlIEnGMOgy983RaKeqiHEqaRGe00M8b6uDoTPnv5Cln69HQpBxrb6lO4/UBniqdyEKwO8jydJVF1VzEnYX/12sSf+ewE6ADsAW1SBk7bw+/znLsd2u1CvJYL6q+9zTZBk+iAiQxF5toh8yH+e6Vep7MWGsKmIyH7AnYGvADdS1UvBEY9fe7mtzrHAsQD77rvvTurp6iGircSREsvtTn0V33nw9NlW//QLzwIqsvroPd68yl7Cc77+CIbGMtIlrAqXXb0HV4+GiChbB2MAxgODyQbOmjpMDQOxLJlx8wBx4MX3PawZ76SB0nvPFKIMqEsBwWU3HbSjmkyLukqq5hDg7TtSVsfHeLdnH8QhFjzpDGXs1V++gSjhuJ9BWglGezcyVyqw0NdgsK/60VR9pQiEMqCgEEckYTtA4VVg9ucHYG7cXMX0vLce19hWQ0oiLQOfGuELpz0fgDO//HIecBcvOXtpJbgbiyo2U8c1JIo+20mu/kpUXen26AVGpTILwZLrhbCacW+ZKdrpMgN0lD0U+DLwMFX9kN92FPAmXGTR21X1ddOewxT4R2AI/IP//Ri/rdUWE7DupCIi18Ktz/xcVf2dTBnYpKqn4IJ3OOSQQ64xc4JJKqNZjXt//PlnN1YWPOaLz1wVsRx3/sNJ31iLUFrDaFwgPm3K0JSMrWFgLGlcRvAGi6om0zFjzzcliSbLzLPGqYPCwGpBTExKG4+tbkAHKEnSr2SxBI68TBxVg93F+nYDsRic/cQm8SfV9Ug9vfocAJoqsYaUUjdJJOdsaoTiypq4L/alg1j6kBJK2+OoAkfe+299WYU9liiuXPaVfYdtqK/t6VwaB20SToNQTAcpxbLUtq0rdIp3dbp3udUMoKoXpIVEpABeD5yRbXsLcD/gp8DXRORjeV1f9g9wtpTL/e89gQNV9Ss9fTtUVQ9Kfn9aRL4x6YTWNU7Fi1IfBt6rqqf6zf8rIjfx+28C/GK9+jdv3O7UV3lJpbkv+rZ7zGLMD+qicbLGw4P+8xkr6uPLvvlgClG2eOli6AfYwliMsag/zsgWLNuC5bJgbA3Lpfu+bAuf96tSh43VfXbYQfws24Hb5z8jr74Kv61XaY1twdXlEleVQ3aUA0a+navLoVex+Xa1+j3Sgu12yMgWTdWWXyTMJt/dx0SVm1OBSVRjLWvh95tWNVhJVb5MCHDW9PXBZlIg0Z6SIqi/VoOcUMRqnHYPrygplpWl3zYlS7t1iA4L1Bi3xK+11VQ9HeRrcSzUYk9q6jBJ1F1BnRVUYImay8bt1X7r846tJybFqAQvz8ntdJoBcjwLN1am4+FdgYtU9Yequgy8H2c+aMM/Alckv6/02/pQikhMPe6N/RONh+vp/SW4pGYXqmqa3e5jwOOA1/n/H12H7s0VgSDSIaZvOe1pxa6jP/8cuqZsM7ueJtgio6heKo2wWzFi3z1/zQU7boQx1ax8bA1WKiklHHNgrY+qVzBwddlUwxo0Rt6DG0gHlI3TCYRj1TA0JUu+QJ7mxYp1qrOaN5bzwHKShImqrS6vsei9Jc5I3+Ya7IjFSzWkxv8xYKO1w2YSTOHPN3zvglnBFNz+/ABXdwqJJRHS/AZHLsMrSrdv5HeGBzR9UEVi+hYtCsRq7UzaPL0qySJTgQX7S5rXK/3dUJfhc4QRSWw9DfZWhdL2d2BWm0pmBki33wx4EM7r6tBk182AnyS/fwrcrav5NE5FVa2ITBr/X4BLKvlD3FW/BfD4Seexnuqvw3E6um8l/tMvxZHJB0TkicCPgYeuT/fmg+Dt5d6jupQS3tcgoczyDD7gc8/FyOT077OixLC7caqOEQVDKdlixuwwg9hn8YQzKgsKU6UmURW3zwgDYzGa2T2SgdWIZYDFauG3WQZSJ0NnfHfG/uAQkMKoejJRPxplJCAupUqOviDJoApzNpWqbultI+48Kjfj6txcOhOjzmBRj0Wpl53WC856mpsWM6nCBP7zAy425b73e52TPlLjvfg/6Trw6bK+ENOkpIN7lx0lJ5TgKpyrwGpqME8koT/O4F/tW08N2Ay5vx4sIm9PNp7iVff1kpkZINv9d8CLVLXMzANtHeh6sH4oIs+mkk6ezgRvMFX9lIjcBritP9Z3VHVHXx1YR1JR1S/S/VwcuTP7sla47amv6nUf7nowJz2s9/vscZFQYL7E8ro7fYjXXvBHfnCt8njtPaxWFTUoqsLIFtH7KUop2KiCMz6y3lit/0Zd//M4jyQNirOrVCo0V79k5L+H6PwtHYGGaXBpiDWJ9osshUuBZaSDSl2l7rXYyqhmdE+XR7bU0+uHFSXz6Py++2LB23C8r693KS68SzEaknHORizx2BnB5AGOAEfe97WUWwuKkY3DUeuCXiKAWx9eUsmltp92w3ziFdYmsdRsKjmhJISUEo5P/cZ5/3jc1NdmvpDJpOIu06mq2ut102EGSHEI8H5PKNcH/khExjjJZJ+k3M3pXiPlqcD/B/yV79mn8I5OPf0qgAfgYgYHwJEiQqZZamDdDfWbFbMGOE5LCUd+5viGYR7mQyyvveCP2GGHbEnGsALL0LSpgQSsaajZTKExJUnA2Jos2l4jwdTaxBFVIJLQRqomSyUWo5U6KSwOlucMs95V2SJgYYsZx/Jp+heDU405+4tDmajKbGJrAfBBGxWknBhND8nywnFA1oaDcIk6x4EgEc1ILAFTSS6psT73CGsllzDY+/OwwCCJHckfzh6jfO7dVZNoTF16gYxw1tmmMl2alsmyVI8ZoGonyRYsIv8P+HdV/YhXX91GRPYH/gd4OC5dfVsbv/D7Z8HHge0sVn5cf9yug1DyfF9taq/cWP/dDtfirgfaiE5cka4Nb/7OfSnYwrWK7V5KqdRVW3DrzX/jT17N7//HX1OqQVA/NlZkVhib2EqqT94/IxpzhQVvLKuGZRsM+87wb0QZGOeS7LyxJDoBLJlxJJItxbgRjR+Oe7UuMbI+mMLA7rKMy6BcNuwmI7ynmSeXq+wSW40w9IRhEZZ14Az0xquxkuj/gNTzK7gUl0ChFnxQ5lJQn4l4lVldWik1+P2aaaJSOjGJWOzQOGO9R5RCkgDJamf1zDnbjFR1w8CfEEBdrZUTCk1C8Yb4NlVXw/trvZGqCvvKTEaXGWBfAFV9a2fzqmMReSbOI6wA3qmq307LiMgLVfUNIvL3bT2asN78zVX1TlOdRYIFqcwZgVCmDWhMy+Xi9EpyBwWJ5T+O+P9mrjsUtxzwjhCR7mfeSS5BPzl1g2ld+6HxUyOVLOAR8GRQH4gdkQzcwF0W8TwGIYaE+uwwSCUFysATBDRXXQz0GOrUAhOz+JEqLb/1xDIgqd664mNAqW61xpgaH8EEq3i0U3hXZJRlcelrUMUGqccTy2pIpA29xJI+YgbUSrv6q0XlVbscTh9ba7PVppIZ4htuwi0EUvtvkrbXGZPezym9v/rMAG3l/zL7/QngEz1VLvT/Jy6u1YLTReT+qnrmLJUWpDIn3P60V7Y/ZOrE4DYppY9QpkEe/BeDAhGvJnPHPOve26ZqLwT7hSDBwntLQRWrEaQVVcEYG88rl05SQskj8ANCkGNcLQ9pnFOQRsZemgEYiI1k47IeW4bGSROojTYUI8pQSqwxtZUoa55eOBWfcyeuLzIWbSi2aRsp1XgVWEW6weOrymCsoEncjOKN/eG7v+7kbStWtBFpvxp0eYipQENjJ/5PF7mIS9XilhFO9qVSRteaK/EY9fQsDc+xFmKKkktHkzsT0wQ/bgSo6sf9/3etoPqXgdNExOAEeXFN6V59ldZZM7k5cPvTXtm+Q6v/YfBNCSVI0A1C0epzwIde3Wi2TZ/bt6zpkZ85fuZzinYHabrWnv/Hr65JJYWxTdUX7eovIMahBGO8RaINJRDjUlGylKTUDwhEs8WMqzT7/ng1VZaPXyk9eRTBY00LLi+3cnm5ld+Od+e35W5cbrcy0kFUe6UpXbbrgKvsFnbYYUzrEtC6Vr0alnXAiIJlLRg5ZRwjHbjfSTqZmqcbkK45lWYpXivc+6jXuy/i7CRxmV+/7ezPvbRaqjddGhjiqKppMsiEUBpqqlzV1SrFSE1aqaV0aVGFracaTK2Z+NkQ4pSHiBwgIqeIyJki8unwmVDtJOAwYHdV3UtV95xEKLCQVOYKEY0EYUQZjQaYwmZSSj0wqpVQuvYx2SBfrY8tdC5G3oMCyyhRwEybWj4/vjMuV2qrNJZljPPqGtAkyDSNfmqcr6vOgqE9UYtJCD40jLWIksmQ0hvZhZICbD0RokUYMWCrGcU8YilCYkoXjEitXoi6d1mFg1G9vu5KPTAkjdg3FF5NNkuizdWiUxXmVXDB4+rTn3pxbbcaOPvzL6ttu9/hfwNbqEkazXZbEkC2pMZvuA63SSriX49ANOsINxmcXGYD4YPAW3Fp8KfLfgrfB/47jW+ZBgtSmTNCzq5bvf9vQRQxmkgpHequCbfsNh/8G77/0L+K9fqGefVqpFnXXU8HfbfGR8kQOO727erU0P904SmLICrR2ysdvCtXYicxbC+HUQpxqq36yGN8+pQQ213LSOz3laIuyl4MxnpPrxgx79obiyPI4C5sRRhJERcDG5VFjEdJo+hzWNS5+Qay9OSAekmISh0W4lmWdeAW9NKQBh+2zkrSLd5hc4P34IrzD38LckLJyaTWROmuRZy/aEYEYfMEKaVtX5eNxR9mfTE/Q/3OwlhVJ0XQ57gU+KyInA7E+JSFS/FOQFuqelNYr372KcNTQml8mQ1h/Y82sgp2idW4F8f8WDivsGfe7tNuQSfgS+9rxjqU1oCx0RCu3iaQuxEPjI2EE6LxY79z+1AgBn+uYXs4x5EarBUGaXLILM4F6gkl3W9hKLaKwBelRKNqKxj6C6zrn1arO+bSSmzTSyvRThI9u0y1jSqfWOVU4KUdpeYM4UpXNpVyFW7FbahJKwmxzAopLVKaKrJeaLoUNyq5/XVppJJS0n01m0vShBeE1xcq6ISI+g1GKh8XkacDp1EniP/rqXOx/yz5z1RYkMoawpiwBkULouemdHqHpeq0AEsVyT5IPZdaXrOwMt1nj3zjTP0OrrZhED/sESfFt/iwR57El973PM77o7/h8LNe5NNVmHgeTkLRxkkPpEo82eYZ1mXMz+sMpMpQ7NoYJPEoTVvTOLouB5VZUIu5q2ZVYtLLNGmlpYjR8VYLhriBfhT6hdSSSVaJLk0VGBmkloRYeq970vXSBz86W5Ew1rKRtXg1cIZ7l2z2s598UWVfmQFnfvnlHHnvv8WMNMSLujyTQ0iH/fA4pCTRKo0k1Rp2kzY1GHCHF2+L+cMufPVxM5/DSjFNRP1GWk8Fl/IKXOqVAAVu2VVBVV+5kgMtSGWNIOJUJXGQ8wNLShT5/1gvbyeBVWFc+sGvaB+Iw0x/Jega3PugCiMvURSmSZAizqAb1HK52zEElVZGoNk5DcQyFhOlnlAPqAIiE8JxG8bVNhUnQRmNMSkFyo6yng8sSDA2uByl1yfYP1JVlwbvriCBFBSemmBM7rqcn6PJOMJSqdsMwsifylYBq8pwTlLLZ09/YfX9kytbB08UsIqM3D0WASmkvlpjAs0IpCalZCquWCepWyuTJJrc6ZhG/bWBkAZQToKInKCqJ6y0zIJU1hpa/65+mjWrC/EBH341g6IEdme3LSNnO5mjd8nTb/sZ3vbde8VsvbubZRB4wgFf5L29q4vis/8KKgq2PngGhyILLgI/Sii2FnOSomFf8fvHOOIy2iyfSjRpvbCscY0so6XXVgNYbWTy5CCVa3I4T7fd1/fEUgjRSQAqgikkrLnStIs6W1R+HamME4ET/ZdCJAZEltERYnWj6UrS5uc4+3Mv5cj7vBYAUcWUoKXCoF9HVbO3TFMuLZNLNx63O2Eb3zlhZ0krLR3IscFIR0TuCBwIbA3bVPXdLUWfJCJ5/rFaU7jo/BPadi5IZQ2hVmoZOcTrAZwHWFUudYYJZFOTUPKZW4uEE+qoSi0mY1q883v3cKnXFZZa0rIEXPHw3/F7H3sF3/ozJxmPS8O4dOovKy6ZJFREEP3cPOmIOIO1NVJTmQW0EUpqowkfm+iz07xj6bHbkCestOptSNSzHgdUa9SHQEYfLxM9u6gNHkWy3XmFeYJKUriUvn7wALPqvcmEKJWERbwK8StD+kh7mK/xPs0VBtNlOs7xqc+8JH4/8r6vxYwVO1TnIkyqypKmK3Dfo5rvS8bxRjbjnS2tXMMkFRF5BXBvHKl8Ajga+CJugbAc/wTsOaHJf+rasWlI5RZvPxGAHz3pBRNK7hyEQc8N/OrtoRWZ1AmhucZKbmvpsrukqp55SC9FEsH+hAO+mHaRKx5RTV5+72OvYGk4YDQuIqkYo4j3pCpVopRS4mbcbludEAPJBDSkFtpVcs0gyfbgy9ra9V795tyLK6+1akQKBvHqWEa0RixGSp+/KyGZRGIoMSzJGNRlOU5T5Ze4ZYoLCUGWY2+b8So1pSI28RfdG/HDWithzfpSLUbWQ+/Tj099+iXc5/6vd+vci2ALpfFww2yW9tzmkttXEmI54G+28b2/2gnSSk2P11Vm7bsxA/4cOAj4uqo+XkRuhHMvbmCltpSAjfdUrgDfuuzn8Xsgl/XErd7/t1UAlIeqIxpVqQKjai7G1acGqTzIcqQDbGowD2tkz4InHPDF6Pab40v/+rwaoQRsXx4yLg22dp7t2VuDjSecY+h7uqhRei5ApxSTp2tpM/pXMTLGf6qo/RB8ObIunmWUTHPr67FU9YJacKQFo2QxsBDIONJqfhbVZL7eSAf+OC4ocrsO2a4D/z98H7BMCI4MDgOOUFzsnzCUSj4pNiChBHzmzBchpWLGiljaw6U0+5+jRZpJSaRBKFOM8fOEUn9n2z4bDFerqgXGIrIXbrGvTiP9arBpJBXRnftQTUKaKikOsivsoNMcKIPCemmgkkxSVAO1+z0uDV87+m+nPk5NMmlBOpBblSiNpdH1vfUnxM/0ecK19SH8b2Q71kSfH3fVpZF0eyrNRCkkGNalvuZ8LBeIyEsrhZQx71c4V+slnGBbcdLOAJP0IarIEgkxSCuFwBC3Xn1YDfKaAlFnW5EiCILhHfAfycp22VhyCSX53uohBtzmtdv4/kuctLL/31eei1ro/KbRFpjoUryh7tc5IrI3Tm11Lm4VyK+uxYE2B6lsoFnBLd+XDOJCfLDymUtX7qLU/iLeJdkYS2EcqYgfRLtWnaskgvk90Hf46AlApborM2lExHl9BXIJ5zGRZFrtJ3ViiQSRqruSaLucQFJ1YO5d5gbtykBfk2ZEa8b7UguGQTEnVbQ86uJX0rqIJaxt2WqAj5H0tBrtC58doMAy9N+HnlCGYijC/0Q6mVfMylrhM2c4N2VTuvvj1o6pVGESZvMtdpPwX8VzUJqiZUJCyvCY3PoN27BLytyMT3k3q0fwGgFVfbr/+lYR+SSwl6p+cy2OtTlIBWqzn1u8/cR4x3/0xBd211mLbvg3QUyQJpr960IboUgyeDoikVrZtoE7Hax//z/+mvP/uJk/bFaktqCYisbYSB45odTrVhJNdHVueSHjmBM8yTzSpJWAIwBLa4BlLZGlOtfjSYb7uoqtklIsdYklpmEJaeknrJ8Sco4VPm7FZQHz+dR8MOSSlJ5IUkJxgY+phBJIZC3JZLWeYDmCm/I9H9SMk2pIJh1qrfi9I/eXVq9ElS/MaMOlWVtc3VeNaxCpiMjBLdtuBfxIVcctVRCRGwBPplqkCwBVfULfsTYJqXSP1rd4xxt2GrHs/97XEt2FNfF8CphALNWS4H6KlugFXCxIUSMTkbo4H9RSbQvzzQNd0k+usgrn0XAaaAzgifQhSQp46urDUK8M3mK4yHijxG2xjUw9tlLk9cOiXzEwFPUBorbhMdZsy/p62kIoY7cvuA4TPNDceZQ+VsVSuRK7/mxsSaUV+QPZob6KhEHP/gxTC+bzIgIrU6i/5nSs+eAfgIOBb+Ku4B399+uJyFM70tt/FPgCcDbT5wvbuKQiIkcBb8IJsG9X1dfN1IDKTpVP93/Paysy6IMfL+KgmVFPSO2iZeUpBcRgymC0D0F8UCWsLCMBVURUWsOBHzmBCx54wjxOswabLBssojWDfY4ocXWwquuyVElwE5fksEAXVDEv4o3uRhSjdWlmUpbkpnQTMiynC301V5OcFkHdZSW4DFcxLcOW0y/DWSksh9gYXPqYIT5gU8WlyFfnCRa8wIYyn1d43lJKDamey0sTYUGuVK1Vy0YcyrY9LuntyCSXzjprgWne9Y2DS4AnhkW8RORAXHT9q4FTgTZS2V1VZ46K3ZDTHb828ltwvtQHAo/wF2E27CSXkP3+5XWeUFJZvFIVNT42KIudRkWtZB/nOWZL/7FCWRof95JmOHbHsN7rK/84b7D5nWel3qqru0KsStentJJ8N9FLLU+wmUthUSIwVXr9mGZfXIR9Ie73wH/aCKXNmN+FSRJOSbWscOk9y1JPsJEOvEdYtX3Zbw+eYGlq/O065Cq7xJV2ie06YKSG7VqwQ4XtKlylypXWcpWW7KBkhHXrrUxI+bKR8IWPvADvaV5Lcx9JJHeGzOdmqQo52ZEb9F3b2k4s8x4HdIrPFBCRfUTkMyJyoYh8W0Se01LmGBH5poicLyLniMg9kn2XiMi3wr6eQ90uXRVSVS8A7qyqP+yp8+8i8kfTnUmFjSqp3BW4KJywiLwfOAa4YF171YfsoVXNZRAa+1MDc76IV807hm6pK6p7WraluN2pr4oZlGfB7U97ZUwjkhrRw/eQZl+0+2xD31JpIiUlt69ajjg18gevstS7zBFNmtOrXTpp2FgS+1RuR0kN9S42RUi9wFzqFZ/ZmGplyuDRZtI092oYQZIXzNRIoAieYeJUmkPKGHgKUPo+FzHgsQp2DLYWg9nQbsWtaD7Y9UzF9Iz9U9gkdyZEBZmg/pLpiGwMPE9VzxORPYFzReQsP+gHfAr4mKqqiNwJ+ABwu2T/fVT1sgnH+Z6I/CPwfv/7YX7bFogp7XI8B3ipiCwnZSYu0rVRSeVmwE+S3z8F7japUptb8U4JhkzVXlJtywMcW9GlJ5ZqEHbvU2JwoJKCUrVSaihvM6yvBiJwwQNfwe1Pe2WNWL774Jdz21Nf5TMK1+0uMf9ZepqBIExFFgGFaJRCJCGE3FDflpSykUssIaA2BK+xkJZ+ZIsq4aT6XGRinRuvOluH9WvGD41lTIHRys4SyCXYWYLnWOHLLDF2qVx8XrFCLctSUGApxbDE2PfHMHStu1T73htt6G0rwWifGu9XizVVfXmIT90SvL5ElbklXGx5h9rGgrkS0wzSSG8zqpfiUsyjqpeLyIW48e+CpMwVSZU9VnjkxwFPB56LuwpfBJ6PI4v7dPRtUlR9KyaSiog8E3ivqv56JQdYISZpUhGRY4FjAYrr7r0TutSO/d79OmewUwGjlXUxiuxByqjP0OpIshHHf9VL5757orBCXJ5Y2jlp3iqvvL1AZqHP300koFt/4G9q5Vwb4b9i1aVYGQ5KJ8Kkb76xYE0tnUtKMGGtINtCLmg7keQkk9YLZaNdRUyt7sB4YohSUFg0zPryLhLeeuaMkouaKJ6FZYtrC5VhfRS9z4csGu0wZWKwR0oMQqEuAaYVZeRtLy4qX9kiQ64J+M8PPZ/DHnkSwXEOgIJqdWUThbKWRb16Ph6986b09dv5do4Hi0gauX6Kqp7SVlBE9gPuDHylZd+DgNcCNwT+ONmlwJniZl5va2vbmxM+rqp/CK2J/K5o2Rbq/hlwhP/5WVX9966yAdNIKjcGviYi5wHvBM6YdSWwFeCnwD7J75sDP0sL+It3CsCWW+wTVxpqnaGsNcIBY2qWjv0Ebybq6ixJnvj8BUh3WT/kiVMRSe0F8zEeczqlLlz4oFfE5ZPbAhUv+ou/it9v9f6/DV13/9X1WYwbZMW3YYx6p4Kht5nUJRhjmsQQ4nWi2qxFtdUl7bSpzFLX40AsAzWZWs1Go30Y7MO6LI7YqhxhIztwGZtrOcKqNVr6VtQMq0EGv1iXysWCdYb+AosJxIKda0r8tcSX3vc8/uDRJxMEMFP6iUlQr4but0gUudtxeKU0fwc61GhzHxe0UyNdKwOcqqoT9c4ici3gw8BzVbWRvkJVT8OtF38Ezrj+h37X4ar6MxG5IXCWiHxHVT+f1S1F5CoRubaq/nbiuVV9eh1wKPBev+k5InIPVX1xT7XJpKKqfyUifw3cH3g88GYR+QDwDlX9wbQdnBFfA24jIvsD/4PLiPnIlTR0i7efuGYqsP3eXa1BUYtH6YESiCW3k/jvmfGxVlerukExFkgqSC/54etKs5UhcN6tX7/N/fYqVRnDAf+9DQS+97LjGvV+8PCX+pQ1of+u3wZD6T3jTVFJIOPlAaVxWQPSc8/JBKipz8L31J04kE5KUKnUE9aLiQkqtZ7l2IhG6SN6h6nzxMLAgNJfXDfVHmsRiSMQS54jrC2mxbXdEbHvk07GqTxOkgnJJpeA7ZQMUR/PYhhKsaHJ5cvvOZ67PfZkZ0+3/jVITj8unJkI+w234oRgGkb5TIJZM3itwTwgIkMcobxXVU/tPazq50XkViJyfVW9TFV/5rf/QkROw9mjP99SdTvwLRE5C7gyae/ZPYf7I+D3fXoXRORdwNeB1ZGKP7CKyM+Bn+MMS9cBPuQNSnMPAlHVsVe7nYFzKX5n6rnQXZGda8zzDKFBv6rSOXupHvxq4I92kuSFiTP0oAabMB2KdhVPLG1dDF/SZYmnReqKfOvvbIvnkmv0uvCDh780xu8AqBXKkQFjYv3BlrGTViyUo0FU7cUTSK+Fl9CMzy6QXrMg+YhUxv48QDP1JkslmbGxDQnGGnESTCL9DEwJlmgbGXgVVW0bZbTVRLuM+CQunizcCpCJuzFEm0zh/0Ow/bjkLy5/mHobjWUElJQucBJh6NVpA4q5uRqvBb7y7uMBOPQJJyPW32tvk5PgUhxeg6BR7nreEsmkVXrxZeauvZjGpjLFbE6cbvgdwIVdy/SKyK2BH/hx+GDcfOJXIrIHYLwtZg/cxP9VHYf6D/+ZFXsDYXXIa09TYRqbyrNxRp7LcFktX6CqIxExwPeBNYksVNVP4FI0z1ixekbXErd45xuQNGo3EErHgyRJuerhd6KHEESQROKRYM+QzM7SlFZCgT5vs5Cn61b/9hp+8LDuNcf7cNGLjovSigputT+vmrr1iSdz0QuOb6138aOq1OhButORm02LFcZXDGCPsctCoKBq6i9tiLsJEowotpQayYBTq0kgGf+/MNIgGIultNX2wlSG9nQBMaAmwRh/XGvKaH8ZiTPwj/3/oVhGfiGxEpepuBCLFcNICjDOeF+KoRTDUMYMtYjeYC55ZVCxuZxgcWlkxC8u5mwrQ7+c1xAX01Im28MCX8DGVY2FR1f9s2vFSS3hZTHBjujJJk7e3O5g9O+U7ifqp1YOmUL9NeUQdDjwGJwUcb7f9lJgXwBVfSvwEOCxIjICrgYe5gnmRjiVGLix/H2q+sm2g6jqu0RkCQhrHXxXVbu8vgJeC3xdRD7jT+cI4CX9VaaTVK4PPFhVf5R10orIn0xRf12Q6lDXTAVmJU6lpGUQrHcm+RmKeRk/8kg2wwovTKLscsQSt6fEUrXcjHCX2v9bvf9v+cHDX7rCk06Qpb649YluotVFLrGrwR0zqBAUuGKA7l7GQcZ5z7nvYiXOXkWIg41badCb08Qp1jSzN5W4AV4FrBbeFdmX89fSBtuFl1Bq67fgFgWrOQW0qMUw3lXY20uG3v4S0+dLpf4a+uSTJS7epVD1RCORhNwtLaJbckFYrdJGb7Ow3ZGRI5UlcGozLf2xCq9T2nhR+F/75+M59AknV5JJkICDWize/2TqFMoGjWDy7vVKNPOG78PEMpOKqH6RCT1W1dcDjfWefcjFQZOPAiJyb+BduCBIAfYRkcfl9pes/X8Vkc/i7CoCvEhVf95VPmAam0qnkUlVL5xUf12QPKBrJrGoU+U4zUYmXyvZdz9wFvX9cfAPg354a0SRsA6FHzyDCJZ6fuElnSjlRAM1tf/1fs/pgqSnGwaAKXDJ417ELd5+or9mRL301ssMoz0MdouiAy9pxAMkZBJyPhp3UPULPykuXxpSl2DE2CjhGHGeZyZRf6UxManNpc+wb02QXkw04o8To/7AlIxF4zopRixXM2RoLNvtMBLHUEq2mFHcNpSSrWbk84CNnVOAEm0uMcWLOvXYUEswy1El5ohHGaqlFI0eYm4JZNmQBv2vvfN4DnniyXV1Z0YkMcuC/014r/0zUpt8GE1UZjM8mDNiGkllg+Ek4P6q+l0AETkA+FfgLnlBEbmdqn4nyRf2U///piJyU1U9r+9AG1fxOivyGcpaz1iCuivkAOp7wPzMm1Jrel6CaisnGZHIRf5nJcFIpSJrztTDACuBj+pPflCjlML+731tTS01Cbd+g1N7dRH1LFyVS413eMk2NyiMhXKrUG7xCQHD+XpSUOPUINF2LX7QEK8e8Rezdl3UONu5aExto96tOWRXtolEUUhlg0lXpkwN+1XAY/oxkVCsrRYDS92RR6oMxbBDBn67ZShL7F4se+mmZKsdRXJJE1JClUMMnJvzVlkG68kmEIs6Kcl6A/4IZSgS07wEg/5GckU+5x3Hc/BT3PPVqT4O0kggkERaCYZ+Nf75TNVloc25jwUy+aHfWKQzDIQCoKrf8w4CbTgeF67R5n6swH37DrR5SKUNa0gsUd0VAh+neYBC2bYpTiQZL234WRcENZjEzMfpFC2o0GpkFTvo66VSRSKy7/cvr+OSx/Q6crSeQhdmkQxv/9fbKvUG7n+xA+wQzEhc+ppgQxn4Gaj1ViVPxhJJx12jhm0qvRZeoiujkl5i7IuIMsA6FZkUNUnFkZO6BJZBUvEE5Iz4lUsyAmNbRNVYlUnZBVUaVW9TqVyRLQZKR2JDKbHGRPWYk1hKn67GxrgW8MsOG2/c9wkpjb+5S1KyZCwlTj0WcohVkos7t7Do18aRW6ZDtKVo8syF7+Edyva7TckMbrWY9p3fODhHRN4B/Iv//SjcuioNqOqx/uvRqro93SciW1uq1LC5SGUNxd1WRP0/raNpW1dUqN4C/D+vG24QYBaRr964HF+ahC1SA78rnaRUiZIMlX3Fq532e/fruOSx3cQS7CSV2NRZFBX4wfN77CmtlXB5oRS0gMFVMNorm2VanP3IqFObhXMMKhABjDjXZKM1yS63vYDLryamklxcOWl4jUVJhWq7eGnAiDK2NhJKbtA3Yjxx2JoU44imHqlfGmdLGYnLFTaUkpEWUXpJyWUoVbLY0rogS6PWLWHsMaJ0qjHf/lAsQ1EnvYiLyh+ppdAxBqE358ZOwnlvO46Dn7qtGqjDPexAQ3IhIxqaJOPeuvnMMkWpuUK3YmORztOAZwDPxl2Kz+MyF/fhv3CZjSdtq2HzkEoYlDNiCV/nbazv4i9JB8MWVKrjMEhrVrYinDqleNVOkFrC9D6tF6vWCcT1tx4FX/VR2O9dlQ3wksfNnJQ0YhZCiYJUOhB4gh1eDt9+7XHc6mRHaFISFquvXZQoqYQByNcPCzkFtZgrUydy9eovV1Zh4IhXcNKFWEGLut0lEEwgm1KM+28t45aEls72Yhh4crFWItEMg8twlGiEoSenkRS1tC9DKTFi2SqjaPAv1XmTlSoseUIKgZklYy63WrPFbJUxmDFDtSzF9e5hKIZLfnoT9rv5pTPd67VCZQ9hOk1DKo0ENZgkDi2ZNDM3zYW2v/8p1lL7PitUdQdwsv/0QkRujEsVs5uI3JnqVPYCdp9Uf3OQitL9EPptayHARAkgRiBGMaFHSnHfgwmkZqRPVFaVDcVNsZyrZXBHzshFqsGycpGBjJXac4Bl/YwEo3DJX76o5sl16zdsc8fyUk6xo3KP/t5fHdd6jbpwwd9U5e/4gm2uuwm/3uEl2/jBa4/nViedTLHsjhMWYIKESETc6GgUxlKzuwTP5Ooaueuq6eCjjjRKTLVUs1RSXiAUK1X8i6We+LIUw5CS0jqSCeQyVkcoYzFuG4o1JQMRrJioFgMXoW9Lw8CUFChXld7G4xNcDqWEwvWz0KACKyjFMJKSoRQsefIpVaqEm149NtIBsJ2hWLZ6N2SAq3TqZTLWHsm7ofl2afmelwnvnQU1QUzFuSobna8iYxr11waSVETkcOAE4BbUF9y6ZUvxBwB/ictkkpLQ5Th3515sDlKBasT2s++6gXoNjhfUSUYSMdjZOKRLHZZ0JCWYqjmfDry2g0S9pn5sTMgFpxqKjWhWbyXw9VIJZvC/S1XHVzkFu9PxjkS+ebIjFklf0GTQuMOLt7GlEMqtxFsaidFLGJWvgysQ7S742SpSxQMF6U6SZ0WJ98zaEJPp6llPEm7yEAZqdan7pXJJFm9viS7JPoZmYFxaloFkub/EkUcaoe/sLSXYItpbUGIwJfhsykGPQ1ilkuiabHHkhoxZVvdqF/7YJcp2Hbh0L4zBB1mWG2Q+fZdjtyXPeqbeoto+jeTSaAMq1cKcxoKp1F8bC+8AjsPZUXpnEqr6LuBdIvIQVf3wrAfaPKQC2YxmjcST2vHCAOelFOs6oUainSAikUqgGtdi3apRIrnklu/oK0z09nJrUXhpJn3jIrl0iUw96Ltufl9xtRvNZ5VQAqGE74FYamqs0EXvgi3O4uy8ejQt42eg4QWXyu5S6do1bo8EnKyVHspZnIRjqYjF+isqGlSHhpBrLBBNJJdxEfcFVVlQk419MGSwvQyMjVKMSQgnTaOfpqYZimFsnK2lNBIzIFs1zm1ZnSNBCKgsg/QG3hvM2WOutFsofHCmlRHDkEoG+MqP9udut7h4pns5LxzypJMd6YcNWv8I/palRJOSTOBZTV77MAGxGj3B8tdpF8NvVfX0WSqo6odF5I+BOwBbk+1dUfvAJiKVqJOPG1jTJ+hHT3wh+51yYvUUW5yYrdXgGG2qSpU0z3fph889nludfHJlWwmiv3UDgmgSgxFOQzS+REGVkw+aaVvpNchjVnpTgmpmsxEY33A5DuarsbuEVkN37nT8tuqUCpwrsVKtBJjMXlPCSQmoNrgkA4vaMLiGm6K1Y8e64b+XCFUTSUclSkOBXMLNzNViRpwbcUgFU3oyCevEjK1hqShdTAuVmmwg1sW2JESTrjY5pmCkJVvEB0AbopRRauFT5FMLqHSuxuozIhuWfK6ykRY+Bb9hD7PsFw7bGP5fYv05By/JIAn4dGpVPArRfThJi+brVv9DdH6YdCipB+UqkUrXfWU2Dj4jIifiVnncETb2xZyIyFtxNpT74LKp/Dnw1UkH2jSkkqqIItZ6VjIWb9ClCubDD2hGo+SQEl4YK279hm1uJp5uT14INYm9xA+glftwco5xBA0qnYTYElJoJZGaZNfcVSOXOVzLVEppQzTXCDVje7Ng+GidXFIkRBNVZ2FDSrp+W1wKWpNrGe5fRi7OI9kRSFB9GWPjbxXFWrcMsUoSA2Msy959eGCc4X4gFgzxu1OXSUzvD0T35B06dGoyC5ixk1TUgBmDFlVaFlxaGKsu4/ESsEwVRBmvi3Xux+U6ksqhTzg5TqIaz6Mk706cdNGIR6nd0tCMVs9wFdjF3Caa06i/1lpRMiPCelSHJNuU/piTu6vqnUTkm6r6ShE5CUdKvdg8pEI2cOwEmJFBStAiDEgVOdglrWZTEDOyhn6SPpQ1YklUalB5PCVG6tSmkqoI4rou4NRCmRTUjpadSTxNdAgo5nhNO0iuksiScpL8DFJIPjvNGhEqo6wmk4341402ySDmVWHpIBEDUJO0L758KUH6q7zFjO98Kr2UQR2GdwawhkFROonGGgrjjfh+TfqwJPIYjWu5OBSMvTQDYGUU07SUaupuygH+XAqfvHLoE0+61DGGEQO265C9zHaWfZqaU39wZx58q693XNg1RP4sJO9SuFUSpBXqhOIz0FQBsaa676naLK03tz5vLNLohareZwXVQozKVSJyU+BXwP6TKm0OUlGqFA1kxLKGHGOW8RH19QP84PnHs//fn+Qe9LISJuLMJXqJtdheCLMgTxx+VqwCDKoR1m2T2izOtYl/wbyc1DZdSq9JJKgW5MbNOUzyYm/ytjxxSokn0GRgSKSRSM5uxCeY5et6rWy7t7cgnmytP2C8lrjzNC7oMurmvYEfL33EsuEoMSWMCyoMBBM8xwpTpYUJdpYgtYR4l4FYxtbbXNQysGGlSIlBihZhTJWif2QMW3Qcfzt35LK+OJhn3aGMq+SVxRjUqcNcmSFbZcSIgivtltlv5ipx6OOr9CzhMXW30d2AcP9r6i48kYR5T3hOkuj6kBMstBuW9o6SzTyQvs8bGCLS6+fflRnZ4+MisjdwInAe7qr+06Rjbg5SgWq0qg0uNAbseUJK5/llQ7qQdN9YYlBjTQJJkUgx7ku1PZpPhDggho1hm4TCPgdZPERIJw7VKNh5TYJHWda19HfSr9XaUxI+aCKfffp+iEnqaHUp/DBP9KoLOnSTbE8yE7gyUl3XMEgF7zA8sYTrkajZgvdYLfYHvCSjGFNJVdXa5BaXQbYy7GNs9Bhzx/aeYjFuxafbt1oz1luEZVtgkpT2Ln2Muuh6n+SyUJcSf4RPNunhvMBCJmRneylV2K71TB1v/s59eebtPt1yc9YONdVvy3OaGuijYJlsq737/n+8vXF/ErsyL0xqa2OQzoqWBPZZ6D+lqr8BPiwi/w5snWaRr01FKnX1iCQP6trcXRn7pgvIR8liu2CHfsBOFvNpdCWI9qGJ7AUJAX5uaBIXMU6l/okSTaoei9O/QEDJQRsSQkY6gc3y73NYkOibJx/nDPPa/r6JlxJihgEvKNQG+VA25AATfGAjNbUXuGcgzHrTc9RBTaiJnzTNetVuPZdYRCTiehBlMNq7BdNMpYKRkE+s+p4b9dNIfVtUaWFSWHWeYOOiYCAlw+BBZgxG667LwVsMnMvyshYUXkpxa7MM+E25O0tSsqwFvy0nxrXNH8mMvyYYZ8RQy++VZi0m257+93WryYZUzgCrhFiuES7FqvrKFdaz3oZymP+9g8TA34dNQSrBaBZdTD2xpNPii5/1vLkfN6i9Ux3/RS86DoBi2R03V7+FhzGqdLJ9AfkLBn78TwIsw9sYNouRxMCtSZEWaSU0FY0+4aT8gev6CBDlkr9cnZQCFbG0sUrUfWeJAn2qrlr/tcgGjyBFREIEscl6NGlcyzhICVVZjCNoxLmEIxrJJSWuZsfFq2GsX2CqcrAwGlReBXGdlsT2ElatLH25wttZSjHRHTl4iFkVpwazhnFhGKthyZSMTclASqw6cgmR9Qb3fSsSU7mMdBBzh5VqGGnBdq8CS/Gab/8JL7vDxKXI5454/4GQ1y4QQ0ouNUN9rQH3L1eDhdcsTjbnhWuGpLIanCkiD8EtiTz12WwKUoH0IaoMtWt5Uw986TZkUA3+UsL3XnpcVSDMruITXW0T/zJE3W8yXolSM0LXJJsg8kvzBXEqAvf2ObfcanDTjvHQqb0So3/fNZuze3acRSYc2RgAEiktFTjAXe8ayQQJJXVDDl+Ch1DqUUda31tgBBCJ6sBUQqpF5QcYjQbxKu2OLydSmXJ8G6VITGAZ41xUUWOj11iQZGJKmLAYWTwmTjVGUdsW1nEJKfCNWIbGMrLOCWDk84nZpP8lhh126GwyPonlFeXEfIFrh/xdoEqY2iCX9B4lH/GSSe5ynEo980DNRtpVZpp2RPYB3g3cGPc0naKqb8rKHINbl95HrvJcvw4LInIU8CacvuTtqvq62c6kF8cDewBjEdmOv4yq2psubtOQils1zhtnZY7+6D2QcTVgfOeE4+r7OsRjsVBsdw+6FlSqK4hieqtdKBnwGwNvLBcGRFcw2haiVqx5TWLxQC7hutVc1ZirLjoGPHoc9FwXq2JrK2k2ySQ1khc7wA6IJCJSJ+Pvvew4DnjNNsSKazc9t0DGknwCJCEz4w8abVn1YaJSs6lTDxa+nO+8xLQvFSlpbZujIuPJzkkpVVbpaNA3lXQRVGNWhYEapw7Tal0XExcCs4y0ZCROIhlpQTEIGZN9e1T7jLe5jLRgZAue/42H8caD/m3SrZwLomaBurTi/lf56oIHWFjEq80m6R9l167fFt4T8XXnAjtFW9O9M2Pgeap6nojsCZzrl2m/ICnzKeBjfrXHOwEfAG4nIgXwFuB+uDVPviYiH8vqrhiquiJ7zKYhlTArAT+4eOP1Wkgrd3jRNiiqF8Ast/TH2wdyScOMqhciBmdJVTYO8lrVSevH9mlyTyzi262p2SAZndN2NNZz0xCqAZ1qoP7RE9Zk1WgAvvF3x3HQs7fFuJ1csGr8DoOJH+8DGQUi/84rjuP2L99GWC3ChPMIqjCt0rtEUqms7HGHhpsRPMfSzkB83kQFhslSz2FQ06AOC5JJWHM+2F6k0/YyDuoxqsh8FSd1jb1dIEbilxIJJWREDrEvY4roCXaVXYqLgQWUuNUqCUGRatjhjfdPP+/R/MPB75n1dk6NYAPt+l3bDvGhj9cqkHoo49+pVEohOFAo8/X+YrKkMg1U9VLgUv/9chG5EJfM8YKkzBVJlT2oXoW7Ahf5FSARkfcDx6R1V+P9JSKfUtUjJ23LsS6k4iM7/xQXk/UD4PHeywAReQnwRFx+mmer6hkTG4zir5OHUxvHvI1pd3zhtjhgB0NyjoOesw3ZHaRskkpOEgLu4U+lkFxXTEMzUJWVZoHUEJ7P9msNQDJgphH56dvbPL954vefta3qaHasLnJJZ6i1uBW//cC/2ubURMugg6ROGFDShJ0QXdEhkADVhUvUWjUblEr6FcK9DhKNqCMbSTMjqAvyQ7wU49oLtpdALiHwMdhcQgLLIpG+rYrLglw2FwrLFxILKq8txrsXJ2rTEEA50sLnCHNeYTusu3BPOucvefsh/6/13q0Vcmmlpj4OPwOJ4Pa1xaOknoSpHWYuyN/lrjLwYBF5e7L1FFU9pa24iOwH3Bn4Ssu+B+HWjL8h8Md+882AnyTFfkoV5BgQpI3b4pYF/pj//ae49Pdt/diKi6S/vohch+rV2wu4aVudFOslqZwFvERVxyLyeuAlwItE5EDg4bhcMzcFzhaRA1Qnp1KtUqKIz6fF2gyKufTRQirgJJL44HUO6KFw8ruaTFdVovqkmlBH20rWtHuxkoW5JJuV5wiDZTDQq3iXZFf4R0+e33IBfajpqNvuXXL+EUHaI6tLMpkIcUBJ2VxKUZFqEuIH+uD4EMrHffEGVf0KE4Fo4Bdf2C9vHMkobqsISrxKLFWXBYlGAGMshTHuvyqFFQrjDPojW8W9hA/g074UteWNR6aIdpaBdS9LkehvSoyLgdGCsXUEM9ZUHzl/fPX/Hc9dH+cmyo17nyGfKOWxKUEtFu9NCJSU5L0wrU2vCNPYVDxO7VuSPbYnci3gwzh7ye/y/ap6GnCaiByBs6/8Ie2no1m9V/r2zwQOVtXL/e8TgA92dOcpwHNxY/C5yXF+h1O39WJdSEVVz0x+fhmXUwac6PZ+7752sYhchBPxvjSpzVT95YiFqe/6LIhur2E223YIdZkzYn/yWx9myG1T8UAc+aAl/qXIyEWTY0Q7ck2tli3slXYzzP6ShHupvvqSpz9/+guzQpz/98cBTmKRdOog2VcBm59/qvLIr3Egl/z+JBJK+j86VVBJKxXRVI20xu/4DsZ8bX5b8MSLJCNNzzIVQW1GKv5+GOOkF9VqfRdr3OqVjlxcvwJ5BA+zPErfehXXlWYLSzpmKFXusjTHWKniicVEldla4g8edRJS9AXfhglU5QkW1GDxcU7JKBWuNbunqUfYPJCON31lpoBf1vfDwHtV9dTeJlU/LyK3EpHr4ySTfZLdNwd+1lF1X5xmKGAZ2K/jGG8C3iQiz1LVv5/uLCpsBJvKE4BgEbwZjmQCfuq3NSAix+LWUWZw7evUZ6PJ4AB+gJ8TJJkhtcVPBJgRUX+r2UCWG541JYGOQS++SGkZIWbyjSquIGQkZBRVMrUTCSSklYrAq2Uo18YFuw/hvqUkkPkKwMBfd6muHZNmoKlbabC9pBKPJL8rPqhJh2FHm8RXuYb7C5/em2RioIF4ikpiiWoyTzSq3t/JKGKMXxvGOvOgcftDdH5pfHZirSL00/9Wy2pNF2t9CpghI1u46HuqbMhFNvqNtfAEs8bE4sWImaWHhEAISolkYiFQC4TNY1zmgY7XvlFmYjsuCvYdwIVd9g0RuTXwA2+oPxhYwqVM+Q1wGxHZH/gfnJbnkR2H+hfgqyJyGu6SPQjnddYJVf17Ebk7jnzSNVh6660ZqYjI2Tg3uRwvU9WP+jIvw3k/vDdUaynfyvdeL3kKwNab7qPRuB3UQmFw9Q/RbV+9je/+9XErPyF8Rl2vThGoBemlEPX6/EytpW3/SWbficge61ENcEFSSX8HqSlNY5HXa7wByYAXZ+Vh6hfSu+xkfP0tx3Hw07bV1B95P8Ticq0N6oTTqScXYkoPqJN3eo3T3/k9aWxLUFNL+iDUmht3UZGM+M6GxJREqat6WNU4glFV1FbkEqQYCmI6GGOEsUBZlBSmMuoHQ38IniwkyS8m6mJbvLcY4BYFE40kY9Uw8uovu8ZPQm2y1YaWfTW7CdSkk5rhPvzPYp7mKqnMRxFyOPAY4Fsicr7f9lKcZIGqvhV4CPBYERkBVwMP83EjYxF5JnAGbnr5TlX9dmt3VV8jIqcD9/SbHq+qX+/rmIj8C3Ar4HyqNViUCWS0ZqSiqn/Yt19EHgf8CXBkElgzizhXtQV+HfNkNqk0Z7qrhRKN71F9mz34Bz9tGxRQLGuNVCKRGKm/TBnJxODFZF/UC+ek5N2SkcwdV+qf2iCalknLIsw3h8XsqC0VAPVBXbydSrxjX0qmcQRJyif1I0n52Jb0+tclkqxuvo2kPvX7UZN2vB3FkZjWtgcyqT8b4jIlGIkSjBSOWMKibS5nmZMkjc8pFtaSGYtzR05T8KeZkQuTrNmigrGVvSXkGAveY8FF2e4MSaUN0nynAKdajOycbqehEhMqwbGm/ppGZTUtglZkQpmJzbh4k172VtXXA6/v2PcJ4BOTjwQ44/vvVPWfReQGIrK/ql7cU/4Q4MBZAh9h/by/jgJeBNxLVa9Kdn0MeJ+InIwzEt2GKfL3B+N5nJXmA8OcxspvbjuOg5+6zc8cqRaHSrsiLpq+GCVBhyIJEWiNREI/o7G4RWWWkkhOQtbXT8Nyamnj/ay47bHNB9Ru5fbOgRlnaVZCd9K4EqolUtoIAupShyT1Qhu1OmF/UqZ+Xya0kUwG8kFMffRjer/E+OzVyfZIMmk7qeHfOLtLkF6cRIMjLC8NlWKit1iQVApjKRPDfko2qb0lrOESdKljP0NZa0nFXajs2k5RJvX8qhFKsAv6Zz5/P2tagHn0e33nYDNBRF6BI4nbAv8MDIH34CSlLvw3Ttt06SzHWi+bypuBLcBZPrHel1X1qar6bRH5AM7Pegw8YxrPL6CypbTMJOd5812qeyqDfb5fYXC1YpY1eYITIgkBj35fNeBobWGq4IYay0D0ua9JNdTPuUE+vs2aKs63KcnALEGlt468YsZ1XovkkEyUwiBhB0TVXUB+jtCUMmrbMtJu1EuJJ223MSEg2mtqROOlSE0nCl5SrUio8jRzNhRf1/pIei+9IIIW6iSZXHoRsMY6TVogFXUuxy4bsjJQ9720NtpdBmpZ0jKuTBmXO/YG+7XEYY88yakH3alM9dz1SStkE5EYA9aRymW1kHDcvjIbi3QehHNXPg9AVX/mgy37cH3gAhH5KvWFvf6sr9J6eX/dumffa4DXzN4oldtgolRNJfgD/2obF/zNcbN3OIFotaCT+OPmMGPFlE4qCS+MQN0bC40Di5MYXLBdWCMqTWAonmTiuxdmt1oNXFUH/eUIZUj6mcywI6FUl6oz+GxnIRJdev+EmitwLGdB0Nr9rcSKZHAJ+9rIqnZ9aV5HaS/fUKtJolXJCUqIQXjxQpvkWnuVWEyxkzwfiI8eUqmSZ+KvkXHE49IT+6WOjYZVD3CTNeNVX86zq7TGxe+gkahdPjJtkEr6f9447BEn9Q7u8dqkZJN/T1WkyfMi2S78ezJvyWKqhJIbi1SWvaHfCXcie0xR54SVHGgjeH+tHt7WQf4gpgPJHHSphzzxZPcwpe3nD45CsUMxyxYtpD5Qi5NIokokVElUH0GS0UzlEySZqp3wPy9HzSAdpJQwA67ZZSCuXSIQ7VLfeeXqiHelMCXU7DpSdxqIhJhvg+ra+u9hX0OVlux3292Phvkgv04pseTbU+JLtsX0MOn9KmhVYxLUn+G+DcJ9kyjNUJAs2ubjWwpTl1yCagxn1A/ruQRJqvBrt4goxse5hKSVOamsBQ57xEnxe83TL1y3MAlLiEVIv3ubU5iv5amNkk+cY4QYlnCMeeAapv4CPiAibwP2FpEn47xue9dGUdXPicgtgNuo6tkisjswMXhpc5AKxBucj/P1RZ1WDxf05J94/2CFdNqHPuFkWHJRzk49prFP8WEuXGdqahv1i0ApUZLRom6Tkaq5+LJo4d2l00FUKjtLup5LdH/OXXKTS7MRxPVaH7RuYyHM7GsV0n3ZLqkXazUA+8brwaYJUefkQf36RQknuEQnZGFS6TCxa8VMAGGfJ5/oqSTOnhHsLzERZuinH3FTTyi8DUfVxcuIkZieRlWx1lAKtfVcVJTSmLgWS/gE9ZeZ8wNx94edlCxXkFz0hlsddWKBjGTqxBKQckv8nwz+84xTETbG+zItVPWNInI/XADjbYGXq+pZfXU8+RwLXBfnBXYz4K3AxkvTMneo18eHFzd5cEIMw2ofgLs99mRYchKRIUgc1Wz4kCedjOCklOJqWw+ECxDQsj4TJ2kLI9GQr2lQWBhQTPJfQEshWCxTyUWCLl8qSUWTbel/O0hme3NOaTMrxCoSYoqSWWqA0RZpJB0k0oG+9QDtOxrSR3Lg3HbSJR02JBJJnsd0u2neAy2adaTwxzFVnSC9EKUXgYHGtXSClKKFW9JYjbO1GCOUporGFwmJKt21DB5iIYAyJHC0cxw1D3/oSbX3Eqp3MoY2enL0d6Aqk7xn1awxIaRsUpWSf5z4BYl9KgvtFJhGUtlApCMixwEfnEQkGZ6BCz7/CoCqfl9Ebjip0qYgFcGpTmx4KHN96ypx6ONPxuAy4w625wZ1sAO3LHAxUpZ+U1JsH/vZZces2iMOTsZ/j+6nUsViCECyPR3kknNVrxZRqVQdQY0WvMo0+aT14+Dn2zroOdv4xpuOW/2FmxWakL8CqjUjLGQSlmSDRLKznVi0cQ/insxDrq4uk2qbJJOApGzDRVjqbUYSz1RiQYqpEU1Qg2b3SktpbvMrW6rxgauBVLwII0awgWwGJWOpr+Vi1S1FHDzEgJo78rxQu57+PkeVdPBkE9yaNlTXraHa0uS+C7XZoiTXPm0jSupJYPTqT4iJKvUNJsnsBZwhIv8HvB/4kKr+74Q6O1R1OYxjIjJgihF1U5AKEMeL1K04qgaEjkFmtvaLZW11e1XjBr9iWRlc7UY58YNirN5CcOKNsTWR3lAjjiDBuJmX1tUuCiYsOFVUa3RE9bHgAukUN/sMSfbCwOQPHxwc3Dmu8jqtAqnKsHV/QjANtRhV3dq+RiMpG2j1OwxcSZOVFKS12a9k5C6+qcrwH9bzSQZI/0lVYsGVWKvHICZBBGr3Kz47fjBTI16yVCgkOpCoull/kFgVv03ddN15lPl2S+d2PKIASqwWUf2lnnjmhaC+qg3E6TUP769/KCspprqEkVDCNSSRXmJz6st5e1wa/CgwT1LZSJLIJPgcYK/0qfMfBnxORH46IZ7wcyLyUmA3rzp7OvDxScfaHKQSX7T6+FJzKV7lw1QsK8UO612FmwOgKJiRxYxiAjL311T7G/AuXKkXUtPgKGCr1OlANNZKqvoKthijfuCSSgdtqdRqRmKKedQ1VRu01hM56ab68DioavU7JQSSMbyTUKBuPEkKR5KoHpRGTjEvRSBaqVdCnUAM/r65QyUkF2bR/v5Gr7+Q8sfEx6GyiwUDsyeBwCFBVSnGrWmPanQKQalsJupYTIpAeo5sVKvMyOPSMMARS+HtLeBsOlo7+TkhlTqVythO9f4m+bLjfW7MH+K+pM0geUtGLimhzOmUJBD1NQ+/AH6OS/MySZX1YlzG+G/hkkx+Anh7bw02C6lAtHVAfRa42ofo8IeehNlN2PKbMYMrxy7YDAgp9rH9D5eUNG0rEX6ADOSREJFaQ1SlxDiHINpX6rA4KCVeZQ3vIkNloxHFFtU2G+onxuL1WnvbjCuSbBBKSiYB2XWvDfR52QnI7Vet+/z+pmosUYmmZXJ1ZWKHq98fadwzKUhimvyAO6YW+xLUQKF+VJkV/vnxthYKb1+xEknRmsp+Ulrr7SouG3Igk+2jAd/801dNfxE7cI8Hv5G4XHN+z/LJQSDurFBO4vm9TiePcZ949+nw3syVVCa/JxtJ/SUiT8NJKDcAPgQ8eYrFvHbDpX75J99G4bdd1Vdpc5BKuMHhwUrJJPt/0LO38Y3/77iZmi+2K8X2ElkuYWjc8UJQCdQN3C3eJVJTs4SRsnq63ZKpGvvo7AS28vpJp2mm+hp08mJxwXNePRa8yarZsGCpfhtcTIzbJjHtzHpk5UgxU5xMxwsrU5TpOnb9S4fkkw9oiZ5GbJKCp0WiCWqzKjYpSJl+DaAwgZAkdCWQjU0kFS/BOEmF+Py78k4SsZKqxPBqVak8xcIzYkBEsb5Ru5bp7oONLN8cJlf4WKxsqWigroUI5eM9k3hd0lclSkHBBhbctudyLsz0fG0A3AKXVv/8Gep8CpdiPywSthtwJnD3vkqbglSCPcP6lBU1Q2Yye5wVhz/0JMol2P0XI4ordrgBZUfL9CQlDZ+ao6VQJrEkIn7b0sfq9N9RMgrGj2CYFvcKikrTyJ96kwnO5mPDd4GxM+ZL4ZdgNp6U/ExXLNzlyds4959mI9/VIp2J+tjpqV7cOLhYjedcG7xsTyP5Lmn96mASabJNegnzhlQSgfg8REklM+CnThbpc5tLMNElNpVookeYdwLw9ZxU4434hUChLpeXUEXlG6X0c6NiUOUHm+dYeY8Hv9H10w/CtdiUnLQzB4iIQBoQJZHYhsE37P8l0mFK3u54czyz7Fy6yqw3ROS6/usbst8AqOr/9VTfmq46qapX+FiVXmwKUgkzNYkPpR9YyB7cFRCLcxEukbFFBz3TnFQC6VCHtVJNVKBTC9ISLGoMUgbC0vrKhSGGI8zqDBXxBHJR9ZvEzWjDKO3fMuO/O6HLrxA4hVi/UxANDNRezpwwaoTSs61Tssm3twx6EcEdPB3YjFRqm9Q+k0o0+fZgqwnPaOJkkbrB5hJMsH9F+4upXOnVgLFO9YVJJR0npYaF26KDRjhGIWgpWDEYLHat7GvxmMl9yt4IDZcql1LQWLYxB0ilmsKXDSq1eF/C8eaMDUAaU+Bc6gJcCgVu2VP3ShE5WFXPAxCRu+CyJPdiU5CK4EnFBJHXD5a0Cw0HP2Ub572tfxZ+2CNPgiEs/cYiyyVq/IgeUm4E5L9nMd4FFUUq5STtBmIJg2t0t/Q6/GjoFPxrp+3kgrf/BI+hxH1GxEkxtnAkY5F1MUAe9siTGqG6gUDcBCFMN7UpicQKRGmlsZ2uOt3nWlOvZO1Fwim1IplUSpKkn1Lf7trM2vbqMvwkoJGyR4NRPpFYQg7I1KvPE0vyqHh1p2KDpKXiPMwKXKyTuISVVqRNe7ti3POBJzrPRe/U0pBSGjaxDuIgUXm1Gr2IZFwZ7/PA2flSyjUlTYuq7r+K6s8FPigiIVP8TXB2mV5sClJBQUq3wneq61ZxMSQrnaJsvWzM8Dc7MDtGFalAd5Bgtr0ZAKm02ly6OuBtK2HWVXNjLakkmPQF9YkIo3tyOvMsEpVA8JYLuvXCqUtkkOXT2skI5xiIJKjBwngc09f4GWkcM4xUkkQmobR6jjUO3Nur+s/kkaqpuGxdfSNCVJml6rF6vUpqSdWX9WBVn2zSJh58fl8tniUQS7i/ieHeFv4ZCirO4LpsBMT4uYYPoOwWtmeDOPVqbtTunBRIII5MSkxjT1ruRfgvvlI6GUmOWi+/SqQCaF+ZjQQR+TPgCP/zs6r6733lVfVrInI7XAS+AN9R1dGk42wOUoFq5UD/O+pSpTlIToqqPfyhJyEGBleMMMvjSqKw9Vl8q4QBtTLhe61sdFOrVFENJCQRstTGtqLexNtKTKUeQH0gHK6/SdFKssGrCbw3jtPAuTcxGpt3Mho2iYBkhKt5aKV2F6rz6j5ANgLkY9MMo6gmR2qdGQcbClSSjKlPDNJ64XzCSCWE+0Elwahrw1XRaLh2kiVRsgnSi4x9B/yzZgDGPq9XEdhY6rEtMcCpiqpfFdLg1UD0RroH4/T61DYnz3ezSuhyTTpMzTO56/dckKnyejvXAxHZB7fo1Y1xd+8Uv5xvWuZRuKVCwBnNn6aq3/D7LgEux01Bx6p6SMdxXgccSrUg4nNE5HBVfcmELh5KtfLjnZ2r+jqt/LizId41Js2fpMnLXBXsnmEc9oiTUFNlTDNXj+LAr9JUCzUII9mWE0armquLXDJS0oRYqjLVl0AsrkIYhL06TN0gKIpfj0OqEVg02gREFEon5UiuPsqukVuBsf0i/ueHZl/X/rBHnoQOgjzSNsvsRlj0TKz2k4pH6qrsfic/prQl5Y4V4cjVZDpTfUEcVGOZ9LkM9yKQC94V1iT2l4L6ImZhjEabga1BbabJ4m3q9jutmcQ+YnETl9IdIyQjXS3u+aA3eoeBLCtCqb3th2cve2Wj+qtRPiPxqF3MG0iIfy7IpK+uMlNgDDxPVc/zqejPFZGzMnffi3FrT/1aRI7GrXh7t2T/fVT1sgnH+SPg91Xd1EFE3gV8HegklQ238uNOhYIZqfdkCqksBHzCRbHq/fm9Ogw3kH3pfdU67Ic9ssqeasbK0q+XoytwjVBaZidxX+42nG1vI6EqnDqfSSfEAhWxhHbiiyTVjDAULnzKdMJg43TyYiUG5In/EyL4TZjpeptKzMHlcY8Hv9F92RKmkhITaaYv6t3/4iT+6wOzr28vpZ+Nk6lHsgBTf9IVVPniaS/g7g87CbG2k+xq9Unumc1+x3bpHvwSSVclOMJSU22K39fwaIoTC60XDrtCTFKIPcI/y2VilE/W5LHeRhbik8LzHyZXpgBrQAeeZAY4VadxqYUwBmsVBooObCUxAZc8/oUdF6AfR/zZiVAIZqyOVLq871qk9Ph8hl1h0tNxLPfsZYRdO0ayo6ZGWx3mFc+lqpfiF8FS1ctF5EJc4sYLkjL/lVT5Mm5F3JVgbyB4e117ivLXnJUf5w1RxYTBxM+KlHDjXWoVsUneJY+7P+wk/uvfqgFQLAyvshRXWwZXLDtXTNsy4HRhynJRasmN/CmiNFO9MLW5uNZfpJoiSL2cIpWk45wYUvLx6hgq6UXD7MuXuftfVOtehG4Wy779bCYYiRy4x0PeyBc/PL3EYgdCsSNpMLd9hOO1Bc4BRxxzIv/10Rc4wzDiiMVIpytx5/3MN0+6nZJNFHI1qNEoJVa3p0nENYkmGv6rAVC8StOJIK6y8+RK7IjBcUPrRn3UEwuOTAz+svisCjL2l0pA/KCrxUxjSDtUkVKjTaWrTC45NIz1fe7gTOAII5X04iWVeQkqwOTnw+1/sIikUeinqOopbcVFZD/cQlpf6Wn1icDp2VHO9OukvK2rbeC1wNdF5DO4q3EEPVKKxzVq5cf5QkHGSUwHlZpDSo2R2gaBETUbyz0f9EbKoWCsMrjaMri6pLh6jIwSj69V9y+dlVZSS2ekfdegF0ioxS7T2l6iBnMp0WkMbnhjeJQ8hNp1jN1uc9mFyjMr2LR8ucMfehL/+cHJEsthjzwJHUo16wuz0lSNkUpiiUSWSjT3fNAbsUNDscNW3l+p8Z6sPtSllAahTDG7rgkb1Y9UzRlUZflw1nCdTW0rgezDvkAoxh0pkIzYEMCKD2YkUcskUnuYb3k7S5BKtQA7lkpdDPWZ/QpwxDEnOgmp9JM6pXlte65Dw8tLKwLuIqfc8B+Jyiaq3DnwZAqxPRJYKOMOeqqqvnxieyLXAj6MC1D8XUeZ++BI5R7J5sP9Ko43xK2k+x1V/XxeV1X/VUQ+i7ORCPAiVf35hG5dc1Z+nDs8eYTBUKzPw7Vsvcgv2GESTeufhWLkvphS2e3n25GRRcrSJaEbmDjoaKq+ylVckzDJldFSt5fEWbofjFK1l/8d7SzpBTBZ/4IqxQ++ZmTrL28o55dG1uCmWoKpLXjvm/O68TzoT3y6/mCrctJgJbEAvVKLLcRLP1qTRtLBSJRqxhq6VkiS3dcdz4xs5e0WpBuhfUBpU3tNc0/7pJxMzYmQBKv2tJnGH3lWreUdK7WKYQmLfBHilJopXrQI2zWqy2Qs0SPMBhVabMu7MJf+gNvhh8cdP/ladJ1OiXuXUil/kqrIXwMhPJvVNaxdupbLH4snj358LuJz08x4vSqE52tCmWkgIkMcobxXVU/tKHMnXN6to1X1V/EQqj/z/38hIqfhUtU3SEVEDgfOV9WPicijgReKyJtU9Uc9XTthujOoYx2dR+cHgWSm62YQZqQUyzYOMDFWoFQGOyzFso2qseHlJWa5dIQCbsDyAWcpunN4zQHRfYfeF1AS0uk0MofZfRofoOpesDDg+pxlUUXhJToZKzKqPiZ8QjmbqDT8YF/NSIP7aH0Wd/hDT6INd3vMye5cyrw+0RlASnXSRtyudZJJTzsYeU0yEuVEuALkg4d0DSjpPfTHrohRG58IS1Szin9+Sa+DJuddBjtFdT1M6SVyvzicjN1EyZRugDdjZyc0Y78vfEbVbxm7KHwzAjNa+QVToepfD0k3rkepzeuQXItqotC8jvFZTp/v5DmU8IxOyNM3+8lO+EwBcXnl3wFcqKond5TZFzgVeIyqfi/ZvkdYZ94vD3x/nMqqDf8IXCUiBwEvAH7EBIO7qn4O+A6wp/9c6Lf1Yl0lFRF5PnAicIPgvSAiL8GJeCXwbFU9Y6q2Sjf46cDNTszYGW2NLTFjQUcWFXHbx7YacK0iYz8iG1OXSqC+eGYiITReu7aH1Rv5Z4aXGDqRSCRNnb46lUsgUW/IrdZ2qbtYx3xUvr9uY3Ko1JXZR4lHCcEHWgaX1KC3SuMopgk6Cy+9KYkk1aryiufrNoyGhVMD+f1fPNVJRIc/9CS3vo2/rxNnlBPQRUqd6ph8RAk/s2tRG+BSqSb8ThEi4cN19YJniE/Bf4/G/dLHu/j0O8aALfHJRL1abOCkldKSxD0x9YDYhmKHVpOBtpisnHTb9uXHl45yLQhqyHStok5njFWgc2KRlZkChwOPAb4lIuf7bS8F9gVQ1bcCLweuB/yDf4+D6/CNgNP8tgHwPlX9ZMdxxn6N+mOA/09V3yEij+vtv8hf4Mbnz+Luwt+LyAtU9UN99daNVLx/9v2AHyfbDgQeDtwBuClwtogcoKr9kSVhBhMSGUH1IFk3Qxcv2rsHPui1tKHiik2KNIlD/Nts64NttY/q+CmhhJdrkgqgFpORtJ+ryNqq5jaVxCipmQ4oHUDCWjBuhy+fNBPXfPHHQLwKzi3DGO0xUX/tx/x8IG7zCqvZS7wkVZeusoEgGxy+8JEX9FyP+v+pMGXUX2fwXnbsBhnlbXfYZ6BlcLR+W5IxwU0aEo8+i08s6hr0MQXO3uJVZM5hxavFVKoVU6FWZqWoSQMtjihtrvkNdFyLvjKNfoTrZ5Nnd4p60yJKRquEqn6RljlqVuZJwJNatv8QOGjKQ13uJ+yPBo7wGYeHE+q8DDhUVX8BICI3AM7GZTnuxHqqv7YBL6R+m48B3q+qO1T1YuAinI5wApzYa8a2UgGoxpm6Uwk4CaVVbeL187UP7gXIP6laTBPiqJaYlXZCgeYxkmOR1g/9yttICGsW/X80RNc+joAlXK8Qe6KJyiBRI0TVThjoEy+xRoBbLOe+h8H17g9rqsGMNx5L0q+ouvAqkTDzjWqjHvXCEcecGM+hITB4m0Mvwj2eAA0SQ19Tk2azDXVZs3BDZWar+xlVOqk6skzvaSU1mLFXY46VYlSpxCRRhRm/faVL7t7rj9/gJ3HJRq/SakUb6bZ+qN9z7Shfa4tqsjnhmVkRGu9Tx2fj4GE4Y/sTvYH+ZjgppA8mEIrHr5iCM9ZFUvHpAv5HVb+RLbl7M5wfdsBP/ba2No4FjgXYsuXaMYVFCIKLs0UTVECJ+id+l2rBqrRtVWcQbRtcgt5XKmknyAQ143mcUfaMPClJ1E8uOYFEQknLtUhWtT5mRNRU1yV1EsNyHFBSY2l6PoGsg0Hc+r4G980YPKeRgDXpwGGPOIkv/evz4nFTD6Go+y7TgSDpQ4t6rnFa4hwwYtBdgtpvrxaJM+e0TaX/vlH1a5JnUrqvk4RaiaW9cCSU8Bz7yPpKhUmVpiU8fmnqFq8iM0awQxgMhFKTGBhxsSyz4l5/6vN8tcQJtWkB4rlUr2X3ZKk2mcqvR71cUzrsaXcVmEb9tcFwOfAmVS1F5ADgdsC/TqjzSRE5Iyn3MOruzK1YM1IRkbNxPs45XobTGd6/rVrLttZb5/2xTwHYa8+buXGr4ybXbAh28iGi4qilqBqD4N/YMOCH/20p7MkkjmTWJm1l0n1dhNJTbxY0VWZJp9oIL+2PUiU09PuSMMDKU8y/fDa1TSVl0mNJY2ZZJ4bKVtF+zvd80BupefxMiaYqMx6wGxkhT0MujSaUyUTTdv39fUq9AFPX5ZCyJLgoh2zVQQsa1GKIeFukuEtm3CO84iWlg3SYz5FSu196ijm5TLp26fOHPzfqz0ira/GcCQVwz35PoO2aHXfl+DxwTxG5Dm6dlHNwJPGorgqq+gIReTDOhVlwMTanTTrQmpFK19rHIvJ7wP5AkFJuDpwnInfFSSb7JMVvDvys0cgsyF7KtmSJtRXpau6MiSoqSDyoj1+xLnljWq/LrpKquIpqv4b4Dmjqnl00Wm2waxBP20O7WoVmPiiEwSe4HOMHQ19QgqQW6njbSsxCGwaOEhrrPyWSSBwMbLW9FvAokhBVz8tau15Vf8Pvuc8u50AuMyGTZKLEEuxNKbmE8p5cGGvlAo4nlHG4KP4ersCecq8/dVoUM1bfP2mShExBLuHhy+5vq6QXlQ0uw3Irmawx5mSo31kQVb1KRJ4I/L2qviFxDKgXFLk1cCNV/U/v4nyq336EiNxKVX/Qd6Cdrv5S1W+RrI3sE6IdoqqXicjHgPeJyMk4Q/1tgK9ObrW5MFPrg9UYlH1ZE16E+KTW+xzGDQMSJJTSL6IVdDuJHSWuCtmwt9AUxSPhpAcECV48feNnWimf0Xacc/288illV8GUWDQO8FgfMW4UbDVYhXMIsSsxYaFvLtpWPMmEtqKRN9p16mfrkiiGa9rRVb9Qm5Tq0tUE6bAkSSvjyTqRHNskvlYDcSeyZ2aKulMNfvnsPN3uj1vrp1++Ohr1fc9S9Zd7XBUpBC0UW0o03s9qpH/AISfADXd3gtE4O+eUWBIubJBLsFF6omuodkPetDCZSSZr8V6ObF3yW4UEPxXa7DgbGyIih+Ekkyf6bV3LfP4dTpuU4yq/70/7DrShgh9V9dsi8gFc3psx8IyJnl9QifkzWsaqjKjNB7Dr4dT0RcG/qCIVYeAH+w57SQg2S+vH7Z5wpEziqSd5y7QNOrMQSazTfYhGe6kEElQwRSAQnBqkkDgIiCbuzWmzMT6FSp2m2QwvlVQSUmvDF05rD7I84s9OpNzdMLjaOkO2ZsQCdYmxh2hy1AIdY59pTh5qlbJ9XROCfF8XMumylgYIYmCsUmVNCBK5GTsyMYqP0p99oCxGFltM4dWVnmabIwvt1zzY7+L7rdUJu2BXiUsf1Ill1jOZHteU9VQSPBeXluU0P87eEvhMR9n9VPWb+UZVPcenkunFupOKqu6X/X4N8JqZGxL/ZwUvZSsZtRiFK917Ep0vycNdq1tPId9prBWqeI4wpcS6WV+Y9LcYKJPqqwvKnEKia0Wwe4SZshL1+XE9i9jBUL5Sk4VVC6OhPu+Cdy12hf2fKfp13yNfFwfVMMjZvYcMryhrMS0N5F56MJUqqFUlGc65r7+d5F5Xp02NFmKJ/UtVY6FfXuXlsk9oXHp4Zs+vUimuHKN7DisJSXKVVtLN9LxNc3vb0tpq4+r1dQ2ACRoCJ6F2Oglktsx5wC3l3X+PdpIWbir4oMXPJb9/CDy7o/jWnqZ2m3SsdSeVeaFK/hg2+P9tmoPkwZa2mX5aztTrqLcjhHVONC8PhHXCA1nECPM2v318WR8N7oIxBZNGwgUJJh1oW84llq0V6Jkt92CahbpqtpWQ0jwMqP5cRd1ytqJO910b+Lzra676qntDpf+VuH5My2kdeZ/X0lj10cNuMRRX10eWiWTcpRxoQRzEwwmuOuCupW+9JNXfL6CpGlNcKqOwln3Pkgdd2H7TPUCh2GEdmRcGHUhMgOnUxdTscQGNdXPIpPyAwj1HToqqCMUOxC+ZgLNzZtdcRaI6VItEKp4H+lylAzaApCIif6eqzxWRj9PSo448Xl8TkSer6j9lbT0RtzxxLzYFqSh+gAjuwSFQLEoHK1AHQdTZRoRJpLcjaPYmBzWYS0PuZ+VG0DLmAswkH/8/JHBMyqo19dTyXl3R7r2WtJmRQV/5Nh36RDJpsUtFYsETp/iB3wbPIz8zzvlPp3vRcx28WDjriy8D4H73eA1mxxi7VMBSQVj+AMAODOPdjYtdyvX9c0ZDYgkG85brPxPR5Gq1SWUmNadVv8SE50kT8p++LQA7FOzQEUnMtVeIS3VkE35oE8CiRJc12mZsSiTgWMRPxjQII8OwYFnqQEOVvqfxxq4Ok+/jBmAV+Bf//40z1HkuLlL/UVQkcgiwBDxoUuVNQSruwSHqyhGcYTa9qSvwioptUX/O/WtY/SApI4lqLCwgVbiEfemAl+p9a9mVC3Hj8kBc2o7sJdQOt+WqTEZ0ibdZW9nW9laiTgt6bks03EciKXESRAupBD34VINZ1q/73/VVsNQhTniDdEz9kqtG2gbrOY444floqHNsk4Da0OokMMf+xSURvBuwMy+tYNVP/7yPtxqKQmK8GBDtalA977VJRNexWp4HtY5VlPCeJx+DWwFzaJwnWJAiknJRtTw3SUUnu65vAE5R1XP9/8/5iHhU9ZcT6vwvcHefFfmOfvN/qOqnpznm5iEV/0CFBzJmLPaBdClBdCJ/COIDKbWXonUilUoh+QthgIHENcFjNtn0RQttqCtTYjAmUZslfewbgGv2mdrGrgrduyJmIJnQXxFv1zBeoyV+mM2uZRpBnx5Pk1l0dDEum/oGLQS7ZVBbwz2cvFjFLHcEBtU6nbQ3r4E7Pgs5k/p/E2a5Lju1/zEne0Ce4l9QGOMM4aWCX33802e9eOo2rc90rAbskrvZEnKJTd2vRAqJruT1/elz7zWhVXZmU03kwqQtZBBAcV6AktSdA4T+93CuB1sFfMLKVwDPJOhORMY4t+JX9dVV1c/QbczvxOYgFcIDVi2bC27AKWwVR9Hq0ZW83K1SuEiNMOIkK5uBxcpBLx0GyUTSkZDIL6qz/PEVPv+xeh6re/3xGyqbjNFEX5z1rw3SrraLP/tcjlerYtHqf20Qi44PdTVYQ/3V5jWl4fzVLUngYXcbuGtQ1GfYdsnEQSraekJT+bFbttf6skrkTiDiNk6UVmoSTh+5pBJ4i82ul5DUE8sK07IAkUDqz7VWqq1YsKcbCVmIFS9lpDeHKKVART5kz7gdSJLOP/RNG5O4uWAql+INwCpOlXU4LofXxQDe8+sfReQ4Vd027wOuZ+6v+UEkWUYYJw0MxHu0JIQilQ42vATRSB68SJJPjVCM1FQ4tdxPOaHgCC0P1krbrfe/CiCL8H3KocnxawGXObryjBnft/CRPLcZrZ+2PGjtudHyDlPl7/IkE9O5d7xzNTVico552vhyS4EWBjsw7v9SgV0q+OzpL2Tpt8v1yUDLoFK71yTHSo6ZPxOzfvI2Y5/SD9l3mte7857m9zxHXq7t/oTPNCqdvPlxknJfg9RSfx/DNls0Py6LcnhXceu9DIjvbntbVO9xuL8Gn3VZ4vpJdpAY6pO25oE0r1rnZ0NwCo8FHhEIBQieX4/2++aOTSGpqEA5FOdpQqIGEcHkaidonzVZvyNdDEqyeuAMkEwaEJPvKRJCSY2Ovf7uYeKXREbb3Mff1mMEakkuu/oSmjdJX5TKu61xXl0NZOWCkbSW+ND1PbqGhrxhLccIrqM+qsLZfEJW5JHF/K7KIfKZM19Uq3+f+78+/h8Ag6tL7NDU+9jp6dd9Tg3k0mgPGtc9sQu435r1r168kohXOBiGZ8ykyzbkUoD7vZIYlSBh3/NBb8QOwO7ucor5oxLV0W3vQuhbvBbVu5V6Okp4N9PqIfNCSsSmIqbRHkK5JAy251LvzKfYjlzC7iqz/hiGZUVSqOov/eJgc8fmkFSoZjjuE2YqTuebzlrqM6mWmVDhJZI4k6d95h4knXwm3EkoiRTTMWM+4phKWom66tien7WGfg2SvmdSRyhf60s+Cw8zZ1P9r+mo22bKtFyHxsycqk9ddqyJSwCQzOqzNoJn0QSUuw+iu2mOVokiPbcglSafunTn67SUm/jJrlvXfemSlNrOpevc0nOK7vGG5j3FD+x9ku8EfOG05/uFwiA1kKup213CoJ/+jvsb5bqkFF92UH3PVZy28O9/GAf8R+c1jda65Ny7CNv6oi+T20qzvPViU0gqQZ8aZ3VFNfu2jYGl+dJUEdZAagcgn8GGUVprLcXibYRSG5BbvGuCu61HIJYvfPQFHPFnJ7oXNFlLI41/SRFUzPnDrNL+vaHzBicZSGisXRrrI8va/tChkFI/YMI0pp412Ess6UA7ycAd44q80TidJafXv23szD3z4jl29ZXaNZzG3hXXTA92v/Zi1SBfO2BLFt7W/vrzSFp3XRXfB3/sLKiwLXhwFmz5zQg7WELFSStBvezOJ0le2nYOUWr3Durh+VOiBqJWPnlOwznnZGoHgi3rYtJq1orJejDxWdwgospBIvK7lu1Cf5DjirEpSEUFyiWqtOtBX2+h3CLxgcuz4kK1TfwMqxbhnT8TknxJxd8ew3e7AThrPrxrSTNHHHMin//YCzjimBOdi3F0mU6kqdC+H4DFZ0516qbqwK2qHZNdk7Q/wR0z61PnOaW/Y7/CYIJbrzy7po0MyeCD3JJogqCnL/DBpgbdbQtnfvXljT4ded/XoluKLM5GGnESaR9bz6k2ME2+l7Wkl9Ncq9if6vq0QdtUUV1M1YWaQwpJP5PB3bvea8uEZCUoRo7IS+ukhNJLvzaR0mIX2q5nKdV76N2DgxNgo6y22C2jhON+j8N74ffPY2EtoFrvp6/MFIfyixW+G5fR3eIyAb8pK/MoIOh6rwCepqrf8PuOAt6Ei9J7u6q+Lq2r2kjjuubYHOovPyOqic9B/C4q8bccJuoxrw6zA4mishaJyB0e+vRDc/DJVRi96or8RUoHr3ym5fH5j74AHQh2i6kbNk31YgY1mC1IHBSqa9EwCqcOBdL8BPVffEnTa5q3F8oHNZGk/fKqjaGpDLOh3WTWmrZZU7lFVQ1+QLCItRz1ey9rfQxaVVJBXdbSx1xtlxNKqsKp9TH5HWfjqRNIfv9b1FltatTGPehQna3k09rPMACHvvn7c7/D/6b1+vbhfvd4jQt+TAbtQAzhPtfuU8s5p89Xpabufu7ybfGc0nsZVGVFeB7zl3KFiFqNCZ/JGAPPU9XbA38APMOvgJviYuBeqnon4NX4JT/86o1vAY4GDgQe0VJ3p2PTSCrOOOgemCClmNLNhtN1vKOEIdRnRCpI6YLlnPeGtM6OwvGqH9pZrrdegO9HrYDWZ1Sf/9gLuPvDTsLuKVQZgxUzcn2NXlJejWHK9A3W6ppM0x+S/pjua9CK0H0hDsoIjAcgtlIvmlKQUfCR9gNc3sckV5iooAOD2gLZPkYH9cf2yPu+1lUZSOvsd6oJfjLoh3NpVTPW7j3x+lYLnpGobbI60gwG7IJmA1KrOmwGxOPG5ypcdP/BYMbltANhDUcd9New51bnjSfJ8ax7nyzVgmK1Ab+1o27wj7nj0hdkQtcCEaXHCev4zN0Ta3rSmNCMXgpc6r9fLiIX4hYmvCAp819JlS/jlgQBtyruRd6bCxF5P2713AtYR2wKUoFk1oIfd40XuUlmlhCJJD6rfuCwAkZCIB7VOzdpEBCpDS4r6nt4EX3/Au75wBMrZwHjpSk/0Dvi0CoKOryMNk+3Efo3Q3/qEXLu3wqJs5oh4+0I/lqXyfoofvYYglfdYYMHmJtBu2A3gWFdmj/y3n9bM6RXBw4NTTcQ57aW1B6QE1VIb6O+n7G+uMIa1a/NizbtbcgzZ682xUikklT15+0XTqLDJ2VcxTGClCy42BVxAazBPmKDdBEQujLpolR8XW3Stmet5QrldeckqEyj/vIHfbCIvD3ZeopfYLDZpssAfGfgKz2tPpFq9cWbAT9J9v0UuFt/p9Yem4NUUlE4/IbKy0ioP8D5dz9zshKSP7oBW8qW571tJkxzEKh29jx4+Sw4BI3FJXnrx63EewlTV0IPa4NimPonfWjrRVferc6lAKYhznTGn9+PaG/RSgiSqmw8bhjsImHjIvQLibnMjrzva3EuyA7lksEmSQMnrbvSctL18t7rrDUXmuDT31ClyU+fv7g9meXQQcwpD0pVJi8aSLZRvWVwbSvTNjDH5QlCqhYjmGXHKve/66tabVcAD7jzK8AHoZ7xtVeAqpNS/E0N6YjM2ElcYgUtNEpqbWrhsPyxF04TFqRyMEgklnwSEJBKSqkKUrL9q8Y0E0m3/1RVbb+QCUTkWsCHgeeqapthHZ825Ym4lRihnSLnLZPNjM1BKlCJvFBdatN+hYPRG5IJbek+cSBR+i1O+cMcJBzIplRVwYkqqNQ7Jg624tV7EiOGESgHzoYyaGnHmOrExI/cUZWTpMGIvv5pF5SG6iVtp9755vlUFZL+R48s998WxqVcD0kevVSgXlKMNp+E9EpjMIVXg4lQbnFJDO1gkKj/KvKb6s3qUm0F8vbtRoJMBrr0GrRFeMeca54YzRjneJBIL20OATZ55mqOJZGBs3PIfueDZmMQb2QroJL0vG1ucLnzNH3AnV/BGV9/ZSwaknemuN/hf4NeZ3fM2Pp8ayZKprVlvEsodqjzxkzsUZC8N8k5q1RziooQUgamiXQiE88tuy7zIpWpvL+mg48X+TDwXr/SYluZOwFvB45W1V/5zfNfKXcO2Dyk0oLOWy7t40Os1LkzKZbsCzPBmPU3f7Bb6uT9abZdn/GnKq5oD0pe3FQysBDdMFPvJzcTlji4tc7CbbOjcWDKX6JkZp2jbTYaiU1wg5jV2oyy7tIs1WBqXINWBPyM1y55kk2yHFRePtONHG19hOQaS2XQrqn2U6nEH1dSO1aUevwMW51K0oxaZswttpxa/zSTUrJr3itJt0gFbWq1UE0HLudcsaPAXFknlvs84PXVBGbrAC1M7XmIEfMDp6ZNt6dxJKkn1sSVJtNr3vK+5Wh9v9KycyMUnGpzOvVXL3xurncAF6rqyR1l9sUt6fsYVf1esutrwG1EZH/gf4CHA4+covdrik1DKhPF2vg2J781DLQtZaVd3eD2N1/MlFig/vJkhVv71ZdyPs1nBJWKoOntUkXDa36s8IJquiE/ULWkbPqyh8EtNTTX9mVtVMfMR7TKO6pccpWj/cqIe1H9cYJ9Aku1ron6gVpw6dZD4JvfF1fRnHbwSAdwU9+WeiPVSMVvi15E4o5b7NDaLDudiStg1KmANB1EOwilNsO3QUhJjPzJjW0dR8Mz3fLsdZFMJPOhuNxpxRaK3+0A4Kg7vAxuvhdYZbT3FsqtznVbRhXROZufUG6RStKnul4NBweImoHYl7b3MZkApufXCsn2JxOtecOlGZpK/TUJhwOPAb6VrBn/UmBf14S+FXg5cD3gHxwHMVbVQ1R1LCLPBM7AvSXvVNVvz3wyc8amIRWgeqiy33mZ3IarUInktQnYlE9ksGHUgrHS/cnhW2Zm+YAGzvU5qI7KIVXWZT/uqgADKLOYC03fwvS4QeWl2qr2cmXSQV6zfb7JXFjJz2eigt+d72h3Q7lURWCDUxHVDMVh3K5tc9fEDsPNq9ayrzLV9nchbbvR9dT1t+aiLtXzkUkqwcYSDfSxraRtUwXitp1jrd8t24LNIZJuLNB+eu2z9mZhJR3EnZPBaM8BMlZGewwYXDUGsxW7ZLjiFrsx3lqpM804k5qkfm3qnnRVh6JnV8ejkk6aQif7Akvbkrum9pRGf+aB+Xl/fZEJA42qPgl4Use+TwCfWHVH5ojNQyr5jKbrNnU9B1J9nLfV9PXjDCs5aFQrZDPGTpE/LeMHN5dixs+Ks9lvLJfOCrO2ai9ikFI0BD3GaW+FoLpLBtfaeWd5qmJgYtbOVFHLfiAOgW1u/fmqfn3g9gN9JH5/DraetK8x2PegqfpKZuzJoKR+QEzjJ9omDHEg7DpeILxCklE1PX57/+K4mkvA9cNPhS5nkppqU/BqRicZLS+59FDj3QzjrS79kXrpTAttmmjaiDGxq7Ueu+pg+3ZNPi0EEYixta01klRc5uy5SCqbDutGKiLyLFyO/zFuAZgX+u0vwXk4lMCzVfWM2RtPvmfqrkaRlll9PnjXkM2aag96qJ7MJmuqilQnPwEqVaBmqxsmE7aRzGx9GUkmVy7xY7W/SljZ0b8oHmXbXGM1ImsQTUf/bBHcTdVLkEEaqIuS6i9cmnHatMz2W+9ZbVavzW1hV07aUSqp4pxy6aOqTJzUSNpeaCpRm6lX4U0b2V1TZWnz3sySdqT3iFkMTW7zSQml9px0kGNnvjhtr9N+75KOt5FK8ny3nlsXSc0DqmAnXPxdk1PWh1S8a9wxwJ1UdYeI3NBvPxBnbLoDcFPgbBE5QFUnes9PvH85oaTkoNVMxw5ykYf64JvEUpC87LVj1PZnU6op3XLLLVAuSQwEi010zGi726rOIVUnVP0JHz8DNcn5ZeWbqVbCd6mOkV7nlHSo6kb1W4h29iOy9WlaxEp2zCSDgN8WnBE0PZ9cVJB6HWjJvRa6ZbI6QSJKMxOkTWcSUswxl10bCfm6/LMSJTOvMm1MUDLU71uzQJRgphnAJk2s83aDqrFwz2JjkDbSXjmF0LAJhvp5GEBsN6tPLthNSRBtXZobt0yl/to1WWW9JJWnAa9T1R0AqvoLv/0Y4P1++8UichEuavRLfY1N+8Cl0klbfq+agTQhkjhBSmakaXuTfqf97IxnSctJNdObORI4H1iTNmN74UWVrM9Cy1udFMhVZvmss+t3Gp/QNmgk30NalpA2X1vKaTLQNGJtOtrXrkErHjcvXxFKl/2lFv+RDe7BxTwuJZBd8+p6J/2X5v2uP9tNR4mq3DSTlZZNXc9Klqam7bq2Xv/kODVVYuZoEiWXdFtHH1uvf0uxaTC3Yf4aspzwemC9SOUA4J4i8hpgO/B8Vf0aLkL0y0m5n/ptDYjIscCxAMM9r+M3ZoW0fXMn/MMfVN6RSJL9qXTS0Hsn5brU5p0TujAYJS/bNIFttQ60/e6ZQdaIJTunvL7jm/psfFqS6dR3Z/1Jsx64wZjm9Q/tFlo/Xi5N0T5Q9XkO1fKRJfehk2eT7ZJuCxwSCcRPEHwnY5n0OaufRqPd2jHbJJoVzsEbUlCeyTkd/Ns6GqWxlmuXfO/zyJpFNdU7Tk/TzrwGerVgJyhQFjaV+UJEzsZl3szxMn/c6+ASqB0KfMAvcdn2WLTeGZ/q4BSA3W60j3aVTKWTuK1nEJSWgQqqmWmIGq4G/iwdeV43H2Q7+pMb4M3YuZ+mGVcj4SUz2lS1UkPXjDadDeeDZtv1y3ijdk2STkcSrZ1XVbl2zYWYSblXGsjvR7rPT5Vzu1DjPU4kj/B7kktqKn20SVd1lVp1WmkzXkCrE0hKyuJPsI2I6fk9a7mp4fpWI4EoZUhTihd8rjznfVf65Z461YUWzn/zcRz0nG3VcdYKO2MsV6ZYpG1BKnOFqv5h1z4ReRoufYECXxURC1yfOUeINiSNrnIdA1ebZNLw5spGnDgbTftAVZ98e08Xq/xRie+/1AezVmmmhxx60TILbgygKQHVrkN9t6tbDaIKUaXVKJgdK+9O5/gjVF5t4AwWvZKI/z7BUaKmKuuRclQmXNfkejbI3JNMHg015dxg6nJTIT+vxH4VPe20fl1CnIaUjjAGpfKVfzmeg5+2rd5e8j0QCswghc+CnTmGT2NT2TU5Zd3UXx8B7gt8VkQOAJaAy4CPAe8TkZNxhvrbAF+dttFpntE2W0prQx2DX696IpmNih9JcxVZVS7pzyT1ih84G/792vE99G0lD3WHeqWTXLr6XNuY7ZyyX5PcdGM3wiBt2s+5aS+ZcOBZy6dVux6QtnueEAtVsdbqNbQMyCsdn9sM41WWhm6SVnHG+3Peflx/e2H7NLFDE7Chxug5xalsRqwXqbwTeKeI/DduScvHeanl2yLyAVzq5jHwjGk8v4T2waSxre93izTSOoPMRrnWMhMGi/psvtnvuF0SkvLPcCp9pYNUqmtvI85JtoZGJ1swcVZO9/nU2p9ATLUqmbTQqv5L2+84Rs1VuO+4XefRca3SvvROWNrIJWwSafQ3ZkZoE2mz69Ha3za01G9zUGizgeTtf/0f6mQS+2NBi6ZkUxXo6V+b9NpTfFrMWyACnDtxOcmmMrdlJq9RWBdSUdVl4NEd+14DvGY17fe6aXY9pZMk2Vx9Eeq0TaXTWWgSVBbqTGt8b11+NelD+uK2nXNjkEvVZ9J/ytIyaDYwaVot9XKdZDbDW58PVF0pPSQrXyOLnuNNJJN0e9t16SKUDgmq9ZkinUykM4PpDteF1slMRiZxn1D/naCLUGqd6rmOvZ5eSRMTMcWkaE0IBaaTVHZRQWbzRNR7dBJKxw3OB8wVqYzCIVoG4BqxwNRPeU4obUTUMNLnZJJsO++tbiA4+Cnbal2p2XmmkfaydsN38eqn1vObViJZARr9D9er5fh9x+hyNZ4WK31uGs9MB7m0H1Mzpmhpp2N3jUz8715XX6Ygk0YH6yQ+jcTSehnXjBlWiYX6qxWbjlQisln6asiitf6kSUqaXn+KXE0N280UaoI+dct5/9g+AJz3tvbtBz91Wy0n2Ln/5EnoaduqY2SDQtcxAH7/ma6ehHXmJ0gIrWqcLmmgA50uvtnGqW0qvQfzRXOJblKfp5U2prpWGYPOel4tai7XbrPqtIRSWw44IalWL7qpWtyYUGvRhfqrFZuKVFrVPayeUGroIZfcK+vcU+ov4l2O3dYusnfMDGvompFSSSGrQVcbfcTRh/Pf3F7vzs/Y1qs263LTnRVTq7FyzGNW7ImlT73VecxJk45Mfdrn6NGHhgpKup+9aQkleH51PsNZX2ecM/RjZzPUIvixE5uKVIB2Qpmk+59APp0SQUPV5f53SQPnnnIcdzl221SeX60DjXa3fU3B19/S7H8r0dAhbdCUDqaR6nYGJroYQ3t/JqitOutPa5/ra6NLOlnFiN+4J5qoWjOS7ePatH6tcNf+tA9T9XQ1mMKmsoti05BKJI+cILRdddVpS2iTPNqIKcO0g30uvSzQJJqayg0aev6wLwbhtanOknJ53V4imlaVFIqng2NODtMO+lOQUZdjAvlxW9pua6ezrG+rjfwnoZVIknb7BLIu05F2/mgiNrEWGoocU3l/7ZqkMwfv8Q0Cbw8QpbINaEY2Wt8ePpDsI9nuP33qpfPedtw1XnrYaDjvH49r3Ks2x4DwfSLaZrKT6vXtz/Z1Bs/OAJX+T16u3oHuT1c7rXWhQUKzoDNjcsu9arVRdkgcbXOKtnK1dzuMAZY4NkwzOZwWatXZVXo+05CKiOwjIp8RkQtF5Nsi8pyWMrcTkS+JyA4ReX627xIR+ZaInC8i58zn7FaHzSGpKLXFngJac0f1qRpanoFAKAvi2LlIifwuT97m1rVLSF9NplKZNOp0SCxx9yS1VAu6Ai0nZR9YNWZRe01zXTxm9u5qO5xWpxv/d4gos17yXiHLE0g+2cjv8dykl6lciqc62Bh4nqqeJyJ7AueKyFmqekFS5v+AZwMP7GjjPqp62TQH2xnYHKQCrWquPiPzwU/d1vkEz8PwvcD8cO4/HedUYn4GGhMYpjaVRL0yraF4NZhpcJq3gr9PjzTr8WRlqq5WZNc3J5hG31pUjSsa9FMCyckkGRcaBLcaTLNI11TN6KXApf775SJyIS6J7gVJmV8AvxCRP171AXcCNgWpHLjvjThnxlnWgjiuWUgnCHc5dhumVFSlLrGkmMHQPOtAM439o6/MtMebOV/blO3OjUTyrvglj/MuKZX9q5dc8u1t+9NGk301lVeGfHIp/3h873lMA7UWpd+moo50Hiwib082n+KT4TYgIvsBdwa+MktXgDNFRIG3dbW9M7EpSGWBXQups8OhTzjZLZCVLfjUtXiVwtSDb1v9VnSowVaDqWfsvtw8VFerxbn/VHk3SnIvAuk3VJZt6DnvNjtMvm2nXQdVJsehKLjEuS+f1JyIXAv4MPBcVf3dDD05XFV/5hc6PEtEvqOqn5+h/tyxIJUFrtH42juP55AnnQwq1TLGPeqhNqmmzRts1kG9D7NKLaF8kCju/IxtrXXXSuJYFTS7xh0qrmlId1LAcbp/Z18LVRskkZ4y0z1EIjLEEcp7VfXU2fqhP/P/fyEip+EWNVyQygILrAbnvN2pMw550slu3ftkAmlGOLKRbKBbKYmE+j2Ypa22svkAuSHJowMhE0OKg5+6Ldo7gqTY5Qbeeu16vMbW6dp8/hf6E27ITTsLlDrmcn4N8L2+hkREgHcAF6rqybN0QkT2AIy3xewB3B941SxtrAVkWjbdyDjkkEP0nHM2hDfdAhsMd3nytionWSCWLvfaKdFLGh370jorzVKwGfD7z9y2cknFY7VEIiLnquohq6gv1+EG9nbcmT1kr9YyP9LvAsL39Bu9Zyoi9wC+AHwL5/wM8FJgXwBVfauI3Bg4B9jLl7kCOBC3BtVpvs4AeJ9PyLuuWEgqC2xqiCr5Qmpu+5wM5lPaAHZlIkmRpu+JmRT8fWgN8EywUSQ2VdW7yL24mAu5I3dr7C91zKX8mCv47R5TtPVFJlj5VPXnuAULc/wOOGjKbu80LEhlgU0NKXExLm37VuG+2tfWgkCmQx9J3PnpdTvSRnBESHEenzfX4Qb2Sv1dQ1r5KT/gJtyC7+k3rlqn7q0rFuqvBXYZ3OXYbdX66TO4HOcIBLIgj2smVqv+CriL3Et/xsXcUSpppdQxX+MzXMFv91DVXZJUFpLKArsMuvKu5bPiLizIZIEUbdLKri6lwIJUFligVbWy0dUvC6w/ctvKLLaUzYwFqSywQAsWJLLANEillcu4dJeXUmBBKgsssMAC/397dxNaRxWGcfz/WGtTTEFrq4RaahU3IlIDFlHpQkRtN9WdK7sQ3FjQRReVglQQREG3LkShiNqNilla/KALwVprkqbE0ogVY0MjiPiBSltfF3OCMdy5CXLunPHe5wfDnZwM5OHNybx35k5m/rOFo5UZpvid3wb+KAX66db3ZmYFnODoZRe5wAhbGNQP5xfri6u/JP0AfFs6xxIbgNbcjjppYyZoZy5nWpn/Y6YtEbGxqTCDpi+aShtJOp7jssWc2pgJ2pnLmVbGmWwpn/4yM7Ns3FTMzCwbN5XeKf6wnA7amAnamcuZVsaZ7F/8mYqZmWXjIxUzM8vGTcXMzLJxU8lE0llJJyWNSzqextZLOiLpTHq9uscZXpc0L2lq0VhtBklPS5qRdFrSAw1mOijp+1SrcUm7Gs60WdLHkqYlnZL0ZBovVqsumYrVStKQpGOSJlKmZ9N46TlVl6vovLIkIrxkWICzwIYlYy8C+9P6fuCFHmfYAYwCU8tloHpy3ASwBtgKfA2saijTQWBfh22byjQCjKb1dVSPfL2lZK26ZCpWK6oHBAyn9dXAZ8CdLZhTdbmKzisv1eIjld7aDRxK64eAh3r5wyLiKPDjCjPsBg5HxJ8R8Q0wA2xvKFOdpjLNRcSJtP4LMA1somCtumSq00SmiIhf05er0xKUn1N1ueo0kssqbir5BPCBpC8kPZ7GrouIOah2GsC1BXLVZdgEfLdou1m678Ry2ytpMp0eWzh90ngmSTcAt1O9221FrZZkgoK1krRK0jgwDxyJiFbUqSYXtGReDTI3lXzujohRYCfwhKQdpQMto9NzsZu6vvwV4CZgGzAHvFQik6Rh4B3gqYj4udumHcZ6kqtDpqK1iohLEbGN6hnp2yXd2mXzxupUk6sV82rQualkEhHn0us88B7V4fV5SSMA6XW+QLS6DLPA5kXbXQ+cayJQRJxPO4W/gFf551REY5kkrabaeb8ZEe+m4aK16pSpDbVKOX4CPgEepEVzanGuttRq0LmpZCDpSknrFtaB+4EpYAzYkzbbA7xfIF5dhjHgEUlrJG0FbgaONRFoYYeUPExVq8YySRLwGjAdES8v+laxWtVlKlkrSRslXZXW1wL3AV9ReE7V5So9rywpfaVAPyzAjVRXl0wAp4ADafwa4EPgTHpd3+Mcb1Md9l+genf2WLcMwAGqK2FOAzsbzPQGcBKYpPqDH2k40z1Upz8mgfG07CpZqy6ZitUKuA34Mv3sKeCZ5eZ1Q7+/ulxF55WXavFtWszMLBuf/jIzs2zcVMzMLBs3FTMzy8ZNxczMsnFTMTOzbNxUzMwsGzcVMzPLxk3F+o6kO9JNBYfS3Q5OLXPPKjPLxP/8aH1J0nPAELAWmI2I5wtHMhsIbirWlyRdAXwO/AHcFRGXCkcyGwg+/WX9aj0wTPUUxaHCWcwGho9UrC9JGgMOUz0+diQi9haOZDYQLi8dwCw3SY8CFyPiLUmrgE8l3RsRH5XOZtbvfKRiZmbZ+DMVMzPLxk3FzMyycVMxM7Ns3FTMzCwbNxUzM8vGTcXMzLJxUzEzs2z+Bvv5a21JrEc0AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACR2UlEQVR4nO2deZwsVXn3v8+p7p659wKi4goYUFnUxAXBaDCssmnUaPK+LokxxoRE44YLKu4aZFOuvtkMcYkmLtEEI0ZREAViEhdA3MAFhUQEQ1xZ7r0z3XWe94+z1Knqqu6emZ7puXPrdz91p6vqbLWd5zy7qCotWrRo0aLFNGBmPYAWLVq0aLFx0BKVFi1atGgxNbREpUWLFi1aTA0tUWnRokWLFlNDS1RatGjRosXU0BKVFi1atGgxNbREpUWLFi1aTA0tUWkRISI3iMiiiOxVOX61iKiI7Ccif+fL3C4iPxWRi0XkYF/u9SLyDyPaT+uG7avJ+WeLyLdE5DYR+R8R+YSI7J7UVRF5QqXNt/njvz+i3zeJyNdFZCAirx9zD+4uIh8UkZtE5Bci8u8i8qtj6qiI3L9ybOheiMP3ReSamjYu9e08pHL8X/zxo0aNoUWL9YKWqLSo4nrgaWFHRH4F2FQpc7aq7gbsA9wC/N0S2j9bVXdLtof4fo4E3gw8TVV3Bx4AfLhS9zvAM5OxdYD/A3xvTJ/XAacCn5hgfLsBXwYeDtwFeC/wCRHZbYK643AEcHfgviJyWM357wC/F3ZE5K7AI4H/nULfLVqsCVqi0qKKvyeZ2HCT+PvqCqrqNuADwC9Pod/DgP9U1a/4tn+qqu9V1duSMh8HDheRO/v9E4GvAT8a1bBv50LgtlHlfNnvq+q5qnqzquaqeh7QAw5axjVV8UzgY8AnSYhjgvcDTxGRzO8/DfgosDiFvlu0WBO0RKVFFV8A9hCRB/jJ7SlArUjLr95/B/jKFPr9InCCiLxBRA4XkbmaMjuAC4Cn+v3fo4HgTQsi8lAcUbluhe1sBn4bRzjeDzxVRHqVYjcB1wDH+/1Vv74WLaaNlqi0qEPgVo4DvgX8sHL+pSLyc9xEuxvw+0to+6Ui8vNkey+Aqv4b8GTgEJyY6icicm6yag94H/B7InIn4EjgX5ZyYUuBiOyBuxdvUNVfjCl+VXpdwCsq558MLAAXAf8KdIDH1bQTru8gYE9V/c+VXEOLFmuNlqi0qMPfA0/HEYu6lfJbVHVPVb2nqj5BVYd0GiJyWqKMf0dN3bBFMZCqXqiqj8fpMp7o+//DtF1V/TxwN+DVwL+q6vZKv99M+v31cRfaVF5ENuHEbV9Q1TMmaP+Q9LqAMytdPRP4sKoOVHUBOJ96Edj5wDHA83HPoUWLnQqdWQ+gxfqDqv6XiFwPPBZ49jLbeDNO8b6cuha4REQ+S72+5h+A1wJH19R90BL7GirvRW//guPQ/ngl7fv29sERikeIyG/5w5uBeRHZS1V/nLS/TUQuBJ4D3G+pfbVoMWu0nEqLJjwbOEZV71iLzkTkiSLyVBG5sze9fQROvPWFmuL/Dyeau3zCtrsiMo973zsiMl8jVotlgX8CtgO/5wncSvEMnGXXQcBD/XYgcCOJpV2C04AjVfWGKfTdosWaoiUqLWqhqt9T1StWoelTK34qYZX+M+CPgO8Ct+K4kXNU9f01Y/upql6ikycD+lsckXga8Cr/+xkNZX8N+A2csvznSxGljcAzgb9S1R+lG/AOakRgqnqTF/O1aLHTQdokXS1atGjRYlpoOZUWLVq0aDE1tESlRYsWLVpMDS1RadGiRYsWU0NLVFq0aNGixdSwIfxU9tprL91vv/1Kx7571fUARDOEYJAgMlGbaakDDtmf7151PUMmDXVGDkn743qq1j7wkP0nGluL2eO7X/3vVWhVR+5WccBDf2kVxrDxceWVV/5YVe82zTb/5Jl76lGHb+KpJ9882QSzgbEhrL8OPfRQveKK5Vu/njD/OwCoVcSs4J0QA6F+SrxUwVYnDItWj1XOLwUX9T+0pPItRuOkezxn+GD1mY46vxLk1neRvANW/XtkwXgBg7VonhfjqXmfPr19Mqf848z/GVvmYvuRidqaFJP0WQsx7vuQYUFL3fdb/TZE5EpVPXR5ndcMR+TBhx82/9XtO5Srvr7QVdXBtNreGbEhiMoe5q76yM4JpWNihE/vGHJxGIsTNj0DjCBZBlk2PFGM4njq7qW15eOhXjIxVOtrOFZtz2qZGCWTTpVAjSKOcSKaAqoTzaiJYtqTUovlY9kT+hhM8oyH+g7EoUIoGt/hGmJSC/99qFX3PYcx9j84VaLyW7+xu57yx3vy8Yvu4EEH9fi95/1ol+ZWNgxReVTvxCXVqRKcEzZVfOGMgAhijCMEZgnqp6WsWMP9T4lL6GuSdpbz/KzFbt/hCNQUCcyyMeEkcXH+j6s8kF0HSyYq6TOaRpABMUNEo45zHyIskxKUEZgmURGRBx9/1OavXvjBvfnfHw947NNv2uW5lQ2hUxmaeutevMqHcML875QJSyK2ioQknqtpz1Y+rDpC0LTSsjWcS1YTNaSJ8/H41C/eXd9+DY7vPX34oBhCsJJVJy5TmAyOy54ydKwlNMtD4ChGEpemZzaFZwllIiJZhulK+dgERGd4aDXfXMoJTRlPftxuXz3lj/cE4G57dXjMkZt54cl79hmvUt2w2BCcyp2yvfRRWx4f97U/QAd9N1H6Fyq+bMkKaYhb2eJzU4kXfzVxJ1WCkqKpjshYIhGwFGKxXKyW+GMkpjQZVdESlumh9F40iKVWE2JkMhHYZI2VF3Z+AXfRHe+bCqeScikB//vjASc97Sa+8o1dl1vZEJxKgOY55Dmf3vH+YlUb5KpxIZ6jDMt+I0EBN/mrQli9T6BXCYTgxDv9wehB1ulSKm1sWNStFFeBg2mJzPJR4mDS5zXpswvlqtzBmOdsupNPRUMciyd6biFYI3FIF3qjFoRLRMqlBARu5UV/vOtyKxuGU3nk/GMB+PQd71s1S5YqwdgIRGAmHEsTprgabgnLdDH2Pak+u3GipjpupEbPUkWTCEyMQKdTUsiXKxb1Pn3b362YU6njUgJ2dW5lQ3Aqai12u8vV1PTyT8PyaCMQkSomkq2vFZYjZkknrzUS0eyKaPp+4ntT5UjGKfarll5NxKCuXhViHLFZ7ENXkU7HcScpV9Ikfl4m6riUgF2dW2m/whaAmzTWhcnvUpSp1bLJ/nHZU2oV+y2mi6H3ZsQzGYLaaIFo+wM0z1GrcT8cK1fRWA4YJkypuMsYZwDjN81z8ju2reRyXT8iD779DsuvHbapscxL/mRP3vY3P0dENsTCfSnYEERFOh2yPffEbN5ce35dTJYtJoefbMZuTXUTtIRlbTBEWEY9ozp44qKDfknEpVYjgbF9L0mqcKQS/Mq86Ez7facP9T5ikmXIXA+zx+507r7Xsq8xwW8+62l7jCxwt706HHxAD2DJmUJ3dmwIogIgcz2k2x063hKUpWEj3q+WsKwN1uLdESNxqzcUUBgM0MVFdGEB3bGALi5OVfQFyPzceKnW/LzALij+2hCs2QEPuQ8XXvGXsx7GhsHF9iPrQ8cyRRzffSrQhrNZbazmuyNZVta9VK3T8nQ3EJEccjP1mT3XnP4YHbxdBb+YnQEbgqhAEb9rOaFZWgwjXXXu7AQmtShqics6xATOiVHElZkkCkW9MUCthdi04rJ5WMCOifi589vVLg8zFX+JyJ4i8k8i8i0RuVZEHiUidxGRi0Xku/7vnce1892v3LAGo911sS6U+GJGb2m5+FMaTVQDcWkxfSzpXUnNiP2zTEVccfM6EzEmcizS7SC9LjI/h+y2JW5m07zb5ufc39221EesWAEUO/bfrkpWZq1TeTvwKVU9GHgIcC3wCuASVT0AuMTvj0en47YWGw+TmAonxGUUMWmx9mhclCQEpfq3CrUuCrNaWwRcDZZemSc0nY7b5ufctmke2TTv5oUpcyoDlL7akds4TmajYmazsIjsARwB/D6Aqi4CiyLyROAoX+y9wKXAy0c2lmVuNdJiY0Ktk9VPoHCflJi04q/VxVD06uwp9WKuEqeSTMI1psmae613JfSKiCnMh1MEQhL+TnHRaVEfm6MZuyZJmS2ncl/gf4H3iMhXROSdIrIFuIeq3gzg/969rrKInCwiV4jIFYt2O3S7XPijv1q70e+CWBMRWJ1Ii51fr7OrYqS/UGp2XPWmrxFxipEiLUXJH6US3ytsYR+mbf2F4gjLqG1XJSqzlBd1gEOA56vqF0Xk7Uwq6gJU9TzgPIA79e6hACft+0Iu/MHbV2OsLVaAiXOuVMVcIRnThJiES2k5lLXDJJyly3WCIww1gbJLz9SLuEh8UkQmSE2xCqGoclX6Y9q1GyAE1nIwS6JyI3Cjqn7R7/8Tjqj8j4jcS1VvFpF7AbcspdGWsKwulhLWpYmzqTteCmDYoEMJ8bzqJquRsnjaWGBrjZEEJVksRH8TEc+NVMLuBOLhveJdCJYxi4eq/mTKIVrAhaVtxV/1mBlRUdUficgPROQgVf02cCxwjd+eCZzp/35sVmNs0YxR/gjLEZM1Epqa83XEpSnQYEtMVg/LiQ5dEP+ssPTqOkW65hWC4hXwBP8UI8MEA9wxa4tMrSnRieFcpktYrEI+prlJehORfYH3AffEWSqfp6pvr5Q5CjcPXu8Pna+qb/TnTsQZPGXAO1X1zIkvYpUwa3Op5wPvF5Ee8H3gWTg9z4dF5NnAfwNLFqaftO8LAVqOZZVRR1imqXcZ11ZLMNYex2VPQYzUEvFx4q7C1yQr6UWk00HVutAqQQTmzYfxpsMYMxwkMkWT+MvIqhAWp1MZX2YCDICXqOpVIrI7cKWIXKyq11TK/Zuq/kZ6QEQy4C+B43CSny+LyAU1ddcUMyUqqno1UBeC+tglN7YKLG6L8Zi5/0qLNUHVr0eyrBBdhbhdlUyOgDuXBH+UOWfuGy2x/HcreQ69JIdR8EsJOpTAoYxKgmfMMDejWhGXTce0OFehr6PbmkQb6I2RgmHSbSJyLbA3TmIzDo8ArlPV7wOIyIeAJ05Yd9Uwaz+V6SMhLCft84IZDqRFi42BlANx/iBd53g4N+e4CJ/HxKUE7mDm3XHpFscly5BeFwLXUWOhJVkG3Q7S6zmnxm63IChNW+Bggthryv4oTciRsZs6AvbkYKXqt5Ob2hSR/YCHAV+sOf0oEfmqiFwoIiFI5d7AD5IyN/pjM8WsxV/TQ8jWGH63aNFiRUi5E7XqsjN2OlEsRWbAKqKKqiKiTg/S7brJPc9REUQ1chxDnEf4Vv0xwXM4gVBAmVBUf9ekCx7CBLntlwqLIyyj4Hs9X1VfO649EdkN+GfgRap6a+X0VcAvqertIvJY4F+AA6hnu2Y++W0sTqXmpWq5lRYtlo6UoERdSMis6AmKhBS+mdOLSK+L2bLZebP3up7j6DmOxnMfQ97tKdeR5D4Z8jcZKusU+WXOpZp9UguCEhadU1pw5hj6OnqzY8RjxWVJF0dQ3q+q51fPq+qtqnq7//1JoCsie+E4k32TovsAN6302laKDcGpHPDgfbnwCqeUP2nfF7acSosWU4JTqJvC6TDoOsLEr4pYg3Y7zmckEI08d8TGVERUVUKhiRJ95ECCTiUVm81uTWwR8jFr8kl0KiIiwLuAa1X13IYy9wT+R1VVRB6BYwZ+AvwcOEBE9gd+CDwVePrEF7FK2BBEpUWLFi3WElZlAk5kIk7lcOAZwNdF5Gp/7DTgPgCq+g7gt4HniMgA2A48VVUVGIjI84BP40yK362q31zqtUwbG46oBDPiIPa68Mb/N8vhtGix0yGIvpxyvecOJtZV0Ys9borg9SxpKt/Ud6TKoQSkHEhAnQ4kxgcbwaWU8qtU2phyuJYl6FRGl1H9PGOoj6r+BfAXDec+CXxygq7WDBuOqAS0xKRFi6Xh+N7Ti2jB3sKLige7eKfEGLwxNeVPlevpfrTUaiAcVautbJwobAxBSZH6qUwRuWb0dfT0aTeYynpSbFii0qLFpLj/2VvdD1FUAAHxc9R1L3vxzMa1Vji++9TSRC29nrPS8ibBwxZXpuwvklpphUk8PVYlKDBstZVGGF4qERgXH24VCIv1ZsOjy+ya2OWIykn7D08SF15fqx9rsQsgEpSm82dt5bqXn7JGo1l7VK286Hg/kSyDTlaf3GqU97qIUyNrQlRGIbXaiqKwEeVrszouIfDolPxYLEKuozkRndD6a6NhlyEqdcSkRQsAzdT/xUm3fdI+yd2kcP9zzo2T5HWnbjwCI51uEWer2ymcDoOHOgyLq2obavAZqepDoFnnEX5Py4LTVj3qp4MBhj41BDftekre+zsbdhmi0qJFHTRTbM8TlY77K4Mg49dS3qiNCMkylyExeLqnxKREGEY1UvURscPl68o0YRRBGafQbyo/ZcJi1YznVHZRorJLaJJOuu9LZz2EFhsE48RlOxNOmP+dWQ9hp4UiWMzIrSUqGx1NjlKDPEY1brFr4X5vORftannrWbSrYBTESb2c8l5L9e73lo2hh5NNm1we97k5mOt5PYoZ1j3U7YuAKZwjGzMwVsuk1mPTQJ0+pWm8U9KpDNSwqNnIbVKP+o2GDS3+inqUCeSzJ+3zgtYMeRfC/c85FwRshiMgJH89ISmpAICqLOx+by0Tlu+9ZOfT28Ugj7U+JA0K8CDKSnUl6TcmNeKzofqJrmYVdB6lvtJxTQkWg23FX7XYcEQlirrGWYOk8lj/QbSEZf3iwDdvjQZF4Vv97itWpjTXDpEjcQdArIAdoh+uTFKuDvc791y+9+KdiLBkGXS7jpOA8jdTNwGnxKQu2GMIMz8uvW+AMTU3mskV9dF8eQzxq9aZAiYJ07LB1XGN2HBEpRbVFVN4YZsS/rTY8FDxVl8msX61Ark4Rb0NHti+ghT16hagO6VCP/UngWJyDoSjqghPCUrKbaTxu9KAjwFNBMIyTEDqyjZxPIGIVQlLykWtEqwK+Rjx1q7Kqew6OpUWOyUOPH0rB765Xjl+wBnLU5qvpj7kvm/bGLqWFqORq6GvnZFbq1PZILjw+29xIrAsG2FyGEwezVAOljRU/jhRWFOOdmgzIk4DKTEZ4hD8YzvgzKLMOHHY/c/xE76Adr0JsUlXyRSir7BV+pO6sVBwOwD7//lbuf75Lxk5lnWDrOKLUhJvNXw/qZd8lduB2F7IpTLSPyW0l3I7oc44EVgok3Irof+Ui1qFxF0WGeuHsqtyKhuOqIAjLKNw0v1f5spdd05xrCbvykl7P58Lf/jnyxpDIDgtcVk6AqEQwHZxs3wya4cQKtVv9oAzt8Zz3zmtIDD3P2triXhoB2xHoaOoUSf2Aif6slKmECkSwkI6pFTSY8ZMhOsEx/eeTnaXPYtQ9TF+V6IPyYzLGR9EYnWIBInSBK6Vv0BBYNI8JytFnRf+CCuvC797NiLn1J5bCiyT+KnsmtiQRGUcUmISjyVcyUl7P38th9OiAYNNmjgkghm4424FjPtqE13HOL2G9W+7dhS61tXxehRwHvRiqVXUh32N/yWLYXBMb6r03xmwebMjIClB8flS4qRvBGzCAVSRTuqB2FuXBVJDyBaScytFHQfTZD5cOXfht8+c0iCC+GuMR/0YorNRMXOiIiIZcAXwQ1X9DRG5C/CPwH7ADcD/VdWfrcVY2gRfs8f9z9o6lXn5/md5sZhJKM8aYr+/PYcb/uhla95vi7XBtKy/RGRf4H3APXGk9zxVfXtD2cOALwBPUdV/8sduAG7D8ZQDVT20oe6TgbOAu1PYMqqq7jHBMJeE9UBKXwhcm+y/ArhEVQ8ALvH7a4vEiuWk+7yosdjF9iNxazE95Jst+WaL3Wyxm5wzonYUzXx8LqOoobThrblsV53vSQJ3nMLBMXA/FhgI0vfbwG+BW/Eci+OKnFhMrDiOprQRZxA1is6tf6tCs2l+2D8ljfWVWnmljo0VrkBF3GZMWT8z1GFZFBbbrJav6Dhr44mVcrlUjqXjCCmHMzNVLgVCki4zcptQpzIAXqKqDwAeCfypiDywWsgvvs/CJeSq4mhVfWgTQfE4G3iCqt5JVfdQ1d1Xg6DAjImKiOwDPA54Z3L4icB7/e/3Ar+5xoMqfk9ia+/REpfp4LqXn+IIQ1dhLkc6NupDgne7Zo5A2J7GstpRbMfpYOy8um3OE5NeIEpuc8oagYFg+umGIyqeWBD0Kyreh6XYTA4SNyn0PCbxwl/HkDvt4SbcYFZfN0Gnv6uTeKoMNxREw5sTR9FXybM+KVOXZ6VJSlCnI6m2kSXEZIqe801w+VRGb5MElFTVm1X1Kv/7NtwCe++aos/H5bG/ZZlD/h9VvXZ8sZVj1pzK24BTKUtc76GqN4O74Th2bafFKAuxFsOIFlobAPf9wJtnPYQWq4SQ+XHU5jmVJ4vIFcl2clObIrIf8DDgi5XjewNPAt5RU02Bi0TkylFtA1eIyD+KyNNE5MlhW+JlT4SZ6VRE5DeAW1T1ShE5ahn1TwZOBrjPfe6z4vGMiv910n1fOtaiLOBi+5GWkKwQ2vXiqaAP8RLgILYK69lUDxoV6ZJYh8WTFausnEKM1QczSDXuDRB3XrzZcTgUxxzqGkU6FtPLATjo/Dfy7Se/dtwlrzku/O+3cdIDTxtdyEjhoFg97sVepSyNmb8PloJLgbKZsFHUFnVGmhzXOVnWcUpN13jN6hH1icK0uEs5X1XHvgAishuOE3mRqt5aOf024OWqmsvwNR+uqjeJyN2Bi0XkW6p6eU0XewDbgOPTIQLnjxvbUjFLRf3hwBNE5LHAPLCHiPwD8D8ici9VvVlE7kUDu6eq5wHnARx66KHT0a7XWZZ0ln6LWjHY8mE7OJEXIJmiuRclZVpM+sbtl0RMihNX2Qb/AC/CAi/CGghmAKbvdSJU/E8qnvQBkWCl+v/ExFmNI4ZioNMbLPHq1xgN/iBRdGXdX6k7D46g1E3sQadVF8oFnDjTltuSofhhNWKsVLRW7Vu1VP9TXz991JWvGM6jfjqxv0SkiyMo71fVukn+UOBDnqDsBTxWRAaq+i+qehOAqt4iIh8FHgEMERVVfdZEg5kCZkZUVPWVwCsBPKfyUlX9XXFG5M8EzvR/PzarMdYhrO5WcxW0EXH/s7aWzHTrHBXvf9ZW6K3hoFq0WCYmMimegKiIoxTvAq5V1VrZr6run5T/O+BfVfVfRGQLYFT1Nv/7eOCNDf3sA/w5bjGvwOeBF6rqjWMHuUTM3KS4BmcCHxaRZwP/DayNLKlOSZlYppz0gFeWyrXEZWWopum931vORRDsnI2ciskUq150lXy/mjlOQEgWp3n9Bxz9WSA6OUoOEhTzqU+KFCK1eKzKAytlnxVfD9w4JXObyYop5YhLXsZc5riWi49aXmiZpeDYY84oW1oBn71k2IhSuxk638NsW3AKe03YLxHouN/xOlNuoBo0ss4jPojI/HFJY+2FquF86nRajR+WtK2Z61c7xv0NnI61kCuS55PdpBXCIuPDsExmrXE48Azg6yJytT92GnAfAFWt06ME3AP4qOdgOsAHVPVTDWXfA3yAYj79XX/suGpBEamK34aKADer6oF1J9cFUVHVS4FL/e+fAMeu9Rgu/O+3OfPh1HQyhKyYZu6HXRQmMbu1DW+dnVd03pJ1U6WIlP6kvzWIvPB/vSVWLObPS0gPHHQhXvQleUX/IsnfhHhA4lyZOl1KcU4zHOHLLKZjyTLLXK/PnTbtGHVbZgtV7KYudlMXs9DHbFssnw+TOHiH0DJRiRN6VYwWCEoQUalS6/yYECY1ibAotB0cKsNvYxwh9ERFO4KaQFQU07coHS76z9dM6QY1YxI/lQmtvz7PkJB1ZPnfT35/H3jIhFXvpqrvSfb/TkRe1FD2e6r6sFGNichXms7N2vqrRYtdCr/1H89d1faPOXa6/hgt6pGrYaDZyG2dxf76sYj8rohkfvtd4CcNZX9rgvYay6wLTmW94ML/ftvQsZMOfPnaD2QD4junncKBf+ZFPzXf2vde+mL2+5u3ONGXFxuo4iyFUo4kqS7pce8r4vxMkvMqhX9JOG5BBgzHEPPchxpKYrOirbKVWeRUMieS044l81u3k9PJXFJZgJ7Jme+sjeK+KvpqguRKdscC+W5z2E09NMswC/1ySoiolAfNk32IS1K1MqzMryjSpaqENyaKslBFVNGq+Eu16MMYyAQ710Ezx6Fo5rgVm1igXfbJUye69pViotD36ys4xx8AfwEE+eu/+2ND8BzQSIwq03IqK8RJDzxtvGlmi1rc/5xzo19KNYviRsbJVzxzqu0dc+yZbjuumUs59pgzptrnrg71OpVR23qiKar636r6BFW9m99+U1X/q66siBwsIheKyCdE5H4i8nci8nMR+ZKIPGBcXy1RGYMLv3PWqif82VWgHbfZOeftHhAIimbumB2I2/oZ2jdI30fLDVtf/GZiiBUzEMyi2zK/mUUhWwDTr2wLkC0UnEtAiRsJv215S02NQ9gY7TiPfekopmPpZDndTk4vy8mMJTOWXpYzn/W5a+8OALZeezxbrz2elWJI3GUqGwWXcOwxZ5SIy4XXvJlPffVNmMUcGbiboaaSnz5RupNJ0W7gRJo85SE5bzx3YdAsc3qRsHWcnsTOddG5LtrrlI6Hc3ZTl3xzl3xzh3xTh3w+w/aM3wTtum2toNML07ImEJH7isjHReR/ReQWEfmYiNy3ofh5wF8B/wB8FvgUcGfgTThuZyRa8dcEuPDaMwrrrxbLhkZRhguVYruJj0hXXYT7gSn0vQPj/UikbIUVvtVUpJVLKXSKa9QRiKqinopyfkiKUSUuoahSRG0xxBhj2nExxYwXffW6OXOdAfOdPvPe6qtncjZlfbZ0Ftire/vSb944+Im9KobC4AjxUhBET6rRVyUeT8qUwtobRavWYaRisGL9qsF50hAV7bEdxYnDgh+LoSTm0q6Jokf3HApjgn//yNrlsBmo0B/jp7LOknR9APhLnGc+wFOBDwK/WlN2d1X9OICIvElVP+SPf1xE3jCuo5ZTabEmOOhNq29KuzPiH687jH+87rA17fMxR5zOY45wzoEnPvjVa9r3RoGO4VLWG6cCiKr+vaoO/PYPDBvMB6TmrlW59FhPspZTmRAXXtvKpFeKNFRK9JI3yX6IFuzNgs1iDZcChZWxV7hDwZGUzIQbOA58kxry00tRXrzjvqScTbVvQwxqCS7hl3QtWTen58Vec9mA+c4gKud7ZkDPDJgzA4xY5kyfLWZhSfevFvH+DU9gn734FRxz7JklDkby4kYc9+jT3exhLdrrQub9PaorbFUnFiO5VUnASBXx96zs1V5qQsQbQoiPKi2uG+PrZ4l5MhTcpOdmbCaOW+lKMTzfVpOJ+mrCBbJeV0SjFj6VCMDnROQVwIdwr/hTgE80VPtLEdlNVW9X1b9K2ro/8JlxfbZEpcWaIE2iJam1kLfeMhZYLCy4oKzzqPqMhGOpRZc7SeP6K0orpPI3LR9EZjWEKPQdJrIQi4yOIpm3/Mosvc7Aib+yAfNZH4BNWZ85M6ArOV3JyVz0qPqBLhElsZdvMjg7fvaSVzg9ihcrxcvx5T71tT/jhIe/LvqV5J0enV9435oaQqVVEVgSg8s137wIGCIoUhAUzQKxkKG6Th/j/uY9SZ6jxOex1sg1o1/NsVDBOhF/XUnhWQXwx8k5xelJSlDVv6lrSFWvA140rsOWqLRYFaRBNdtYaONx8fUP4Lj91yQyeQknHPr6Ne9zI8DqeKKxHsRfqrq/iBjgUar678ttR0SuUtVDJinbEpUWawOh4EoWFawpi5hS14g6TiP1cE85lSYRVfJbLdEHZeh8WrTCsQwNIeQNCX4pQfTUUUym0cqra3J6ftsUOZVF5syAedOP3Mq86TMvblsJmriUOkSO0Sqm7y2+upkTP/l2PnV1ET7qhENfHy286jtPOAd89IKq9KySPz5yKSaI0PDe8RXJW+CAvAjMcYiB2ynangVDoMhY8dd6MSlWVSsibwEetYJmJr7LLVFpMVW0Yf+Xj2t+sDcP3PeHcd/+yIVWMvf8zrLbPPboM5YwHTg85ojTvcWctpY8DcjVMBgj/tL1If4KuEhEfgsXin859K5J/zKE9p1psSb4zqtOib+j+W+Iv5UXeowqlxKzKEryG8o6DqkvF9MNZ5UtWd3W9pvG+ErHYQpT4qp/StaxdDJLN8vpGEvHWHpmQEdyOpLTNbaWS9nD7GDPbDt7d8bF8KvHZy+eINt25PAS/xFvimt7HeelLsn5tKr3GXGchUEzE/1PNNWRBDPhRP8RtnA+bJiCSymOF+bBtiPYrsF2hLzr9Ch5D/KeOF1W5p5B3nVlYz9rCB3j+OicH9cVUXkx8BFgQURuFZHbJggcCYCI7AGcKyJ3SRT/jWg5lRYrxiTcyQFnbl3yinlXxMLN96Ur5c/S/ujAFXErLaaPSay/1ov4C0BVd19qHRH5Y1wo/e340J64y2pymgRaotJihZiYoDBswSXhFa2gUWpQldXL8OI6NXOpTboVmtL64+FYcHRM9TCR6wn57rshRL+z+up2nAd9z+R0xNIxOV2v9OlIjkEdlyJ9ujKgJwPHrcgidzJwZzPfcOETEhYzAefiHRvVgPac+EarOeJF0MxxkFHXkmRfjBZgpuBQKFQy/iEMW3FBYYocTIyrnGZwaIz3O9GnFMcSvcqMFiohTMvIMhNQFRHZF3gfcE/cxH2eqr69oexhwBeAp6jqP/ljJwJvx/mWvFNVG2P1iMidgQNwSRH9GGuzRAa8FHiQqv54/JUUaIlKi7VBXTDGRJyVEpwhRf2ojzP9rtP2q+cSAlYyGVZGTkyhrSA6y3uK7bkQ/dLzBKOX0+sO6BpL1wTxV04mivFEJcPSNQO64janoB8wLwO6onQlI5PlSaMnEoEl+MxlLlbdcY8+fcgct+ThntXcyMQ4wgWEDObA3qzZBoJcc1NNcjyKK6X2/lcJShQ9dgqCE9qoNexYZeTWMLDj0glPRPEGwEtU9SoR2R24UkQuVtVr0kIikgFnAZ+uHPtLXE6UG4Evi8gF1bq+7B8CLwT2Aa4GHgn8J3DMiLF9D5eCeEloiUqLFjsJpikGO+7wP6vVobSYDM6AbuUmxap6M3Cz/32biFwL7A1UCcPzcSmH0/ALjwCuCxGDReRDwBNr6oIjKIcBX1DVo0XkYOANY4b3SuA/ROSLQPTUVdUXjKrUEpUWq4bgnxLFX8FRMS2UcA+1SGJ3pcp5TEVxn7ZbEsMk7aTHtVKuMrC4OvZfiO1CPq/kc4rO55i5nM6cu6Bezzk79joDekFRL9aJvHynRjQq6XuSR9HXvOTMi9DFYFbRbuaSz42JXee94Quz7Sa7a4mREVxyMq9oF38g4QiHuJX0+UXTYpoDtkYv/IJrITyXlFsBvvr2U+rbWCUswaT4ySLyzuTweap6Xl15EdkPeBjwxcrxvXExu46hTFT2Bn6Q7N9IfSwvgB2qukNEEJE5Vf2WiBw08gLgb3ABJb9OfZq1WrREpUWLnQjBzDigVeDPBrmVScVf56vqa8e1JyK74TiRF6lq1SrrbcDLVTWXMqGuo2pNy7MbRWRP4F+Ai0XkZ8BNY4Y1UNUXjykzhJaotFgRLrYfGausV4Gs78LNuwNOPxF+N0HquAlwCaMAmcTxLeWEYpgYmpXxiQ7F+jD94LgU7SnM5WRzOd25AXNdF9drruN+z2UDz6FYjGjkTgAfmkWdKbGp6lMMXVmdlNWNHIq6/1ystKAk0eQ+Vy0bwt/ihg/pYwKjUhvepahfuueBy0ligw2lapZCt2IzSkr6MfP6qiGYDY/CpKoeEeniCMr7VfX8miKHAh/yBGUv4LEiMsBxJvsm5fahgVCo6pP8z9eLyOeAO+FC2o/C50TkZODjlMVfPx1VqSUqLVrsxKhyLjCeezn+UW9q9SkrxBStvwR4F3CtqtZmqlPV/ZPyfwf8q6r+i4h0gANEZH/gh7hw9k+vtH8YsJeqXpi0d5mIPAH4FVxssCaEttKVSWtS3GJtURfnSxSyHW4LsB2c622DSW+oFw9VOIogS6+zFBsb5qXSZpHnhSizz+fAztsimVjPIl2nR+l2B8z3nP4EoNcZxNAsHWMx4rYMjTqVrhkwF8OyLHqzYktXwCCYNbaNFVWnSBYqHApc/B+ThcM/9qg3R++F6ugj91FNI5yWyYbNitP68fkEh1VvgVeqszoM3lg4FdS4ZzbRMz0ceAbwdRG52h87DbiP60ff0TwGHYjI83AWYRnwblX9ZqXYOcDv11S/BpeMq9H6KyVmS8HMiEqTfbb32PxHYD/gBuD/qurPZjXOFivDwa/bCptmPYpdC63eZfWRq2EwLknXZNZfn2cJ3jaq+vuV/U8CnxxR5a6qekNNO9eJyF0n7XcpmCWnUmufjaOql6jqmT7+/yuAl89wnC3GYFwU4s4d0L2j0KnYLNFnjEOq7wjfcOorsdwFfuInEyy81HgrrznFbrIwnyPewTHr5nQ6ll43WHq5wJFADCQZ9ChOl2KZywZsNosAbDaLbDELUZ8SdCwzR2UIk3IpAJdcepoLq1/JLBn9Vzy3Ustxeouvqj4lcCRFZsiK1VfinxI5lxlhLKeyDh4vo5d0W1ajw5kRlRH22U8EjvLF3gtcygYkKq/42m8DcOaD/2nGI5k+DnrT1vrowS1mgjQw5fGPGkqf0WIZmKaifpXxGRE5HXh1GkjSpwX+7Gp0uC50KhX77Ht4goOq3iwid2+oczJwMsB97nOfNRppi6UiWwSzAJ1tYAb+ne76MBvpKjNY+1A5lviaxBWvLfQpMXrImEVjSZ9SWemGzIHWe8vbTRaZy+nMDcg63mveh2HpGpfdMTMWSXxQwt+OuECSm7JFNplFNnv2bItZYLNZYF4WS8m5cgUrip3BFFTNZ3/Rf75myW1c8tlXukjIkOhPTAw0CUSv97EL+4rFV/RPSfbj+Wy2nIpVQz4dj/rVxkuAdwLXJTqbhwBXAH9YV0FERuZNUdWrRp2fOVGp2mfLhFYp3oHoPIBDDz10nSwKlo7nX/U7MZTH2x/2wRmPZmW479vOJdsubejrdQrHsTxj1sNYFRz0pq18+zVr6ACpk1l3zRqqegfwNBG5L/Agf/ibwQu/AW8d1SSjQ7vMlqg02Gf/j4jcy3Mp9wJumd0IVw8DzejPysh+lZHtAOPzTpmB41KyRS17v3uroVTXqTAcr4v6FW7IJR8txcatgquJnQKX0lVszx23XYvOW+ct38vJfKBIIHIpncxxKKbCWRg0hrvflPXZlPXZnC1Encqc9On5oJIAOYZFDF1yclX65MxJd/RFTAHL4UbGoc4X5ujjz8IpvxLdCdQ+37irTt/WiIpuJqZ1ngG3MlmU4nXBqQDgicgoQpKWPXolfc1sVhthn30B8Ez/+5nAx9Z6bGuBtzzkH7F+Ru1rRl8znnvV7/Lcq353xiNbOu537rnc79xz6dwu9G6F7m2OkHS2QWc7ZAuOAgzlNElEG1VxlO24Ccam5qSmTBxC5keX175my3H9mkBA/NZzzoyDzUq+SZ3p8LyFTY6gZN0ck1mMsWR+M6IlwpVOKEbKBGVz1mezWWSzWaTnoxFnXkRmEZed3svk+yp+glqbZa/90YEl67Dq/rQgefl6SuLHGNalpp4PSJkG/Cw958RxNUDFPdcQDmgtEMRfo7adgZMZBRHpisgLROSf/PY8zwiMxCyXysE++xgRudpvjwXOBI4Tke/iom82hnJu0aLF8lBHXDYC7ru11n9w6vCh0kZvazKSVcVfAw8H/spvD/fHRmKW1l+j7LOPXcuxzAp5xSvX1HrtrX/M/dhdQ+9W6N6hmBzysJ4JYoquFArxboXzwO8HZexSbkOqxK8Ehgzcj+0FLsUHQuzg8qFkCh0FbzYsHYvpWEzmzIIzo1EZL8mzUa95Ds/LKedz5rN+VNDPmz5ZJQbfomYYOhgUg40hXHICF+Pzs2wArdRnL3kFR5109rDoUgGriOdWnBgzscZIEDgU93Cdt6tkbivMmEjesTX8fiZxflwfinoAROSROF3KbX5/d+CBqvrFEdUOU9WHJPufFZGvjutr5397d1I844u1hhcAnHzFMxvPrTcc+Oa1Ezm0aDEJ9v+LUXrm6UBVxm+rPool4a+B25P9OxjPdeQicr+w45X9+YjywDqw/tqVsWiL229Q7Dp7CyfFvA8vt9tNAyRX+rtlDObcesV2C2VqXLiluePDsmaEArcunEoIqRKRytwThbzToSi26/LJh/4xjlORTBGvjDddS9bxOhTPpaR6FJNwLUExD9DLcnrZgDnjEnVl3povx5AnerMMixUT9Sr5OlrTrYbX/aUXnuq4FUMR3j685NarsZMsj05m5OPvqCLWWRJaQKzLVpmLm6xLYXsSxGe8yrAq5HaMon59fc+S+qmoqvWxw0bhZbigkt/H3e1fAp41rqOWqMwAv/Ufz2XzDD2Bp4GDX7cVM2CVfHJbtFgZ9vvrt3DDc166au1PMfbXWuH7IvICCu7kuYyxBlPVS0TkAOAg3MV8S1UXRtWBlqjMDBZhIU84FVG6Jh8yVV3v2PQj6N3mdRIDhUwYzAuDze78YJ4YBmXo0tLQ9XWrTiFyNbaT6ER66kxPTaENlVwQKzGdLQRuqNCdaBYKgxhFDIixGL+6zTIfst5odG6Mjo2+o8wn4OpmLoAkQM/k9MyArtjo2Oj0ZYbcpwjO/e/cx4c32CGdS66eY1pmWuH1iEsvPJUjH39OkfY35VgUyB03aCSIlBSLIBbUqLf2Eqcby3y4lmAlWAqDn+i8srX4hmRnCdMS8CfA/wNejRvZJXjn8Sb4dMUn4OIwdoBjRYSmaMoBG4qoHP3ZlwDwuWNWX6a6FBzyyVeTiaXXydncXWSP3vg6z/rys3jPYe9Z/cEtAQ94zdbi293JOa0WGx/7/e05zN91ezSyuPZJr5ta25OFaVk/nIqq3oILjb8UfBzYQZv5cf3DqrCYd5LwHtbpVHKhY8bqwdYFskXn5NjZUSwS800G2xH6WxJOZZNbTUZLHojh0tOkWOVUs/63cTJy23V/NVj3mMCKADY41ykaZPIBok5/kqlb9ZrkuLgGHMfiOS2jzuHR61SMaNSPZJ57SbmUEPq+Y/LohwKOK3FcSjLx+D9Zg4VfjjLwOtDuBvssL/v4yzjiiecUxnmBY8mL5yh9p8PSTJyPiw8oaTuCGPeY1bikXHX+TiRtqwCrza2k1oajyoxBU7T2SpknAm/y5we46COf9+duAG7DKdAHqnpope6pqnq2iPx53YjG5JvfR1UfPP4qytgQb++1t/6QR130CubXydU89BOvQQtn4sYU3DsTHvCa1sqrxc6Nh/zra8jM9IjNOPHXhD3VRmtX1WuSMpcAF6iqisiDgQ8DByfnj1bVHze0f63/e8VkwynhQhE5XlUvWkqldTINTwe5rm9ZtFWX13pH3nFpZ72nNmq8NVEOdh37qwjRoNCloXW/B/MS/9qOMNjkklwBkctAJZb37hnlVabRISsvx2F4GXmmlKQJ0QSoOsaknFBwNRTWOIIU5aQg/gLec76w8ornROPWMe7ZdST4lThrMFMTmrnuWVb1ZiGoZO4H2GdAd6xhzvSwFvlWLv/YywDKHIv3SRJv7aVGor9RkUa4EkkhfUcq3G4M3SNeH9O1DAaGTscFA50mgoPjyttpjNZ+TVImNQXewhK0Nar6cf/3vcsY3heAj4qIAfp4LzJV3WNUpQ1FVAKOuuSlXHrsW9a83wd//LUAmCnRtqd94WQ++MjzRpa5+PoHAEQxTYpj9vv2isdw8Ou2op3WoalFixRqDToudp+jdk8WkXcmR8/zwXCHUInWXj33JOAM4O7A49JegIvErYT+ZkTbBwIvpVC6u8qqo4JDvhV4FPD11Bx5HDYGUYmm7xJXj7NEuP2pCMwi5NbQtxkMcCtdtX6F67aBGp+SNh+rBFxr2J77RkxQ0PtUwGpwVlcA4ixy8k2OQ3H11Ft/aVT1hfhNpJxKYsGT6lnUeI5Cpawq1OrfKhuTHnc+D+q5Fg1dhVVxUtyqIColD/qAEOOreGY2Hq9yKSGdcIohay+MsxJD6avSjfHB1o5TnUlWyKAzy6TgLkLSNeOsvByHKm5LuRT/zMT652bdN6YhdXEIKhb6sAZrlUFu/P2dzr31zNXYMsD5qvrace1Vo7UPtaX6URzXcAROv/IYf+pwVb3Jpwi5WES+paqX13TxEeAduDD4k7Jt3wW+sRSCAhuFqNTgqEucjfosOJa1wMXXP8BzJ82rpc/ecNCyuJWDX7e1ZU1atBiFKSnqgaZo7fVNql4uIvcTkb1U9ceqepM/fouIfBR4BFBHVAaqOjZuVwU3A5eKyIVA9E/ZZUyKQ2gEKzIzX4+vPf6NjecO+eSrUZRBnqEq5GoZWFtKQRu4LKsysV6lTuw1TWjiDe+ssdxx2wXTBbNYhLlXAe06fUrgVLRD5BCKhFqJEqPmOqOfCc7/hMDZVMdWsfoJIaQKU07PHZkQZCoRvtf5xdC8+jRJuPv0mbl9Wzpe90zSY8GjHpw/S14ZjFlHpqjTRtCtgNevBO6jE6z4IE0tXILXv0iO9zHyZdM0CuE9sE7ZYnMBMYhx3EodB7osqKBjPOontP4S6qO1p2XuD3zPK+oPAXrAT0RkC2C8LmYLcDzQNAl9XESeC3yUMoH46YjhXe+3nt8mwoYhKk2YlX4l4P4f/jN6vQHzEz+S8fjY9x/K5lWYdw56o7Pw2rhTWosW08EkHvUT+qmEaO1fTzIzngbcx/Wj7wB+C/g9EekD24GneAJzD5xIDNxc/gFV/VRDP8/0f1+WHFPgvo3jV33DJBdQxYYgKkqIw+NXIsGUdx25tOZWsJKRq5JZITOGLPhHeC5l4PfJoDPG12ibzjHPIobhlXGuZkUcjCZvRZpuF9FSEiWbCVnlu7GdYK0zfO8joyA1B6GQl0crrYbx+dhdTY83cjpx1estywLH5PU04W9s149Fk2QfabyvYPkVuJboZZ9wLU0IHvUprPeuz1AMEjmUbAN51I9CtAh7wjlAeF7FAwle9UU8sMLfSSyY3PmtANEXCgvkghhFc/Ecj2Bzd3fttALsTUk9MyZaeyhzFnBWzfHv41IDT9LP/pOOSURer6qvX26ZDUFU1ivu+4E3Y1Z4h5/4+efxsUf/xXQG1KJFiylBqDVpT7F+1rQAiMgvAw8E5sMxVX1fTdE/FJEhY4G0KZx3/uvrTm6YJZH1uUlSltQiM1fUi4C1hsV+h4XFDjsWO+zod9kx6LBj0GFxkLE46LCQd+jbjEWbsZj7vw25VXfYroshlSBXFxG3rxk7tMsddm7JSvpvv/aU2uyLASW/gYrPQJqREZxFmFhx8u9cShvWy8VzhrI1mr4gfjMLybYoyMBvOV5mXh5/zCRpnAd9jEbs/4rfMES9ipS2gisBx+kGDiXqURJrvfRYhpKJkmFHcsjpczOinkuBbFw+5A2Myy/wEhmRYp5uUm4l1l+EjaBTk4LTje+H032EpFlTs6rUCbZ1BBF5HfDnfjsaOBt4QkPxvwV2H7Ht5svUouVUVgn7vfcszOqnHB+Jv//uIwF4xgFfmKj8QW9qrb52NdgfHTgbs+KdHbrTcSq/jROVfUVVn+X1Me+sK7hcXUrAhiEqLimORj+D9QKbG6y3RMFHwLWZJfd6FRGlkxXWQwMxGFGsbQ5Yt6gZXRn4fByWvnZLeTv62mGHdmPE3KVAPWdS1/X3Xvpi7vdWZ6DiogIX3Av4BZr/HVU6OeXVZNp45aOTdAWalifhjmJHiQc1JF70WhDGRKcikpQJHIhRf06L4p5jCTnpg64kSyIg1PmlpLBjFLQhj4pVcfHBgFwV6/vK1W6oSMWToOSbJKBGhqz7goWfc+suvy8qQQdD8VKoRI6nSJ41pfHSzEytU2z3OVQGIrIHcAsjlPQrwYYhKi1atGixZrDEYKaNWEeLW+AKEdkTJ7a6EpcF8kur0VFLVFYB+/3tOUuw6m7RosXOhsg57SRQ1ef6n+8QkU8Be6jq11ajr3VLVETkRODtuMwd71TVM5vKqjqTXYwhU0UbwmysKRRsP9FyCy7EeseH+MZgrUsM5ZTBQqZCrobFEHCxYaXT1w59zaOYKMeww3sb9r09cF+zZZsVV6PHp2Iqyd1Js5icM0m9NJyGLy/+fhTir1GdV8pJ0m4CUVDrTEeTouXFoWjJrDgNNCnGi7eC8p6y2CsTFwI/mH1XFfNVE+IcIVchF4NRHQp9b6U4n6thESfC7Kthh1MhY330jBxlnpwO2ZoGlpwlnCjTP0WRxAhEhsvp6L9A4zs2PlvjErATERXvNFk9dj/gv1R10FDnbsAfMRwv7A9G9bUu31ifcewvgeOAG4Evi8gFlXDQ6xL7/8VbYW66bT76M6fy+ceczSlXuxw7v7J5uu23aNFiibAygfhrbYYyIf4KOAT4Go5k/7L/fVcR+ZOG8PYfA/4N+AyTxwtbn0QFF7/mOu/cg4h8CHgiSTjoKoLDWlDUz1TNmUvZFteoS2eLoFbJc4NYp7QHp5hXo+TWRC4rdbqrYod2PZcyh0VY1A4LnlPZ4TmVruR0ZWnhvtMoJsVB9+e7rzwFgOtOdX8PeuPWYfY/CZWRrhhHMY1DXFG1PefTOmSyPHrQlWYip1M4P4ZUwmKKe93JLMYEDqXgSqoI5utBIR/3VRhoRoalrxlGbVoJb1dRGBJYyMXQl5y+DNjhOct5ydkmOfNimNMBXcmYkxmbEq4Voga85mGnBhpeSa+2UNC7fUFUC64lbs7EeE05lfVFVG4Anq2q3wQQkQfivOvfBJwP1BGVzar68qV2tF5NTPYGfpDs3+iPRYjIySJyhYhckd+6rbGhR130itUZYQ2CZdRq4LhLT1m1tgEO/LOtI88f/IatcWuxsWB/dOCsh7DzYSfzUwEODgQFwEt9HhYW7g34VxF57FI7Wq+cSu2atLTj8gacB7Dp/vdWKBybVGUZxrTTQTC1DSbEKrigigISwkVYJ9+3RjGZjU5ZeZZHM9aOl+V3M5fXHuCGO+4KwN5zP2OBLjnCgu2yw3bjteeYyKV0Ta2odMTgKXQhyd3+zmmnDBGTGBIj1IPCKS1FDaeS6kjqGIxy6Hui82I8XnK+1HK9pO0YzsVrVSVLORWLyTSmDgY8l+KcGIPTY4rAjbhkaxnGt9e3WeRCrFpyI8wxIFcTuUVrDH3tsGg6LGiXHdKnJznzps+8LNKVnHlxkTm7YpmXAT0sc9JnXgbMy4A56WxojsW9U0GvQhF6xb9rIop4s+CROhWfEE4954IV1OtadUqzvagUKR9GlFlH+I6I/DXwIb//FH9sDpeAqw4vBE4TkcWkzE6bpOtGYN9kfx/gphmNZSQOft3WQuyzZdajWR203MnGxyydII94wjn1y8j1jPXJjYzCM4HnAi/C3e3P45J29XEe9kNQ1d2X09FYoiIiz8PF+f/ZcjpYJr4MHCAi+wM/xMWZeXpTYfUJsERyVJ2M21Cvj1hNZAuCHYALYqcuCVGmTs47wAXkMOpXz/hgeZ6zyg19k5XGvGmujyp0fWasQWbYs7edH/d3J8OyoF225V0Gif6mYwKXYtmD7ROP/TuvPoUDT6/Rk6SonEvDzcfzpr7spJOGVjiNyKUkOpWgZ4nWXSRcSfgLMTRLKUQLYDLHnYTUwYX+yr0zIQJtSKUAFJEL8RyLKXQqIRW0SxGd07WWBdOJzwFgm+05bsT0Iyc5Z/r07MBxI6YfOZV5cb97vty85MzLgM2Su830MOtWcj0lqEusluYIFu/gKD7UvUiiU7Eghpi4K+qvvOOx5u6ZyS4YDscbPn1cVR+Dy+ZYxe01x0LdJwBH+N1LVfVfx/U3yZt5T5z11YdF5ERZg6fiTdyeB3wauBb4cCoPbDFbHPy6lnNpMR2ECMU7HQqpauO2XjgZVc2BbSJyp6XUE5EzcSKwa/z2Qn9sJMZyKqr6ahF5DS4BzLOAvxCRDwPvUtXvLWWQS4GqfhL45GSFcWFNxGCz4TSuqwmTU4SICKulDGxX3AobCh2LxS2vDGjmZPxWQaxi/So5hmQHtqkw1x3WizhOTFm0HQY+lkVI8NUzgxhG5Cds5j2HvWfyi6l8CN95tTMOOPgNW4fOyaDGJyDRyZT9RSrHGpYlgUsppxhOjic6laivCmU9l6KZlkPcGyKXEnODVfxegj5KrKBqyIxircZQOq6OYqzXweD/BqsxYz2XYmOytcC5dI3TqXQkpxs4majzctzKvAzYbBaY99nONpsFp28Rl9pgXvrMmwE7pE/f9Olby2bpbmj9CuAm7hznqebTBpNYe5UswRKLsJCuWn1AUzWOrdE84TynMLaxJsUTQET2Bd6HW7xbXA77t1fKPBFnpWWBAS7l8Of9uUn9+XbgcrZcDNwRL0P1BSOG91jgoarOjFFE3gt8BRhp/TQRD+1zFP/IbwPgzsA/icjZk9SfNY793ItXpd0Hvmr9r9if9O9/OushtNhJ0FqBLQGTWH9NtrYdAC9R1QcAjwT+1Jv7prgEeIiqPhT4A3wgyMSf7yRcSPun1dQN+ATwGlyq4SuTbRz2TH5PxOlMolN5AU7J82PcxbxMVfsiYoDvAqdO0tFqw6pL1JVbgzF5XIkGy6nV69hzJ36VHkXAQbbrvb4Vojd6sKnHguYZ6lfSqUWT+ORECxQr6b7N2DHo8ovF+eg/ERJH9cKK2HQmTkVcReBMqvjW607h4NdvLbH0jV2E82E3tQxLi1QWeXVcjCae8FGP4juPXErUnxAtvaqLUY1JnlxZa8WN34DVLN4va52PUB+iFV4aDl+EhFPRoSRraYj8wL30ssCplLmXnhkwZwbMmS4Lpu8Dgbosr85qbMAdMudC6Ytliy6wTRbp63Z2mJy+LGwci7ASV1vsiBbfFeosvwJHUgos6b+lqGuxoLl7lmr9dyfGMRZTYlQmCdMySVeqejMuFzw+LfC1OPeJa5Iyqc5jCwW5mtifT1XfKyI9IKwcvq2qTVZfAWcAXxGRz/nLOQJ45bhrmsT6ay/gyar6X5VBWhH5jQnqb0g86OVb16/t3JTRWn/tOlhLK7AjH78TWn0FhEXjuDLwZBFJQ8yf590hhiAi+wEPA75Yc+5JuEn+7sDj/OE6f75fbWj7KOC9OCdIAfYVkWeq6uWNw1f9oIhcChzm67xcVX/UVD5gEp3Ka0ecu3Zc/bWAKkm6UOvStlpLZmBbf/UiO8qAsg6AhGNxUki3YyTqBwDn8WuliF1lpPDDMC4OmPOw95ZIXnab54bFfkYn62L8SjkTpZvl9D2nklozLZdjWS5KoerDMb+TZOiNOo2qv8qKzPqjyMFFLQgdCerk6cl9DGHvrbcgyivcSPhN0HP5YQbflcx4qzFT3OfUai9wMp0sL3QqnpsMf3vZgE1Zn4HpYys5mXMMWTJjGVFukz67Z9vZoR321O3sMH22yIB5yb0vi/O635mtwqrcauRG3c33B8t1UslA1LVYcb5gVsDrPFVw39WUdCpLCCh5/qg5NLYnshvwzzh9yVDWRVX9KC4f/RE4/cpjqCfJTaN6K3C8qn7b93cg8EHg4TVjOVhVv5XEC7vR/723iNxbVa8adS27yFq7RYsWk6JN3DUJZPwqaMI1nYh0cQTl/ap6/sgmVS8XkfuJyF4szZ+vGwiKb+c7vt86vBg4mXrzYwWOGTXGDUJUvKe6qPdXUSQTbzGyOvx18BwvJQVKVt3k7q8VQUXLq3gVF3vKcyzRe9g510S/DMnAqokrbJsZxFgGxq2Ss8zSyXJyFRZxvioiUXUwNlnUUuGDBETYDEpO+6l1WFpRSqLygkOp+J4IhQWd6wAUz22kzRt/LFjVgff58dEMJHkQIUVtYv2lafTiRNkjJuE4wpgrXIyIMqjRtwDRtwWcd34nszEBW8dYep2B06dkOZvVOF1Z8gWGRGsh4nTqBzNv+uzQLv2sw6J22KIL3Oa97bti6dFnThaZF2FeMjZJd91HOL7s4y/jiCecU5qbC26l+C7Uc/ru/avRrSQh7kScRaYVKfRxufNxUZHk5VohJlfEj4R30XgXcK2q1sZ5EpH7A99TVfXcQw/4CfBzJvfnu0JE3gX8vd//HRoU9ap6sv95kqruqIxlvqZKCTsvrzxD/MpLdy4dw/3+8fRZD6HFToaFm+/Lws2rkhhwQ0AS8+WmbUKiczjwDOAYEbnab48VkT8RkT/xZX4L+IaIXI2z9nqKOizFn+85wDeBF1D4nvxJQ9mA/5jwWAnreykzKRSst/DIMosVwwCc7HuVfFbiSyOJtVfQpYRVeA5ZDt9+zYu5/zmVRYi6FVi0DLM+1aljbxyHlavzu/A6gjwHxGAyixjIM8sgM2TGljkBdavm3BrywZTXDYloWxQ0A+9eUXAydau4ZHwSZdxJe96CLnpF+zqihfWW+PsQVq9p/ZDauNyX002J4PVaha6lsCxLcrJYf5xEnyKFHiam+jAWleGcPdYKao2zSBLoZ5bMcyrdTs7AGnpZjmp/SO/VV0NXQu4W6/Kx+AvpSs6mzFmIWRX6WcY2OxdTGmfYGDtsXvpsMYtskR3sbmDzOudawvuiid4k6EA0K46VkH5rvg21oLl/Dzqp3s5bgeVBpzKlgU/P+uvz44qq6lnAWQ3nJvLnU9UF4Fy/jYSI3BNnBLBJRB6WjG8PYGzijfX5pm0wHPSmrTCWaVyfeMTvnwv7r44IscX6x09u2oe73vvG8QV3NUwi/lpbO5mREJHDgdcDv0Q54VYdO3oC8Ps4HU1KhG4DThvX18YgKurkpuoz7Q1y4y/Mro5OxYJ3UcBaL9NNrE8Ki5W0TlhSuxV3zP/gYxqpUS/iL1ZrhS1+oSMQI1gfE8lmghjDwJStj9Qv9WKU1hVij+uVL/1d2YH0ga/eGj8sNXDN6afU1v3llxWiwmoEY80K7iKIutVHJIjnvSd1lK1D9JIvZYRMsgUWHSYcTJCpA9GXJdQJnIqPySbG9VFK6xHaFkXVlPQtrnJxv0NOHNVhLlFEkbxTel4Dm0WuA5weLeRrMSi9bMCWbBHbdZlBd2g3lutrFnUx86bPZrPA7tkO7pLdzp5mG3tmO9gi2+kKZD4mXlcM85LVZpa0WPqau22tYn2n9zkg7KvXR/pIFOE7i1xKXpTXzH2PxqufLYGblMZulgvR4fd5neNdwCk4PcrIREuq+l7gvSLyW6r6z0vtaGMQlTXEg1+8c+lTAvb7q7dww3NfuqI2Dnrj1vgRt8q4Fi12KvxCVS9cSgVV/WcReRzwIBJZi6q+cVS9jUNUvN+HzQ2S2ZgBcjV4UIEY+0pyfHwhorWK7fngqGHFLUWMsCjnRQuLJwEJCgR/LWJ8/odCrE9hGeb+4jmeWgWG594kF+gvf31W5VBKveSMlVF/45yCg6kSZBmU66shRp4FLycP9ywj+gNFriXxqI86mqFBFhxM1J1EjoWSp74Ef6EgL0/9j8IyN4wnNJBAbTghsbzNi9hhg9zgIms45GpYzAuP/oGPhJx7TkVVyIxlU6fPYrdDXw0LnQ4/G2zGqnBHPscdgx6L1n3GPTNg984Ce3a3cfferdyj8wv2tNvYw+zAYMnExcUzovRwOpiuaORiYAaLBeu4bxSX6yT1RynpLZxDimTi3pM80d+FEjnQAbPovzkAEWzS7jR1KjuT+Av4nIicg8vyuBAOjvI5EZF34HQoR+Oiqfw28KVxHW0cotJiLA44w03qITXwJDjycS682y0P7458Wx542tbSHNskDmvRAuDIx549PVnUDDCJ+GuNfY/HIXjaH5ocG+dz8muq+mAR+ZqqvkFE3oojSiOxMYiKz5eAMajmjkvxEWcBrvnN10+tq6+dewoPPmUrYiFbLFa+IbujGm+ltclHcQir27DSDfqWyKZ4xUks7GHdUstxMP6YqOdyKOcPqb69PiKyWMHkIAPBLKz8C676pCx11fe1c4cJTcq9SF6zuEvvX1hGZ8SCXhM1rOOoNBE8rYGSf4zj+Pwq1ri2XXda5h7Fr6abrJGqv42Az5UOeD2YQfvOKq9vspjTBXzsOs/V5FawnmvJMst8r89Cr8OOvMPtmZNC7Mg73LY4xx2LPRbzDBHoZTlbegvsNb+N7XmP/ryzEvup6WOwWIznWJR5WYw5XLrk9CSPHExXLN3kXt6z9q5OGf4ziHo6KpO2n8RtB28FKAk3E3RintsaeP1K4Giiz4qM0SYsbbzrjBMZCVU9ehnVgo/KNhG5N843Zv9xlTYGUWmxJIToyrPmJh7yoq2tcqbFzokJTIrXA0RkZIj2JodLj4+LyJ7AOcBVODL6t+P63DBERaw4HYM1qFisyKrPV8FXxVhFFgrLL7ESPe3VJIYsmdezBBm/ODl84ekdzjk2IK7cQn+pZZh4ayVD2QoqvOyBPQ/cil+hZQssCZd9wgWhfsBrtxZtVsYV4Y9d8+bJidWQCCH1Uwmr15BDI+io1K1YofiwnZ9L4P4q5/xCVUOelbDQFX9PQ6Rjm3A+6vdT7/zGi/B9plZ6ntcJsGp8VtCCqwqxw1xcMuN8rQi6GT8OYx2XMtfljl6PTmbJrWFHv8OOhS79HR00NyBKNpezfVMXVaFjcoxYtnXmyMSSe0uxDBvzuOxudrDZLLLFLNCVQcnXZd4M5/FZE6h/97V4xSR5H0yOe3bhJdFyXRHPpede7ykhCaR/SNMUue0cOpVlpQT2UegvUdWfA/8sIv8KzKvqL8bV3TBEpcXS8YDXlNMHX/Nn9cTgoDdtbRmKFlPDUSft3PoUoGTWvJ6hqm9YZj3rdSiP8vsLJAr+UdgYREWBXFAjfrXnpkALfPf/vHp1+vT6k8AZpPGHTN9xBMGaKZa3QB/yeZJlWLEFVQtIyTM9ivVtuV5YmZc4FZI6Va6lMv6lQKXwzYlN1KzEvnnG5FzKV99WLvuQF24tL+60/LcU4ykfLiPFAr88vnh/Ck4i9ejXyBX4hlSiNV+hQilzQbUIzywsj41iAxfkV9+xaOBIQ/tWimcUrPY8pzvoWgZzXbb3etE6zi5msCPDLBjvRa4MNmVsw3nvz3Ucp/Hz/mYGaljMOzGWWM8M2NJZZPfODu7U2c5umeNYnDXYgC1mgXntlyIlrznU67S0HDdPcjAIVRegUsRriknfDIgxwmyqn5zKGFd4fv3jIhH5LVyk5YmvZmMQlRZTwQNfvXVI+S4KzE2/r0Oes7WcDhggayzeYgPgqJN2ikSxE2FaSbrWOV6MSwo2EJEdBNMi1T1GVdoYREVB+o5D0a5isaymBjjk/lBvX29RbAZXvOvFLqwJySop8a2IKykvWy9toe3qdXnZfmizyq1QnZirdWsvoLiOSZAtMNLSayncyUhIonMKh4LPCsnxhAPTpFzkPkp6KF+vlPNGCsZFtDgX9CLjOJK07QCfDz3Gg4tWfsX4JC+4ERc5QEvlCi9xcZZ2oWzHYLuKdjsuB4wVOouQ7RAXd03B9oRBXxiYLrf7eGN3+FxCgzyjb0309J/vDNjcXWSP3gJ37m1j984OdssW2Jy5bJLbzAKbzQLZKmqiU50JuYsqPsRlqibP2rGijkPV4eeTJVH+/L2UgX8vQmZIJcZTWzF8myOxk3MqqrosfcxMiIp3wnk8sAh8D3iWVwghIq8Eno0z/nuBqn56FmNssXo45DlbZz2EFmuMjcSlBGx06y8RuURVjx13rIpZcSoXA69U1YGInIXLe/xyEXkgLifAg4B7A58RkQNVdaR1uSiYRefFbDODdoQcuOFZp67aBcRMhZ5juepv3Gp9aLWVjtyXN33iaraqB0hX4/FQEo01cirp+apOpQZ1OeCHL6q4rtTiRgLjl/Yj8M0Gxf4kCKKvNM6XzUA7lHUpgdOQmmtIuLFoZVfzoYcotiWXk9iWFCtOowVXGCzJkvFKZVwSMknmjisN0RVK+rAQ1savmiOXm4HtCrZTcJppPKvQZrh+2xE0K7goM/CbjxBtO5AtCNgOiwPhp9u7/KLrGrS5xBhwpmPp9HI2zS2yba7HtkGXPXs9du8ssClbZFPWZ/dsB7tlXboyLaeOcN+KhxM5yODpPlQ2vO8FV6JGY0bVVEeoWanpeC6z/jFkuNxE01QRVb7BxjJjICL7Au/DuQNZXLrht1fK/A7wcr97O/AcVf2qP3cDLtBjDgxUNXVuhML66yBcWuAL/P7jgdpUwj5nymZgLxG5M8WXsAduXh6JmRAVVb0o2f0Czv0f4InAh7ylwfUich3wCOA/l9PPfu94Czf8ycriXVXx0OdvbWX/LVosAUedeBbUOY3uxFhCOuFxGAAvUdWrRGR34EoRuVhVr0nKXA8cqao/E5GTgPMo56I/WlV/XNd4sP4SkYuAQ1T1Nr//euAjDWP6Y+BFOAJyJQVRuRWXz2Uk1oNO5Q+Af/S/98YRmYAb/bEhiMjJuJSXdO50Z7Idgh2IXwXqqjrVBVktBq766/Jq3a1G3TJM8mT1bN1SIvWd0BANt45TqUO6Al6CNVcpLpYUxxqvr6Z+7J+VO00W/jjJeGoGMDYMRpJDJeaxqeBbrzuFg1+/tfw+NBgBpTHBqmOJg4wr6IQL6YNZgKxfcBdO/6UxCoHjZDRGsrYdwXYh70rk1tLrkhxMrmUdTNDj4doOejsJVmJ3CNk2oX9bh3y+g+26u2r8dWgHbNeyuMkymM9Y7HdYHGTsGHTY1uuxW3eBLdkig25GXzM2m8URd3+JCFZc6r6PqNdSjRaPxfVrwZX7HDp4/WX4vkL+lRjNO/kussXy+x38w+zAR7uYyvUwFZ2Kqt4M3Ox/3yYi1+LmvGuSMmlirC/gQtIvFffBqRsCFoH9Gsb0duDtIvJ8Vf3zpXa0akRFRD5DfYSHV6nqx3yZV+Eo9ftDtZrytY9GVc/DUWzm773vqks3H/KCrTuFDLVFGQ96xdadNpfNRsBRJ9bmltrpMYHEOZx/soi8Mzl8np+7hsuL7Ac8DPjiiGafDaTRhhVn+qvA3zS1jUsj/CUR+aiv8ySc2K0RqvrnIvJrOOKT5mAZWW/ViIqqPmbUeRF5JvAbwLGJDfSNwL5JsX2Am8b1JeoslBz3INiOQLZKFGAM22t8xGKTU+TQ9nJ0swi2S2EhlFFYNaUcRFXPkqDqfzIWQQyfcCqNEX1h2JIsmle5P00OkkvBV/7qFB72p15Z71d7xlvT2Nzfo4BUfxJWmamOpzLeqk8DDFuvSXWV2aBvqjOvTvUdmV/3mUWlswCm7zkLLVbaZuAGJAOt6AdAM8F2pZSDPY4vWo1VHnLMWhnOOw4IoGdg7ueGwSYhnwtt+1V6x/lHDTZlDBYNti/syH0cMpvRtxk78g47ul0WbIfbM2c59o6H/z0rRXxn80SnQiFNEMB6Kzwx4rgTTa5dXHwCROIxl8VRIxumRjG5Z1tCfqOgv/KcofSY7JuZBJN+f87H47XjConIbsA/Ay9S1VsbyhyNIyqPTg4frqo3icjdgYtF5FuqOqQrUdXTReRC4Nf9oWep6lfGjOnvgfsBV1Noh5UxxGhW1l8n4hRPR6rqtuTUBcAHRORcnDzvACYItbzaeMgLtk5U7lFPeytkG0t23KJFixrUiaBrykwCEeniCMr7VbU2CrCIPBgXfv4kVf1J7EL1Jv/3Fs+FPIIGBTxO+X6rqr5HRO4mIvur6vUjhnYo8MClOD7C7HQqf4FzqbvYZ2b8gqr+iap+U0Q+jJMnDoA/HWf5BThrmEUKy5BuIXueNkzOSFmq6Tt5sfZd3pMir7pbNXa2U+ZUUp1KsIgKuVnGjGWiK/SL41SnEjmXmpV5kPnHPsIg8in6owBf+ctTeNhztyI4ziXgkD/ZSn+3pP9g7eYXocUJP+bkUNansL7yqMZFS9tMLfhCm6M4RMehqIuYsKiYvvp+FenbRJ/mYYvVtlh1K3XV4nokeO4X3Iobs//hglYNIViBpfokM7CxrmaOW9euYD03NNgk9DcLZgtILgxsRm6FRZ+HKM8Ni70Oi3nGYjdj3nMq00Bx7ZUT4doEDNZ/szr0nNVHOZCBFu9x0DFlLl+KGfi/Kk4XNSier+26LZ9aMhWWwqmMhLgJ8F3AtU3mvSJyH1zI+Weo6neS41sA43UxW4DjgdoEWiLyOhyROAh4D9AF/gE4fMTwvoFTYdy8lGualfXX/UecOx04fVp9HfSmrXz7NdObDFusHh719LfCHm2UsY2Co084a8KVz84HYbQYnAnOexwOPAP4uohc7Y+dhlOso6rvAF4L3BX4K78ID6bD9wA+6o91gA+o6qca+nkSTl9zlW/3Jm9tNgp7AdeIyJcoJ/Z6wqhK68H6a8UQz6nETIFhJThlZAvQ3eZWm3lvuINg4RNYAxWNvglhWRMtgLKCe4mWPRnYTNwqrMLBBNRxGI1IjJlK3BDUWoNF34Hqx7BKE0PKoQRki4pu8xZOCtmOwF6UdQ5qnNVV+HCzhYJzCCi4gHDA17daFl2k+qxwqHoPvIzf5adxK+/AHUiecCGVOkV7yfmEoynlZwnjFHHHR3DbMftlqJJyA54LctyKIe8aTN8guYmRrgNbnGuHvgrWCoPcMLCGXA07sulEKXae7TX3pnQxnhNMbrr6+GmKePNdjWXdu6Dx/hgEVXXRwUXJFq2XKKjjZHIhj/qV6bzMEwWUnICoqOrnGfOFqeofAn9Yc/z7wEPG9wLAoqqqV+gHLmccXj9h2yVsCKKyHvDoJ7+l1ae0aOFx9PEbl0sBpib+WkN8WET+BthTRP4I58oxMjeKql4mIr8EHKCqnxGRzUzgpbcxiIo6eboGWbn1FkRTeKkf9tytSOY4obmfW7rbbbSdD7lGAjrbcsxAsT1TeFvbYmXsPOy1kOVnElecqe9C8LJOc9q7xhJ9ywgpUa3fS6pTkaRtTU5LZYsNwjfOXn0R4n9+4CUAMX5a4Dx2v347d+yziaxf6CeCn4JZcMvFzo688GkICLqKcK+SlaWzxFJKZnAV3UvpWDge/S20sGYKK+nqanwCD+5UBxO83kER416SaqbJWN6Ks6Dy96E8Dvd8zQAs1s0CmWAXFNuBTsf7xogAhlxdtskdA0NuDVaFXrZyh47APUk+zuHIW3clLLQEK64S91hwd+Lz7sTNOO7FcbfWvyPi5gTPoZgM58M2BUwi/lpPUNW3iMhxOAfGg4DXqurFo+p44nMycBecFdjewDuAdRmmZaoQC9kO92JJ7h2clCGnsuXC9KG7XendliO51k7oWV/p/XzR9ds1mPkMm0kMNRFMSuNkBkTzUCPYjonKVecQ5z78NJJvFJUlog+pEStoVAATxUbDicDcFr/Z6nng6zXpf9cCIU1z93bL3E+d3e6WH253CuoETrTiJj8Z2OFJXQQ1Zljh7fer9642VXAiknKFJpxJYuiX+tM6bsUjIwiKavE7vEO1nXgxX+7ePzNQsr6QL0LWxafAdoTF5oLOC32FbUC/szKiIp7omkVbet9rh2l8mHs/5ijCxhOXatvhvMWlfw6LDLwYbRBkouEeSBRdan9K7NMknMo6IjoicgrwkXGEpII/xVmTfRFAVb/rTZdHotWKrgBHn+Acu4583MYLlteiRYsR0EKv0ritI6KCi9v1aRH5NxH5UxG5xwR1FlQ1euGLSBqZrxEbg1NRx0mogO2DzLsluJ2CVWR4MeZ+kZPtcKs37ciQwq/7i0Wy252BhBqDWXShMtwBt0rEKmJtFJsEZSQimMxzKpnB9EzhuGYkpsFVI9EMuXB+qzHBND44YzBZNoWyOoi+xjk/Xv3ns7OYC0ESu7cPyG7bAQPr9FVRDOjldoOE/fD3sSzOEgQ7zIE0cCqlulFkJo1latut+11tu65uExKRnIok4q/YkhOVNbTnQr87o4KsL9hF9VyK4wGcmbRzlsxzwQJ9Aa0xRFkSLGUuBWo5yThGU5wbORn7Zx/eYbE6JOaO31VA7sLlpBzQirGT6VR8DLA3eH+XpwCXiciNY5zULxOR04BNXnT2XODj4/pqOZURaEO0t2ixdBxz7JmzHsKqQ7wIctS2TnEL8CPgJ8A4UdYrgP8Fvo4LMvlJYGwq3Q3BqWChs82CwGA+BJWcnunJ5ltyej93y2fNamTdFsyOPK6cJVPY4UW6SQBAcsephBWbgFsJ+9VXlguaOcWmWTSRI4oy86DYl3LfJWc/48ySC6W/FMmgwnhSRXxVKb0OvoXgMGgWcrAWsRbF524Gdw+rSvnMJMrnAqVVa4kTUdRK88cfQsGUBjYpdzGCmxkqmw52xLmaZxMV19afDNyaP6feEqOksAdEDWYAnY4Lv5/3YLAJ+rsLfc2wA6FPlxues/wI39mCM5wIwSPrkXAnVRVOnbGEFFx7SDUci6dddItvNIa8GSgZTC2vfAx4OabMeoGIPAfHodwN+CfgjyqRkOuwCXi3qv6tbyPzx7aNqrQxiMoq4BHPPBc2j59Ejnzs2RvacrJFi6XgmOM2PpcC7HTiL+CXcHHFrl5CnUuAx+ByuIAjKBcBvzaq0oYgKmKVbIf1+oTMORH2R5vdToLONmX3HywgA6cHsV3jVkBCSadiFi3mDu9wmoY4CboASMxPtWwZFLiW3Os6NMdY41bSgxA8MOgSKivvJAxIoGy2Y5COID1B1CCqWBVsWKaqlhfcoboWq70r3jUyWdyqo2wS3WDBFeCfg7svLutZ5FK9jkVFHJeXrOLjc2jK3FRjfdU4hnAu9Ml4DiWu4EdNTN7RbxxKHEuiX4l9WOcYqt4K0SwYurcRLcfsnGFxd8OOvmNh+yuUijvLLwv+nW/U+YRPIn0uNdAYW0ijqX7UwaQcCf7dsWC0CFvjRAZuywZTogQ6ASeyDoiOiNzF/zy7sg+Aqv50RPV5Vb09KXu791UZiQ1BVKaNRz3trbBSRWWLFi02NtYB0ZgAV1KMtDqpKXDfEXXvEJFDVPUqABF5OLB9XIcbg6ioC/Tn/FQ0hiYPK9bD/uBcvvzuyVbfv/6kt8C80NmubLlxO6bvhL22m/nkQdaFuoToB2C2J7lv/OpYVF3oiJxm34Ygtw/cinp2wVoXBjwfv+qNq9HAOVnFGe/7DlS8+WNY4SUcnKbtVDiEGSLqofrWcR8+TLyEoIkDENEy12ZMwdGkVmLgw94UHEzwEZHcO9jVckCU2wD3nKZg2iLp8x6BkdyOIXGWnADef0PyHLOYx2OuLaFzRwfT75AtGLhZhpLPTYJjjz7Dvf4Di9le6CCD3rDpetIw+EP+ROFbSriVoecbLtFz9ZLbmHJAMxcwM1hOTgvTCtOy2lDV/VdQ/UXAR0QkpB+5F04vMxIbg6gAwbPY5OryZ/iIp8tRzJm+Mv/TPtk2RyxUBKOKDooZJYpQVJF+Xh+iJVcnjqgbbhRNhCO+nNFCgZ9cWiOCGa3v32AIaSnFuqjKdqBxQrVZ8KYebmq9EJX/+LDzrD/xoa915qMdU4jBAOmAWltce0A2PHlJEHOZYhLQlGCIDD+jpsl8UkU99QQjjGtofBM36giiQJnA1RkGNBkARHFnIo5VoXN7n3nA9Fc288rAYnbkyOLAtd0xUSxZMguP4/FEoublS8V5RaQAGf1BqHe4hGKhFfLbDEYZDSzxOhkv/lonn1OEiDwBOMLvXqqq/zqqvKp+WUQOxnngC/AtVe2P62fjEJUp4MjHne0yHbWYKY57tAtSPcWFZYsW04XSLIFIy6wTiMiZwGEUWXZfKCKHq+orx1Q9jCLz48NEZHaZH9caIRSKWYSsI5iBMsgNeXeJ6wVV5n6R0/nZDrdKNgl3EpS6VQc0Y4baQD3HESQNNSuk2jAhVc5lFLzoTES8yS0I1kkNrCYZBQvRj+2IM1WuMU9el6hyIoBiXLbAOZci8qIvvZbjH/lGNKs+B6/rttZxhv7elvOtyLCgWUaYGidlVoSwiC6J1+rLuN8SCymJiLU6DqmWr7QTlPpBBBiKqJLtGKxYlWj63mglhM/JbaFMz4zjOo0p7rHnVIYcFgHxHIwLZVRciiogw4s/GTPRp9/BijGBSfEkn7CI7IvLpHhP3Nd/ns8Rn5b5HVxSQ3CWWM9R1a/6cycCb8etwd6pqk3md48FHqrqvgIReS/wFaCRqOxUmR9ngSMfezaXffLU2nNHH3+We9laJgWAI55wDpdf8LJZD2NiHHv0GS1XM2M85sg3jwzVv9EwkU5lMgyAl6jqVT6/yZUicnHFh+R6XJbcn4nIScB5wK96v5G/BI7DpWL/sohcMML/ZE8gWHvdaYKx7VSZH6cKUSXb5rTntusiBHcHLoBc3hVnbjwJFHq3DujctlhwJVAQm+q9DQ6F0Z63wn0kgfRGO4EV11HK+ldF9TIip1R48GoOojmSS1wNpnJo7RgXvLLrcm2sR07Fdt3Fm27mjBa8PkU7xU0x/RztZbFsvrlb5DQJuoug8M/F57EJeoRENi81XIc2cyu1z7DOpmYU6u55nbNf3E9ywiA+c6WWg1JKU/mqLknKx7ypbSkA5DJhFnLMHQvIwiJ0/dTSH7gIr7mFuR5CB+36ezuw8f2UblashT0ch6KRYwG8sr1GLxOuNa+5+akOq+78cjEFk2JVvRmfWdFncLwWFw34mqTMfyRVvgDs438/ArjO51VBRD4EPDGtm+AM4Csi8jncDTyCEVyKx86T+XE94ZjjzlySAnZXwVEnnc2lF9Zzdi1apDj2qDevO6X0aiNGHB9VZolKFRHZD5ed8Ysjij0buND/3hv4QXLuRuBX6yqp6gdF5FKcjkSAl6vqj8YMadfN/Bi9W9OFmypmwWIWiSuGY48+g0s+54jzscecUZLjmkVLtmOA2dF31lwQzVldH2MshNLzNUSqusKdRG4/hDqzy0r/QY+j4l5q8bqd6GAWclxYg7UVS6h1gCMffw4y5zmVfgdZzN19yiSKV0JGw9osmOmq1Cr9PbrOObVvo0myDDRaCw5B/bmGR1ObsbHqBSCV41SO152jci7RjVSdeNXgTMSjgmE06p6xJmHhYxvK2ImyiuMf8UbY3HFWX/0c6efoXA/d5PRd5g5gwZvcdztorxOt+egqbO8ji303xswLMSsm9qkpsOQ45UklBUXg3sqWbmFfYntT41Qmd358soi8Mzl6nqqeVy0qIrsB/4zzer+1rjkRORpHVB4dDjX2Olz3cOBqVb1ARH4XOFVE3q6q/zXiCl4/4lwjNgZRgWhyKOpUmSCYvh05QQAubtiCJyYDC4GgpDG+6ibxEGcq/ahH+Q5UxVk2megbxGqNqPPsrhC1kskoyTynuJhMucWoVjzSKccamzE0E2eSGg0jwmQT7hvRa1u9hKT6oV/28ZdxxBPOwWZCtuDqGS9nUSMl5a5Yys+0YSHRKMask7yUxKFJ3SWLzCqLkhghwZ+ue0drFzfJaf9xBIW5ALKYc9F/vmbMYGrgr81umUO7WVw05XfaROafm93cc88r96vAjkE39xKzb28+TuGThPf10uR7i7lzjCmZDdfBPVON78aair8czlfV144qICJdHEF5v6qe31DmwcA7gZNU9Sf+8I3AvkmxfYCbqnU9/hp4iIg8BHgZ8G6cwv3IpnH5zI/3wHE3AF9S1VtGXQvMWDUtIi8VERWRvZJjrxSR60Tk2yJywrT7PPboMzj2mDOm3ewujWOPPiNuLXYdnPSAcSL5jQvRybax7YgI8C7gWlU9t6HMfYDzgWeo6neSU18GDhCR/UWkBzwVuKChq4FXuD8R+H/ewmz3MWP7v8CXgP8D/F/giyLy2+OuaWacijelOw747+TYA3E35kHAvYHPiMiBqjoyDZ0EB0QRJAsiq2CqGBsfqpftGGAWHcseORTwohZPb21FgQ7NIrH03Dgkoqzatque3OPaSREdygpDgQgLIgreK71QauNMcg31jpwVNBGQ9HgQNS4JVjHpatKIu5y+dTGkwNnLVFfuHWdmq+jQx3z5BS/jyMefg+0GDqe4aQpJhNwR9zmYvTaIpSKnUBXBkBy3xDhYihPn1cWnq3PSbHyPU9Fb5XmX4sbVofpeLVUcC5g7FrDzmbv/JkPJvFjNp/PtGvSuuyVjdH/FKmbbojMc2TI3FINNu76dED8sV8etBAfY3EUHSHMSDYmUNYiBiQ6jSxXvNUGm19bhwDOAr4vI1f7YacB9AFT1HcBrgbsCf+VoEANVPVRVByLyPODTONnJu1X1mw393CYirwR+FzjCW451x4ztVcBhgTsRkbsBn8FFOW7ELMVfW4FTgY8lx54IfEhVF4DrReQ6nIXDf45tLUykNp1UvH2MJCGzg6/CYo5Z6EcLFCAGHgx29FCIL4YIyzgdy7ixBqSTyjhP7qZ6dXXrfGCSc+4jK8Qh7r7UxXufAcKkGiaEvvUpA6QoUBE9ZgO46AsjpAzBbwcfdDP1NQovTPC6Fzf7pT5KUQeTiMZi6JtMsJ3ifMxhn+aoUnFE3It+xKj3t/E+QwkBCPqOEpr8TkSK56g15SeWui8DVhFROj/fXnwzfoK3vY7zD+pLsshxCxc1oB2DmjnMtj5gHREBHyQ1eMS7sqi/b5bC9N8v9kS10CGa5JmCe57g9C+B4ExRpzIl66/PU/+U0jJ/CPxhw7lP4vKcjMNTgKcDz1bVH3nu55wxdUxF3PUTJpggZkJUfLiAH6rqV6U8Ge6NM5kLuNEfq2vjZOBkgPnenVZppC3A+SCM4viacOxRb47ll8W1TAnHHHdmGymhxVQxqXhrHeE24O2qmovIgcDBwAfH1PmUiHw6KfcUCsuzRqwaURGRz+BsnKt4FY69O76uWs2x2kfnLSjOA7jTlnt7TaDF9JsV4PF47kReMUBhWGGlQQmDz0lqAx9+5EmdYkCTT7jjOJLQ3nLbqRlPiRuzEG5rNHs0IH1Bw2pwEuiwqMn1MVn1+jaLsZqBYhYGRdrgwG2GXLKV5zMKJQWtRB7WXX+yqi8sjSoGC8m9NH3rPMW9i77k4tIieAs1hXiPAzcT+zRebKJaJB8z5fYLrojG6yu94w0Ef8jnKXDpIdQAFPdwme4pmgmaZdhNXXeN3g8KnC+RWJBBXnAIolF5jgg6l7nvMDDJmfNJKqXczsTNVEEUbd2xkISsdJzi/QkcTMqxTC0jo2U81zOtvqaDy4FfF5E74/KkXIEjEr/TVEFVXyYiT8ZZmwnOcu2j4zpaNaLSlPtYRH4F2B8IXMo+wFUi8giWZs3QYpVx3OF/5n50Vr7Kr+pg6jiXIx8/jhsfjRMf+lo+dfUby/0ec8ZEOqIWLZaKsQEl1xVNQVR1m4g8G/hzVT070eGUC4rcH7iHqv67t0Y73x8/QkTup6rfG9XRmssEVPXrqnp3Vd1PVffDEZJDvCPOBcBTRWRORPYHDsBZH4yHeOW6XwG6lLN+G7gtcije81ozcSaMHYN2vP18XSTVYvBx9RHNICdd4YW6dasXqemz1nNbytuovur+EhSMNsbDips39ZRB7nQYg+LCZOBCiYs3RZbc+X0E34/SlmtRdoSDWJMFnsk1tmW2LyILfffcrPXKWS8XT/qLx/GRjauwvt0QWiMdUjCjDlv1tvp7rcZxI7ZnyDd5T37//KWfk20fYBbygiMyFW7K3wfNPFfTyZxhhFB4+8d3ZLj/kBjOjXH42atXVIf4VlH3kH7hFc469pvoJ5a8ks8ydC7DzmUMduuSB6U9nmvpGfJNXeymDnY+w/aM+zuXuZTXcx2nT0mNX8R9lyXFe+BY8GP1ZsVqDNo12NCGKe4FOP1MNEEO92UaSL/npm19QUTkUTjO5BP+WFN0o7fhxGVVbPPnRmJd+amo6jdF5MO4MAMD4E/HWX6Bf4m82CrmLylNvLakvFMEsk6pzJDILPPvxYg85kPh65sy3A1f6GTlmpzz0nOTvrx15SrHAqGUUsTFor/SB5ncz/I4/QcVlNwhlE2iiB6llgyBQYEi7EplLNJ072rvl7uuSy6p1+kcfcJZhQgwKF/DhKsUfjxpXo6OYOeywuJr0U1epp+j1mJ7mZsUM4k3QLyznhonIrOp+LQa3ideT2U3LISSd1X9+1l1yqwSnlL71hN+n51RrF2eAtsWlggxE6rixYiByLkVuwv/Iv76KUIIBZFcXh5fFAGmQVxFXF6jRGQX8+qIMwIQqz7Tow9jE+6Pt+7UbDpR4naWfCoJXoQLy/JRP8/eF/hcQ9n9VPVr1YOqeoX3+h+JmRMVz62k+6cDp89mNC3WEscecwaXfHZtFPjHP+pN2J6bUALXscvFFmkxNYRoFaPLrB+o6mXAZcn+94EXNBSfH9HUpnF9zZyoTANOfJNDH3TOZ6BKV38he+AI7mDoBYlih0rgvoCmF6qJC1mKyXED6sK015oSr7SvGu4gmMiWQn0EbqR6L0pmoYA1iPFmt5UxlwiLrSiMoymqlq9rCfe+96Nb0W7mfCFqEMLWxP7Bh9B34r2YZz0n/rabOuRzGfmcI1IZFNlAwXNaFbNndZ7hYnH3IRsWuUUGMTWACIYLNvlrtBDx+PzrjqsjRpYgq3/fg3+F5F4s5MXCJe5yQlz43bMBOOHQ1yO5RTtZnEk1cLCqRVgcKIngYmoGWxY7SrKjmMg5upPObwl1HE+83tBvEJlFI4WQKiArxOLTwCSi73XAqYjI21T1RSLycWpG1BDH68si8keq+reVtp6NS088EhuCqAAE3wLp59FmvuoM1biyqIqUhtpt6m9CrEC+WnWMTCMil4ZTdw1pv8slNEupl3zIcXwWxKc1Nn6ysN0kvEaCyz5xKscce+Zw3po6NC0CmpCK0sIkDG5yTWloJtiOQecMJonaK32LUaejy7a5tqwnKvmmDBkU4WRi6JdAiEOfbjbEWAGxPqeNE4elosWyk6V75mIKUZdaoZSC148bKPQjuUYxVITFh+hxeinp55B7K0ir6DJng09f8Xoec8TpxZRVIhCjvjui9VqqQ9EwVkJd52fmdHRJH+ItwOwwYSEpBjgia8yyrdzqMF7/tA6oCvy9//uWJdR5EfBRn8clEJFDgR7wpHGVNw5RabHTIijtp6ZE9TjpoFfsUjk+WqwhrEbOthHrgKao6pX+72XeIx5V/d8xdf4H+DUfwPKX/eFPqOpnJ+lzQxAVFw4igy4lq6Vxdap+KNXzTViyhcwkllqVPkt91HndV7yu6wJZjppOx2YuHCcJabjNzn9HCruSwEAlVk1i/Wq0ZsKX3CILhVLViXxsIQKLBX3daG3lzn/q66dz0v4vdsd6vUrjro4ZKKrWi1/EByBNz1vynvO3CPfJmKDwdcpyGShZXuTw0cx4DoXycwnZKjtF8MoY1cHirePq3yfbkSJ0TnoZof2QVTT04cVhqbi2yqmHMTrv8hxZzOP9Xa5o6MQHvYpscw/bLSy/RIkirdS4oHwhfqxZoegfCrgZ359wzIm2NDEQSd+tauSD6I8URGJTyuYmYUyjsA6Iio8t9jrgebhhGxEZ4MyK3ziqrqp+jmZlfiM2jJuxZu7DDpY3ZBJNCAtLlMLkMpoeeofHYK0TzYx9/bpNK+2uCHWExFCYhY6rG7YwvmBGmphW1m2NqJqhVvsJW82bU42NFUxhgzls+J2KhMImuWIWcpdsLdznbhbTzw6Nx5gysa7oewB0U498900+cq5BBpbPXHYa2W07krZwxM3rN1DIbu/T+8UiZtF6iy3I5wz5XIad65DPd3y8K/femL5LmyADm6QW8ETDmzubQaEXsh3xBENi+0MxwFS92XYw8Q5mxxSTVbh3g2CtNjyLqRS6G9sx7ncwwc2ygrCHRFr50gjLSQe9oriVuS1PpOqiA7t+K9cojugEi7hUv5SmNIjva6KrSQlK2l5h/p18P0FvE9qvppxeLiYyKV4HVMWJsg7HxfC6q6reGZdz5XAROWU1OtwQnAr+5QyK5KH8EepiFNVyJXUvaK15p9T/DivDUCc1ta1Dk/loaFq18Niva2ecIr6kg5ngpR43h4zSKYX2JyWswdzV+wJVleTRLDY4W4o4Ra0okhCRmI/D2mJNnt5TbzYqt2/nouucQ2V05PQw2we1zz6a6/ZzOrcVbQ5270XrsaADiUS/E8yGnT9PadILehYb9Dguk2FdIMm6eyUh+kGYbONAk3Je7yC5Img52oP3VA9E3fYMKJhMsL15TL+H2dbH3LbNEZZlIOpBcFye7ZhC5xGv02WsDDH4YlZOrVxXeMYV85hUZzTUf2oQUUGa7XIaxjKxz/TdbSqzLmgKvwccp6o/DgdU9fs+p8pFuBiMU8WG4VRatJgExz/qTbMewrrHiQ961dgyJ+13CicdsAtnBtUJt9mjmxKUAK9XGReleFnYGJyKR8qthH0A8SaLtavatL4UK5qJ9C2lpVQDZ1GBiHqnSprL24bfofwoa7VyZ43XUGpvuaiK0kr3o7nfuDJV74CXnktCwpTEgSFGVigjfukeQqEnqQsuvK4c7uX4R72peKbg4lQ1jFNUvSVS6Mz9ybYPXBh3LyIzi7ZcV8SLeqTMpZTeRSlZMI11ngtN+xV+7co3uZcAIeMnOcU4rDumHSk4lo6Lr5V7kbHsMUf35l+gPrd8XcgbgJPu+9LyASPxmUkwwso16lZieH/F/+dFjeLLe5FeuLY00dpQEFNvpV2977YDJjHpjnWmYV7fBGWkxGEdYXGZ55aNjUNUKhPoROKFRDxUJRQaJq1wrGaiKLfX3FVpLDZpZ6ig/1tVIQQFanUSmuSjmfSjWuIH0khMagvXlEvNbevaTBGeVdCtRDl7IV4xY5TMpdQFwXQ11QHV9QkxwKQLjGghk5LPRBx7mPQbCHlUWgfd0iiimzz/lADVvtNDRLF0sjRGWdSoW6j6i6gR+vfcA7MjxyxWZ+hhXHhDITU54bA3OF1mRQcY9CNhQaeZDBPGoKBP6qBAXiE0dYOIIWsEK0VIoOKzXc0sps2LzlKZMfB5pd6HC75rcUEb314pczDwHuAQ4FWq+pbk3A24kCo5Ps9KpYuHiMitdV0z2slx2dg4RKVFixZTRcqtnPiQ1zijBH/uhIe/zhH1brauPMfXClPUqQyAl6jqVSKyO3CliFysqtckZX6K837/zYY2jq4TcQGo6pTs3SbHxiEqdc5w6XGhUP1J5W8Tqux35fdYbqhumIbRYo+aPoMoptbYoIZbGcqANwkmEZWtFNE5MHk20STYr2ZL1y1FMquU04hjpqywbupWZMh8OVUD13EGVWMPzYge8eF4KBPjXk14D93KOzj0DY+h1O8oY4vqO17bWYVbCYErKzp5zZxFmOSKzbqY7X2g0EFFvf+dtwxxzHauM9ISsjBjLh8rxNMMcxRBUKChrMQYbWE/NUhwXvMkLM9qv8sT9DHJu6B6M3Cz/32biFyLyyF1TVLmFuAWEXnc8ge8dtg4ivp0MsoS08T0vOOUi21SJPqVRhPQqsntiHPB5HHYTLehfhhG9Xg0zdXSGMMEPNZ8uIqm8dcV1cSEdZyCMsr93TYUKHIE1Djz7pKZ94ixn/Dw141oa/j5VZ9j7bOlUjZdlCS/g7muer+V0vNMyobJdSKdSrV+fIeKdzyKtBrKQvlbqMulbnwGVDvnIjDnm3sl3dPgTvMMdp9jsPsc+R7u72CPOReZeFMWc6gApVlFat6HqhVbnYiqZA4ctk6TaFESF4ERIs1pYiKTYgCeLCJXJNvJTU36YI0PA764lJEAF4nIlaPaXktsGE4lRsGVym8oh1+fVAxa92KqS7rUtKocOtaof3HnanOcTwnpyr55BTnBKniCfgLKKYvTQpVKVhH85DhBrpZGwpg+1kxKynpwIhoXVt0M+zZoYfpbnXDDc6tOdqVwLhWHVA2hViKn6cdXCjdSGXOVa00IQFV0Uh+SP+FKlSEnzqpBh1v5Dz/zSOTyQueiPWdUEB1EE05PobwcTa5RRci7JhIrtYok8c0K3dLQMOqvNZgeD7QIaWOTxRPFOx7SCVvx6aJzHfZ6n5LifhLxl38c56tqTT6G6rBkN+CfgRepap0OpAmHq+pNInJ34GIR+ZaqXr6E+lPHxiAq4laIWNxkkbL7Bmw3+ERA+auutjNBX5pk84Mih/ZS4Mt/5vKy6eZxh/9ZvUgjfPSBSKXnvB9CHWpFRukwas4tKz5ape5Qu9Xv2n/wS3Ycraxwy+ekOSCiKU+KUaFOsgABgrNeKWynlDudWOSZimIqYy4pkhOJdyFGozCWCs+8eksl8ZPxxKtQbAfxZ9JeyiVVFk4KxeRbMnZJ38UaLjncC+P2bde4a8ukaFP936xZaT5k7VW6Tv+3K5i+Rqu1+J5WA2wGrgZBjDTm81kxpiT+AhCRLo6gvN8nxZp8GKo3+b+3iMhHgUfgsjzODBuDqLRokSDoAdZCCtJiV8XkItxR8GFU3gVcq6rnLrHuFsB4XcwWXIr2kaFX1gIbgqiEUBColsJmpzL8EBE2KirrVsmJ93N9R5XVnEizqWe1zhgc9+jTh7kQbeAcQrmK13ToL4SkD3qPpXAEQ8nKhgokx2sMBOrqVvtvjHFWVz78HKWr8eerojS7qVfkTSnd1oZrCNxLaoqb9h/KRP2aFH/N8HiGoiekXFG4pIouMJRTce+hJH2lIfJTzoucGMU4pnhIRG+ltA8Nj1XqzvkqNiQcU8U0iXyC0t2LvEi4LoxEz/nIlYSyQVxdg+rx6PsSGmiKP2dGX+tUYHWCHPUTtXQ48Azg60l639OA+wCo6jtE5J64nPJ7AFZEXgQ8ENgLF00Y3Fz+AVX91NIuZPrYEEQF/AuX5jhQ9XOJxNwSIQRKMHwvTYIKhHArUrRRhgz7VqzA1OExR5w+JAIrGg7jGj0BAkNB8lIx1HIIy9BQSkrm8V9KcBCsjmeozeRvc2MwiWFFVFQnCwbbaahUR7Sazqflqkr5TugndfoI8v6GcaZWUmFCrS4m4vlUL1YcT/UTqXgn6HRUcBkPTfEeFNZU5WcTEd6hZIES+45pfOuvCcBmyf1PCYjgJuCEsMTx1t57iBZfVaJiKLJGWifaLi284v0s2h/pi7QCjAzpHwc8wbei+nnGjNCnWt+n5tStwEPGdrLG2BjWX+GRmDRAXwhS5174cMx2jMs13jXYrk8NGwLtJYEFg1XNkBVNaD/EfqpO9BNaTwUc92iX5PLizyfEZcS7mAbGG7cV1zJiPFK/NeVDrw1QGa2PKJ5FXVumUrZuHP4ZxC1Mpk33tmQRRfwbflsfbbjW6k8arids1UCk8d779yZzWxEYsXhn0gmw1F4SN8yGoKThfaoEVSwHWEyOS3nVX7wX6Ttb9O2eG8XfGiI9dM3B8irqbcr6svS6wvdTeixhbEP6NEZj1HnFR8Auv0fxb0r4A7wVWSnA5DQwufXXLocNw6mA/9CMFBn8qi+Z9dxLdXUoRGVj3A9WJSThMaZgOVInWjvu0adz8edfFQnLcb+WBD9MxS1+8iyFAgmoWyF7BWvICjg8mPR3w7WFw1ppIxKPMfdkpIVZuf/a6LPRuic5ou6epKLHYjIv+rMxrIomyuui39QU1bVbM9ZUxBjqjYpOHRgBEZd/PUuOBxHWUl+jMfc4NXWO4U8C3a7o2Jsm+7RM3eRcfANEn5DwTGxXyBZsYQEXypYSj9VdV804qOdSqu1IQnirPjARNQRkah72qhPkU9k1CcvG4FSovCzpqrm0lVeDab10BVmW6ddbrdTKgqsijJrVdZO4LHAsABf/x6t9H2HV6MLzY3zI9G7KbZnIYaUrsmHfheQ+pGU7lbD/WRGavRSiPZMSBxHqVstW69RtJe4iXa2nnEC6cq9wL0Uo9wrHVtmPj6Lp244re8pcS8KlxdV+4DpSbmMU10XKvRTc8nIISjUcfPV8vJcNE/fwe9rcXVXMVvo+kvsexF2XfurldLbnkVuLnIRQ2uo7GzGGMSi9T55zDFsdpInwLBeqLg/NqG3XpCmzIyoi8nwR+baIfFNEzk6Ov1JErvPnTlh2B1UxChQvfkJkSoTGUJowUgx9JMmHnE7e1XKpKCMVoY3Dxf/x6mIS9R+L7Qi25xzNSpN3ZRK3HTfBxusOHECcFMNHaXxb5U0zUzjxdc2Q2CatG538Gib+OnFdOZ9IcT7Wy4rrisSzlO+maK8kygwrZS96GjWBR+JReqbESbgkJgoEJ0tEXul71ISEaC5Xrj8krpLyuVETd/V4ym0UB4v9WvFRpZ9LLzyVyz556tgJWhQuv+BlowtNCUPf2ggx19QIy0Tir12TqsxE/OXTVD4ReLCqLnjHHUTkgcBTgQcB9wY+IyIHquryEj20aNGixWpgJ0knPAvMSqfyHOBMVV0AQmwbcITmQ/749SJyHc6Z5z8nbTg1uywh0bWUyoYFjeKc3rz1V1zx2ho9iKRyeF9dw3/VshILhJWgMwn1OpCk7SACC2FmCKx8sGaKXENyDf4ShiyKrIuVFJz5gpNdFGf4NLWacHG14wbEKBIyF3qEbH4uHFm4F8X5aiTfNE6ThDS4lS414aSqYyDxnobi3pQjQOO8wCNHWFybGMopl83wNcf9VLld1cPUibvqMErsU4eaV6e2/qQTVeXeDZ+v6Usa3gWPyz5Z5E+59MJKLpUaDueIJ5wzdGytUHcN0xV/WbBj1rq7qE5lVkTlQODXReR0YAfwUlX9Mi6Q2heScjf6Y0PwcW5OBpjbtOfQ+ap1DFBmib2Xbx2hCaaQUZbuta+pF28pkJ3PV1EQkNoB+3Nlr+1UsTxMvKTIgcFoMYckv4faKIk4yuKYIaIS/oZ7Zf3NyNx1lXwzgHSqVwpl+JDVWLXPCb+3uEhIZsEou09RCXterevuUWJ+G4lwvbgnYgrGGSuCMPUVb73upZmgpMSkDrYmHtvUFOJTxFTHpIznVHZRVmXViIqIfAaXI6CKV/l+7ww8EjgM+LCI3Jf6NWDtk1HV84DzAHbfc5+xT2+IyIRJKfzNtVTWX0SlT9/GUOyvZJTeSqjZhr2YjEMfkdtJI9J6ghLt/6lMprZStuY2RRt9UyYGjZY4AemEbQT1jpbO6qe8Ah6OUeUJS809Kt3Xyv1Jw4fUhe0ocZWjzEJLRha+LvjxlAlTVW9WHe/EqFhYLQtNxGOK89JSiQmMJyhHnXhWUb9pgTJyUBOUWY+YxGx4Z722FWLViIqqPqbpnIg8BxdoTYEviYjFeYfeCOybFN0HuGnZYwiL0aVYflQJSWmOapiQvWgmEpwwQVY4D0kdK9MJrhoIkDD5V6yLKpM9UMRXqoo7pOAOghHCUL0mpB7RfqiNfgilgzhuprq6D2Oo3Ms41iaoFvd8ggmqcTIL46/hYmqxHAJRpwSftF513MuYjCZ6vxu4ruUSlFg/sfhaunVb2tAS684Su7gvyijMyvrrX4BjAETkQKAH/Bi4AHiqiMyJyP7AAcCXVtrZWLY3EZ00WtTUnBuyBEv8EKIOIWx40VOi+6ia+EbzUOPqRpFRsKia9IMNYwmWSsESLHWmq67SxzmFVU/r8D0bui5P2GynwVrKczrVIIel+xrLUrLkaxxj0+mm57oS7CwGPolZe/37y9B9WzJBqQtTk26NDUxQZj3CWsjz0ZtOOfT4ToJZ6VTeDbxbRL6By5P8TM+1fFNEPoxLUDMA/nQall+jwohPtsKr/K0gzoc1oqDYhNHIuYxynAOiuKo6+TeG/hgxkY7EpISlyhVBsy6iEs24TmQXwsuXrqeGkAxdV+CuqrqxoYEUbS4Zk9aZqtK30u8kY6h5p8e+H02cUGV/UoJy5OPOLos169oedxxGOjuuW7Tir0bMhKio6iLwuw3nTgdOrzu37P5qXthSMLu63Nk1dWvLpBNlqYOKTgCJsYpc+RqFdjKx1iqj6zCmTNPHWp2ElkpoVYiOZrF8UOpPMiaRGG5tYlTbXW5AP6mcW8oYpj1RNPVdY604rp5Oel3Vch6TEpMSwjOp9tsw9BVbYDURxlmgFX/VYkOFaVkKRk2ik07ERQPFB12ndwn1wkpelLJ5rG/D/fUWX0FKNuq9rVu5jxh/3fUsGZGbqqk8jghOos+plq8rm3JMk6BuWKu1Ml7puFIs9X6FNseJmypYFjGBpYlkmZzTHpVfpSjETAmLWovm40yKW/HXLo2xIqTKix4/kOqEDrWTgAqVLH/1Y4h5u0dwRSXLteCEVRGTrYo4YYmTyKh2GifKJpGc9b4yCSYayzTvwxgRzlDxhsmy7lwJ48R7k6IiVrvsE8skHhNi3Hs30UJpZAfLrLcamJLzo4jsC7wPZylrgfNU9e2VMgcD7wEOAV6lqm9Jzp0IvB1n9P9OVT1zKZexGmiJCsvTSYz6eGSED4V3Saxvs2mlv8SJZaUTf5WLG9fe0GRRtR4jOQ6jRTQNOpK6iWi9y+Inisg7avwTPvfVJhZ1OOrEs9wzbkwvQOOkWuX40+fYdHy4kaWOeNqYQKcyGQbAS1T1KhHZHbhSRC5W1WuSMj8FXgD8ZlpRRDLgL4HjcJazXxaRCyp11xwtURmFabwztV78Za6i8eUcNwnXiL+mPcmOJJ5N96eGqDYlPhtSRY2555deeCpHnRRDxU0mKlllVMewYr1BAzGpEo8jH3t2bbm1QrDaGxILjyOW1BOWsZig3TVDsP4ahcnyqdwM3Ox/3yYi1+Icvq9JytwC3CIij6tUfwRwnap+H0BEPoSLStISlY2EkR9HncgLSt7iQ566o8RgaTtr9LENXV/dBJiItyIx8R/YpZ96eano0SecVdr/3KfL5+uQhghJCUwxyMp+jRHFNLHUez+Rc+AEFlnL1oWsEEefcFYRHThcQx13mnIrNQr2lLCsuShzhVCrqB2jM3Hv/JNF5J3J0fO84/YQRGQ/4GHAFyccxt7AD5L9G4FfnbDuqqElKkvAkleg1Qm3QYST/h6y4KmiulpbgZ5jYhl/Wjbhnoa4rOApn9cTkDpMQkQC4RiKN1U5Fry7S+OpgcKqmhuPNLEdQfBmRSSWA1GwQhHjzb+HabrgWr+hyr0Z6TA5cxHXCExkUqzgnLxfO645EdkN+GfgRap664SjqLtzM79rLVEZgakEoGtoo6ntcXqCuvNL1S006SdgjAhniEg2709CUKaNJi7oc59++ZDIrJGwpCvraYhbJpwwdyaCEgxKpGLSPbRAgtH3b9y9HcdxVsus5XQ6SZKuCSEiXRxBeb+qnr+EqlONQDIt7LJEZZLJu4T0BZrEf6ThhZuEUK3Ef2Rcm8E3ZxRRG4e1VgzXcSiTIOWCqm0cddLZIye9yz5x6vR1FjsxIUlx6acKIh3fz1xL4rAQKWGqYtlJidAaEBe1FmW0TkUnIDoiIsC7gGtV9dwlDuPLwAE++sgPcWlDnr7ENqaOXZaoBIydROuIyRJMCScxNZ0UsZ6RoY+4irTfyz6+NsmSdibUEapa/UzAcriWmme/sxKSKqr375hjzySfM0VKgnSCXw2z7nEcULXfaRMa1Qn8UCbq9HDgGcDXReRqf+w04D6uG32HiNwTuALYA7Ai8iLggap6q4g8D/g0zqT43ar6zaVeyrSxyxOViTAJZwJD79BETpWTvPgVHUoI2z+JT8BaZd/bCBjLEU2i8B/xDiyX49oZ8NlLXuF0WlrmVrRugp8E6X2s40DGtbnKSn1VO5YT0cmsvz7PmNGq6o9woq26c58EPjm2ozXELktUwos/ShQEjPQcb3Ru8x7fY/1fGvxZmohYEfyvYpLs0XIk08Vln0xEYHUGFCPem/BcNjIhqeLST72co493lmG2m0QtViYjLP6eycAHGk0m7c99+uUcc+yZ2J4BVRcbr+ojs3Zq68tv0R9wd+7dWCDXAbfxM4DvrMoI1jFkEmq63rH7nvvow4544bLrL0dXMYoTOPLx54wWkVWI0qj+S4Qp9PmxlnjMAlUdSyrKGnVuV8PRJ5zlJv8ES7EuDGbokxLkIx9/zsT6URX4t4+feqWqHjpR43XticiduZs9mIexRfaoLfNf+m1A+I5+dR0ZQq8NWqLCeKKSvrBLESeNTada87pd/rGXccQTzxk61qLFzoajjz+rnPo6k0J8m5ikiwUzsFzy2VdOre8jH198Q4GDP/KxLqry5Z98+YqICsDD5Ui9iev5ZRl2C8l1wJf5HLfziy2qum0l/eyMaInKBGj1Ei1aLB9Hn3BWjNv22UteMdLvaC0gIismKqO4lV2ZS4ENQlQOPfRQ3Xzvp0xcviUSLVrsupgGUYF6bmVX51JgAynqW0LRokWLtcRVXG7uzN3sHXpr5FZu5Hvci1/iO/rVXZKgwOzSCbdo0WKD4DFHnM5jjphqXr2dAqqq+/MArudawHEpN/PffJevbZnx0GaKDcOptGjRYjb4zOWvmvUQZoaUW/kxN+/yXAq0RKVFixYtlg1V1YfLkVzHN9jOHdzOL3ZpLgVa8VeLFi1arAhXcbkZ0Ode/BK7qnI+xYaw/hKR/wX+a9bjqGAv4MezHkQF7Zgmx3ocVzumyTBuTL+kqndbq8HsatgQRGU9QkSumIbZ4jTRjmlyrMdxtWOaDOtxTLsSWvFXixYtWrSYGlqi0qJFixYtpoaWqKweavNQzxjtmCbHehxXO6bJsB7HtMug1am0aNGiRYupoeVUWrRo0aLF1NASlRYtWrRoMTW0RGVKEJEbROTrInK1iFzhj91FRC4Wke/6v3de5TG8W0RuEZFvJMcaxyAirxSR60Tk2yJywhqO6fUi8kN/r64Wkceu8Zj2FZHPici1IvJNEXmhPz6zezViTDO7VyIyLyJfEpGv+jG9wR+f5X1qGtNM36kWCVS13aawATcAe1WOnQ28wv9+BXDWKo/hCOAQ4BvjxgA8EPgqMAfsD3wPyNZoTK8HXlpTdq3GdC/gEP97d1zK1wfO8l6NGNPM7hUujdxu/ncX+CLwyBnfp6YxzfSdardiazmV1cUTgff63+8FfnM1O1PVy4GfTjiGJwIfUtUFVb0euA54xBqNqQlrNaabVfUq//s24Fpgb2Z4r0aMqQlrMSZV1dv9btdvymzvU9OYmrAm71SLAi1RmR4UuEhErhSRk/2xe6jqzeAmDeDuMxhX0xj2Bn6QlLuR0ZPYtPE8EfmaF48F8cmaj0lE9gMehlvxrot7VRkTzPBeiUgmIlcDtwAXq+rM71PDmGCdvFO7OlqiMj0crqqHACcBfyoiR8x6QGNQl+p0rezL/xq4H/BQ4GbgrbMYk4jsBvwz8CJVvXVU0ZpjqzKumjHN9F6paq6qDwX2AR4hIr88ovgsx7Qu3qkWLVGZGlT1Jv/3FuCjOBb7f0TkXgD+7y0zGFrTGG4E9k3K7QPctBYDUtX/8RODBf6WQhyxZmMSkS5u8n6/qp7vD8/0XtWNaT3cKz+OnwOXAieyTt6pdEzr5T61aInKVCAiW0Rk9/AbOB74BnAB8Exf7JnAx2YwvKYxXAA8VUTmRGR/4ADgS2sxoDAheTwJd6/WbEwiIsC7gGtV9dzk1MzuVdOYZnmvRORuIrKn/70JeAzwLWZ7n2rHNOt3qkWCWVsKbIQNuC/OwuSrwDeBV/njdwUuAb7r/95llcfxQRzr38et0J49agzAq3DWMN8GTlrDMf098HXga7iP/l5rPKZH40QgXwOu9ttjZ3mvRoxpZvcKeDDwFd/3N4DXjnuvZzimmb5T7VZsbZiWFi1atGgxNbTirxYtWrRoMTW0RKVFixYtWkwNLVFp0aJFixZTQ0tUWrRo0aLF1NASlRYtWrRoMTW0RKVFixYtWkwNLVFp0aJFixZTQ0tUWmw4iMhhPrDgvI928M0xMatatGgxJbTOjy02JETkz4B5YBNwo6qeMeMhtWixS6AlKi02JESkB3wZ2AH8mqrmMx5Sixa7BFrxV4uNirsAu+GyKM7PeCwtWuwyaDmVFhsSInIB8CFcCtl7qerzZjykFi12CXRmPYAWLaYNEfk9YKCqHxCRDPgPETlGVT8767G1aLHR0XIqLVq0aNFiamh1Ki1atGjRYmpoiUqLFi1atJgaWqLSokWLFi2mhpaotGjRokWLqaElKi1atGjRYmpoiUqLFi1atJgaWqLSokWLFi2mhv8PuQTA1YTCm4YAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDC0lEQVR4nO2debgcZZX/P997E0SWBDCoECKLJjDCCIQEJPBDIAKBUUCURceRUUYGJxjQQQEdDBkGBxUcDaBMRlB0VBYBhVEQuCyKEUhYZCdEYDAJgiwmBEYgt8/vj6q6qdu3uqp6req+5/M879NdVW9VvV3dXafO8p4jM8NxHMdxWk1f0QNwHMdxehMXMI7jOE5bcAHjOI7jtAUXMI7jOE5bcAHjOI7jtAUXMI7jOE5bcAHjOI7jtAUXME7LkXSUpDskvSzp2fD9Pynge5L+Ldb3GEmPSHpJ0jOSfi5pw3DbFpKukPScpJWS7pf09ynnvUXSXyStjrVrwm3vlnSDpBck/UnS5ZI2SznWOpJ+IulJSSZp75yffT9JN4ef53lJ90o6WdK6OS+f4/QMLmCcliLpn4FvAl8D3gq8BTgO2ANYp6rve4AvAx82sw2BvwIui3X5AfAHYEvgTcDHgGcyhnC8mW0Qa+8P128MLAC2Co/3EvDdjGPdBnwU+GNGv+jzHA78BPgRsKWZvQk4EtgCmJTnGI7TS8hn8jutQtJ4YAXwMTO7okaf7wHLzOxfJJ0E7Glmh9bouzrcfm/O898C/LeZfSdH36nAraFgy+q7DPiomd2S0kfAU8A3zOycPON1nF7HNRinlewOvAH4Wc7+dwAHSJonaQ9Jb6jafjtwfmhye1srBwrsBTzYwuNtS6CpJApWxxmNuIBxWskE4DkzWxOtkLRQ0p8l/Z+kveKdzezXwGHAVODnwPOSvi6pP+xyOPBr4DTgidCfMT1jDPPD80XtjOoOkt4FfAn4XKMfNIEJ4euQOU3SJeEYXpH0dy08l9MiJF0U+gkfyNH3s5IeknSfpAFJW4br9wl/m1H7i6RD2z74LsAFjNNKngcmSBoTrTCzGWa2UbhtxO/NzK4N/SSbAIcAfw/8Q7jtRTM7xcy2J/Dl3Av8NAwWuCDmyP9C7JBzzGyjWDstfj5J7wCuBU4IBRyS3hYPDMj6kDX6Px++DgUOmNlR4We/G+jHKSPfA2bl7HsPMM3M3kXga/sqgJndbGY7mdlOwL7AK8D1rR9q9+ECxmklvwVeJRAUdWFmFTMbAG4CdkjY/hxwNrA5sImZHRdz5H85zznCJ84bgTPM7AexYz8VDwzIMdak/o8Aywk0MqdLMLNfAS/E10l6u6TrJN0l6deStgv73mxmr4TdbicwiVbzIeDaWL9RjQsYp2WY2Z+BecC3JH1I0gaS+iTtBKxf3V/SIaF/ZeNQK9kVeA/BnxdJX5G0g6QxYejyp4ClZvZ89bGykDSRQHidb2YX5NznDbHw4nUkrRs680dgQbTMPwNzJX0y9pkmE2hfTvewAPi0me0CnAR8K6HPMQSacDVHAT9u49i6ijHZXRwnP2b2VUnLgc8D3wdeBh4HTgYWEpjAIl4E5gDnEQQHPA18zcx+GG5fD7iKwOz0fwRBAQdnDOE8Sd+ILT8a3ij+AdiGQADMjY03TWN5lCCkGeCX4evWwJNJnc3sUkkrgVOB/yDQ5p4iuGFdnjFupwRI2gCYAVwee5Z4Q1WfjwLTCB6G4us3A/6atb+VUY+HKTuOM6qRtBXwP2a2g6RxBA8liZNwJb0XOBd4j5k9W7XtBGB7Mzu23WPuFtxE5jiOE2JmqwgiFg+HYH6TpB3D9zsD/wkcXC1cQj6Mm8eG4RqM4zijFkk/BvYmCDN/BphL4Kv7NoFpdixwiZn9q6QbCUxgT4e7P2VmB4fH2Qr4DTDJzCqd/AxlxgWM4ziO0xbcye84jlMHkvqAvMlLXzWzwXaOp8z0hICZMGGCbfm2VmcScRynF7n7nnueM7NNmzjEpzdi7DfWzXBhr8F4jtcWAP/YxLm6mp4QMFu+7W385je/KXoYjuN0AW9cb73/bfIQG+3GRmzFeqmdVvI6l7BioybP1dX0hIBxHMfpJGMk1kmeczvEWBOMche3CxjHcZw66RP0p8uXIPmcCxjH6V6mnTYw9H7xGTMLHInTDNNOG2DJwJXD1q1aeH5Bo8mmD+jP0GD6yJBAowCfaOk4jlMnkQaT1bKQNElBie2HJT0YZgOo7iNJ8yUtDUsFTG3HZ2oHrsE4XU2ktUw7bYBxM2YD5X7yHc1Mn3sTj96Qvx7btNMGSquV9kut0mDWAP9sZneHCV3vknSDmT0U63MgMDlsuxFMAt2toYF3GBcwTk+w+IyZUNKb0WgnEizb7vdBtt3vgwAsmrdv284XPWhETJkZVFBopbAaI7FOX7oAWaeSLWDM7GnCzABm9pKkh4GJQFzAHAJ8P8zYfbukjSRtFu5banpCwNzzyFNMn3tTW3+0juM0xqJ5+0IL/psLl69m1uEn171f5NsZV+XjaQaR7V+o1wMTppvZmSBreJyJwB9iy8vCdS5g0pD0GYI06gbcD3ycIEX7pcBWBGnRjzCzF7OO9egNVzAuQf3uZnNJkuOzFt38OR0nDzMmblDzd16ttbSbvhwmstAHs42kxbHVC8xsQXXfsEzAFcCJYcLNYZsTDt8V8WmFOfnDAlBzCEqQ7kAQ1XcUcAowYGaTgYFw2XEcpzQEUWTpLbSgPW5m02ItSbiMJRAuPzSzpCfKZcCk2PIWwIrWf6rWU7SJbAzwRkmvE2guKwiKNe0dbr8YuIWgWFUm113+FWZMXFs/auHy1YlPNllP+5HNuPp4naZVfoVGTQtJTJl5WGkdr87opfo/3W6NZkwf2T6YHEaysELqhcDDZvb1Gt2uBo6XdAmBc39lN/hfoOBsymFI3pkE1QqvN7O/lfRnM9so1udFM9s4Yd9jgaCwz9j1dxm7/RGor59rL/1yoUKhW2jlH7Cs5rn4ZyzrGJ32kvQ7f/3e795lZtMaPaakuf/wxs1P32FM+n3mT5XXOPPlJy8zsyNTjrUn8GsCF0GU5v8LwNsAzOyCUAidB8wCXgE+bmaLEw5XOgrTYCRtTBAdsTXwZ4ISpR/Nu3+oai4A6FtvggFYZZBZh5+M+vpZedv81g+6h2jlE18nb+T1+KXiJH0+18Z6n1ULz2+LNhOZyNLIMw/GzG4jIx4gjB7rrJOpRRQ50fK9wBNm9iczex24kqAW9jNhbeuoxnVS5bhUrDLYcadft7Nq4flD7brLv9LwccbNmM3C5atbOLLhtFIgLBm4csRY45kB6iWai+O/vd4ncvKnNZ/JX6wP5ing3ZLWIzCRzQQWAy8DRwNnha8/a/QE42bMLtyP0o3UitZJ8uUUYXqqPmejPqak4ywZuHIonLWezxYXKtG8C6d3GSNYJ+PxfGxXxHm1l8IEjJndIeknwN0Es1nvITB5bQBcJukYAiF0eFFjdBzHSSJIFZMVpuwaTKG5yMxsrpltZ2Y7mNnfmdmrZva8mc00s8nh6wvNnGPW4Se33WwzWog0m3grA/FxVZv30sx91aasai0oHoWYZTqLX4skM14zpjenMdpprmxVLrJep+gw5Y4x6/CTS3NDdNpH2mS8iLy/g0jgDN2kEgRHnhtYmXNq9Rqd8n/1kSMXmWswo0PAuGAZ3bTq+2/05tWtwuWOFS8z6yNzh6178ZazCxpNOp0OrBjTl52LbGyOXGS9Tk8LGBcsTj1Ev5dmJ6ZGN7tuDYO+Y8XLACOEC8DGe59UOiFTRNReq8KUe52erQfjkTxOo0RmtmbCtSEIg478AN3kg9lt8/XZbfP1ue5H8xK3b7z3SWy890kdHlUyRflWIyd/eitkaKWipzUYx3GcdtAnZfpY5D6Y3hQwbhpzWkFSwEAj5phunYu12+br8+ItZyf6YqB4c1mRE1rVJ5ShoshcwPSkgElj+tyb+Oaxu3blH94pntH48BIJmmqzWNl8MRGRQG+nAOob00f/Ov2pffqVvn000LM+mFosmrevCxfHaYBqgbLx3icNBQR0mjTfSzT3ra2EGkxqy4gyGw30jAYzGp8sHafTVGsyu22+fsfOPX7POUPvrTLYsfMm0dcHfVkmMldgekPA7Lzd2xqq++I4Tv1EmkwUTdZuU9kdK15m/yNOTc2QnldjmTLzMB6897vND6qvD/WlG4Cyto8GekLAOI7jdJK+MaI/I9tlv7mA6QkBc88jTzFm252Gll1zcZz20ykn/26br59Z3ylv3ZdGagklEUSRNa/BSLoIeB/wbFg6vnr73gQZ5Z8IV11pZv9a53ALw0Ws4zilo5EJlLWSsLZj0nVfn+jrT285fTDfI6hUmcavzWynsHWNcIEe0WAcx+l+4k78iEYr046wYpwxs7WRZcqOEssTRWZmv5K0VYtGVTpcwDiO0xTVguH6y/49d3TZwuWrOfDILwwtxwXK9Lk3MX7POS0rf97K8sl9Y3PMgxnsB9hG0uLY6gVhufd62F3S74AVwElm9mCd+xdGoQJG0kbAd4AdAAM+ATwKXApsBTwJHGFmL6YdZ+ft3sZvfuN+F8fpJHeseJkDjvqXEev3P+JUIFv7iAumKTMPZdG8fYdtXzRvX5i37wghlEReIbTtfh/kgRZEkeWayR9oMI+b2ZFNnOpuYEszWy3pIOCnwOQmjtdRivbBfBO4zsy2A3YEHgZOAQbMbDIwEC47juOUBvWJvv6+1JYlgPJgZqvMbHX4/hfAWEkTmj5whyhMwEgaB+wFXAhgZq+Z2Z+BQ4CLw24XA4cWMT6nOykyP9VoY/8jTm14wmO1Wa1ae4mTlXmjHhNa2nnqQR2ayS/prQqzZkraleCe/XzTB+4QRZrItgH+BHxX0o7AXcAJwFvM7GkAM3ta0psLHKNTcpIESrTOw9WLZaO9PgPAn3/1H8PWN5JeJhIi1YJpysxDGxtck/T199E/NsMHk7EdQNKPgb2BCZKWAXOBsQBmdgHwIeBTktYA/wccZWbW1OA7SJEmsjHAVODbZrYz8DJ1mMMkHStpsaTFf3ruuXaN0SkhUY2VrFDWTmgz0VhGo+aUpTlYZRCrDDJ+zzmM33POkGCJfDRx8l6/lbfNZ+Vt84cES6s0knqJUsWkhinniyL7sJltZmZjzWwLM7vQzC4IhQtmdp6ZbW9mO5rZu81sYds/XAspUoNZBiwzszvC5Z8QCJhnJG0Wai+bAc8m7RxGYiwA2GXq1K6R6E7jNHITb5c245pT/SQJlkZNbFEAQGHkcfJ7xbHiNBgz+yPwB0nbhqtmAg8BVwNHh+uOJpjF6jiOUxrU35ejuYApOors08APJd0H7AR8GTgL2E/SY8B+4bLjjGDW4Sfn7ttJE9ZoMpk1M0elWnvppmvW1y/6x/altzFF316Lp9B5MGZ2LzAtYdPMDg/FGQWMmzG7Zear6DjddFNsFytvm584Cz9O0en1W00UppzexwWMXwGnK2jFjbwdvpGk3FcRo0n4ZGky6suXmCtLUJWFXGHKbiJzAeN0loXLV9dtQkrqO2XmYak392ra7Xivdfxppw209bxlIorwuvbSLydur0fIjJsxm+lzb2rl8FpKlE25G30wkg6T9JiklZJWSXpJ0qp2nMtzkTkdJT5pLo/JqpYgWjJwJZwRWFLLYK7yCLK1pE2MVF9/TXNZ9bZHb7ii2EixFJSn4JhK+/z+VeD9ZvZwu0/kAsZxHKdO+sb0079O+u2zf2xpb6/PdEK4gJvInIJJmyxZr0bSjroftZh22gDjZsweMoHVY64bDTQSXZak2ZTWj5XDREZJTWTAYkmXSvpwaC47TFJb/jwuYJxCmXX4yQ0Vl0pi8RkzE4VMO278i8+YyaqF57P4DA94rJe8vpiIMgoZSUNmsrRWUsYBrwD7A+8P2/vacaLSXgGnd6m+4c86/OQRqV/y3FSS+kQ3/kjQuFZRTtTXP9S6EfX1of7+9FbSz2ZmH09on2jHuVzAOIVw3eVfqbmtnifWtCgtFy5Ou+gb00//2DEZrZwCRtIWkq6S9KykZyRdIWmLdpzLBYxTCEmz8GdM3KBuc0gtE9WSgSsbGpfTOvL6YfI86ZfOTNaXI1VMeU1k3yVIybU5MBG4Jlw3jDCEOa29JGlJ2olKG+bgOI5TVqJ5MKmU18m/qZnFBcr3JJ2Y0O/3Yab7mki6J227Cxino6Q9idbzlJpl/nLzWDmo1mKSZurnTSNT/fso8juOnPzpfUqrwTwn6aPAj8PlD5NcxOyDOY6V2qe0V8DpDTbZ9+SGCkwlEXfeO91HM8KlmqIfIDS2n751xmS2zONIF4W+kAdqbJek+ZKWSrpP0tQWDP8TwBHAH8P2oXDdMMzs8awDZfVxDcZpG5vsG/hZdtt8/cTtqxaen1triW4oSb4Vn0VfXtJyi9UrXMr0/fb19WUmu+zLVzL5e8B5wPdrbD8QmBy23YBvh68NY2ZPAQdn9ZO0HfAfQAWYA5xGUMJ+CXB0nsmaLmByst2nrx56/8i5md/NqCcSLtVEQqUR4RKn+hhluvmMRqLvQX39uZz7tYRL/HssnWM/Th4TWQ4nv5n9StJWKV0OAb4flkm+XdJGUUHGeoY7bFzSNsA3gXcDBvwW+EyCNrIA+BqwAXATcDLwcYI5M+eRI+u9m8hS2O7TVw8JlnfsNHHY+r864edFDav01BIuEc0Kl4hIyLhwKY4ocWl8TkujGZGrv8cyf695kl0SCJhtotLuYTu2zlNNBP4QW14WrmuGHwGXAZsRRJJdzlp/TJwNzewaM/sx8LqZXWIB1wAb5zmRazCO4zh1ojH99GXkGusL5sE8bmZHNnOqhHXNloiXmf0gtvzfko5P6BePH/961bZ18pyocAEjqR9YDCw3s/dJ2gS4FNgKeBI4wsxeLGJscVPY0nuXj9j+Vyf8nIe/+TedHFJpydJaIhYuX51ZiTLPk+uUmYd5mpYCqP7+as1hyaPFbLvfB1mUkS25rFpM4INJn7/T15qZ/MuASbHlLYAVjRwovLcC3CzpFOASAmF1JJBkkjlf0gZmttrMvhU7zjuAG/Ocs3ABA5wAPEyQHwfgFGDAzM4KL8IpBLa/lnLrUy/xnrdtmLt/XNi4eawx8pjF8txQynrT6XVaWQys67/DcKJlGi2qB3M1cLykSwic+yub8L/cRSBQooH9Y2ybAWfEO5vZfyYdxMyWAifmOWGhAiZMT/A3wJnAZ8PVhwB7h+8vBm6hDQKmHuFSjWstw2lVGLKHIJeXWg8HjYQZd71wId9EyzxOfkk/JrjfTZC0DJgLjAUwswuAXwAHAUsJElR+vNExm9nWCibn7G5mv2nkGJLuNrPcodJFazDfAD4PxO/2b4kktJk9LenNSTuGzrJjASZNmpTUJZFIcxk3YzbXXHJWU4LGCTjwo/869F5VZoPnb0iubphElsmr1FFFPUirrncvCJRq8ky0JF8U2YczthvQsh++mVUknQ3s3uAh6lLLCosik/Q+4Fkzu6uR/c1sgZlNM7Npm06YkHu/uEB5/1Gn+E2rRUQZZJ3ewIVLOhqTY6JlSZNdAtdL+qCkRmx4dfkHitRg9gAOlnQQsC4wTtJ/A89Ecd6SNgOeLXCMjuM4I1Bfa+bBFMRngfWBNZL+QqCVmJmNS9tJ0jjg61GwgJm9kHWiwq6AmZ1qZluY2VbAUcBNZvZRAqfW0WG3o4GftfrcrrW0lhduGp56v6+vn+dv+HJd5jGo/b1Ecy0cpyxI/cNq2tRqZcTMNjSzPjNbx8zGhcs1hYukf5T0DHAfQcTvXeFrJkX7YJI4C7hM0jHAU8DhrT5B1gxwnyXeGM/f8GUWPf0K0zdbb8S2egXEuBmzmTLzME+7XwBuHstBXx9kCZDyajBI2pgg/cy60Toz+1WN7icB25vZc/WepxQCxsxuIYgWw8yeJ0cKgmZJmk1+61Mv8f6jTgGG/8miwIB6Q5tHE5G2kiRc6iF+3V24OKWlvx+NHZvaRWNKcXsdgaR/IJgesgVwL0HKmN8CtSYl/Z4ggq1uynkFOkB0I8vztBZFnUGPP5W1mHpzjqURz2HmtA83ReZEeTSYcprICITLdOB2M9snTGo5L6X/qcBCSXcAr0YrzSxzYtSoFTCO4zgNk8dEptIKmL+Y2V8kIekNZvaIpG1T+v8nQbLL+wkyK+dmVAqYRvwB4NpLXuLXt9kn4vg19+vvlAUpuySy8qXrL4JlkjYCfgrcIOlF0tPPrDGzz6Zsr8moFDBxoptW1o3wmkvO6sRwupo8ecby4rnGOk8rzWM9/zDQPwbGZOR77E/30RSFmX0gfHu6pJuB8cB1KbvcHE5sv4bhJrLMMOVRKWCSfvzVgsZn+deH35yc0USukskliyKTNB2YYGbXRuvM7FZJBwN/TRB+nMRHwtdTY+sM2CbrnKNSwKThNzfHcTLJFaZcOh/M14C/T1j/EEFxscQoMjPbutETlkvEOl1HqxNduoB3uoIoiiy1le72+iYze7J6ZZgd+U3tOKFrMI7jOPUyZkzmPBjGlM4H88aUbeu344SlE7GO47SHtHouC5evzn2crDLVo6LsQndqMDdKOrM6yaWkeQRhyC2ndFfA6R7G7zmH3TZfvyWhyEsGrnTzWBuJhEstITNj4gap+0+ZedgIwVLr+xoNGRiCMOWMXGTlmwfzzwSO+aWSrgjbUmBb1tbjGkLS1LSW54RuInMaYvyec7j20vqSWSaxauH5TDttoAUjctJYedt8xu85h5W3za9rPxf6NehTtoaSU4ORNAv4JtAPfMfMzqravjdB0t8nwlVXmtm/Uidm9jLwYUnbANuHqx80s8dr7HJO2uGonVpmCBcwdeC5yAJTyoFHfgGAA4/8QkMVDSOim9fiM2aCz3lpO1NmHtqGY47OhKRRNuXUPvkqWvYD5wP7AcuARZKuNrOHqrr+2sze1+BwhxEKlFpCJd5vn2bP5SayOmiFcBm/55zE1g2MmzGbA4/8gmsuXcqiefum/tYa0VZqTYbt+Zxm/f2BEz+t9ed6ft8VWGpmj5vZa8AlBGXjS4OksZLmSPpJ2I6XlCuCwQWM4zhOnaivb6iKa1oDtpG0ONaOrTrUROAPseVl4bpqdpf0O0nXSto+YXs7+TawC/CtsO0SrsvEBUydNPtkFtnA67WFlwWrDDLr8JOxymBT5jGo/fTrdIYkbSbLiT/ttIERBeCyosp6kjxRZIGT//GotHvYFlQfKeHoVrV8N7Clme0InEuQQ6zxoUvvlrRhbHlDSbul7DLdzI42s5vC9nGCbMyZFCZgJE2SdLOkhyU9KOmEcP0mkm6Q9Fj4unFRY0yiVX+k6j93t5jJnO4m/mCT9JCTFq48bsbsRH/LqKw42teyMOVlwKTY8hZUJZ40s1Vmtjp8/wtgrKQJTYz+20D8i36ZdI1kUNLbo4UwSCDX02WRTv41wD+b2d2hNL1L0g0EqQwGzOwsSacApwCtyaDYIlpVlySK7IlYuHx1Zrhop/EcY71NPLKs+ruedtrAkJaZ9juIf6+jJvN4/xiUMZEyZ8GxRcBkSVsDywnKx38k3kHSW4FnzMwk7UqgGDzfyLCjQ5rZkJZkZhVJaYP9HEHCy8cJNK4tgY/nOVFhGoyZPW1md4fvXwIeJrA9HgJcHHa7GDi0kAGm0KrMytPnDp/bFEVnOU6niD/kVJu6GokOy5udvPtRYCZLazlur2a2Bjge+CXBPfAyM3tQ0nGSjgu7fQh4QNLvgPnAUXEB0QCPh077sWE7gZSoMjMbICivPCds25rZzXlOVIowZUlbATsDdwBvMbOnIRBCkt5cY59jgWMBJk2alNSlbbQqVHnJwE9HrGtkrkKZ8bT7aylzRc7xe84Z4VNLG2s923pSq1EoYFL75Ht+D81ev6had0Hs/XnAeXWPsTbHEQiqfyHw9wwQ3kuTCEOpDwC2IpAZMyVhZl/POlHhAkbSBsAVwIlmtqoqi0FNQmfZAoBdpk5tRpo7juPUh/qwDAGStb0ozOxZAlNcXq4B/kK3VbQMY6mvAH5oZpE+/oykzULtZTPg2eJG2Hq6zZm/auH5w55A85o+sjSXMj/Nt4uyft6Vt80f8b22aqzV1U17RqONosjSKFkuMkmfN7OvSjqXkZFqmFmtm9MWZvauRs5ZmIAJE65dCDxcpWpdDRwNnBW+/qyA4bWcegRLGc1k9d5wsoSLUy6qfSd5nfpJxB8e6unbVah1qWI6yMPh6+I697tW0v5mdn29JyxSg9kD+Dvgfkn3huu+QCBYLpN0DPAUcHgxw2sNjWosZRQyeYk0na68cYxy8jjp49Fl1X3rnRMTZXToNq3G8pjISjbN0MyuCV8vzupbxe3AVZL6gNcJIsnMzMZl7ViYgDGz20ieZATQXb+2UUJezSOPcHHhU26SQo8jlgxcybiECLNG0/R3m3ABcjr58/mTO42kKcBJrHXaA2BmtZJXngPsDtxfb/Ra4U7+XqXbfC15yBuCmkd4uIbTPeT1vXWloGgU9UNfxu0za3txXA5cAHyHfBMmHwMeaCQ0urRXwHEcp6yYlCOKrJwaDLDGzHLlEgt5GrhF0rXAq9HKPGHK5TISdjkLl69uWXbkdqRWb4R2aBquuXQf/p1VkTXJcmiyZSm5RtI/SdosTM21iaRNUvo/QTBXZh1gw1jLxDWYFtFKk1jZnfv1hCsnEY9U8htX95BmIt12vw/W3K8nJ1pCto+lvBrM0eHr52LrjKDa5QjMbF6jJyqtiO12Vt42vyV1U3qFPOGvTndQHSk2ZeZhLJqX7B8ev+ecoRLCSQleu6ke0jByaS/lvL2a2dYJbYRwkXR61rGy+rgG0yKStI5Gc4tV/+GK1GjiN5I7VrzMbpuvP7S+HmExZeZhwwqMRZUQXYvpXqLfQC3nfpLgqCVMui0s3/r6sYyCYtafMRGzQCTtALwTWDdaZ2bfr+r2D5JWpR2GICPA6bU6lFPEOsO4Y8XLRQ8BgP2POBVINwfWClVdfMZMlgxcOfT0u/iMmS5YeoDqB41mNNSu0mSUI9llSX0wkuYS1JU5F9gH+CpwcELX/2K4z6W6bRD2qYlrMI7jOHXTumSXBfAhYEfgHjP7uKS3EIQsD6MZ30uEC5g20cqnscgsVQayTBlLBq6Eqlne0Wztatwf0ztUazHKytPV7eTRUMrr5P+/sAbMGknjCPI9Jjr4m8UFjFMX9drJIzNYI7VFnO4g+o7jBfOaSZE0ZeahQ6UsSuuX6evDsiZSptbwKpTFkjYiMG/dRVDd8s52nKi0Olw3k1Z2th5W3ja/NPNhIDnrbh6S9nHtpfeIV2Otri1TD0l1ksqHQj9MRstzJGmWpEclLQ2r+FZvl6T54fb7JE1tZuRm9k9m9uew5sx+wNFmlqtCZb2UVsR2M62sTFkr/LMI8oYap6X379k5Ec4wVi08vyVm4tJGl7XIRBYW8zqf4Ea/DFgk6WozeyjW7UCCipKTgd2Ab4evDZEkoCS9HfjfsMJm9bZNgU8yMnfZJ7LO5QLGcRynTvKlisllINoVWGpmjwNIuoSgbHxcwBwCfD/MBXa7pI2imlkNDR6+BUwF7iMINd4hfP8mScclpOX/GfBr4Eby5S4bwgWMk4tWmcZccxk9WGWwJc7+Mmoxpj4s47OF27eRFK+/siCsxhsxEfhDbHkZI7WTpD4TCXKENcKTwDFm9iCApHcSzOo/A7gSqBYw65nZyY2cyH0wLaarYvnroNFU7M7oZdXC81uWzWL8nnOYPvemlhyrJRhYjgY8bmbTYm1B1ZGS7GjVWYvz9KmH7SLhAhCa43aOtKgE/kfSQY2cqLQCJsvxVUZ6OR/ZqErF7rSMuOO/Wcrk/K9gVCy75WAZMCm2vAWwooE+9bBE0rclvSds3wrXvYGgoFg1JxAImb9IeilsaTP8hyilgIk5vg4kSGfw4VCNKy29LFwiksxb7ajd7vQWrfw9l8lCYDlaDhYBkyVtLWkdgtQrV1f1uRr4WBhN9m5gZRP+FwiSXS4FTgQ+AzwO/D2BcNmnurOZbWhmfWa2bvh+wzzVLCGHgJF0vKSN6xh8KxhyfJnZa0Dk+Colo0G4RDQjZKKMu+NmzPbQ5VFGrwmZwQoMViy1VSrZIiaM2joe+CXwMHCZmT0o6ThJx4XdfkEgBJYSzF35p0bHHT68X2Nm55jZB8zsUDM728xeMbOKmSXOsZB0sKSzw/a+vOfL4+R/K0Ho3N3ARcAvG6lsVieZji9JxwLHAkyaFNceHcdx2osBWfIjh3wJjmX2CwIhEl93Qey9AS15+jKzQUmvSBpvZivz7CPpLGA68MNw1QmS9jSzTNdFpgZjZv9CEH99IYEa9ZikL4dx0+0i06llZgsix9mmEya0cSjpjCbtpRZ5r0HWnJ5m68w45aaXtJg85rF2P4U3wV+A+yVdGE7gnC8p7cs5CNjPzC4ys4uAWeG6THKFKZuZSfoj8EdgDbAx8BNJN5jZ5/Mco05a7dQqPd0kXOKCYOHy1TXHXo8ZbNv9PjiUwyrp5tFN18fpfcxap8EUwM/DVg8bAS+E78fn3SlTwEiaQ+AUeo4g4+bnzOx1SX3AY0A7BMyQ4wtYTuD4+kgbzuM0yazDg/D4NN9Mnvkwi+btC/P2Ta0XAiMFTbyezPS5N5Uq84Ezkvj3t3D56qayXsR/K51+AKmYMZjhKaiUVIcxs4vDgIIp4apHzSwpeizi34F7JN1MYF3aCzg1z7nyRJFNAA4zswPM7PJoIGZWAXI7e+qhluOrHedyGqNaQKSZtqorIKb1X3nb/NSbRXUFxPhxXbh0FzMmbtAywdBpk1meOTBt91Q3iKS9CZSD8wlm9S+RtFet/mb2Y+DdBJMwrwR2N7NL8pwrjw/mS2b2vzW2PZznJI1gZr8wsylm9nYzO7Nd52mGvD/qay/9cuofKe+fbPrcmwq3Pcepnnw5bsbszESfScImiaxEn1majtM9tGoyZicnYkZO/qxWUs4B9jez95jZXsABwH9Ud5K0Xfg6FdiMwHXxB2DzvAk3PVWM4zhOnZgZWcG07Q+2bZixZvZotGBmSySNTej3WYJI3XMSthmQaTIo5UTLXuPAI7/QknxKi+bty8rb5tf1lN7Op7qksseRTyaLPFpMlskrug6R2az6Grs20x20ylS2ZOCnHfvODahktNKKl6AezIWS9g5bVBdmGGZ2bPj2QDPbJ97IGUXmAqaDtOrHX8+fsRPpNeLCopXJLPNcr0ioJPluImFcqhxWTk9QseyJloPltZF9CngQmEOQBuYh4LiU/gtzrhuBm8h6nE5F17Q6S3Lky4kXrmokM6+HN3cPrcq+3AnyzHMpq3gxs1eBr4etJpLeSjDp/Y2Sdmbt/MRxwHp5zuUCxikVca3l2ku/PMzkFgmb6ptQnnDVMqZ8d7qXPPNgyuqCkbQHcDqwJcMLiG1T1fUAgsn1WzBcGL0E5IovdxNZAbQqagY6GznTbqpDlw888guJmlEkaLJCmuO4cHFaSa4w5aIHWZsLCQTGngQpYKI2DDO7OPS3/H2VD+ZgM7syz4lcg3Ecx6mTCtkTLbO2F8hKM7s2b2czu0LS3wDbA+vG1v9r1r6uwRRAKyeYdTJypl2M33POkPYS97lE25KI96tHk3HKSaty0HXqd5BnDkx5ffzcLOlrknaXNDVqtTpLugA4Evg0gR/mcALzWiYuYJqgUVNX9U2zGTNXN99Y47Pyr7v8K3Xtm2Q6i65FL5kNRwPdJlyAXBUtS2wj2w2YBnyZYI7LOcDZKf1nmNnHgBfNbB6wO8NzRdbETWRNkJRHKfqRZ2kV8e215nvUyr9V65zdTOTMzxNFlNXHU8Y47aaCZeYaq3RoLPUS+lXq4S/h6yuSNgeeB7bOs6MLGKcUpAkN9fWPMJ05vUFXai+EyS4zbGDNzoORtAlwKbAV8CRwhJm9mNDvSYLIrkFgjZlNq3G8z6adz8xqhS1fI2kj4GvA3QS62X/l+QxuImuCRn/U1fs140PpVv9LveNWX/9Qa2R/x2kllUpU1bJ2a4EP5hRgwMwmAwPhci32MbOdagmXkA0z2gjCrPkDZvZnM7uCwPeynZl9Kc8HcA3GcRynToJklxkmsuajyA4B9g7fXwzcAuTLxZRA6D+pd5+KpHMI/C7RJM1X8+7vGkwTVD9Ft0qjSTp2LxHN0m92PlDcmd8ux34vfw9O40T1YLIasI2kxbF2bNaxY7zFzJ4GCF/fXKOfAddLuqvO4+flekkflJRUaTgVFzAtoN4w2bSbVnW9k6zjdKODf8bEDYZemxl/lGdt+tyb2hKuHV3fTgkZj37rHtZUjNcH09uaQQN4PCrtHrYF8eNIulHSAwntkDqGs4eZTQUOBGan1XZpkM8ClwOvSlol6SVJq/LsWIiACWOwH5F0n6SrQgdStO1USUslPSrpgCLGl4fopnP9Zf/e1HHiN9h6bzDdKFwi4mNv5nPEb/5WGWyZ0xjWjqtT13k0Rr/VG55ei04L5yBVjGW27OPYe81sh4T2M+AZSZsBhK/P1jjGivD1WeAqYNeWfdDguBuaWZ+ZrWNm48LlcXn2LcoHcwNwqpmtkfQVgvKbJ0t6J0F55O2BzYEbJU0xs1KFEMVvavsfcWrDTvvq/RbN25fxVdmPu1mI5KEV2kGkybQ64abTfiJttlmWDPwUOiig88zkb0HJ5KsJytWfFb7+rLqDpPWBPjN7KXy/P5A4w77RKDJJA2Y2M2tdEoUIGDO7PrZ4O/Ch8P0hwCWhI+kJSUsJpPFvOzxEx3GcmuSZqd+CKLKzgMskHQM8RTCDnnAuynfM7CDgLcBVoXtkDPAjM7uuxvGiSLFtCXKPXR0uvx/4VXVnSesSZE2eIGljhmdT3jzPByhDFNknCGK9IUgNfXts27Jw3QhCZ9axAJMm5ZpU6pSQvBNT8xCZx6o1mfF7zmHKzENHpQmq7GSV2M5LWnntdpBnHkylyZmWZvY8MEJLCE1iB4XvHwd2zHm8eQCSrgemmtlL4fLpBD6Wav4ROJFAmNzFWgGzCshlLmibDyaP80rSF4E1wA+jVQmHSvwWzWxB5DjbdMKE1n+AGhRRNGw0UB1RFl2feiLNonky1fb4lbfNHyFcPDqseMbNmJ27AmoWnX54GKzA6xXLbCXlbcBrseXXCCZzDsPMvmlmWwMnmdk2ZrZ12HY0s/PynKhtGoyZvTdtu6SjgfcBM21t8eplDM9xswWwoj0jbIxORhWNJqpt8bUiuPJc/zz2+Og4LujLQ7cUGwNyOfGt+Xkw7eIHwJ2SriJ4gP8A8P1anc3sXEkzCIRQvH5MzX0iCjGRSZpFMGHoPWb2SmzT1cCPJH2dQC2bDNxZwBAbJjLTpP1Z8qY9Ge03vyRB0krhPtqvr9M4uVLFlFTAmNmZkq4F/l+46uNmdk+t/pJ+ALwduJcgHQ0EgqmcAgY4D3gDcEPonLrdzI4zswclXUZQI3oNMLtsEWR5aTR3lufcckYDSeHkjZZMLuJBIQpTTqMFM/nbyXrAKjP7rqRNJW1tZk/U6DsNeKc1oJIVFUX2jpRtZwJndnA4juM4dbHGsn0sa0rqg5E0l0BobAt8FxgL/DewR41dHgDeCjxd77nKEEXWdTTrh9l2vw+2cDROXqbPvckjyQomayJsPVpMkSZOM6OSGUVWTgFD4HPZmSAzMma2QlJissuQCcBDku4klofMzA7OOpGnimkBkbDJG3KZdpOLQmxdCK2l2ZxlES5ciiVvlgWrDNZsEUX7zyoGgxmtrPVggNdCc5fB0GTNNE4HDmV4gbJz8pzINZgGif/Y1dfP+D3ntMx/4jPSh5NU2M3pLlqVwscqg6X4f1iOKLLyKjBcJuk/gY0kfZJgLmLN+i5mdqukLYHJZnajpPWAXGqmC5gWUI9gKcOfw3Gc5giSXabrKGsytheFmZ0taT+CCZPbAl8ysxtq9Q+F0LHAJgTRZBOBC0iYBFqNCxjHcbqGsjygRSayNLK2F4WkzwCXpwmVKmYTpOy6A8DMHpNUq3TAMFzAOI7j1ImRx0RWUgkT5BL7paQXgEuAn5jZMyn9XzWz16JyMJLGUCPDSjXu5G8Qd8I7zugl0GDSi421IJtyWzCzeWa2PYFmsjlwq6QbU3a5VdIXgDeGprXLgWvynMs1mAZZNG9fxt1wRe7+ZVHty4rP0HeyKNN/6PXBCq+tSfexvJ6xvQQ8C/wReJ7a1TIBTgGOAe4nSID5C+A7eU7gGkwTrFp4/lCCRaf78AqS3UOZhAuEGkzFMlrRo0xG0qck3QIMEMxx+aSZvStllzcCF5nZ4Wb2IeCicF0mLmA6QNn+HKOZuFDxeTFOo1QyhUt2QbIsJB0u6UFJFUnTUvrNCisAL5V0So5DbwmcaGbbm9lcM3soo/8AwwXKG4E0k9oQLmBaQFrZ5HqFy7TTBpodTtexcPnqTLNW3smWWXVB0oTK+D3neKZsJxdRssu01oKZ/A8Ah5FQDCxCUj9BbZYDgXcCHw4rAyf13UTSJsBXgaei5dj6WqxrZkOzyMP36+X5AO6DcRzHqZPIRJZG1vYszOxhgCh6qwa7AkvDwmNIuoSgMnCSVnIXa6O/qg9qwDY1zvGypKlmdnd4jl2A/8vzGVzAtID9jzh1xLpGzWKLz8icu9RzRLVg4lpMtSZRazZ/dUXMZsxeUY656FgeLNAamp3FX0YT85o8Tv7OOGEmAn+ILS8DdkvqGBYPa4QTgcslRbW5NgOOzLOjC5gmWXnb/GF/oDL+GbqRvKWUo6JhrRIGXlCuXJT1/5SvZLIBbCNpcWz1AjNbEC2E4cFvTdj9i2b2sxxDyV0FeNhO0sHAXuHiLWb2P7X6mtkiSdsRzPoX8IiZvZ5jbO6DaQXRn6Csf4ZuZuVt84f5VZLS8jQjEDySrL00o72U+f9UqeSOIns8Ku0etgXx45jZe81sh4SWR7hAA1WAJZ0FnEBgRnsIOEFSbUdywHTgXQRZmD8s6WN5BleogJF0kiSTNCG27tQwGuJRSQcUOb56KPOfodtZNG9fVt42f0i4tCq7MgTlleNmsbiwck3GqcWgGWsq6a1DFS0XAZMlbS1pHeAogsrAaRwE7GdmF5nZRcAs4G9qdQ4rWp4N7EkgaKYT1JPJpDATmaRJwH7AU7F17yS4QNsTzDC9UdKUbq1q6bSWuBCPm9BaZR6rFijugymOsj+wrRm0TB9M1vYsJH0AOBfYFPi5pHvN7ABJmwPfMbODzGyNpOOBXxJkOL7IzB7McfiNgBfC9+Mz+nZXRcuQ/wA+D8RVwUOAS8zsVeAJSUsJoiR+W8D4HMdxEqlYtobSbC4yM7sKuCph/QoCLSRa/gXB7Pq8/Dtwj6SbCXwqewEjI5XW0l0VLUMH03Iz+11VCN5E4PbY8rJwXdIxjiVIIc2kSZOSujijgGa1jCkzD2XJwE9bMxhn1JDHyd8hE1ndmNmPw5n80wkEzMlm9seUXRquaNk2AZMWHQF8Adg/abeEdYnfUugsWwCwy9Sp5fwmndKzaN6+TIcRQsbNY8VRdvMYrHXyp/cp521J0h7AvWZ2taSPAp+X9E0z+98au5ze6LnaJmDM7L1J6yX9NbA1EGkvWwB3S9qVBiIiHKfVuHBpDY1EkHWDcAF4vTLIa2vSXcMdmgfTCN8GdpS0I/A5gtxi3wfek9Q5rGj5FgKNB+BOM3s2z4k6biIzs/uJZe6U9CQwzcyek3Q18CNJXydw8k8G7uz0GJ3RRbX24s5+J4s8GkyzM/nbyBozM0mHAPPN7EJJR9fqLOkI4GvALQRWpnMlfc7MfpJ1olJNtDSzByVdRhCbvQaY7RFkjuOUjVw+mPIKmJcknQp8FNgrzGc2NqX/F4HpkdYiaVOCZJflFzBmtlXV8pnAmcWMxhltpM11iTSXalPPtvt90DMxj3KieTCpfcorYI4EPgIcY2Z/lPQ2Ag2lFn1VJrHnyTmHsnAB4zhFkdcUtmrh+UyfexOP3nBF1/gIupFuurZ55sG8PlhaAfMS8E0zG5Q0BdgO+HFK/+sk/TLW50jg2jwncgHjOCSnoImzaN6+4FqLExLVg0mjxBrMr4D/J2ljgloviwmExt8mdTazz0k6jGAmvwjyqY2Yn5OE5yLrAkZjjZhOYJXBoZb09DzttIGmMwE7vUmeipZlDVMGZGavENSaOdfMPkCQPWV4J+kdYUgzZnalmX3WzD4DPC/p7XlO5BpMF1BvCv/qm2I3mR6KolqIj8ayCU5+unmiJSBJuxNoLMeE65Lqvn+DYM5iNa+E296fdSIXMI7jOHVSGTQGM3wwWdsL5ESC1DBXhZG72wA3J/Tbyszuq15pZoslbZXnRC5gehzXXvKxZODKYcvTCLUY12Q6xrgZs7vm92pmZOZ+LKkGY2a3ArfGlh8HksIp1005zBvznMt9MD1I/E/qPoT6mTLzMDeRFcS4GbO7w+dohlUyWsnki6RvhK/XSLq6uiXsskjSJxOOcwxB+eVMXIPpUVYtPH9IuESv3fJ06IxulgxcWXrNsZLDiV9CJ/8Pwtezc/Y/EbhK0t+yVqBMA9YBPpDnAK7B9DDVAsW1meHUEriuvRRLNzwImYFVsluZMLO7wtdbCatZmtmtUUvo/4yZzQDmAU+GbZ6Z7Z6RfXkIFzA9TvWftSvMDwXSDTe3XmbKzMOKHkIuKhVjcLCS2iqVpguOHS7pQUkVSTUrSEp6UtL9ku6VtDilnySdLuk54BFgiaQ/SfpS2jjM7GYzOzdsddUYdwHjOI5TL1n+l7A1yQMEc1V+laPvPma2k5mllTI+EdiDIK/Ym8xsY2A3YA9Jn2l2sEm4D2YU4E/ltfFr0z6mzDxsRHQewHWXf4VZh5+cuE+95slppw0UYtIMTGTpAqRZAWNmDwNUFWVsho8B+5nZc7FzPB7WhLmeoMpwS3ENxnGctlDrxh8XLqsWnj/UoH4/YXSOcTNmD7VOYGZUcjRgG0mLY+3YdgwHuF7SXRnHHxsXLrHP8ifSsyk3jGswjuO0jVqCI0lzbEab7LQmWqkYlYyJlJUg2eXjZnZkrT5plX/N7Gc5h7OHma2Q9GbgBkmPmFmSWe21lGOkbWsYFzCO47SduKDpBbOk5QhTzmMiq1X5t66xmK0IX5+VdBWwK8l+mx0lrUpYL9InVTZMYSYySZ+W9GgYJfHV2PpTJS0Ntx1Q1Pgcx2k9vSBcAAwbms2f1tqNpPUlbRi9B/YnCA4YOWazfjMbl9A2NLPeMZFJ2gc4BHiXmb0aqnZIeidwFEFmz82BGyVN8aqWjuOUiTzzXJqVL5I+AJwLbAr8XNK9ZnaApM2B75jZQcBbCCZDQnA//5GZXdfcmVtHUSayTwFnmdmrEKh24fpDgEvC9U9IWkqg7v22mGE6juOMpBPJLsOaKyPqroQmsYPC948DOzZ1ojZSlIlsCkHBmzsk3Spperh+IvCHWL9l4TrHcZzykCMXWemSkRVA2zSYtOiI8LwbA+8GpgOXhSmjkwK+E7+lMBzvWIBJkya1YsiO4zi5iIUhp/Tp0GBKTNsETFp0hKRPAVda4AW7U1IFmECgscSlxRbAihrHXwAsANhl6lT/Kh2nB9jlizfy2M2BVWjyPh/grjPfW3M7FBg00IGJlr1AUT6YnwL7ArdImkKQnfM54GrgR5K+TuDknwzcWdAYHcfpEEkTJKuFy9p1TUf2Nk1lsJLtgxksWbbLAihKwFwEXCTpAYIJPkeH2syDki4jyPS5BpjtEWSO45QNM7q24FgnKUTAmNlrwEdrbDsTOLOzI3Icp9NUm7uqKfOkTLPsZJZuIvOZ/E5Opp02MCJxYVn//E65yRIsEWX+fZl1ZcGxjuMCxkll4fLViZlv8/z5q+3qSU7bvMkJy3yzcfKT9/uevE+ugomFYZUKVkm33lvZKo4VgAuYElOtNVx3+VeYMXGDjo5hxsQNGr6559kvXto5jUYEkZeKLg/1ZjlOcvCXCRtcQ2VNen7IyprXOzSa8uICxnEcp06sUsEGM+KPMjSc0YALmBKz+IyZMArqwydpGI3W9Ujar8zO4l6nke+xG74rsxwmMhcwXnDMKSetvsl0shiVE9DT1zsUMOnNfTCuwTilJcmf0izVx5ky87BCSu72Kj0tVGJU8vhgBt0H4wLG6QriwqZWZFsjLBm4knFhIEU3mGbKzGgRLpAzisxNZC5gnO4jHtnWyptanrK+Tm3yRgRm0Q0+M7NBKpkCxk1k7oNxHMepE8vlg2lOg5H0NUmPSLpP0lWSNqrRb1ZYAXippFOaOmmLcQ3G6Wqqn3TjT9DxeUONPFlH+0yZedjQfKSyP1kXTdL1acSkWev7SpqsWwS2Zg2V19s+D+YG4FQzWyPpK8CpwLALKakfOB/YjyAb/SJJV5vZQ82evBW4gHF6ilaGPEe4cGmOuEmzWf9ZkGKmBAKmA2HKZnZ9bPF24EMJ3XYFloaVLZF0CUFlYBcwjuOMLpIyQ0RCJ9I4k4RQ6YR7/lQx20haHFu9IKxlVS+fAC5NWJ9UBXi3Bo7fFlzAOD3PqoXntyTyLG4y89Dm1lEtdJpJT9Qp6tBgHjezI2v1Sav8a2Y/C/t8kaB8yQ+TDpF06tSBdRAXMM6oIO9Na+Hy1QDlf4J2CiXIRZbuY7HBNdnHSan8CyDpaOB9wExLLkCTuwpwEbiAcRzHqZNO+GAkzSJw6r/HzF6p0W0RMFnS1sBy4CjgI02duIUUImAk7QRcAKxLoPr9k5ndGW47FTgGGATmmNkvixijMzqJos5cY2k/1b6XbqJSqWTOg6k0Pw/mPOANwA2SAG43s+MkbQ58x8wOCiPMjgd+CfQDF5nZg82euFUUpcF8FZhnZtdKOihc3lvSOwkk8PbA5sCNkqZ42WTH6T26wddSkxzZlFsQRfaOGutXAAfFln8B/KKpk7WJoiZaGjAufD+etTbDQ4BLzOxVM3sCWEoQhuc4jlMa8k209Jn8RWkwJwK/lHQ2gZCbEa6fSBDvHbEsXDcCSccCxwJMmjQpqYvjOE5byFNwzDK2jwbaJmDSwu+AmcBnzOwKSUcAFxLMnsodchfGki8A2GXq1NKE5TmO0/O8VHltNcrywby2GmBVR0ZUUtomYNLC7yR9HzghXLwc+E74vtQhd47jOMDFlecePafvTVOQansZKs/cB0Eal1FLUT6YFcB7wvf7Ao+F768GjpL0hjDsbjJwZwHjcxzHScTMnu8bvwX2wu9r9qm8/Cz09WNm93ZuZOWjKB/MJ4FvShoD/IXQl2JmD0q6jCCPzhpgtkeQOY5TNirP3DeBdTd5Tpu8PVGLqfzxXuyl5TsXMLRSUYiAMbPbgF1qbDsTOLOzI3Icx8mPmT3f/9YdsRd+j940edg2117W4vVgHMdxGqDyzH0TBv/0UJTUcu36P96LrXxq1Gsv4ALGcRynIZJ8Ma69DMcFjOM4ToNUazGuvQzHBYzjOE6DxLUY115G4tmUHcdxmmAoomzsuthLK1x7ieEajOM4ThNEWgx9Y117qULJNWy6C0kvAY8WPY4EJgDPFT2IKnxM+fAx5aeM40ob05ZmtmknBzNa6RUT2aNmNq3oQVQjaXHZxuVjyoePKT9lHFcZxzQacROZ4ziO0xZcwDiO4zhtoVcEzIKiB1CDMo7Lx5QPH1N+yjiuMo5p1NETTn7HcRynfPSKBuM4juOUDBcwjuM4TlvoegEjaZakRyUtlXRKgeN4UtL9ku6VtDhct4mkGyQ9Fr5u3OYxXCTpWUkPxNbVHIOkU8Pr9qikAzo4ptMlLQ+v1b2SDurwmCZJulnSw5IelHRCuL7oa1VrXIVdL0nrSrpT0u/CMc0L1xd2rVLGVOjvyknAzLq2Af3A74FtgHWA3wHvLGgsTwITqtZ9FTglfH8K8JU2j2EvYCrwQNYYgHeG1+sNwNbhdezv0JhOB05K6NupMW0GTA3fbwgsCc9d9LWqNa7CrhcgYIPw/VjgDuDdRV6rlDEV+rvyNrJ1uwazK7DUzB43s9eAS4BDCh5TnEOAi8P3FwOHtvNkZvYr4IWcYzgEuMTMXjWzJ4ClBNezE2OqRafG9LSZ3R2+fwl4GJhI8deq1rhq0fZxWcDqcHFs2IwCr1XKmGrRke/PGUm3C5iJwB9iy8tI/0O2EwOul3SXpGPDdW8xs6chuHkAby5gXLXGUPS1O17SfaEJLTKvdHxMkrYCdiZ4Ci7NtaoaFxR4vST1S7oXeBa4wcwKv1Y1xgQl+V05Ad0uYJSwrqi46z3MbCpwIDBb0l4FjSMvRV67bwNvB3YCngbOKWJMkjYArgBONLNVaV0T1nVyXIVeLzMbNLOdgC2AXSXtkNK9yDGV4nflrKXbBcwyYFJseQtgRREDMbMV4euzwFUEKvgzkjYDCF+fLWBotcZQ2LUzs2fCG0QF+C/Wmis6NiZJYwlu4j80syvD1YVfq6RxleF6heP4M3ALMIsSXKvqMZXlOjlr6XYBswiYLGlrSesARwFXd3oQktaXtGH0HtgfeCAcy9Fht6OBn3V6bCljuBo4StIbJG0NTAbu7MSAohtTyAcIrlXHxiRJwIXAw2b29dimQq9VrXEVeb0kbSppo/D9G4H3Ao9Q4LWqNaaif1dOAkVHGTTbgIMIom1+D3yxoDFsQxCl8jvgwWgcwJuAAeCx8HWTNo/jxwSmgdcJntqOSRsD8MXwuj0KHNjBMf0AuB+4j+DPv1mHx7QngYnkPuDesB1UgmtVa1yFXS/gXcA94bkfAL6U9dsucEyF/q68jWyeKsZxHMdpC91uInMcx3FKigsYx3Ecpy24gHEcx3HaggsYx3Ecpy24gHEcx3HaggsYx3Ecpy24gHEcx3HaggsYp+eQND1MeLhumGXhwYz8WY7jtAGfaOn0JJL+DVgXeCOwzMz+veAhOc6owwWM05OEuekWAX8BZpjZYMFDcpxRh5vInF5lE2ADgsqQ6xY8FscZlbgG4/Qkkq4mqHC6NUHSw+MLHpLjjDrGFD0Ax2k1kj4GrDGzH0nqBxZK2tfMbip6bI4zmnANxnEcx2kL7oNxHMdx2oILGMdxHKctuIBxHMdx2oILGMdxHKctuIBxHMdx2oILGMdxHKctuIBxHMdx2sL/B1p2XuS9hg1iAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC9N0lEQVR4nOydeZwtR1n3v091nzNzbxZQQPZwE0hAUDYDKvFFFhOIGy/4KogiIoqisoR9k00JIdsVEYUIKCKLIqCgZIOXRVyQRRAhECAEhYAorwokuTOnu573j6equrpPn2VmziyZnN/99J1zuqu7q/t016+eXVSVJZZYYoklllgE3G53YIklllhiif2DJaksscQSSyyxMCxJZYklllhiiYVhSSpLLLHEEkssDEtSWWKJJZZYYmFYksoSSyyxxBILw5JUllhiiSWWWBiWpLLEwiAiV4rIv4vIUdm6XxSR927yeO8VkSMi8q1seUe2/Vki8oWw/ksi8qedfVVE7tI55l+E9fcJ3x8pIh8RkW+EY5wtIuWUPj1fRP5kyvWvi8iNO+s/Fs55aDP3YYklrktYksoSi0YJPGErBxBDfDZ/XVWPzpYfC20eCTwC+CFVPRo4GXh351CXAz+XHfdGwPcB/5G1OQg8Ebgx8L3A/YGnbKH7XwB+OjvndwMHtnC8JZa4TmFJKkssGucATxGRG3Y3iMi9RORDIvI/4e+9sm3vFZEXicjfAtcAJ8w4zz2Ai1X18wCq+lVVvaDT5vXAQ0WkCN9/GngbsB4bqOrvq+rfqOq6qn457HPKhq64jdeRERnwSOCPt3C8JZa4TmFJKkssGh8G3ktnti8i3w78NfA7wI2A84G/DtJDxCOAxwDHAF+ccZ5/AH5ORJ4qIidnxJHjKuBTwGnh+88xe4C/N/DJGW1m9etYEfnO0KeHAr3qsiWW2I9YksoS24HnAo8TkZtk634E+Kyqvk5VK1V9I/Bp4MeyNn+kqp8M20dh3e+IyH9ny28CqOqfAI8DHgC8D/iaiDyjpy9/jJHP7YEbqurfT+q0iDwKU6Odu7nLTojSyqnhGr+8xeMtscR1BhMNkksssVmo6r+IyF8BzwAuC6tvwbj08UXgltn3f+s53ONV9VUTzvN64PUiMgD+d/j8T6p6cdbsrcB5wNexwb4XIvK/gbMwG81/hnU/A7wyNPkbVT190v4dvA54P3A8S9XXEtczLCWVJbYLzwN+iYY0rgJu02lzHO1Z/KZSZqvqSFXfDPwz8F2dbdcAFwKPZQKpiMgDgT8AfkxVP5Ht+/rMQWBeQkFVv4gZ7H8YI7UllrjeYEkqS2wLVPVzwJ8Cjw+r3gmcJCIPF5FSRB4K3BH4q80cX0R+XkR+RESOEREnIqcDdwI+2NP8WcAPquqVPce5H2ac/wlV/cc5T+9EZDVbVnraPBq4n6pePecxl1hiX2BJKktsJ14IHAWgql8HfhR4MqaKehrwo1HVNAW/24lT+UhY/w2MLP4V+G/gbOCxqvqB7gFU9aq+9QG/AdwAeGd2jgtn9OmngWuz5fM95/y8qn54xnGWWGLfQZZFupZYYoklllgUlpLKEkssscQSC8OSVJZYYoklllgYlqSyxBJLLLHEwrAklSWWWGKJJRaGfRH8OJQVXeUoTvqeWemilthJXP6RK3a7CwYR+zvFKWX57GwvLv/oF5ovu+wc9E3+6z9V9SazW86PX3nkDfU+pxzgYY/5iizyuNdF7Avvr5NPPlk//OGl9+Zew6nFQ0E9yPwCsTh7J7WukaIvnVer8Va6l86TnxdAvXJp/aeTdlliwTjV/SRSFKhXe156MOlZUD95/BIn7e3h2O/SP/+Iqp68+R53ziNy51Pusfrxa48oH/3E2kBVq0Ud+7qIfSGpLLGHMcfAnw/oad0kQlkAkUw7TySZ0wYPs+/ZoLQkmu3Bpf7Nvesj2UR0CUKKYow4us9S2j6BrBaBh/zI0R8/45dvyDsuuZonPOaGI+B6La0sSWWJbcGp7icTAXSlgBx9hDIVG5R8NoouyUjREE2UvCYNgkssFtPIBnGoV8RJ+xkSh1aj3v3i8UQWN+aLyJ1Pu89B7nWPA5x4/IAffvhVPPJxUl6fpZUlqSyxLbjUvznN9nPkM8tZs8y9gkg0WtfbSmhLzIcu2ZxaPLRRm/YQynZOAqKUAnCTG5f80A8evN5LK8s3ZIkdx9jsEkA96nWqjnwMU1Qal6y/oWmjPkkbW0Fvv5do4VT3k61lJ3Bp/adcMnrTxGdnu/oiInf+1tWee92jKez5pF++Ib/9yv9mWknq/Y59ceGXf+QKTnU/uVRL7DFcMnoTENRGAZuxS4xJPLkKLJBRV2112uBhSUXiBiXqq2a/SEYbkTrCeZbox04RyDRcWv9p4xzSg0X3MZdSIqK08sRfvv5KK/uCVCLiQ7Mkl72FrRq4IzlFmE5dp9pXTDJp1FVuUKJ1PZ9XWe+xlob6JRrktpQunvwrN+T0n57PtiIit8Zq7twM8MAFqvrSTpv7AH+JlVMAeKuqvjBseyDwUqAAXqWqZ23pwhaAfUUqS1w/kE8a4kRC62D7CLPUSROL04YPn/s8SYW2xJ5HlIZNPZnZwLYJfVJKxAallQp4sqp+VESOAT4iIpeq6qc67f5GVX80XxHKVb8cqzD6JeBDIvL2nn13FPuSVJaqsOsPNvo7L4li/yE31E9Epi7dKqZJKRHzSiuq+hXgK+HzN0XkMqyw3TzEcE/gc6p6RejXm4AHzbnvtmH/GOrFgTjzXS8HPGD1Z3jAgUfsdq+WWOJ6gd2axJ1aPNQk1PD+T1KHipNFxqr870f99LFTG9zkxiV3OHEI8FwR+XC2PGbSPiJyCLgb/YXmvl9EPi4iF4rIncK6W9Iuwf0l2uW5dwX7QlIREdyg7H2gHnDgEVx87cTS5EssscQC0GcE326iSRJK7ngRPrecKmK8VDmw9mtbPrWsrsy2wa+uCpj947kzDyhyNPAW4Imq+o3O5o8Ct1HVb4nIDwN/AZxIv2pt171J9oWkku5idyaydP9cYol9jb40LAlRe+EkEcuiPPhqrRlpNXXxc0pGIjLACOX1qvrW7nZV/Yaqfit8ficwEJEbY5LJrbOmtwKu2uq1bRX7glQge1jyH9LrUkpZYokdQFcq2TF1WIhB6i5gjhtJNbZgeMCjU5d56EssvP/VwGWqev6ENjcL7RCRe2Lj9teBDwEnisjxIjIEHga8fRHXtxXsC/VXREzbACzJZIkldhiX+jdve7zKxONHiWSHoHg8sySRuaSiU4BHAJ8QkY+Fdc8CjgNQ1VcA/wd4rIhUwLXAw9QyAVci8uvAxZjL22tU9ZMbvZZFY3+QSjfT8jYmj1tiiSUmYzsllGmEAu1JZSvIdRtQoYxmHN/PQSqq+gFmuB2r6u8Cvzth2zuBd8480Q5i36i/gCQKX3zk9bvdkyWWWGKByBOUjhFXNrj3qsG3AR6lnrHsusV8l7A/JBUA9WOR10ssscTOY9syW2QZoseSSkYpJstevJ1QZksiS1LZBzht+PBlcNsSS+wC+lRTmwlCnqTimnWcuD2XaLYTtSqjGQUO/T4ogLgZ7Kr6S0RuKCJ/LiKfFpHLROT7ReTbReRSEfls+Ptt8x1sf2nyllji+oZFGfl3wmA/S/V1fVZ/7fZI/FLgIlW9A3AX4DLgGcC7VfVE4N3h+xJLLLFHMY0MZhHFItLk5/sniSaPsN8Ol2KFesZyfSWVXVN/icixwL2BnwdQ1XVgXUQeBNwnNHst8F7g6dOOddL3nMAlH16qvZbYWRz6/XPH/Hau/JWn7E5n9jAmqcE2QiS9bTtk0SWWB6z+TGO4X7A3mNlUZre5PmI3bSonAP8B/KGI3AX4CPAE4KYhyRqq+hUR+Y6+nUMOnccAHHfccTvT4yX2LE486zAqIOFN/+wzz9i2cx3/svPQQo1QlBaxHHqFEc2Vv7wklxxdYtm0ZJIRSRMpX7QqPsZzXXzk9Z3sxVZGQWTrJQxqFUY6Xc12fQ1s2E1SKYG7A49T1Q+KyEvZgKpLVS8ALgA4+eSTr6+Tgus1TnrRYRBQAcRKrMQB/sSzDgPw2WdsH7kkxKevSy4KVz52SS4RW8oeHoIbc5dhrQEset4dOABe8WtHgPHCbup1ofVwaoR6RlZ7vX7W6NpVUvkS8CVVjRk5/xwjlX8XkZsHKeXmwNd2rYdL7EmcdObhlm5BNBDLDuDQy8+DKKXk2hel6dNyijMRm5JQgupKJ5RHkaJAR1VLWkmF1bYpGNPDHKRy/cSukYqqflVE/k1Ebq+qnwHuj9UB+BTwSOCs8Pcvd6uPS+wtnPhikz7iq6xxUJc2qUj2Nke1GMDnnr5AqaXP9ps6trjTLDEFQXqRosCvr+/oqWscI53uAOB3aqazx7DbcSqPA14fkqFdATwKe13/TEQeDfwrsPvFr5fYdUR1FgLe2V912iIQAFTMzKHpa8Ltzj7M5562OWI5/mXn2YdCLctSLh7lerfcxiJw6IJzuPIxT93UOa8r2LacXxMKa0lRIMNhs6In8/B2J7T0CPUM59mlTWUXoKofA07u2XT/He7KEtcBqAM/1JaUoEHtJB4im4gXG+/zsSYM9Lc728hpI+Ry/O+e1xyjl1Cyv0hmY1mKLFvCBG8tKQfZF4Fi5yUCrzKHJLKUVJZYYk/idmcfDjYMHVc7SecvtAf4CUiSD5ON+YlMCKq2PvEn70eXxEKzQ39wDlf+0v6WVnYUKWnk7g3aS5vKZOx28OMSS8wHyWwoaZ3a4hR1oAXtv04nSguzJpmHXm6Eok7RUhu1VzpAu2/pr7P+dM97m1efPesKr9O41L9552qoeE2E4q+5Bn/NNTtz3gy1Foy0nLr46+nwupRUlthx5N5blz97PjWUFooWUxq4RiWlYC7GPn7ObC8Zm3RJKhJJtJFolIy6BDRrChrNK4lsrj9z1p2oqaJ1HWJUdlNSme1SfH21qVw/qXSJPYOTXnTY4k0mINpAkgE8d93tQrRRO0XJpvveJxtIOKxTjn/ZeS1VF9Cvaus7X4BKs8Tv3TaH/vglMw64P7DdEotWI6hrqKreFCw7ITF5hFrd1EWX3l9LLLFD2ODEXctMSsnfU5XGaN4ymLelEVEsRi4zrlcHtW3Uz6WJ3DW4J2p+4ud0zoa40mS6sHWHXncWVz5imc5uq/Dr67iDBymGQzS4E+9kHaUKx4hporMRz/URS0lliT2L273EpJSkpuqSUSSUiZIL7RgWUaqjPNVRWVGnKXaXucaErvNXtq/EY7voonb9UoNtO+rwOxaFLTsIP0NKqdVdbyPql6SyxK4hqafEAhtPOrNRg0W1V5r19xFK/Os6G7NAFS3M0F4cEepVHd9/7s7O3tZ7yMwLLOL4P3nxxs69RD/UmyjoFbxuOdvxhk6N4HFTlyWpLLHEDkML8EWmooKWfUVLRWcoaHNbRpJIAslEQhKF9Rv6TK3Vt1N+UJo0tJPSr3QZJBdGxo6pQRWmSLD7HP/6JbFsGcGeIsNByvm1U6jUsa7F1OX6GlG/JJUldhzJ40sxd+BC8QNNg7bFpUywo2SY953VTFoYV1N1yaFDNPPk82qRVNa+0btl55uvz0vMgRivUhTITqu/cHidvswjqYjIrUXkPaFI4SdF5AlT2t5DRGoR+T/ZuitF5BMi8jER+fCCLm9LWJLKEruH4AYcx2OfBUr7OVxI+tRN0wSQqRgjk56DtKSWyUxn0f1i0f7eiCZKKNBILLd905kb7OQSOSTYUmRQ4g4etPQtO0QuMU3LtGVOBWsFPFlVvxP4PuDXROSO3UYiUgAvAS7uOcZ9VfWuqtqXnWTHsfT+WmJHESPZk1ord8t1wc0qG4B7J3vRXrLJWX/KstJJb5yT1KY1FyFIRrwmwUUUVMXIJKrkwvFPeOOZXPHTz9rkya6/kKKwmxjjVQYlUpoaLLerbFuWYhXqGQ/JPJJKqB0V60d9U0QuA26JJdbN8TjgLcA9NtPfncSSVJbYdnQr8mmMPA/IAxP9MKi9cjVSTjCTCKUrVEx4n1uex3kgZDe+pNWxzjmSq3GPmix+VrEmLjQvNEgoIM43JNPfzX2BrVZ7BNpxKCEXmBsObX1RIGUJZYmowqCEtf7zLZpcanWMZhj8gk3lISLyqmz1BaEW1BhE5BBwN+CDnfW3BB4M3I9xUlHgEhFR4JWTjr2TWJLKEtuKSYOI1KYm8gVNNLxYupUxIsn+bpZMJqGr8WqO2w6SnBWb0j5oc0BRNTVYdlzJjfbXE2zGKytXZalXEBckFAch5T1FAW62Fv/U4qELLdLlkZlxKGHK8FZVfe6s44nI0Zgk8kRV/UZn828DT1fVWsazCJyiqleFCrmXisinVfX9c17GtmBJKktsG3oHkqDZstxctESHXkKYJp10Dz1je59NPm3IAyjzc+d/u583CgHnGhWYu56QylYIJWUkDkW3YllgIxQ3Tih9teh7ou63Co/FokzDvL+uiAwwQnm9qr61p8nJwJsCodwY+GERqVT1L1T1KgBV/ZqIvA24J7AklesC/FdPan13N7t8l3py3URSfUXVVgw/ceNjOdAELrrGvtLNNp+/tRPVVj0qrt52uR0nnr/v8yRI1p+MrFRsTJNAJuIUF6QU142vuY7jtOHDAbhk/Q1p3VZq0ctwgDhnub4oQlyKSSkp4DHaVeJuRWEVInvS5i9SWjH114yI+hmkAyDGFK8GLlPV8/vaqOrxWfs/Av5KVf9CRI4CXLDFHAWcBrxw7ovYJuxrUvnO55pR+LIXnrHpY3TJJF+/JJbJmDaYSHjf/aBfArFMwzpGKraxMYCOjfXdVCvKBMai3W7m5ynHaJWcbO+jhdokuVBc6SlKT1nUYRxUimJ/pByMZJJ/z4llQwgqLre6AoB63xThihKHBON8lFYy/aI489pT30gsrdr2C8I8RbrmPOMpwCOAT4jIx8K6ZwHHAajqK6bse1PgbUGCKYE3qOpFfQ1F5CGY99h3kKZsqKoeO18358e+JZXbv/Dwlvylr/ryLTgoBce6AxPbLImlH9MIJRbHuu3551twYSzuJ/Y5kkgkFaBtIM8+JDP3NPtHHyZtn4dIxvZtzt1SpwlIqYjzSKEMhxVl4SkKnySVYh+ov7qEkq/fKLFEe0nKQKw998cJMhggw4ERSo6iQFZWoK6RqjIimVDoa6uwIl2zSGUu768PsAGlqqr+fPb5CuAuc+56NvBjqnrZvOfaLPYdqdzxOYepQ6XRPO5hiZ3BPOqOE156vk2TCqAIrreOUIeElvooQSWTPmikkJZnWOdEuUqKnu2tthPsKRmm2nyEkOvLrkNEcaXiApEcWBlROk/hjFQKd92VUiYRSRcbUX3lMSaystLk8lpfhyIY6J0DESOUWE5YNaVpsW1Dy148GHDxf71qwtm2Dquncp1KKPnvO0EosAdIJQT1fBj4sqr+qIh8O/CnwCHgSuCnVPW/Nn7gRs3SxV3/+jcA+NiP/ObE3f/bC+tSsSIjVmTJTrMw7wBywktNbaylDeI+EEsstNU7eU/BHjKuopolXcz7Xk9oN5bCPgpH3fNmNpNi4BGnlEVNWXjKwnNwuM7A1ZTOUzrLDLXHBp25MIlQogE9qZnmNJZLUaR9k4swIIPSiCIGOA4HjadX4cAFG4tX8N4kGFfaD7O+/YQ9X+XHPfX7flhE/hT4CzLH6wmOAVvCrpMK8ATgMiDq9p4BvFtVzxKRZ4TvT591kDs+57ANUCVj6pIYcDepbGwf/qM+imPcEVZljW9zwsrNrwAm21iWmI7bnn8+fqgIYqotwoA99I3dJKahzyC5ZALjKq6+lPWbxETvsSiJZFJJcz777kqPKzyuUFaHI5xThkVN4TyDouaowTrDQCpDVwGwPk/agD0Kcf03q1lfTCYSJ73bJEof0WbiAOeMYIZDI5MowXi1LMXem7RSBkKp6+Y424iYpmUa+rR3u4hjgWswY36EAvuLVETkVsCPAC8CnhRWPwi4T/j8WuC9zEEqEfnvrAWtaoG3e8lhPvf0M6ZKKBE/eKjfVuJudvmSWDrYiJrDx9K8QU00MQtxQPL0zVyLZ6m05o1V6QTUT7WjJEJxoQNB3RXTr5SDmqLwDMqag8MRhfMMiypJJgfLEUNXUYpnpTBSKevrlgosl1LUa0MOeRXGOJJ6ReK71yWgjtFcBmVDFlHVBcEY7xrpJEgx6RyqDQHFtiJzxa1sFRZRv3Wbyk5BVR+1U+fa7anSbwNPA47J1t00pC5AVb8SgnpmwhdhTIhakvC+1kMz+kptP/Dtzj5MdYz5vF/52KdsqtNL4/zG8fknPYlDv3cuOlSkyAaVkCdrYgwJPSQhk8f/qW7DnYYTy/12paWWhKLJduIKM8Q7p5RlzaCsGRY1q+WIQVGzGklFPKvFiNLVrLiKlSCpzJ0dapcwS9WVBvnWxmBgnyDJAEYcceDPAhxlOBgjBCnLYEtx48QV3Yld0RCbOBiN5rq+rWAul+I9RCphAv8yzNtMgQ8AT1DVLy36XLtGKiLyo8DXVPUjInKfTez/GOAxAMcddxxH1UYgUmNeRPH3DGVh1SlStX/kQ684F4Arf2Vz5LLEfLjUv5njX3YexOh5GpW7hISL9JHIPIQwqelMV+I5iCRvGySUJt4EirI2chFlUJr9ZFjWrJQVQ1dzsDQiKcWz4qoWqczjPbSb6COURCbixjyvpEMG6n17W4wp6SJIG1IUjQorElNd9+8TUZaBVDLCEYGy4MLLt7d0s0dmp7bfW6nv/xB4AxDVCj8b1p3abSgi3Yj+sSbAV1S1V2Wzm0/1KcCPi8iVwJuA+4nInwD/LiI3Bwh/v9a3s6peoKonq+rJXxv5JndTni49Pmc1NiMWtc9CKu+6xPailXMppGDRWohZgKPnV8ouHKsldurNj3mFTSCNtGlWzRTGj5trUloH66q8HI2EUjQSyrCoGbiaoQsSSzHiQDHiQLHOgWKdg8WIFVex6uzvgWKd0tU85eMP3cId3l6IE2RQNiqqskyEIoMBsrqCrK7AcNBa4vq0rev+C2ZcXxkiK8PQpoCyQz6RXHwdOhTtLUYeKVbFSSatCKfffntLNs+TpXgvSSrATVT1D1W1CssfATeZ0PbzqnrslOUY4OpJJ9o1SUVVnwk8EyBIKk9R1Z8VkXOARwJnhb9/Oc/xfMc2F3NIuTXh8uc0BvpDv3cuhIGMwiNrjkMvP48rf+3JW76mJSZDB8GW0goWnEHs3c0TyGEswj4ka2wa9MS05PtPsquk9R2X4RAN75xP3l1lYQb5QVEnlZcRTMVATEIZiJHOihsx8iVerHrgXkWymXSkBSkKywosDt1IHEjM1xWlmihhJNtJ8OhyQN35naL9yQlpLuyy2UDC5GfqDs8/zKKEw1od1Qz1116yqQD/KSI/C7wxfP9p4OsT2v7EHMeb2GYvPtFnAaeKyGcx0eysWTto95lSk07E0yKUhLwuedg5qsIibvPqs7nNq87hNq85m9u85uxNXcj1BZMywLbWh3gU+iSRiK50ERbxkhJQji21WM2S+NdL8PfMv2c2m5TrJfyZRijZEhNAigvpVYSGUIKHV5RSnChOzG24wNKyREIZiC1RWimlppSa5//Lgzb/AywYpw0fntRRMigRZ8ZzGQ5xBw4gwyESqy4GN+DeJd82GFj8SZlLPIV5da0MYTBo22EGpa1fXbFtuXqrcI1Rfop67PQTn5Y+3+F5hxd6j2Lq+2nLHvP++gXgp4CvhuX/hHVjCEGVUzGtzW4b6gFQ1fdiXl6o6teB+2/sADbAfPp5PQTSRVKx2H66WiOjvcit101c6t/Mqe4nx4hGC20HScexIKiqJsangBFDH7oSSlrfkUrE/oueWpr7KHftN+l7c2DJCDAmhCyC+quQjFAyKSWiRlovmRNPgVJIjSv8XlORNIjG9OEgEUh3+0Q7yTRET648h1dEXQfJiLa6bCjpnDrlfBIdBGLsSgeWwHRj3Z0EncOmspc4RVX/FfjxedqKyB2Aw9j07PHAbwD/G7gceOSsIMo9QSp7BYdeeW5T52PJM0ssscQE6ILStOwUROQE4KVYdUkF/h44Y4LEcQFwDnA08H+xkI5HAT8K/C4zJv37Yuj8rlvcdD4pheBGHKVmFYvBWvHj3j+lub6KU1BMFRaWJcZxqX9zkk66UsptXnN2I6X4oNaKaqmomuoumeoKz4QlO0a+dI316RixPcHrrKOi6JFS2uov++uCTaVwniLEqsQo+aj6KnvSOUR12EAqBlKxKiMOuvWkEjv3sgds/YdYEMQ55MBqEzPigtppODC1VHL17aigcm+HZFR3ZlQflLb/YNB8j6qsaGRP312zX1mggxJ1LgRE9ve5JcXE/QM+/YIzTCVeLeb+VCqM1E1dZnqH7SzeAPwZcHPgFsCbaewrXRyjqu9Q1TcCI1V9kxreAXzbrBNdLyUVqUNUt2jKps3QQ9VEe5vGJHzuifReYjpOeOOZqW4IDMxztJIsmjGg78ZGYiH/O95O8nY9SBo26bazFYIRnXk0h0axbU4mrqnYKMFA70RxBEIR+x5VX/F7VHUBZk9xldlaRCnwFOKpcbhtSnq4GURXYlmxLMGIwGpPhHon5Txe20GQucrMdUmmaadihcyAtudXFouSyCInk/i5e+tiJH4PPv0Cm3jKC5/U32ADUJ0jon4PSSqAqOrrsu9/IiK/PqFt7oHQTcc/M13B9Y5UDv3euTDAZq1BCtHaPsvQN5PUTOcfiWaibn+JFk5445ntFV6Q9cxALtIe5FvG+s5faBFKy/YyS2kdfkfRjh0lnjRyiIBKiBCPK4UUMR+N81FKKQKxFEFaEVFzI3a1xaW4mkGITRk4j8MnaWQgNUOpTGoRz1FujfUZZWl3GhLdc7sG8jzAEBpS8doM5C1i6dkXxuwiKoHSi5ykQtXMKSRh52OcWGKfthEmLO/98SDkUgR4T0h79SbsRXgo8NcTdnu5iBytqt9S1d/LjnU74F2zzrm3nuadgg9GWy+knFMwbk9R0BicFwa2L/7iU3e+v9cR3PZPX2T3C8wIXTn81QNkPcsUOc0gP+n7oqDht3TaTBwyYsmRF9UqCp+Ka8X09QNXW4xKMNBbbEqVAh0TqYh5g624kXl9if11+JT6fiB1+vuOK+7MMOhoHnD8p7bpRvTjAas/Y3Epw6F5ZcXBPwYZTjKS52QwjUimkIPSOb5Te5bmUdDnbeq4TrjwshfPsfPmUGvByM8q0rUnSOcjtKfJv5xtU2AsZ5WqvrLvQKr6OeCJs054vSOVK3/1KeY+HH7wPJr+0B+9JAW6aeXMjTUb4K58zJJQ5oJCvV7YoDAKosKYCmp8n/71W38xJ6espylpLCR3Z3HaSsFSFD7ZUAZlzcBZsa0D5SgliczTsBwoRp3YFLOfrAZiGUhNEabXhXhcsL8UvVPunYUMh6b6SvaNTg34Wd5egUjGVFYb9RLL990oRLjwU2fObrcFWLb96de0F9Rfqnq8mPve96vq3272OCLyUVW9+zxtr3ekAkYkh37v3PH1P/90Dv3BOSnJ4ZW/tCSRjaAc1PjaUa0VqAq6XnTiQMLfXmll9gu4IdVXOF+3cFZDHsG8E9LuI41jhmRE4pxnOLBsw4Uoq4NRSmF/sByZDcXVHAjR8qWrzfge/0rNQKrwuWIYvkcUokFqMUIZUDOUeuxSdgLuBscGl98scj63g0CLHCJxSObt0CKTrgE/R56/q4uYKHKPBXrkUGSm+muv9F5VvYicC3z/Fg4zN0PuC++vJXYfJ71ldubnJZbYL6jVUfli6qJ7Q/0VcYmI/ITIZkRGYLL9ZQzXS0kFTA3Wu34pnWwJdeVQ79BKzNurq/aa4s01Cb2BkXPs3pJSYuCbUyijmqvx6BJndiCgVWDLOWW1rOy7eI4arDfp7EPuroF4jirXksrrYLHWsp+suhEH3Vrw+DLJBEz1VeBTtuIieIuZy/EuqMJWVpqgw+iJ5cRceSN6pqG9ap7c1bhPSpk1ts2SUibsv1PjuMWp7H31V4YnAUcBlYgcIbyZ89SoF5FjgfOj0V9V/9+09tdbUllisRBRRkdKfO1gzVkcSI4J3lxbxdRDZSovLU3NJYUipW+5Cce0KyI2DESVlxnjPUcP10JxrZqD5XpL5WU2E88Bt55sJgfdWiKTqP46ylmxvZxEAIbBaA9GKoNttK888E7PBuCiT76ov4GqeXbF2JBoXN/I5Laj8up6eskkQslrpGzg+K391SYPF31iwvUtEPN4f+0V9RdASAK5IYjILwMvBK4lpOTFLuuEafstSWWJTeOEw+bCfsUZT2L92gFaO3QkTTr7PgjRx3c2VPI/2TF6du7absJ5oiFeysZuMlitcDGXV3Yss00byRwYjFgpKlbKiqMH66nAVm47SYZ4qZN0MpCao9waDs+qGyUbyqpYjY8YtxKJZBi8w5LhHk1laj/6r8dx9+P+dY4bNRuRUOLnXmIpMkIp28GDUwf7iVLD+PpekonHyG0pk4gst+nEYMiAiz/ygsl9XDDmStMyxzMuIrcG/hi4GTZwX6CqL53Q9h7APwAPVdU/D+seiEXKF8CrVHVirkQR+TbgRGC16aO+f0r3ngLcSVX/c/aVNFiSyhJbxglvPBO/Voakj9FQqw0bdFVgLvuSahZ0DqrZykgSXUSCCp81fJfo0eVAYg2UojHAW+2TmiL0Iw4OA2fromfXalGxWlQcPTiS3IQPFOuJTFbdCCe+peoaiKW2L0JsylAC8VAn9RZYDRaAIZFUmhvgsGhtgI//6625y3H/NvtH6OCBd3p24+obR7dJMR0Ra+swHAYJxTVxIx7IgxQDpuXhSuebBt8+Rvo047hpn0KM/GIfdxC1d1R+RvDjfBJ5BTxZVT8qIscAHxGRS1W15U8uIgXwEuDizrqXY4l3vwR8SETe3t03tP1FrHT7rYCPYela/h6435S+fR4rQbwhLEllic1D4IonPsmi52NW4CgdADlT5NHvyY03hLqPCR5ZXFDaOY6P0nyXsh1Sb+oscwcmSCFRteWy76vDEYXENCvNaBS9uoauZrWsWC2sBPANB9cmIsklklUZmUswGlRdFUWQUCKpFJgNJZdIcmIZhtEwD04vVBcfWBcJomA8rXxEVScCisRisD5u2EYwk3Q6JDWWK6n/u4oYoRQN8Um1s6yiLMalOFS5jZVuvykilwG3BLrE8DjgLcA9snX3BD4X83eJyJuwcux9AU5PCPv+g6reNySNnCXaPRP4OxH5ILCW9fnx03ZaksoSm8IJv22qr7Ho+SW2Bdd+5XgADtz8CzPb5qquJbYHG3ApfoiIvCpbfYGqXtDXXkQOAXcDPthZf0vgwZhUkZPKLYFcjP0S8L0TunNEVY+ICCKyoqqfFpHbT70AeCWWUPITbEAWXJLKEhtGJJT4TvmRS5HqqWYK43bUpM2KkgpKn6Xd2kbjOSmuBBrJQ5xSlL6xiWSG9kFZp/Xxb0z8WIhy1HAt5eqKaiiHJq+uUjwHy7UUFX/QraeKjQed7TsMsScFFrwYpZYCz6pULekETM0FtFRdVmuFluor3rhV6mRb+eyXbsGtCsvFde1Xjp+LWNKN7Ks54uCBd34OF/3zb7WbVxVSVcigDMJikAKc21zMyCxJpWM/aSeEzPrlQjp8EXxp16Ol4AtLDupGHh1Oj25fNGov86q/3qqqz511PBE5GpNEnqiq3XK+vw08XVXrjkdw3w2e9EN9SURuCPwFcKmI/Bdw1YxuVaq64URpS1LZQZz0W4fxQ/CDoGIoG0MyTHZz3ks49LqzcCGnnN54DR05S3NTRBfdhgDyR17y/F2uJyt0Rwem2tQ/iTm4Yi2T6KFl5NGotiBkAnZtQnFR1RWSOVrteJ+8uGJiwNLVgVxqji7WWSmsiNbBYj2lWTno1oOXVs2qrFOIJkN8V9U1jUgibJ8ubKB1E8eHOeHDsbonmDbYjypLrhrhsNQneTDiHN5gM+0t8dhZtTQVaZ6LSDQOU3M5QYtIKqClOYO4kVIXBe+98Gl9Z9g2+LlciueDiAwwQnm9qr61p8nJwJsCodwY+GERqTDJ5NZZu1sxgShU9cHh4/NF5D3ADYCLZnTtPSLyGOAdtNVfS5fiReIOzz/Mp59/xm53Y09AK5fsHzLwZgyPRJAb0SEz2puxvBlL+jXPuaRRZKRShBTzeTLHXNpIqekzQnEhk3CUTFaLURqwjyrXEqk0GYQ1xZ1Y7EmTXiWPis9tJzESPpJJ1/iek0njARa+d25AAbiOZHDg5l9IKrBp6Kq+RLXJhwWtpI1daeWi/3oVp9/sV6GubT/vUdcUxur+Tr3EMQeBtfYLEogG12XNSEWdgANfhM+BVDQ4boiHuhD+5m07PxlboPeXAK8GLlPVbkbgcBw9Pmv/R8BfqepfiEgJnCgixwNfBh4GPLxz/HsAN1bVC7PjvU9Efhz4biw32CTEYz0z7w5Ll+K9g8ufcwYnnnWYFIR3HcOhPzwbnOBvULWM5zhPsVKnTL5RmuhDJIfccO5Ex9t0DPBFIIRIKl3yyOuZRPKIx7B1jRSy4qq034qrUmLHMsvJZRmGqxCM2GQXjpJJ7tE1oGbVVckIHwmlTyqBcTIpeu5WTjQO+O+rbs1AHLUqo6uO49hbTHc17npqAVz4qTN54He3SecB3/O8liuuro+QqgLvU+2R6GGlfVm6e3J7jZFNd7dIImBkkaQSScdUF8nDVF0qJrX4gkQ+W5bktgALi5kljc3l2HAK8AjgEyLysbDuWcBxdh59xeQ+aBXS11+MzUVeo6qf7DQ7B/j5nt0/hRXjmuj9lZPZRrAklQ3Cl6bGuvw5m5NWPvuMM5JNIoVrhGfvNq86Z+9nQVYgeldFCaL0FGX0YmqTRv7idaUNaGwdXcRBP5EHtl9OGC4jlryGSXt7yKkVEjcOgsorRrbHLMJRpZVnDLZ+RC8u6/MgEEshPhFKtKVEQul6dE2TTApkoudtEQbbwSKzKXmaahlu/LhyYNW8wGoFNauOliEHWD4R8rQCIxOR5ONoK6Ykbxs+S/Qyi22a7UY22CSmaL6n9buMWh3VjHoq83jwqeoH2MAVqerPd76/E3jnlF1upKpX9hzncyJyo3nPuxHsGqlMCvoJqQD+FDgEXAn8lKr+1271c9uQF6sSs6/sVRz6g3PMpu4EGYTsvaXiQkr4GDAYba5RLVX0SGPRWB5Jo6vCgkaNBYwRRyKV8N3adApjJVJpDPENeWiSSCKZOJRBFsgIpO1epVFxBZdhh5FIklSkLaF0ycSuqY0onTREMz6uOCSQjqTtfe0mIZcYYrDjRZ98EQ+883NsZV3j1jynf+czufCyF5vqK2Qllsrugw5B6gJNEkKIVyk654hEAbTG2i6RhLaRTDSRC0kCQYKaLqzXoP6yz+Fc/T4eO4qZksreeKUPTNl21HaccDcTSsagn+/EAnF+TUTuCDwDeLeqngi8O3zfM7j8OWeAwEkvOryYA4q2suQeeu1LFnPcbYAEDy9XKkVZUxQ+5cgqnE9/TRqJ3lY2o4+eVYMQG1KE9PFFMJjbwG6pUQaF1SixWJFmicewglgW1T50VSqONQgSSClNoaxIFJFQIiG0pJNMzRUJJNpLwAipEB9sKU1AY0MojS0mX6Bd/baQsGSEUkhDGC4QSFxiuz4i+cZVx039rfoIpd2gPeKdfsdntbfVdVCBeag8UivUmgpnxcUeDMYJJXidaUYY5IQRCEWjqssFlVgR1F2FeXelv84IRR2NKmwo/O2f745zSzTUT1v2BqfwLhF5UTeRpIi8AHMXXjh2TVKZEvTzIOA+odlrgfcCT9+FLm4flGZ2FhMd7lE7y6FXnosWpEJWzjUSSq62clnf24bz9joJdpG4rmsfSUtHvRXbl0GN1VVxFdk5u8gJJR4vSiguSRk5OcRtNTUuqbzMSF9lteYbtVduQ+mbqeX2k+52l2k/uvYV16MZqbeQEr4VaQ9tQ/oNjoVvXQ3eh8qJalKL92gF4kApgoefNDaQPkKBltE9SSc00knclksnUU2W20607EgyEbv4unh11IuJqN9uPBl4FfC5zGZzF+DDwC/27SAiU+umqOpHp23fEzaVTtDPTQPhoKpfEZHv2M2+9WKRz0ogF4nEskk8/18eBJiuF+A3v/ttW+pWVHnFTsX4ExfSnUDm9tsDEYsKd9oQi3QIYtK6+LlvfRc+MXNwgxXC6NYQjVdJn4FEKEBGKPG7T9JVrY4iuQg3arVhpgqLqq8xo3zPb5kTRi6ddLelezDjgfjvq27NDW/RTuFy0SdftKHgx6TOqsP9OxDSQsWa896bxAJN+JsPmYsjOeS5uiZEwWcXFc5LY7B3jSG+azvRIjfat1VeuzoF0/m8u3Ybqno18NMicgJwp7D6kzEKfwLOm3ZIpqd22f16KjOCfqbt9xgR+bCIfPg//uM/tq+DC8Ztzz+flLMqSidxMf9cjn/9xsqgRkLJ8RufePAiuttIT9L8jYO8QkoBrp2XLM7SPLbN2vS7YcZ1+bY8DmB8vbO/Iaq5Weeo0z6OmvZ633ncY9XFaC9p23V8chvO3YiNkHwmqTSEkiSWTCrJFzvuZELpqr9aP0P4l+7DnEPqPKovO4G018cU+HWmAhvVyJHK/ka342wX8dDzINiflkGeRuroEIpGF+LSnGLiuknLyY/u9cLddsQsxdOWvZT6XlWvUNV3hGUaoaCq952yTCUU2GVJZULQz7+LyM2DlHJz4Gt9+4ZUBxcAnHzyyTs6Z7j8WWds+Rj2ImkIGtREMlEKuO2bzuTzD3vW1GNE4oiDWN3xRnn2Pz+EF925L5aqH4cuOKf5Irk6I0gVtU0VleBeKpFYFO9d8PZqJK+4e40Zu31Q/ahKmvQ6TNoZI5tgjB1DWt+VTmIDxwirqOjV+jgWsU6bUHK1V0uKEWXIqGW8N9Jo21AioeR3P5c8WuunEAo97Wyba38Wjw+D9TfmcC+OaEkw3aQb5mHRfAYu/MxZPPBOz0bWR/ZcqoZbXdrfQfwefoA+J4IozWRG+ZaEkmwkktRfiWCidOLolVR2E/Opv3aoM9uEMD4/Frh3WPVe4JWqOpq23256fwn9QT9vBx4JnBX+/uUudG9bcLtzzo+RbfZSlZrK2SYbhfS/m9MQyWRWMNbcCISX0qnEQbtQfC2M1kojjcLjHeAdqo2NJSWRDbYTEcVL0Yp8j+tVGhVaKT4Eb4/HoADJhgIx9qQZGaOtBYVSBB/cl6MaLBrwB9my4kYhTX30EGvK/CaVV0pRX3WyEXsG0duLcTdh6+84ibS3B2Lp9fzKiSST1FJfXbKtXP2V23DUzb+Y2kysl9IcZDzjcGGjtmSR84mEnGtLLt7DukdKhw5LM97TYydxkiQUX0hmI8mCHTNS8YNsXZdIwrGTHUfHr2En0RXIetvsTFe2E78PDIDfC98fEdb12mIidlNSmRT0cxbwZyLyaOBfgZ/cne4tDieedTi8RDSukDGdSYz3CEWjkP64jT70kUiN23KBp/wlThC48pFP5/g/ebFJKdGFOF5PUG9FaUVEqb3DhVgVEQUXsn54sWtVQfPrdcGWokG9oIITTTmWknGexlYS13fhcoO++EQoeTxK8gyLxJPdt0gohWjj7dUJbJyGWWquiEkSyeTjhmk/BH2ToUsss5BsKcEeInXzOaVMIQzcRdavOKj7/utPwYwSDO/xcxZ30rWdNK7CGcl0CKUvoHJX1Us6hyF+r4hVgIh8H2ZL+Wb4fgxwR1X94JTd7qGqd8m+/18R+fisc+2m99e0oJ/772RfthMnnXm4ZZyMszCLGjbDtwuJEWOyxHnwtI//JE7GByFT+WzOVLb65ZJPv+AMbvOqc8bTrGTQUITLYxKK00bSSi9aIIQYAGZxLIoXxbs2GcQI+kg+MXIeSPtMMtpHj7BhiJLPAxzbRbTWg2uxz6QNkzxyAknHpQlubJJFWgqWKKUMkppsXN1ViLTIpI9IJpHIuCqsaVerz7a3999QsklsoL7oU2dy+ndaFo5UmwQm56RNg7sitYYsPZEgQAeucRGOTYuON1cupYTJlkqMlidr0/Sz6XPWlbmvdPHQMIma2maH+jInfh/Ivbqu7lnXRS0it1XVzwMEY389pT2wR7y/9j2iDT5ClKZG+niyxNj0O9/2Ai578PPGDnfGxx7GQNqSSgzU2xIkeH3NexgbUUz1xfjMLdYfhUAOwabifZBkVJLtxYvZJaK9RQIp5dfXjpzXlBAypmGJ3ll9lRlX3Ch5euV5vKK7cCSRiL6cXrEfrZxe2SX3BTL2eXxZ2zYhzPL06oNDxgz237jqOI525sHlbnb51P0v+uSLUnyKDrIsv9P0OjMqQKqToOoiGeFb3lz550gqtLfTlU6ylyJJxvmLsgvwKtR9aWsy7DGbiqg2PVJVH3KHTcNTsaSSV2B3/DbAo2adaEkq24g7vOAwlOH5z16W+EJJYTEfrgg2hMxGMGkW9IR/+mmcwEiLLDbDB2+o+Ib6ZFzeCI7csmqKYOXo8epSNWnF1CAOlZ6pbRwkAIIh3yOtNC65qs+rpBxfKZZElGER83b5FOjoRBmGvF2lNPm8ClFWZMTAtRNBRmkDYEVGY0khXTDA5+V+Y7BjTiJDTEqJdpRZXl253WSSnSSimEPCHGujnkIctdq1RUIB8F89qUUsE20tfW7AQQeZ1GQ5ouprVCe7SpRCfAxejCou6Ki7yMijUXeldjkJ0WyTYENpxbjsIhaY+2uncIWIPB6TTgB+FZjlBfZuETkRuD12MZ9W1bVp+8CSVLYFd3rGYTM6hrubBupIKoFQxLUJRaRR70xQWQNQ+SLltEqxGDTutDUFIy04fNc3LeaCspfnykc8g0OvC2Ww1a7HEtr2xawIgiYvMTKbizkkZIklaSoxOlFLOx9yhA2LOkkoq4URRk4kSfIISSNXA5msZFmEV13jsLIq6ykyPtY+6Zb6jZmGYx4v82BTU3tJO4ixq+qKmIdQJhFJV5Lxub0nP5a49Nf36Ky6xNIHjcb5eU1xTuwBLQRZr5DS4QdlQ06RMIpGUvFxpMmCHaGr8moII3dkzOcrTUCltfnoK86Ys9OLxmz11x7Tf/0K8DvAc7CevRt4zLQdQrniB2Aps0rg/iLCpGzKEUtSWTDu8vjDcBBcBeo7L00gFy2amuldQmnqgvQjxl+gDhekkUgoMV4j4lEfehReHa+956s3dzEq1t/wctzmNWfzxV94WrTMB0IJxBF1zJJ7gWkiDwnfRZSy8Elaibm8CudDjXjPsKiDRBJJpaIU2z50VcosvCKjJNFEqaRAWXEjhlKxIqNWevqIvG78UW4doEUokTxyCSXaT3JC6SOT6a7B08lkmqF+PiN+f5vqq7ejvNnnpu4r3RLDmXSizo1LK9EgH1K56AFpJk1k9sMYvNgKemxLJ1HVldtRGr1peAyhFeuy25ivnsrekVRU9WtYavyN4B3AEZaVH3cH3/OYw+bBMoBizV4WX4ZZlqcpdAhtm4roGKHkM/7vfvvz+MSPv6B1rnywi9JJ5U0nPgpvb6WNjvxnPvhLvP57/2DmNfSrvnpejOCxNmkmJpFIXEMmKTux00Aedr2Dok65wVJ+r2ArKVsG9+ZzgU9SSczbddCtJe+uqN466NZSWpVhRiq5ams1eXW17287tiTf1kgokwzxzX6RaNyWCGUriNLLNGKZ6prrMxVlp52sVxZZHwMcC+nYURpC6Y016ZKJjD9uiVuk/Vc027gb6NpJJ7XZZYjI01T1bBF5GT09mlFv/laqeueNnnOP8P4+gYdiHaQOD70DN2qklLhEKUU6GXq7NoZZ4nWevK5GGIXo8UqLILnMTs/dQjz3hNN+8Resut6Vj3hGkkLy9hJII7pIF6E646CsWRlUrJQVBwYjDgxHrJYjDg7WOWawxtGD9bCscXS5xsFynWPKNY4ZHOHY0pajyjWOLtY46NY5ujzCQbfOMcURjnFHuEFxDd9eXs0Ni2u4QXENxxZHOKa4lqPcGgdlnWOdtT/o1jnGHeFYt8aqVI0XV5ROwtKotdo5u7oqr3nQJYsuoXQj5ReN/NjVV2/X2tZKIgntRJFhufAzZ0UDgqm84hLTumRdVzf5noy5COdJJDvbWrbHFkF1D2qTud1C9ACbuOxaz1q4LPz9MFaQq7tMw4UictpGT7iUVBaEYk3RAit3mtbBkRsp4oPYXqiluI+uxDE2BTIpxb7nk8JJXmARKW2JukQsrs9wPgvZmJBqyod1kVAirnj4szjhDWcG9VabUGJNFctCbEQ5zDISD4o6SSTRXlK6mgOhIuO451aVIuBXpUoeXBa46JNUEuuaRMlkNajHon0EmlQq6TdKhvk8M0H7tsyTpn4vw+GmSix9teHVSzLsJ/VXIUYmLZIhPbQSCEeCMV3MjQ+QkIySxqsrEkZmqO+TVHq9vOLcZ2vhWFvCPMGPewGq+o7w97Wb2P0fgLeJiANGhF9DVY+dttOSVBaEaIiUWvn47zwprb/tuedbOpZS8aWiA6UYeIqyTiqhPkKpahdU1u23LBqM03nzHFcIlS+o1DF0JslEtdi8aJHarLFTSC7RRekTmQzKOnltxazEg+T665O9pBRvpX3FVGIH3CikrM9IxVUtIon2EIfnqEzlldeIj0b3PGBxmBu6s+uK9zOWc98IJuXfmsc9eDulk0nn6xLLWEBh1qXcUyxPUnnRZ85q7XL6HZ9lHmJeoQrxSB60VlQc6gVfBqKJxxftD2bMbDI5WkSjDc/sqvbLO3RGmpY9Fvx4EvAUGqM7ADNyeZ0HfD/widwdeRaWpLIgfPjVTxpbd8Jvn5/iEH1BSssiIcgxdyHu8+rs+xnzfFa5Ud4jIWliTKIYcm2J543fd8HM/t/mVecgU/jn9i9s1AzD/wl9vEdjL3GZ3aSpI2+EGT238gJb7SVLQx8lChmPGwFSNP00RCLJUSf7hybPukgudRqesrgYTGLJ7Sk+rY99bDbWMRByDxLKTKTB3vqe162PmOiOHKbsMSJf4iRIwdUa7pmgIV1+sitqvxCSDjvhNrYIZRclBWW2pLLHBJk3A6/A0uDPG2/wWeBfNkIosLSpbDuiBwyFeX2R1SHps5l0/d9VpZW47hXf87pWe5NSrH1Ug1XBltL1Bpu7z1H1FR6l1S8PbCZZhGtptZ08iKbMxLSLF1XesV4XrPuiyTAcyDC5RatjpEWSxEZapszEtTo8jpGWjLRIbdfVlF/RvlTj0v2paZamf7PvRa2wrsq6KnWUaDJMk0pm2VN2GtF+E2NaLvrki7Y8Alx42YuteFdV49Zr3LpHKsXV2vytFVeZFC+esGhQlzVOLGOIkkvIQNG4HhNKDNty18ftgl1F51z2DipV/X1V/UdV/UhcZuzzFeC9IvJMEXlSXGadaCmpbBOO/93zkpTSEuslDMSqnVQPbaKZJ7iqnjCgdUlmLozFmLS6ZR+LqCfP1nnBi+Cc4D2AQ+pQ+dGDxuM60Np2XA/rhkXNajGixFOHgd+pMKLAZZMjpx6kxuFY1zJJLbUEI7cSpBofjuFaUk6NzCXhxLb5hW9mzPXoRLLZC1JKIS6pwC76RCOBPPDOz+mVUmZBvIcq2J2ktoEflzwfHYovxR6xQCrhZ7MIeW0kj2h3GXMtztcHUaVeaR7bO59xmH8+fMaG+75pqFi6oqltdqYrc+IdIvKrwNuAFMCoqv9vyj5fCMswLHNhSSrbhHa6iXyDDcQ1TWbf3K0Y2ulXJERv3/Evns9tb/R1nCg3jzEBWds8TqXyjm/5FVaLam7vry8++mkc+sOzmxW52qekeZk9fOJce3lPeMOZoUaKow72lSgpqza2IoKk5aOE5q2vR6oBxw7W8IF9K/F4EatTkt2LgdR41GwYwYYyCbW6sWwCTQGu6W+5STXx+jNbCw25zGOsH6+FIhSyvV5eG0Hsh//qSfY9BEduhlAALvr4b/LAuz7XbCt1RQHUBwRXWaYHCsGVIQ9coUjUO0Zv5I6BZMxw32dnCfvTv3nbMc+kb544FRG5NfDHwM0wDesFqvrSTpsHAb8ZtldY7akPhG1XAt/EVFqVqp484VSPDH+f2uoinDCx/6ovmHkBPdgbT/l+hGgQz03llYpdqc3Y1Qvem2qr9o66dlS1o/aSHtj40K6ujBgOmoEyqsDaEolLaq+4rPuC9brg1PdubAYndfMyfPEXnpYIJUopt3mNkY+G2ZqvHfXIUY8K6trhfe5aGY6Z5esauJqVouLYlSNJNVYFz7VKC0bqGPngGt1VIREzCcRSvk2GYTPk18lQH+ufdPN1TUKfOixqXlp96Elnb32TiW32CqH0wX/1pLRsFhd97IWIWg17qUJhL09Sf0kdVWHhOeqqh7QzEYsuxFHllam+1GElhuMS1GHf9bTD3OmZO6QKW5zqqwKerKrfCXwf8GsicsdOm3cDd1HVuwK/gNlFctxXVe86hVBQ1eN7ll5CEZHnz+r0tDZLSWUbcOj3zg0vh2YvSaxPEhoFicXXggtulaYCiOqvOBhhnlHDEV6F0nl+8cM/bzVDgi2iVjEC8aXZKurG8BHTx8+FmK2vtDnWlY9quxGrg/WbNulOYrbi9BnFS1Ph0Ty/NLkSS6b2isb7vH9eHUUnSNEKaDVLO3V9kwwyeXptkEgmIQ+AzHN8zSKUzeb02g+46GMvBOABJz8ft17jQ5JK8eBqUwva7Qv3qEMi3ViVqAprisW1t0fk23cOXRVED+Z4/ELp9Fg+/ZsichlwS+BTWZtvZbscNd+RxyEi3wXcEUgJ4lT1j3ua/qKIfGPaobDo/Of3bdw3T/uPvP/xadkzEJKUIi587hHnY3LGNLsPZKPeAqhEYqXCtldTJJTKF2FxmfQirNfREL6Bt62HgKSC1a/bEuPiDv3RS5pHO6i+mgwBmmqfdJEIJA7C2fmiF1hc373ePuTZhePnafvkRNON1UtamWx9JJQ+iaU5ZptQ+lRjfXm59isu/vDzgRC3EiCVxkQS7aJbXTVxlEjA1GPdpegsnfW+hNv/5g5IK/NLKg+JZc/DMjHflogcAu4GjNU4EZEHi8ingb/GpJW8J5eIyEdmHPt5wMvCcl/gbODHJzT/A+CYKcvRoU0v9oWk8plvfombbMAYu+3ICESLMDsr7I1K6UuCJNMafzI9bVQducIqKJZhOVisU6sw8sOWh1f6nDFW7R018N77nztXt6/8+acDgTAyXP6cM7jNa85uaqxMMqRihONcO+Ny69ZkhBP/xpQsMRVLK04lSCBRndX3G+dlfrcinQAMstxrxTg3TEU00NeqiVi8iaQA1El1t/k8XtcVXPIPz+XUU34LTwFlY19op8CnIY5c7SWEol3ZZ2g8EHNppfNzd70T7/gXz0+q44/9yG9yn3c/ZTEXGPVxU9sA8FZVfe6sw4nI0Vhp9Seq6piUoKpvwwIR743ZV34obDpFVa8Ske8ALhWRT6vq+3tO8X+AuwD/pKqPEpGbMq5Gi+falC0lYl+QitCeFZ/+/idw4b1fOmWPbUYsF+xCuWAJ8SkxwaJrjPOTqjymgEhIaqL1uuBbrLSlFW276xLa136DKVoyRHKJOPSHPYSi2EsVyTN5tFnApheHL3xHMogDdiOF5Dm+IqEMXKPiKjLV1yzU6kzXouEeEIztSbfYgeqYtDIJ6ezJSDShDygFgtfmmezWUfGaq/g6arRAOB5/nScW8WpqMCnwB6zOii+DO3CWaLIlbeTqsEkEE6WcjtorERVw2/PPpzjuaspshPv+S57BysZigSdCaR6FrSLUgn8L8HpVfevU86q+X0RuKyI3VtX/VNWrwvqvicjbgHsCfaRybaihUonIscDXmGKk3wr2Cam04VAe/Le/lr6/7ZSX71hfDv3BOalWChJVX5aWJUkqUaXcp2qSpnqizfo9R6oyeUsNi2pMNdQt0BUllirYVvqSUm4IKaGgxEk3ZriXlMuMQW1qOxy1a6o4aiEUXqAkFOnKVGMeKilMLPDgXRUyLtv1eLFRwqtjBCBWRyZKY0V4fGMdGRekmQE1BRb8OQr3p1AfvLnaNqZaO15hWWVDryHYMZGDudg0pBGOgU71BmvNppOqLpJHv/vxdZ1QAC75+9/gtHu+0GquFCEVfiKR/kSTybYSiSSSTba+RTyiTbqXMJHzpaJDpQzZHQauZlg22R0WAo9VlpuGOdTOIiLAq4HLJqWUF5HbAZ9XVRWRu2PuvV8XkaMAF2wxRwGnAS+ccKoPi8gNMbXVR4BvAf84s4ObwL4gFaSrm98dNdihPzgnPOCRUBqpZB5CiYjEEr3AjqwPqApL2zIqipQqPkaux33idUePspF3rI8W9BMHQpHMOE+qNQ9KETzelAq7boCq9pSFDfBF6KN9NttHpY5YgKtSZ/VSvKdyVjNm4DxrvkxZiUfFWkjBUjFyRZJo1qVInmADqSg0M95rk7olEgw0aVbqLC9YJBkjn0gi0ZEg2FXSb5dbiycTy/S4lWb9fjToX/KPz+X+9zkTi7a35yfmBLP0LiTX4hgEmbsUt4z4wcsragIa4mk0Azr0yEApypqy8BTOSi3EyVi5IFKJ9qEF4BTgEcAnRORjYd2zgOMAVPUVwE8APyciI+Ba4KGBYG6KqcTAxvI3qOpFfSdR1V8NH18hIhcBx6rqPy/kCjrYs6QiIg8EXgoUwKtU9awZuwB7gFCkScOSRt+e8STO5PugXamjllQESxXzqPJC4Vwik8J5arXZeqVGKlVyU97iYNWdcam0Z2qF2Y5QQQBfOVzhqcThnKS+FMHWMvIuEcxaUSfJZd0XDN0w5AerWokmo1osEsxAao7oKBHMqrNklAOpUlXHQXIvjtJLm2BGwEBqag351Lq/U+MPHS6zkyMskZFtrzPVmEOSKixHPYV8cuyk+is6EcyqubJZvPu9z+IHf/hsKMBViniHHwi+UPzAqkXioI7hdQpSZOqllg1GM3WZJlJhYBMaGXpc6SkHtSU0FT8m2S8MCzhciDeZ+kCo6kuAl/SsvwKzk8xEkHC6624LfFFVqwn73AT4Jcbzhf1CX/uIPUkqoeLYy4FTgS8BHxKRt6vqp6bvadgtYok1UmwsCPaTjjFetdGwTAue6raJV2RpWwDnrECSSBO1js2sTVIxKWLLhEKwM8dZY0w1UzkQ5cpfeYq5UHux2Wc4r1dLJliHe1AVWZBn0SSfzDMZr9VlSj559GDdXI+9x6uzao++ZuQcA/WUUjPSglhTpcaFWJUC70asa5HIpRClpmoyGFMnozlE+wsMo61DgtSSbDIEqaUJiHQ0ucHqLHov3u1ktI82lo600niDZb+PdmbRPY/HRohmUrXI7radQLHmQ5lhMVWwAgNTg7kgGYpvpJIxdO0mSXrRNKmRQnGlt+SmLmR1mNNmtmF4mUP9tU3n3hx+D7g78M/Y3fyu8PlGIvIrqnpJzz5/CfwN8C7mzxe2N0kFMzZ9LjAxIvIm4EFkvtt7DY1HSqPqGvOn10bamPth10aV1K3nLiI4DZHKGXl0vcAAbvumM/n8w9r1M+ZFtJ20VzZ6CvFBTxQNqwriBPVhJgmWHyo5KjizMzmlLhzOmZoiqvJK8SlHmHNmX7GcYAUD9UEiKKjVIul8yP0VHQgKtVl+IQpaJgKp8QylYl0LihAxX+PTy18nJmcisaR7zOSkk1EVNolY2t5hjY0lz3ps7ca9xaYRRY4uacwike2SUiKk9uBcy25CSoEvLTVXLpkkJ6vO9tyW0mgHGueXVEE1+7xwzDrs3iKVK4FHq+onAUKA5VMxT7K3An2kclBVn96zfir2qhL3lsC/Zd+/FNbNhQ3FZSwAhy44JxnkCbEaUUpJCG9HjEXxKXJ++pIjJpf03qLWq9oxCvEpo7DU3gbgOrRBoR5t0eVFzb78xV98KrIuyEgSoZz6Ay/idm86YrmfKtsmIwfr2bLm4EiBP1LijxT49YJ6raBatwj8OvXbodpOiFllySYj8licWp0lmAzEMtKSdS3NSB+TTIZElT7kDotJKddT+yIkm2wnoRyFZJZx8Ur7O0YitZq0Ehdbp+ZwgC1x2wiPRxmpZxQIslZlpDW+9S/bV31acvgp//Ya3v3eZ1myyZBAMqqwfCHtmJOMRPKlZcCPNpRCs0StBIcYnyYsRRZwu3DoHMvewh0ioQAErc/d4sR9Av5KRH54oyfaq5JKHyu0fqYQ6PMYgNWbHjMWOb5TxHLo989FBy2nIWLddg3TdCUnGGlEeaTZrzOjytVfWgf7i5jXkYTjxZTzPnMCqImEFLIbB3UTWPxJ1114w4gveuelkczGIrWghbbiC6Q2e4sKMPT2t1AqBSkcvjRpxasw8PZbVs4xDDaXUnxykTbVl1K7kBcs3KyBq0wa0JBzykUJwMiiUHNN9mFtEdyPC4mkVQX1VgExsr/RbAEdb7Fw3hpa3mAEdVr0EgNa7sUTDfc9XmKEvZs2/YQxy8ifE1JsG9et3HzauLI4vOt9z+J+9z8LVwXJO6Rr0cIM8OLN5TgZ4D1NZuxINq17ZOvEYVVUXRZ4u82OO6LSpPmf0mYP4XIR+X3gTeH7Q8O6FawAVx+eADxLRNazNtfZIl1fAm6dfb8VcFXeQFUvAC4AuMEdbjrxqdl2+0phkcJaSxpwTTMUycPO3y1KlNLfR4kmlXAN65MRRZJYD6SULg5QVeqoBusQasofFnNzHdmCtCJw5S+FPHTBdoIDty58/qdWQYUvPO5JrV1OOHx+IpdIQlILzoPWLl2aDh2+UGqnVGsFrjTPnavXhpSFeY4dGIzM2008B8tRCgRdLUYpl9gBN0reYiuh4uOqMwO/C0W8LHWLD0Z98xRblfWU6mVVRsmIH9VedcdbLI9/6RJM8hTrGPLTTcx/2CnjTZ+KLHdBzttF9KnK8vVrWjGQoqVW2w24yiMjR+EJqfCDSqyEyluwry9N3arePO4kjFIO0Dq+W3afJUr0YSKX39dtLdC5N6WRaXgk8KvAE7G79AGsaNcIi7Afg6oes5kTzSQVEfl1LCjnvzZzgk3iQ8CJInI88GUsz8zDN3qQ7SaUQ688txkwoSOZhEbdv+GzarZjZoQc2w8Ir4u1URDadhSJ+uXUpsm/5b20Jre3ec3ZY6WBNww1kciXihtZH0546flc8YSGWK44wz7f9vzzG114MMNIJZZsUEHXBL9ilTF1zVE7qAplfeCTrvxbq5WpMwrP6nDEILhTD4sqI5gq5ROzapI+eY05UQ66daswGapJRnfjFTdiKBUODZUkq0Q2Dm1VlYwEk8e7pEqcgSyiK3JOLtGYXwSVWZ9MMS132CTbSZ/EM4kwBqEC2zT35p3Au973LO77gJegXnF1KN7lgFosP1gmjbTUYPn3GejaVK7vCI5P71DVH8KqOXbxrZ51cd8fB+4dvr5XVf9q1vnmkVRuhnlffRR4DXDxRiuBbRSqWgUyuxhzKX5Nrg/sQ/fh2dGHKUoT0XbdsodI+08wMtp3W9lynSSqumJ7tXdMg1eVb4QaHyWj2Ie8SzGBkrbPv2VCgSiKWTbjzGB//MvO4wuPe3Kr6eefFMjl3PNDHIK0VEqiUBwJs9NSUxyMli6o0JT1UQGlxxWeUVVY2prCMxwYGRROWS1HKZ3N0A0onedIkGScKNcWAwYhMr8pVVyzomUqPTzSGPdSse6C9xjmbRndkYdSG7lkBn6kU+Y5eWLE79NTvvQRyjxux7PIYVK5490mlvdc3Khg7/2gc/BIY0+JwY5ZLq/xnF9ZXEqwZbZzz9GK29qW9E3aEUQntNkLUNVaRK4RkRuo6v/Mu5+InAXcA3h9WPUEEfkBVX3GtP1mGupV9TnAiVjU588DnxWRM4OP87ZBVd+pqiep6m1VdUIt0wY7bZxPiOeNWo00cJrOVepmIUoNGhghidCBHaIx3ztLj1+b6iqlyo9JJr3DxxTzQb2lXtISvzfOAI1q7javPrvnIqbj2Ms6c4/o5hyC0fyB2macGLH04fNPeZLdh67XbG2SS3FEcCNJqdGTjcbbfaAWfOWoK0dVFaxXBeujkpEvGHnHWl3aUpUp5f+ResCResC6L7i2HnKtH7DmS9Z8yTV+yDX1kGvqFfvsh1zjV9LfI37QLDowoz5FVknSpYJeqaZN7jKszffcmB9RZ/OyuN5P2D7JAD+JNOZBqk+zy5CQHt9VGmJYbH0eSd8s2iRlDcb66MKfAoy7x99OQ310K5607C0cwQIsXy0ivxOXGfv8MHCqqr5GVV8DPDCsm4q5vL+CZPLVsFTAtwF/LiIbH6F2AT/2N4/bngN3n9eMWNKzrGKeUdoQjvpGDzzZe0QS+USyQAmfbX/1LhGHDySSL+pd00cFHdmDfuiCc+a+xO966mF8ASf8znmc8Ds9hOHGX9pDr+xPYPnZZ5zBZ59xRlM+Nt4vj5WbraR1/anuRkQmvUXktWdapYvTgC6pAqYVMnPpu8e1PMii99go8wqz76URSmiXl3CeVH1zEqJ3WPQQy73DrL/NYB89w3J0CWZecpjkFbbrxFIH24i3ksPR07DPID+GGYSRl7NeOCa+t51l7+Cvgd/A8oJ9JFtm4YbZ5xvMc6J5bCqPx4w8/4lltXyqqo5ExAGfBRagT9kish8veoHlbqc7c+5MYuk+7AUQDPkiNPEcwUDfDY6Mx0k21yTISKM6S2o0YWx+lrQwgYgylZOEsq+Hfv9crnzsHBlb4wud7mN2bXHWqIKueLvGeaYpGenmqTmKNVJ+qNopYnolKENQpQvnCtfjVRA1V9/4WYItqfKOShylsxQxkVxGQImEGBMJJYlrczNGcAiOEPeC5RVzKcuwlSn2ans0KtZ2EktoDPi5WqxO6rJc3xnbWS2amV5hAeZFNm7An1bGOCeWvZJb7H3vfBr3/vFzzJ5SK64y5w5XC1qHd8Bn700MhPIS4qdC2Wq1csU+aAi8OGr1uGB3jJH1ixoPWhPHSW0WcqbFQFVfKyJDIFZi+4yqTvL6ingx8E8i8h7scu4NPHPWueaxqdwYeIiqfrHTSS8iPzrH/jsCH4zku2JbGZNYpL3NS/DN12RLsdl20CXHtpl9orjGUR80a7YkKzfgmmqKKm37S4tM0vfMthKIJdYTnwf/cvYZABx6eb9aq3WeOceppAIL3Rh8K9OhG08mbzm/AhrqmytWl149Keuz95Jcq/MSr3kRsCpm/nU1pQjroqls8UBqRgQCUQtAHNFUmPQIR/wAL46BVBzRQaoyibfBypvPdPNDpt8jMmdjX+mLxI+3rVZNySknJ5qU1Da/mX3eYdOwl8jl/W83z8JTfvK8ILEIbkQT9FjGLNFiyUuD4VKjm3p4LzyEUsV2Tc4111Y7Z84hixoPFHoEv/E2ewQich/gtVgQpAC3FpFHTkiTD4CqvlFE3ovZVQR4uqp+dda5ZpLKtFoAqnrZrP13As18UdKXHSeTSacLkktrou9Jbl6S75hFdPtVbwOpDx4ywVBvNW+lEYzGnPdpCARCRUYSseVND738PK78tbZhvQ+3O+d8ZLX5Lj7EoWzyFl/+bCOqO59xGD/AdOM1TWhIgc1cC2xwKSy9h3hzWvBegtpEEGcpOWJONOc8KyrULiaxNOO9Vc0skuRSSkHlamos1mVNyiTlDqTGO5fckXGEwEkjn5j2BaEltZhLsaWCySUW+8n6U7xAE50fEd2JZxFEdD0OP0pn2zhZRGklx14KlDQvQUkqMNHwTERJJXB3nMSos89SAIW9Sd4F0QaXsnSnPHsFzGaC+TCPpLLHcB5wmqp+BkBETgLeCHxPt6GI3EFVP53lC/tS+HsLEbmFqn502on2apzKhqBBxz2NSB70gV/nL3/gd7erA9Aztk9tH+Ebgmjr8SRIKc2EV6ElBSVPsoxkolSSBvycTHIJZorHFpgrMJj3Vr3a9Esy9V5K3xLFiHD4edRqdz7jcLpnUpOirIsjoWsHI8mY/k1LS6Pv4whcKLUXEIcUSl07isIIxntL/TIsXCpnvBbiXErnWS+MXEoJsS6uphClckWq6ZI8wVz0/grSCTAMWZFxzfroaoyY6DmWoLKVm0cTsSDTXY2h7a2V0vDTlma6iSr7JJG4LrfTzONltlOQWmEgKRgyPqbx8UrGcdHkzKHh2U9SS222MvDUSX9cpxx4ft4COrN7S7+hJ8PeIp1BJBQAVb081HHpw5OwwPI+9YQC95t2ov1BKgqVN/25aWF0Jsks7uQkcdy+dx60WX1obZb2x3DcGLnbPbTmu0hnQ2icJrB5ynptiEa8jMWY5Dj08vPa3rHRnhOPLVg1PywYciOQEKuSBEwhReEX10K9Yp9LH9J5lCC1SxlqtTayiQSjhcQxHSeW8iWqxkrnUx6oqnQpvqVSl7Ih14Uw8PbZ4xhJzUCL5HIMsKYDPI4BNSNtElPGPGIFPtwfn4i2lTq/I51EYgl3ZMPKqGnEYtvbM/NIKD71SfmPq27JTW7x5Q2eefGQEBBZDxwaI+td89wn6UBpUuX7QDx1kPmDpOJxeKeAS3w+yNSjW0ZH6r8O4MMi8mrgdeH7zzDBUK+qsSzx6ap6JN8mkuss+rEvSAUkzUSieiPq07eLWG539mGr1Jxm/xMe1okPcWcmOw1Rw9GzLs5+89M0nmc0qrDsJei7JSccPr9xAAD8SqdRLoklySybNQY7TQx6nIV/PnwGdz7jcCNFxePXJrGUa1AegdHRoDFQUs3WIk5DQTBa6kSvQWqpLMbFIrZJhZlELGnlyBUpOLQM6i08VNnn2lU2WAstA36OWiWRhKm7XLLFtNpNMN5PU4V1pYlFxJZ0CQVgtIfUX76UJscXTH4/orE+PX8mmZsbuibpxSe3Xof3PtjO5k62OxUSzzcNe4t0Hgv8GvB47M6+H8tcPA1/h2U2nrWuhX1BKqqwVpcMqI1ISpOXt11S0fG4i9bg230pskFdnTQFvfrUZ+m7jO0/9lkmEE78nEsu3RlWdA7oTJFdJUisshAkCF9qkk4g6rsltbniifMRyt0fexgV+OffM9vKXR5/OBjnSd4+cawbfANGxxA8e0wtrk6SRBNtTqqClh5qqLzgCo8vLc16LY7aWxR+dEeuQtp9wFLsR8M+Aq5KJYineQsVPc9XrY6B+JCKv+7JSdek0Q9X0PzJVGERkWC6xJLXapklrcT1sW1at8dGPTD7GdDYDDMpJSkEgpSiHoRgc/S2U1KDIXiJxbw865QUhR+rYb/5js5WQuwdxSKo6hpwflimQkRuhiXwPSAid6O5lGOBg7P23x+kgmXsVRWrhhjUHeU2zsI+97QzLG4jutGGJ6z1nE166GoL8tNhh1ByMsqlgj5Me6Bzu0u3nY43lb6D+TBwx/7lB1JwI5tOXvGk+Yikr3t3+9XDduwizPrCCy8+qL46Kj3xhIyZcZYYE1eGgbgqLChuIPjC4StvXmJOKcom4eDIFSGvWIEOTMqN0sywMHYdaZHEhpEvE+mua4nDcoVFSaUO6rB067SdwiUSFDSG+1zCaRX/Cve5IYxxYoFgpO8QS1ofCGSSvaQvCPPfvnxzbn3Lr0z+0bYZ3/tz5yOD8DwGI32UPsQ3hJKCI2kcN6LruapayQXCJEQcooqqC5MJt7C68nOpv/YQZ4vIKcDzgdvQLrh1Qk/zB2CB7reiTULfxKpSTsX+IBWFkY+ibQhsUwl+/9v4ywZJxXS5NshKZwDuNbE4uOIJT+L4l53XDNyt404/5yTMIpB5D2l91GQkTevDC+1G7dnkRvA9v3QYcvNgnHVKM5CM9S1X22UR1zbYWGY0cRIGkDCAe7BBRC0eKJCjOEVLwfsgvYjHF0KhPpWadSjrRZlUYQOxOBZzK66TimukDZHUhA4ZBeBVgttwlr6FjETCqjGpJU0s2qJoVyVmtkNpEUQ03uf3dhp8ILP1cNxP/Nut+O5bf2n6TtuA7/05G7dcRVBbmUoreXwlFWdmS9Hms+bSuI9zskYtBm1V2CIwl/prb+HVwBmYHWWqDlBVXwu8VkR+QlXfstET7Q9SQahrm4WUeIq6RNVebIptyv0D9gBHdVD2M6mTNLvPQk9aOOHw+Xb3J5DEXJq7bbqsVphNl3AqU9vNazvpIhrfczWc1KYFrKPKI+rVQ3qO8Q5m6g8Js9ZaUwCc9VuCvszyQ3nfSJQa1WNeuIZhqj6pKgyLikodTpShq1gpTAcYq0068XhxrLgRhfqQrsXaDKnSIO8yKTkmokyR8kka6bBoJ19Ys17T45UkE9WQ8FLC+WSiOqvPFmN1WmKNF+FI743eORRHlJxbpU7mwuRqDtktUoJUosEjMVBJDdERJapTkyqsULY5beFexv+o6oUb2UFV3yIiPwLcCVjN1r9w2n77glRQqGpHieWQqbOgJ+88m5lRzwNRUsbd1gsh4Aea1Dl5+9gm2SX6nvG9/NxvwHbSu7sHX2KEPEu112OTisJACs/oTO41bG/IvAmcjFJidDs1dYnFuPhQ1AkwcnF1KhIGUPqaQah374t1aoRhMDrVwSblsQBJtKnR4oJHmEcaMslS6XcJJmY5bj0EHYLJvmQ3olnbtbvMincpUIa7ZLC/5yPPx9V5MlaLpk+kEkkkvGO5bSWpQINd0iQaIxoTeeL+NpGIqxaC65j6C3iPiJyDVXlciyunxZyIyCswG8p9sWwq/wf4x1kn2hekopgeu/YCWAVEABGliK7G23TimLcqn1W7EfYAO0nSSgtJPcNee/CmYszIv9lj0EgjEb0TyDhQSFsN1jLWpsGEzNAvUaneCmpX4vS1sXH4WNtFlXUXIusL4ZpqQOUcpbPKkaUzYz6YW/HRxZGQ0bg2cvGmw6/FUr8U+GBnKSjwKcsxkGq2jCDZYiLBxDotnsbuEi88uSC3bmYU7wI59dhdoJFw0rlU2w4Bu2hVLtYxSdNJCniUPEVLJAffqLoCV7Seg7ZrfybNYsGzi+TNedRf82gbROTWwB9j2eA9cIGqvrTT5kFY2V+PzZufqKofCNseCLwUm8K+SlXPmnCq7w1/T87WKdNjTu6lqncWkX9W1ReIyHkYKU3FviAV1AYHK9NrUdW5y6hFU28DsURpoyIZm2N2VctKrK0BzBpHZXo2wPa80C27+DZKWtPQe95ii6ySSSFjx5dsUdoGWsnahAHDu6xdCMRUR3PfC5L7sXpTl1CopbpBIKivfG0/hlehKgoGZZ2cPgrnWYl1W8TzjdEqpVgtl1uu/jcHi3UOunUOujVTmUnFiowoRK02Cz59jhgEW0whvv05xrkAg1iVMtg9xqSX8NXSusQbQ4udE6FMcUmOJBULk+00BtcYI8Tg1/jbJgN9bqjPfnvNnofWcxTJJUwqkn2ljjnjFjQOLGCCFVABT1bVj4rIMcBHROTSUO434t3A21VVReTOwJ8Bdwh1Ul4OnIpFvX9IRN7e2de6q3rfTfQtxqhcIyK3AL4OHD9rp31CKpbuXdRDQUjPUCMijLzV36jrbdAZ5+rwqGKJz6w0MyxtDYj2xQhIkkifDtKDjRDM3F7UvZGUnWN1vyzARfujrziDuz7ucPuexC7En0iz+9ntnsLg2uBmXAUJJEu8GZMLmheRzX6TGjLMdOOMWNWh0WIefhst65T5uXDapHjpqXfuVbjB4FqOLtc5trg2VZpcd+VYhclYJKvAM5IyqcVGFGYbwVNrnaQYaxtcnCV0fMybq5mV97kjN83aKrIopfTZYD7zb7fg9re+amz9dsJVQUqJk7Io9WeXm4J1lbZU2/fcKkHdpU3ePQFTjC1oHNCFvA6o6leAr4TP3xSRyzB33k9lbfIiWkfRXPU9gc/FOvMi8ibgQfm+IjJVV62q01yM3yEiNwTOAT4azvsHs65pf5AK4GtBtJueAdYpKNw2EEqGRsw2fPoFZ3DSiw7b7CikWokz8DSYRh1xNgpoLtX0STfxXBuZUPY17r4MccyZ9LKmfsumDfQ5XGV2lUmzzajaSKov177uKrxWYs5+DfvEzwSyCR5E6jXVrLe2LmRYztLMiNlGfC3UpQ/R+J7CWcnmQRbjoiqMvOPq9RWOWTnCjVev4WarLlWaPFisUaAc0VHyFhuIEYbDCn2lexHsNFGN5jRUm8SqTbrArmbs15YnWZ5PrC21tGFKOAnG/bYWyKc2kjzSdtoLTJ0FPVp9eqEeknLCaUGqAmGNm6VlK4vvoDTrND0TwYV/QUTQdHyu7Q8RkVdlay8IpdDHICKHgLsBH+zZ9mAsa/B3AD8SVt8S+Les2Zdo1FwRmyoJHLLQv1tV/xt4i4j8FbA6T5Gv/UEqClqHWafSSs+gKpTF9tpUkicpcNkLz2i2xdxVACEQK+lisxxGQFL196qFOlO2aWqzSf2cta7lREBGdjFqGfjcU7dOKEBbT04gjY7E0epfe6Jto2SmDsE1pB7jHNJhwn9OCVUC42w+HC3GGAlQqUV1h8Jo4kCcp6odLgRLxmepqh1Xrw9Yqwq+ubaKV+FGK99iIJ41X1pZYzfCoQxcxapUDKRKKjI7dVRPNWQzEKtKWYul2S9UGUmVVGODcHGTDPt+wkAXCSf3Ja2120aSCuzj/3pr7nLcv7HdUMGSQTqoVm1SVa9YSp68GuTYxKNFIqHgdvD0Su9RUoXS5MBb0FCQ3vvZeOu0pLzpeCJHA2/B7CXf6G5X1bcBbxORe2P2lR+io0yITTv7vWCuXo6fzwcbyveH72tkBv5p2B+kAikI0YeUDPYgOStjstDpSYNkuA4P2KfOPGNse6uscPiiEnJeeZpBO86sNBtT89lZz+OzEHKZtn1WCprNIrtO8eE2uN4mzYy0QzStr5lapLVe2r8RKkm/noiq0CQh2gxXgmSDJfSMec2cJa3UQWUlnlXS37Wq4FvVkNViJbkgl66m0oIy5A+zrMdFcEluR9knbzA3osYxUg/OXJRHhMFe6yThtNRi0FKN5fEvbejs3z9gJ6uoapY5xZd23qQCg37JPa7KSELFgiFj2xT3FH/YaJhb5KVt9H2agJDY8S3A61V1qiFcVd8vIrcVkRtjksmts823Ahapu7xERH4CI8a5B9H9QSpeYBTSoxdK7QpUvaXvwGaVn3nIzMnChnC7sw9TXisU19r3T57VQyi+CbXSIIZDE+QFktRKvXJ5Tibxc3e6Rv+utk/Wtk/F1T1XSzqQZj3wuaef0d1j0/joK87g7r9yOH0GS91S54NJRCPotbqVk+9YUKQGFVuM0K6z9rGkc0SVzYQL+x1UBF23SYoWSlUW4aAwGpYUZR2yIUuy1X1jZRWH2WCOHRyhdNEAr5RSc6AYpc9RgrHCUY0N5Rpv+wyk4phikFRnTkyKWZV1Dsp6cn2O0kuBJqknEoLZaZo7mXuTdYMxI9L6sGpHpJVcqoi/f8hQHL93iSC5jgstg36jzrT9LIl1KDuRpRNaSLfnUKXNcyoRESww8bJJ9g0RuR3w+WCovzswxIzm/w2cKCLHA18GHgY8fN5rmANPwmw4lYgcIbxCqnrstJ12hVSCv/SPAevA54FHBd0dIvJM4NHY/OXxqnrxXAetTQSOD5DWsm0zrhNffNiCKtcCQXRwx2cfhtXs4SdxiCFTMbVyEfVJJF1ioafNnJgVFzJp+zYJegCc/OjwHg26I8d4265xv/fn7arN4lgSXY47KpBUpyVNYiVxfHIWUmzAckpNgXooBh5XhJRAhWdUFxypS4bUHKkHlEH0cqKU0rglD8SlNC4FnoGrEyGMgiQz0iKpySL5eBlRixHdwHoBVCn+JUo7dUhqWed6wHSx8Yee/QDFd+dD/3qIexx35cz2m4Wpv8LfqEbuUX1GtBw4cjVoOFaao/lIVHbPCDWJFvYwe2ar0uY71SnAI7D68R8L654FHAegqq8AfgL4OREZAdcCDw2SQyUivw5cjLmjvEZVP7mxC5nSfdVN2WN2S1K5FHimqlYi8hKsROXTReSOGNveCbgF8C4ROUlV6ynHArXUId5bqg5cSMsgusD6CQ1EjVCKCaQCNjtWB9GTOTfk99pNNOiF47OfD6B9QozQHhw2cpljaq7soJNsLQvGR19xBvd66HmsHx2G8lR8KVxK1NbkBNK9xh5ySUbbmDVFmuOI0s58EAefWNJZNd37qJuPnkTqFBFBVfG14CtPsVJTBKO+iOJkhbWQpNIFI3tchs6i8UsJLspSp4JgURVWiOUUc6Ic8QMGrkpp96Ot5Wq3lmwvR7m1RDp57rEoyTRp+X2oZml96Rr8u6lkLIbGWeoZ4INfPJ7vvc0X5vpdNwqLHzHV1PBqpR42tpX0+0sjgbYmCnGbYCNZZ9IglSTJx6fUQIsbDxbk/fUBZnRKVV8CvGTCtncC75y071a8v0Tk3ap6/1nrutgVUlHVS7Kv/4BFaoK5w70pGIW+ICKfw9zm/n7a8WywCDpuDxp05nEQWCTu+JzDuIGRitV/sPV3+9XD/FPIuptsBvkDHv+T8UGw6aE01xM9jSY8bpON+nmjOS4ol1Kyz/G4n33G4tReXfzdnz45SSriQyxBDCANZO1DXY008+wSyTSppYOWNnCSJNRdJsJuvnrBO5JHmIiyXhcpqanZjzXFSvkw4I+kYOBqKkw6MclF02fAarmEkscDKVJNl2h7KVSTa3KNS2QSI/kjYimImmC/6bEwd2NULG5l++0rjYNIKFOwbnXntQisEn/zQCaNREnzG0VHjUwdFvwYTJWmpJo/C+OUrrp4UpvdR5Q2bo+VBX57+P5jWPr7MYSaKQeBG4vIt9HctWOxyf5U7AWbyi8Afxo+3xIjmYgvhXXToVYgSkMQnE9PGOl2TCtEtRFIDcNrrEKh1EF91R2AfCOhtGwBUWecayb8hOe8I4X0DoKuISt12hxoxuBpG9r9i8kx03e3vYQS8eFXN7/J3X/5sF1LUIeU14IMoFpt1B1aMk4OnWtseZHRkLsOSLPetG/UuUv+W2brnJpiwVkOMRko4iz7sSss83Es/lV7R4VyRAaIKAPXSA+xSJhJLaV9R5PtxYlm0o15eUWCWXEVK84klSNFyao3T7IjbpCRThNoabExnkJ9y8NsQB2Ip+pN3dItFWEFx7bPHf8ev3A+RaaS8yW4WhkEO6UvTXXlw+/S+q2zyYQKuOy5kCCpRg/M+HnmJGwDmMemshcQvb9E5BLg7qr6zfD9+cCbJ+z2y8ATMQL5CM1d/wYWbDkV20YqIvIuLPVAF89W1b8MbZ6NRZS+Pu7W0773pxORx2AlLylv8G2NVFBjHjtxVqOYt8+i4LPZ0CQpog6pW/LU8fHB9sl13sT1CcdoPfwy4cbkM/esPktLEpo5487axtmX9k5mtx3J6Bpdr9Wkl/jyBg3VmL/CbKmiuZ4U8xDJI3dXzQhFox4+GOtxamn0I5EUZlMRaHkXeiyVvgQCyTYApMwOlbeklWVIXgmEmi4eJ0ZOkWDAJAbvJNhXHCsh7chAakZSsCJiQZZYeodCm/LHYJ5kccZfp6I1HYTu7kjF1GlQcDX2W6ikCVpX0k+u6NIRHMKkLZIRGrgxLgvq44JsKjuF4zAbdsQ6cKivYUgT81IReZyqvmyjJ9o2UlHVH5q2XUQeCfwocP/MXW1uF7kQQHQBwOotb93oikLa7Bh7IF5aWU63CskG3XxQ/6eXN7N6V1k+ozzAT6KEIrQigscGx57PrZl13iYz3McZmUbDZDxGNuueiNyWsoszMIm/XacvYwQeibpPSumR1tDgCRadInLpJN4rF6SSuG8glEgm9t0SUFpdltA0SCmqpmpVtRx00nEbjm7E0YEkSi3JWyvY/1yQDHKppRDFxwSVEoqOqYMiGObVp7iWSC7milyltC+F+BBYaef0FG23Znyr/stOpGxxo/b3XAWbJjaq7Z/SSVPQLdrMwjuVtAHht3U072hy71/Qsz3PXG377+CG8DrgH0XkbdhdeDCWc2wiVPVlInIvjHzyGixT99st768HAk8HflBVr8k2vR14g4icj4leJzJHVkygMfSGIBB1lvdH6sXPuu2Y2lSp6273ZsRHM2kle9g1N+5PIpLO+tYgKJ31hFlbpl5rZnXhJSym22hsYzaI7xaCtOJqrPhW5wktRk2W41ytEf/m9qAuMbfCbsaWhlC6UouIMmmEaGqea8g3BxLCup1vT4uj9FKpS2lfqkgiopSZuiqSTuk8Ze2pneDF42qPd1YrqBDPSAoKtEnFH2u+RAknuCTXaqSzrkVSj6GNVJK8xrILrRc2rZ+A9DsZKyRpMrOjjN32GMwojf1NoKm3Eg8Xn43OsrAJ0wIJaiegqi8SkQuB/xVWPUpV/2naPiLyOuC2wMdoXFyUGWS0WzaV3wVWgEvNTZt/UNVfUdVPisifYblrKuDXZnp+QTarsYemLrIxIhrtFzhQRsLIj3vPR57PP77W7APltU0+ozQ7yh/0HPPMtHNS6fsLDWmFdBeNWizOxiWL2p8kKjX7fOY3zhhbv92IhBbdf2NUdepXuObkih1VYUH1n6s/bIfs4OHZSANWD3m0OtJFNoNWb1H5EuIiBJJ00vjFGhwh6j08BCIkaSPaYsDWjerme+maomHrUmJFwowgvDp8UUFt+xXSSBkryYhvetYaYUjIoByStHjCzQrE0ly39Tsa/rcTJ//i+Sklm4RMGGATiXwCkKN55qU1IdBsUtErQkQyURaWT3KuMWXvkc5B4Buq+ocichMROV5VvzCl/cnAHTcS+Ai75/11uynbXgS8aCPHE2jqbHhMhQKtH35RMxQ3gnLNXB/N+0tbbsV3/5XDFOuKG5k6xWuW0C4+/LHT+YvQnflMkVTGiCTM0OJ2qbP1hS0+6JXNXiBjA690z78LEB/USaH2hXb7SHb7MnWGZGlaeu9nV/2RHy/cuBTjBCR9ig/rYxVCZ9mwJbjsxYFXgreSEwuIdMF477207C2RUBKR0KjRIuL2laJKqrHSeXNjdjVOSnwgkdpJMszX6hrvMHGmNlPPQGBdYaAVDvPsqIORz6ujjlJLuM/mJdYmlEXHqdzjF85PNkbJfiMfCKVLDDmZ5E4Yrc8dkslVvhLIRILGYCHYA+/LRiAiz8NI4vbAH2L1V/8Ei5OZhH/B7OIbqjO9F7y/tg6lKfrkmplu7vK7KAy/qUjd6FhaHlMBrsozr2pv6u7U9c6srHWs7IVrSEXGSKVrbPZZUFh0ySUk6JNINF1JJ55S4PLn7LyUYidvpJXk2Rbub7p/WaBcE0dC0rO3Bo2cVAp7FoxcmshrSTYnSe6rEqpAxhmwEO6xt+NocFWXbAKn3uqhiCiusL922PA5SihhHdlfIKnRRJQiklIYFWOkfqxIWWEG/nVfpngXj2MUHvbaCQNqjvhBUofF0sc+qbns3MNwjVHayY312+FOfI9Hnd+aHaTnWTpeXtBI2zGNTpc4ekhlLL1LbBKfqQVJKkHAnd5mb5HOg7FklR8FUNWrQqr9abgx8CkR+Ufahb1+fNpO+4NUoGXMTdlrWewM/E7PPMxRlR3T1TaQFCOanENAsa4Mrm6e3BS0lVa0H+wmzbdMJhfyl0ZbL12UPPIZnkQHgTAb1GhvCufy0Pj/xxdzkfrmTcLVIbVGHUU4mhkttiqWSkm+BXHQF5IuPRFMQFR7uah3z7IYaLK4Z2QbAuZi6hDvBXFq0dl1SAxaaLJTAdR10xlzNcZcjwNxRQKjuTL7HIz88bOIpiqUZdFkhXC+MexblH6I5s+Kh604SVUmvbgWwa5rQY0L3mHDll0lr1JJljZm0bjnz5+fntnobZ2cWSIhZL9HROt570ygWgTUcGIbuap6QTw5V0LJvUUq6yHNi3GuyFFz7PP8zZxof5JK5oIYbS0o3OkZh8dydM2Luzz+MBxFcghwo8awGP/e66fOw60KxbUeivEnPA3anbrkGqY9acacIyQLTLO5st0m7ptmeQ4bmSNZaTNDi6qw3JssDch74AVwo6hbD9ULI5NEdVX0DsOuo6b53RMZ5O6nAYqFmmgklB4VSONGHEi6iIRv+eSiV50Gzy8tFEptPMbi6BZygpnEI4lMWuEeLZVYlFpiO8UHNWCtNvA3EfvtwMpSzO4So/UjAQ20btyJXeMh5lSpJRAO4MSzKqOQP8yzGkohj9laFoB7PvL81m8Sf7dGOsmkEegf/LuvRv49U4XG75o9QpBJNovAdUz9BfyZiLwSuKGI/BIWHzi1Noqqvk9EbgOcqKrvEpGDjBVJH8f+IJVMZdI1oKNGBF33xc3AjUytlUftQjNGaJhlu0pNivFN4SGgnX8q63wS651FE1vjvjbSBHNlbYw0msqHVpwqDIi+kYa0sGqJGgbfWMMicdRuvyQKxVpQF66G2XvMyxXveaWp/42/dkMKQpAiM4kkSjVKc93JNTxukOw+ORongSAJQkMydi8Vv6Kk1PnxRGJkE20E4nKX7kwfFxHVYy4QT5RWdGBG+MIz8nWytThMPVYWNQNXMyzqEK0/oPJ5jrGgClPHwFXBHbmp2wIxxqVkIBVDsRxkQ2HMC2zRSBHvSerICKWPVLT5K6Sfq/28xs+ZuluyD35s5Ravgb0xEZsXqnquiJyKBTDeHniuql46bZ9APo8Bvh3zArsl8Apg76Vpua7hu556eDY9L7HEEtcfzCOp7CHSEZEzgDfPIpIOfg1Lk/VBAFX9rIh8x6yd9g+pBINurvpqzXC3CC1h+I0mJ1VX4ogz42JNcZW32VetbQ/Taf1wzYwNmtlxS/2FIqWdOM2YJUgpSTrBjMwOVNTsKdLMsGMRzKgK40BbkgLLb/ap39qcmnArEG0kwUYak1QW2I206bsTfKFJwvCFpGmsC9Wn6mEzA07BcfmxoeXIkcf4aCdRaMubzmExNOuCL4IqLKkUxaQpAUL/THzqPCwS+94ksaTIRiohRO4ro0GdDP9F4SmcpywKVsrK7DElXFMNkzHf1GJ2YWs6oPQ1a6HUcUy1H6WWVRmx6kaMpGZQhGBJLVu5wxaBXCJs31iIiVRxMn0czjUDPceBCe96rlZbFHT2uLLHJJljgYtF5P8BbwL+XFX/fcY+a6q6HsI+EJGSOahyX5CKaFBvRW1IVBFFWXmLRmhXw8p/K4OrlWLNJ1/6/PY6b4W23HrwDhO1lDEdzUiOfJ0NLLk6J3sLwoCkYuQR07BrGEhtUM1UYNqQTlQHaBrErJ0vLcrcD4BoLNXGgHrHZx0eKzq23ZBa7fy1ZoNGtLNocoiwa1OTHoObaZOFlkTEUanuC7GoJ2hsL5FI85CuXP1VZL9P/rtFNZmAHwaVYiFN3jAsZ1VUkSUDsoN8IEy2mGjsl+wzWPkGgdop9bCw9DCFUpSWHqb2TXljj7BeF8G+UqYYF6+OFVfhxLPiBgycVZiMmZEHUuOLI9Q4VmXE1bJCLfZ5uB2DcLjH6Xrjx+StqY0udtL5+96n/D3PB/pMpSbZu7gQXMdsKiEH2AtE5M7AQ4H3iciXZmQ+eZ+IPAs4EFRnvwq8Y9a59gWpoEGCiIbpxt67ELiRuRIP/6dCVPGlA9VOZt9gcK0VGfkxe/tEu2OcBZANNNKJm6jjagkG41BIKr6MolaPJM3KA+l0JJCUssJDPbD4mXo9CFBF00YmpPPfbogS0uz0WAPrvIyymiNEJJnCimq1AiVDvE5ybsgGoFwiyW1v+SAUJZ9Jen4V8CPMOyyQUCL4VF89O0bmHJG8/YJHWe4ini6ybuKb/Irghw4pPeoFV4rlxBJLYrleFynmZVhWlOIZRFtLkFqiMX8gPiOaqolRcVB4n7zGikWI9wHf9zPnpQlTcq+n0SxIIBwtaJ77Ge+u0JbsgUAq2pmoWbti1JZQtwrpuJRfh/A14KtYka9ZqqxnYLWtPoElmXwn8KpZJ9gXpCKRVKLGKI8LievC37v++mE+9rvzzcC/55cO44ew8g1l+I2K8lsj/EpBUddhpqLp/Ba7YrNpieqvWXCgUR8luSpGA7G0oU6TNGJp/SWdx15WG2x9lGbi9WeSWk40tUI5ECpAY5VEb3nLdgXxfnqFkbZnlhqIO6oTO44XFjgnRjbYvTDp1aSyaPDP70uXdNOpwuCe2udkle3rSztW4drr65BnLBFNlI6yNi03csnPG37P4LquDmrv8LWipamH6lCEzryd2vEww0HBsKgpap/S7ZfiGRZ1IphR4RhIW5KJ2q6RmOvxMNRv2Sru9VPnWZgdJAkyxR0RJOPwfPpwD3rVW30QZYxUWhO9cBxRqGRxgY/x1Nch9ZeIPBaTUG4C/DnwS6r6qRm7HcAKf/1BOEZQmHPNtJ32BalED6/cpVjzFxVSUORmsPI/NeU3R7hrR5DZOqT2wZaj4JvPGglh1kOszvbL7Aeti+oiJMqUOMtVaaSdKqjHCkEKYxLT67ffTg2DnOUvM5sAGsw/ZdOtRXjLbRS5V51Ai0jSrNCrSVJ5FUNVXLh2X7pmIA/bXSlJpZbytSUppH/0avbXxr7V2e4HmtyPG5futsddkh6zSU6SlDptxlxuw6AoXvAjwQ+U2guUSl16fOUsfkZIiS5VhbpwFIW5IhfObDArvkrux0CIzjfiGfmSwtmxR2Iy4lFuyBGFB53wsQ39hn0QBe08z417PUmtKSHzclJn0VFzZfcemmek2dA+dlTpCthzcz1WfwG3AZ6oqh/bwD7vBn4I+Fb4fgC4BLjXtJ0W6bl9ncHdfu3wbndhiSX2PX7gIefudhe2D9qo7SYte4F0ROTbReTbgbOBf43fs/XTsKqqkVAInw/OOuf+kFQwjx8VaSSFOCOPwXEb/IFPfvT5aCm4dRh8Y0Rx9Rp4j1sLPOy9qby8t4NHtUxIbohIiM7rmQlLVFuFRBwxV1krqLH5nK7JNWqtmCcrTyimDrQWtAh9dKCV6Z19IUkdUAhobSq7snAp3bweJM0SF+4tMwck6cR17PpbiBltfVvXIbXYOietZ4HMRtSOicjigoAYKwTx2DSxQz1CpK7bMXwBftCUrq195o3WkZhbkeDCWMqcfAYf+yR1dKoQq45ZKFo4k5QKhULR0v6uA3XpKWqPKhQhOt8PhIGr8YUE+4qG3F8OjzAK+jovlsblar8y/w83B2TKMzUmCeY/Sfe97btH+a7TnlvtOd5WsAdIYw58hNbT1IICJ0zZ92oRubuqfhRARL4HuHbWCfcNqYgnuSZGr5jmZRWz/G5woBSFlf/xlN9cg8rb4LY2anT/wY6S4LO/EnX7nZMGwklkkpNCbOvIPMGCjt2bTk+DqmO8s2IJEEUb99lQsExFzIEsjHNejPjEg14bMwNIMjC7ioXnTJuF//Xgc3G+uQ8p2j90WoL3hRaOwX9dTXWD1dZEIhKhq8LgG+1b2Zsfj0kiFiF3BTZvuc69rTX9FrmB2VYYqTvB7B2FuTmLd6gLWQ4gU3l1VJFZkGWf/SvCVeDXzdtMKozonLlMG8GAX/GmFqPEjzx12aR0cU6p1TEsalRHrBeVZUV2jkoLjngYBdeIWK3Sde/DVhB5n6AG69zPHNMGfW1elX70qMri+Rdt37iupGlR1eO3sPsTgTeLSKxpdXPMLjMV+4pUgKSHtpXhTxpoJa2758+fzz/+0ZN6j3WPR5mUMvyWZ/jN2khAjUBkVDez2DnEH8kHkqQzjpKKthSQqW1NCijJB750ST0Dfots4nsr0dVVkWjUj15RQbIqnCZxvV619vMQyv1OPatzfuv7ey55+uydJyF2Pxqx0cY2lfVp/TuOQkYmIUo4d/TG0SDt2ACkqdATNPc35f4STVKikKViGXPdC/t3+mr2nkCEVYwDEsthVtC4nkuUXDRJI9ELzGuWty2fgWffJdi7fEXIfk2ye8VzVLVDy1AhsnAW8V9LKijmveCDn/BKaaRS+pJr6gGDrKbLCotz/UtG9zq750CfwT5ddx+6ZM4EiSR/9zvC5aIhnf5MajPzOCK3xuqT3Ax7Ky8IlRfzNj+D1Z8Cs288VlU/HrZdCXwTe0MqVT15yrl+HLh3+PpeVf2raX1T1Q+JyB2wCHwBPq2qM62t+4ZUphnsgMY7KqrEevC9jzg/5X9ylVJeq5TXVIkEBOyFaJVujCebJNtnbeumbWodRf+uxKJ1004jwdAE0XXOJ5q/oZ6kJoPkap2SM0qc0gmuCtejQnGksNlw5/7c5/SzGXOh7r9a7nvaSzZMLPc5/WxYza6xi1Yut0A1IiHxpHnb+YODkBtMTbqI+yb/chpyidsc2QUJKd29ZOq3TjxSDpNUw+dQPErDYOlckF7E1DuuyK4tSi55IGomcaXjh/tt3oVYaeUYvCkmvWgZUu0Ep4u6duggBMJWgg+VK9clFBHzQhncjb1KqjA5cDWl1FS+YM2VjNzWckjc66HmRixBHUl0pEkEGgg2e5Imqq56lDd9A/qYJLOdkoIye1I53/kr4Mmq+tGQNfgjInJpxzPrC1hBw/8SkdOxirffm22/r6r+57STiMhZwD1oSrc/QUROUdVnzujfPWgqP97NvE73YOXH7cLUmUPPzOX7H34ef/+GJwPwvT93ftO0sLgUt+Ybfe/AcrfKWkbUXYLp7ZQ0bfP90ufurDh6jknaN2bDlaDiigQ0VnkyuTiHNiIhniNIOyEoUupMQqose694GH7LU6/YzLdYU/7Xg8+1gMS+68o9siCkpLf+3O/+Z/F/3/2M6fcl4Ad/+Gyb9XXVLZqpMLPknMW1NSmFuWoi6kv/9jmceq/fMomlqsN9a3reSlMfiSBKP7nUGG9p3FWb6xqz7USvpXy1KG6dkN3YBbVWE6iarinYYhDB++wguaomv73eVFJ1VmumcEGCKS1LsosBsKFipq+CeqxUamd1YbwKZeGpvaMKlSlLZxUnD5brrImHGr4pq7zq5D9iM7j3g86xSUJ2vyTwZe6lGeNyGm+ucVYZk2SmTP+n2W1aHmGLgC5G/aWqXyHUK1HVb4rIZViOrU9lbf4u2+UfsDLrG8UPA3dVtZSrIvJa4J+AiaRyXav8uFjM0pl2Z3/QSlefmhUxMh2KNW8PaSn4YREmtWpTw2hfGQVVQW4wjuhxQ+3vW/9g2rxpkkiiK6kImYqse8EhfoGYCz6Qizir/Wc+sdgTEF6QwTWeYl3whbR06kkCyImke/uiTWsTsEBFTbVn+tvYNbq1Ci1dbxzQpX/3HE77/t+0vvggrcWCZPnvnfukZjNOeza0kVqStKdtyTCPp+nAVIk2GXHBXVydoDlpBgcBVwjgcYEE1AVnCu13f42u4Lmh30hFcBXJHuZLe0zrSvADwQ+VelAE92HhGlFGZcH6wKSRGIFvJYw9lW/Xr98UWhJDlBCltUly6SXcvLE5VodFtL1xDDNVUguSXjaQ/ukhIpIHDF6gqhf0HlPkEFbz5INTjvdo4MLsuwKXhJT2r5x07IAbAv8vfL7BjH7Ddany417C9z/8PIsu3+2O7DPc7/5mc5lXYtkqHnjX53LRx164I+daYglgtiRi29+qqs+ddSgRORp4CxZL8o0Jbe6LkcoPZKtPCQW3vgMrz/5pVX1/z+4vBv5JRN6D0fG9mSKlBFyPKz9Cr941IdO1xhxD3aCqGLwmCuUR2+CHJqUAaOmQkbdJVekavX0dpizRaBsLetRALJQUZ7596JkBtz5H32iC+qvIbA+53SUz7IuqGUfNQmsuzlFiceDUmTrG2TQxlhkujqitSm7LGurG9Kv5cnVDXs8mlyLmUoUFSbNY970qDl9mCjjvkfXoit2jklI1KQXSb5T6E1ZLtDkh7f1bz4hdoBDuR4/HXVLBjXl1ZdVBY0niluQaVHuFUHoxabiQJn+ZRhtN295gfWn3I1b29GVwG/ekEgfJFbkyN3OtzFi/LkpVOkZVQSHKoKgtSWWoz7Jeb96e8gMPOdces0rTeyfxXtEkz0wu3eRqSMZzg2lbemmrGiXdmxZy20o6zqYvqRdJep/WZs6TisgAI5TXq+pbJ7S5M5Yi5XRV/Xpcr6pXhb9fE5G3YVmFx0hFVd8oIu/FbCQCPF1Vvzqja9e9yo8i8hTgHOAm0dAkIs/E2LgGHq+qF2/ooJP0rvnY7RrPk1byQG/15+0YsZysUq8W1AOHq5TiiOBGHipLLCmVDwNdbaopLw25qAcpmUgc3e995JPbbTK1jEAgmDhAhfXRlkI24NagkVyC55cl3XRNepbMzVYiMUZVzJSXR2juU7zJ8WWax8YiXk3V5sEdqcMIZHYBU/dFpiLYSyIzdAby8P2Sf3gup93zhcHLzbI0i+uo7kK9lTHX7Hjo7noJdWwy78HYH02/SdY85mrzJDKKxcVafa5BaoeWMQuCSwOiuUs3KjiXPa+5zcVVoKKm5ioD0Ycof+eDvWXFfut6xTzCvICvPH7gubYcsF5YapeBq0Miyq3J7TFtUSoVnKn0jOQjQZK5U/cQDJ3rjZtSLrtwbzOSCrclu8lNnxYaezVL5T7WkX6IuSS+GrhMVc+f0OY44K3AI1T18mz9UYALtpijgNOAXnFdRE4BPqaqbxeRnwWeJiIvVdUvTune82dfwTh2jVSCK92pwL9m6+4IPAy4E3AL4F0icpKqTnVyHXtWeoil9UBJ83vn2Whd9kCnGIPwljub36IHS8SDqzzFt0bhiXYmKcSAyCqkSVaFsmiTRT7rn+ZF1ifZTCAYILO7SCMdZccTQJP7bB1iWBSNtod8wMzuYxyIWzaM+DHM4CWScGd6aMkBpxOLeJBKces1blSHmCJBnTPCUrvXcfYuoxq+ZamH/I1ukPo3bkTHfo9M0svvX1zfCrKMEk4WZ5RuRLyXuddCtCO5bvuwV5R48mPk1y5YyYJakCKklwnOF1JFKUlb9rn4XI7FstTBC0ylSadfmfQT7S1SCXUNtXNQmtF+bVBSljWqMCxLau9jSO7mkD8mPoopkp6P1nuGJlKJXpfN8x+P0XMOzWxvEty1i7BTzvutd14WHquyIOnnFOARwCdE5GNh3bOA4wBU9RXAc4EbAb8X3OKj6/BNgbeFdSXwBlW9aMJ5fh+4i4jcBXgq8BrM4P6DkzoWKj/eFJNuAP5RVb8264J2U1I5DDwN+Mts3YOAN6nqGvAFEfkcJs79/ayDjfmwZ8TSzauUu3amffMHRMPLHXkgBKhJaS64WiuIg6MHuLUat16jJYCpxcwoHmay0UMrzlRdNgBmcQ5jnmTTyCVfH4klqBfESboBRjA58YSZb+yL9+nl7AZbjiF3sY0khAZjayCXKLVk9zGRkpNeYnGVN0I5Yl514pyppcIsP3qFSaW4UW3OEStDqCou/qcX9PeVRqqxhJ06ti06PeSSXUP8tOufxP3sQtptY/uWqqotsU2DeHMmUG/Pij1bwRU3cXQkdnA5q0V33dAfpwq49LyLt9gWX0lyQBEVdODQ2mJ6qkFhNVmAtVHJ+hZn867KX8RGMkmrYt/U+i91uHUuy58mzd9WjrAg8aRbEiQiVwjV6riPYpzvpQNAzwx0c0ipWGa0mQVV/QAzeqWqvwj8Ys/6K4C7zD4LYESkIvIg4HdU9dUi8shpO4jIT2GapPeGPr5MRJ6qqn8+bb9dIZUQhPNlVf24tAexW2IucxFfCuumIzxcdvDsQY62gUAwrUR0tIeaKLLbsWil0M4f6BiY5yPpKPiBo/zWum0XQYrC0tPnA08cpHxUMYXBvohSjHQ8lDoSybzwmmbTMXZlzGssI5BEMPFuTIjWT628EVUiqEguPiOWfGY/A+5IjVsbGQGUzYAttW9UIbXZSWRtZDYs7Zu+Zt1NQaq+udZ4v2MQayDiRDpx8IlqskrH+h9tVL1F17L7JpOuvVf6dOEZcLiRT6UNcnVdQ1LBcy8nsCz2RgTzPAtfxJtNpfZQrIQXQ6BeC/YbdclmKFJwxA2I2Y43g1Pv9Vtwk3Z6l2hLIf7JCCVJn4p5w9W2MQZ0tsaGIJ2YO7y0CMete0samr3j4aKyoOj5n8l5EDM2XIfwzWBa+Fng3iHj8GDGPs8G7hGlExG5CfAuLMvxRGwbqYjIuzDPgS6ejYl3p/Xt1rOu95cTkcdg9ZNZOXBDivXGGJobNfN67jnR2DFo2mtTHz3NiMIg1Ar6i70JlRbrFUex5qkPDkxloYFM4qDQo+KSOiOcKigbNJt15kbariG4T5qJcNK7XlTb5JEPgC21lrQHymx9isZ3rjlWclsOkpyfILFIM0B2pRU3qo0AVM26TJCe8usPLsLdWJbTD53BhVcebq17wD2C9BJVWZMGk/RbhKmyNvnCyJdcPRa/1+PHad036Vw/zfV3+6R4U12GaPxkSyJ71qRp7+qOpN19Y1KXNeiVgk0mqMLwpg5DTbVYr1uNx4rmWGWx8Rw9p5/4NLjJse1+RCmT7LmO28I7Ft8tF4JWY+XMmIEgrzeTJn4hG0SeLaFY8yl9TXrPoxpQaewwi9KBZWPC1DZ7Bw8FHg48WlW/Guw058zYx3XUXV9njiTE20YqkyqKich3A8cDUUq5FfBREbknJpncOmt+K+CqsYPY8S/AIks55oa30nzAaXuIdPZzzZJEbAh1RNSIIagiem9fJ95AQp0L8WIqMN8Mhqll5+HKyUYqj9aK1HVjhHY0L2CfpBJVNt1YmOQN0xkIc3SvqW+w6yJKNxoGwagj9yalWGDlBImlRy3UIhbv0z2Vuu5NQROJxQZ6P7Gfp93zhc3PHe9RuH/5bL/3mqP00rN+jNTnUE1Kl8T62qsiQV0leKjtHo/tGwZQM0w7UsR/tOtP+b2jvcuNTE1UCPgVwINHkDWbJNS+kVpHlHzhZ2d5m46juGYd1CSVxmuQzgsZrz3vYzMJSzayLGWOhlifrpSTri9IPLHomUAIxiW9/ykB6bzxYzMwj/prj+GbwEtVtRaRk4A7AG+csc9FInJx1u6htGNkerHj6i9V/QRZxbGQu+ZkVf1PEXk78AYROR8z1J8I/OPMg3p7iH0cOHJ9dIYY3NaezZAeSjfSJGa7kW9FQUOPpFM36onk9mqT7XA+0+u30nl0pBd15nasgwIZ1WYsDrVZWu0jyRSuTR7Z+cbqsuQSSnfbZqAavKBo2SM0pjZhArEo9rJngzvAD/3gmZR1VkEv6uP7Bus+t+bsWPe7/1mth1mHpUlAhHsc1IzqZZxopxy3174yjzpykoTZUpmRVHSKQ8RbPztEnOxeGg4gYXSNrua076u1NfHRKxR4irUieNqZxCIDM5iLOvxQze243vyzoUet4lfLNClztY5Jlq3MBN1bmJ9a1WyX8fULSVGTE0OttoMEMgkSpgSBFyVNVMakvkWJDx7Gko92sRG19fbj/cD/EpFvw+qkfBgjiZ+ZtIOqPlVEHoLFxQgWuPm2WSfaU3EqqvpJEfkzLEVBBfzaLM8vsKt1IyW+sbkedSyWIt+JRvVl7plZA21mfbHwUzymy5rFWVYrZUqREY6T3iJPaf8QRS5VbV5PRQEUSWqxcSTGwTBODl2PpLGBLHPBnaACGkN3QOz2WTW55VKE2XJ03Q1ELSGJYPIMCyq9icbrNOhOkJx67RHtdf5AiVurmoG7dO3rECFM0SdAx7y7Wn83jPE+twgtJlrUQMfBkJ5PGqTbp+BjKyJN2nw6P1c4hxuZas17YXCNpMh7Xwj10OwtUoMfCfXICoFtxpB92j1fCKsleCiPWMLVsbQomWoxqb6Sa3DTRqWzH6R30aQRSbaMFslEF/JIMJnDQCsp66Z/y3HsVPT+giCqeo2IPBp4maqenXmbtRuK3A64qar+bYibeWtYf28Rua2qfn7aiXadVFT1UOf7i4AXbewgRgiSz7TCDD65NcYfuG/AzD1K4iqBOBuK52glqMyljXL8TYzeY1E9MRZAKEKMC1GnSFEipeWtkhADA3YNFEVjfN9ISnIR23esc1NUa9023XbZvpFMktSiWcp6kZbzRMyrpc6Odf/7vrhJBZNLYvn5u6QyxTA6K8Dygd/9bJNe1quUwqUXdWdAm4BN1Sfv2SfFv2DPb+5UYY+gtL3LoqNAuN+xjWZefs15TGqUMLFxA8FV5q5dD41Y6srIxY3Ar0vmLTUfTrtnCIsQC+Ic89JCAoGMPz95+eS4Lbobt/qRTwDr6MIOud1GQ84ziZJvaBMJJc9kvRB0n8+9DxGR78ckk0eHdZOiXH8bs3t3cU3Y9mPTTrTrpLIQxAcs9zKJE/S+HF+9M8i8QdsmkCdgTMbcTGqIInhzrIxwcnJozZrDA1/YF/WEkrAgZZHIhZB0MFeJpWNLjypnGvraTrLZzNovrJds0LNCYpDnG4vBgSlCXQSpauoDg0C8cTCcIpXE706SMR/gwi80sWKn3/4ZSV+ugwKcQwdF+l0cNKrIvlxt8fjQGOTnwUYHlqz4V9zfpBQB6cTVED460n1Kz164v9bhsE9vl23wK9ZMvSWlMBAohkK1EmyB61i9loImqn8D0NKZarMU3HpXsdAhEWI+ttj3vG14g7vR6uH5SfO7+Fz5cHjV5MaPC/cyHy59MzaMJWHdJK4r9VQyPBFLy/K2oBE6AXjPhLaHVPWfuytV9cMhP9lU7A9SIUgLWUBUKtw0p2EuEk1S1whjA0uLUKA1yLfUOj2zvSjN5ETQCjhMs3mHeg2pVFzzTsb098FOQ60daalja4mHrevGE607k81VaNMG0mlqqNzQDeCD+suBUiSVmLWx/9SZ+2xrtuek327SB3FceEVTqvb075zDqCyCrFfj58jvRZ3fF53oTTe1j/O6mfr28yKqqOXQIVdVJsKBtm1HNVOVabLF9CXaFAVHjfpQ5dMJvgapbFus/RKj7zcCLS0jQIwtivazrhQyJv2le9jzzGX2k9Q8qgnDO91oIBp1WqtcQY5c9bUg9ZcwW+pZDH0tBqr6PuB92fcrgMdPaL465VAHZp1r35BKy97gcymAuR6kaFcZf/hJad3HPGvig013IA/tvKb06/lL0o7ibkhKC2mp0nLdcxr7fJyJKwRDNG4yqaRZZGYonku6mWbDyI/RHaBVA5FFCU2SM4JdQLiPVSN5zZS4pnjtnH7HtpRu53IppqQVp1J3Rb0JZBkJ1jN+3kn9nEQms+61SNpXQvbopAKLUl7M6+a7zg6aqcqCF1lfvZ3wbIv3oRqkQG1SCuLMNhOCD4v16d0d67429W2srkvn3JOueZOI6tOu2syCcJXoGt7rublB1d5UzENQe0BSEZHfVtUnisg76OnRhDxeHxKRX1LVP+gc69FYeeKp2D+kAv0/cteoPg35s96ZSLX2jRqYqLWZ8I5YgaJMJdfTt2hrEa+od41k5aTxZMm1Q2FwwNEETrq2QborCWkTKWAE2ddhbQax8Zsx3m/N74lqIzlli1SZp1JMV58H9vWpvvrUcbnEMCElSky0Kd6bhKQKlUlFKWdYPF9XQpuEjppz/D7M2Hce5O1i/AV03LWjFJ2pwKBRAYWd26lntNVvAagVF6SbaMAvgkTuC3M5rntylE3tfpzIRNVjMeOedq95IwTTlRzzw4R4Ly3DBEbpldoWidmTsz3AKvC68Pfcqa3aeCKW/uVnaEjkZGAIPHjWzvuKVFq1PiS8mNmL1TuY5q67TcOwMnswu267dNRXPciLRI2RW5I8mpnlu9/zTO5/nzPDecKxg1qmT3+rLnNj7ryo6jIVgmTKOdXk4izdl3viLHzC9eWDs8uIJtabCV5rEs5LIWifbTDGucT4nGl9yQaKKKXE+zBmy/KS8nmpc0hJUhGNSVobjY5eBKH07ReJJRCIkUvHsaBvsMxcn8fS8ZBtqxU3srxfRd0QgiuEehP2FKCJoen+brNIG+aT5FLbaccJzavMLTs4h2wLvM5+ZvYAp6jqR8Lf94WIeFT1P2bs8+/AvUKq/e8Kq/9aVf/vPOfcH6Sibe8SyYyhE+oWjh8iGvqAaJMZI5Tu50nHyoyQkUBym4sN6v2ztXe/1wbK+9/vxeNqoZ5ZbQv5rDF+LuLUF5IDQhjXI8k2kcky9iJEA2yzgkZ66qggmnOEJiNoRbZ7sViMfB8RU1cR0rLEa6p7BqkolfUg/l4CyHrFRZ86kwfe5TeaY7iMhD1tQoRmIM/P1cV2EUm6iPi8qU0qNDPi57YppszCs+PldrScYKT2OLVJRwEh55iRcLEG7/vrp83f/3gbfZO9oiliuYBRte++dm2DdCaUGs4+jDOd8fZbhdBc50TsAVIJWZCfB/w61m0nIhXmVvzCafuq6nuYbMyfiEVqGXcVlivKW9xHpSEBYfg+z8PU41nVOr5u3B1xTPpJi4ZKh9mArsqpp/xWu33ej3wW7pwZSF136XrWSJK2THJx+DLsW5ojQJRook1Gy/biB84GuLhI9hdC6QDbXwcOP3D4lRI/KMz7qgieWNGukqvI4vVFYgnZic2zyTWqqlxlpcqFl79k4n3WjrFa831hTGIU79PS7VsLLcN66F++lMX4km+fhO41xvsct+X9jhJInIV3lxxdVWS+VOFdqdTyZsWl0nZCyDlw6d8+x7y1oqtvdv4YdT62BO+uids7yxiy36iJhwn3qg7X533z/nttxoZF5evq3N/eZS+wiqmyTsFyeN1IVb8Nq29/ioicsR0n3CeSCinvln3PpQIbUCeqV/PJ9oRG+aDVJZapKVFC39rftfGSUTVpZlJqEoJayQmULjgAtGesQFOzPfueVGBxAMrUd4o0NqEgQ4lqMoJ2g9N6oZqSEdrFNx9UjeS1EqR0jZMAjEsfoXY6EtKTxHT8IUofVSslAGOuwBd+6syxbj3ge56HVJ4HnPx8c1+OEkyM18m6rDmBRLvLPINO9E7KpaZJE444+M2jCpomiXRtSX2/TR93TTin1KSYl/iObFZVdOnfPQeAU3/gRW1HkzqTXnqfpdn3OtVTmSWZiT3XErzELBTAk1JmpE7NPOVcED+eMWCszZ7gFH4OODXWqwJQ1StCTZVLsGzxC8X+IBVMl9olFXXOyMbRW7kvuQ6HzxIG+TFMeTh6I8R7iCS1jwN27CP9L7N5linRLVqdIIWOHztO4LvnzY85h/ou2ocknkIbNVkimtQ2GySkR6rDvN50oDDqqc7RtQ/EGCBVm2mKnUDryHtRhSWTBxcsEE8PDJsA0tKR7BR919xVpblMWsltbVXG+klScOP7T4ARW6YGbG3sqBD71vccL+0yi2giXOfY8RlMCRfG3Xg3iks/8Gzuf98Xt5/3bp9UJz+nPYilFaa+hJ1jRlumjLRxalk05hFE9gapDHJCiVDV/wgVJxeOfUEqY4WkJIueDUGD3SR9KWV79KknqhZIx2gat5+OdgqK6TOosdnKJGkmHCaqwN71t9nsL0orM1K+THtBx/Ndje+Tq46k8+Z3Xa1jXrQ+6S55nYV8aArtiOpJLslgxnwFMSMHqqa6SG0nDLanfV9QD0c3bhHL/SUCZbia3nuf9SeooLT724dI7cYGRHrG2vmoJkOLolfK3WqE96z9e+2CvRUvZ8+8Z+HUe/0WrBQhjsSOaZ2If9vtozty3zWM/QYwm4C66uboiTavG/1GoNtwzO3BNCfxDTqQz4d9QSoq0tTiwKSWNDhWnalS9P6JT3iRlYrNddOTHuBcLZR5l4wnrmvajx8j647GkrT957z0A89uUmE48MOisZtsZGKZdyOTPPIgz4l5ufLzZGTUq/rLrsNsJAXReaLJFEv/fQl1U+K+RDVdqW2bx6RLzHK0RWki79+4ZNK+rFZQaRrIBIqiJbUle1LZRO2n1Pz59rA+edx1sIhBaVNusxPcpKUbx7MFxEwATR6+cI6OlJXUkz3r28eT6RoDbd/7tI8TBN+ofBcmtUx/FlOb3cddROQbPeuF6UGOm8a+IJWEICXnBBO9v3L1WCobC0S/fkHHCKYvD1I747Cds6+OdmufGe9qN3svmMRyaZBWUq6qKiSzLMzoHmfJOaHNyluV52VK33MpraWa6jtAu98JLdLK2oqpmSy5pII3B4pe9+4yZOv1vokrcViMS4V5jnnPA2/wC8hwyIX/8YqmL5VHV1zK/wQ0aUwAL43bcT8Zqj03JSGxY3c278ckLB3kNqXg3BAJOkrPRRHud7QL0bKPaIf44rFbk6G+wRLG7SzzoE/FFmKHthJt/sC7Phc5MGj6GqVVZ/nHcpVvvIa2C7gL7uRxRbvPfalzeqWZuG9Wm6jlen89s6moao8P//Zi35BKIorcIJp7ThWSBrI0g8zayKhu3FhjqvSeQLCxWSzab2jPMFHNkeu0p7mMRpVMsBFIKGzVflmm6+ZnOhTENoFYkrF/GtH0HSaTgtLMXTEDbjieXyn690/9cuaFFFRmzo+QgdjAPhohw+H4eYNNIEpxUmuLuNL1dE+Z99uPr88nFlZ5sElv4AfBYy7P49Wn6VG1KPbuuSWqNNvnwCtStouSJUl6M5JJpy/W+XC+dM8bKfEBJz+fiz/8/LkOd/rtn4EOC0tcqu2s4Ob4EY+dXQfjn3M36rRNgtp0kgNNPjlMJJ1JNMHzs53tYkHSWGdy1t9mD7DKLmDfkEprxpfyYmmKPxEfamuULhl/Ww91qGcSZ0WTbPa5jjYl++sGRnYN1zN0+U1ktLb09ad93wtDMrz8YNJEiacYkCCi9d+Z3j71IaWuF0IMvqbZXSMB9Rxn0ssTCMVcPO03EjEVXpRi2h3IJIsSRMVm7A7zEBsUyJqDY47mwivOtTiUOAgdtZIRKL2Zo6dffCDUXkJuLj1/zsYSI4qM3wqNsUGuPcgJwS4lbUmzwCTmdd34Ncx7nZC84FQxTzutWxLRRogF2tqBPttXriWIz29r/0goGt6JcL9ykhh7jzZIsC0S2ipmqGKvz9g/cSqBDMT7MTWCVRRU05fH0rWQ2jYvej5zIu3T8j3PVCCimggsfY77xKUPfcfJZ5Dd4Eho/1KFpAEpHW/GksdjtGIWtN3/ZNeI6WPqGFOjKcagOWZ/vEHv71P5UDrYTyyi1r5eG2xbrrvOwaCEQdnYmeItLVwjVXV/SzrrJywqJE87jefPjhljfeJC7oartK8pkmbczxnRJYeLqLp02fmL7LyFG5vVp3ijSYvMXsZ/GDGp3LlNqb8u/MxZXPSJF9lzUzfPxZi2IPud0nUHXPL3vzEeP6JRcmnuZfdax5CrdetsNiaTpfPNIqq/pi3zmFRE5NYi8h4RuUxEPikiT+hp8zMi8s9h+TsRuUu27YEi8hkR+ZyITK//sEPYN5IKYIOx66ibugO7J+WkypNOJoNhUJ8JmXjeTbEyAy1dcR4lnvWhadC8gMlDTaQpq5vIJiSbjE1qDfaDTrt5MKWtQDh3kxokFTILkt+mdcWRvEIqjTSg9sxsU8S+NNKlVh4ODNOs2K8M0r315QQimdCPqcjJutu+pWZsH6/l/KDttjGzbsttt9s/bdZHiUW7fZ02O0+TpXjOzq4eUwmm62qeVS2Cx1aW/fqB3/1sI4wMMUvBRK8/2oTR7bNk0kdsf+q9fotL//43kuejqadDjEvMXt13uWOekG0SHsNWVYetk7Mo9VcFPFlVPyoixwAfEZFLVfVTWZsvAD+oqv8lIqdjZdS/V0QK4OXAqVgp9g+JyNs7++449hepzCt31UosLJUiuLuYYBzMt7dmY5P0vqrtHEzZ+nSc/Jjxb9/xnCDroUKkM4N2Si8zwW7TF3uQEj1OUstBsCeFQSqpxaRtnJx0jL7rjO0Bt17brLyINgnsXK2ZOdksX8yelAVSWlaBTH20WQKZsU/XsSHdE0/r98+D/PKBOtlcYhvX3MNpThUpEHUjluXwe0wqtNWszyXycB6PlbSuQnxQVQFNfrULP3UmD7jHC6b3ZkrwZT7Rk9q3yjpA40ofbZb2fAcVc37S8Z+ifUmtdUGV68c9zLaOxai/VPUrwFfC52+KyGXALbHqt7HN32W7/ANwq/D5nsDnQhp7RORNwIPyfXcD+4NU8hffk2qITEVIwGcz/rDOYW96/rDMo4ft06/ms7Np++XtuzPk2CymtY8ztlotwDCktaeTy2tmd8ug6sjzndEmupb+2Xf6B+0BZCMDujbeOG6tah2jsTGEoTSoiVqR+1MvTMelqC28+JE4knF3UnxN7Ht3/9rIj7Ih0BjMOl8HxuOD5thpvmaJEO2/SNZS2GBO5az+TG2i8APu9jwoHdUND2SSa89hM2O7pUahfa/ihCmqtfK/LtrzGnJxRyp0tUz7TU3imqRe2u8LNIkmF0UsXueoUQ/AQ0TkVdnaC1T1gr7moQDW3YAPTjnqo4ELw+dbAv+WbfsSloJlV7EvSEXIXDA79gqYIApDGCzVZmvhgYu2la532ERMekj71rdUJxNIqG+/jABbu2RqpA3lNIpqv3iuGNHup8zmMsmtnXIdZimPe48pjbSVPPBqDYNKaF8IqKCDydJk+zw96/oiuudBHHPz5ykNiIHQ68azqKVSjXBhv1DrozewdtI1LVJV04dMtRlWNAO3aphfDZBBkQZPPyiaFPeTupcRe8v9vuXGr8lekmeRbv02ma2S9coyGJSxzn0j+eQu3C2pRhs1XlSLdwvbbQWiE57rHLb9rar63JnHEzkaeAvwRFXtiyshZA1+NPADcVXfWWeda7uxa6QiIo/DMmdWWFrlp4X1z8RuXA08XlUvnuuA4cHv+6H74kDGEAeM4LPf8lCZ9vBMI4pZ66e00UHRGmC0cEiVxToQrrUKA8GgI810VQYd9YDk1xuPGbysJPanj+jyl7VjSI6Y+8UtLC4FR5oUtGNfjOwdmRqve797+tgE3MXfb77u5EiDYIdQYkr9SVJETpIxu3C0VfQF1k4bnK3tNpNLjnRNYo/YAMQXKX7ED9zk54KG1POAxy4ZJ8SPIiE1T0MWTZvwTlc+xII1sUHxPo+929p53+swAcizZS8CfdqJTSKkS3kL8HpVfeuENncGXgWcrqpfD6u/BNw6a3Yr4KqFdGoL2BVSCYz7IODOqromIt8R1t8ReBhwJ+AWwLtE5CRVnREJEo67kR85zs6jail/icMsvlEnZQ9t96HvzmK76LOZ9CHuH/ui5lYZJRCp6iZwriNZ2GzYB/sQYQaoqX9j11y4Jj1G7HNBIuYUzR4vOc9cO4FEZ977GfYXPyyT+7CdM0aiY/r9XAqI1+E6yQK7fclUohvFmGQSsyxnROwPlLi1KiRODMGV3WPUWB81U05m15JuZzJyt79Pu2cbV411jj0FeYqdtFutyGjyzZw0CUsTtPy6VVuZL9K7FNzYxfuW56VlJpBelZMLZJOuStuKYFlfoCtxdo7Z9VRmj0chNf2rgctU9fwJbY4D3go8QlUvzzZ9CDhRRI4HvoyNnQ+fp/vbid2SVB4LnKWqawCq+rWw/kHAm8L6L4jI5zBj1N9PPdo8omiOCfEkrUNOiHQee1AcIQWENANRa3sm1m904I0fu+SQnzue14f5ZX6MrhowFi0LkksilvjCxxldJ+6mmwKn1d908AnX1utwgA0OhTRxOd6nCPiUDDKeL1xT8zuEY8bZZ5+BeIMee2PICDfZoDKC0dI++5WS4ppR6od66Z2dRy+9JudcJoVmtoDkzSdMNLin69qAEb9FQHM9h51VXlNK+amIE594qhhTFWPAonNMIR0vTRo3+eia3JXWtEd9Fe/vqL87YxkOFiX5qc62t8732J0CPAL4hIh8LKx7FnCcnUZfATwXuBHwe8FDtFLVk1W1EpFfBy7GpoWvUdVPbvRSFo3dIpWT4P+3d7axllVnAX7efe6duRRaCkIttU0FQ6PYGD6GkQ+lCZaZlh9W/5iaGPnRSqI0WmNNIFAYBkhja5v4R02NTRpjS0halR+NM9MqmVDAYaBABxEKUgUhxUal5WM+7tmvP9bHXnuftfc5d+65Z597z/skJ/fcs/c5+91r773e9X6sd/HLInIXcBT4lKo+jAs8PZTs96L/bGNpcZmN7JauMNjcnszYH1laN/7oBJ1wILijgtura9Z8kCmMilsImWgiYV1xv3votL2MuiR15QKjCqZktIOZIO5R2yRSqzwsq8PoYgrxCl0qKkXWGL3How1HO4uJXJddpO4870JBNZs0MHzLMsWbqzHNW32MLirEVOagbGI5oHrnWZ1HUqmhzeWXXOtOBSRrSwNvLq4VqhuEwUuW5vHTznyodXduSOtPXIWQWMRazXkZFS6vVBgO6+2UHv9kXLPjmMj9Nf5Yqno/dI8OVPXjwMdbtn0D+MbYA82QDVMqIvJN4J2ZTTf7454BXAZcCtwjIueRb9zslRGR64HrAVaWTx8vTzpSCaOpYIIH10Y8YnOYltyU4UFoBGVrHWywXqjcWTHIHn47VzY9yBhHxrj0Sz/ai/WRSBqq8MpkQkshVgtI3RHejx5TL5sWQAzqSs1Sqc2ihpHSH7UJpZnTrYpHFtXfKO+wlnVWd301qgbT6CzSEW7GjdQaL0v2jTGc5F4pty/lOzVxSoTjQ0T9SLxMrN3Cd5g5xZc4dmOSwogl3by2ybmE8087+5GnqP1+zlHbqj77rU2ZDOouLV0SX2evrF2zWMvN/yYQE1DC+zV3+Ln902u+kWyS5YT7YMOUiqp+sG2biPwuLitCgUPi1pg9izUEnnxa3hcBTn/Lu9Z++RIzPTzcsexKw88b1/cGmqOeasJXixUTOth0PklZ1ju+HAUxnz/GVYZllX1DpjONgo15qKJ7y0/y9FZL/O1B4WckZ0bZwW2xmrFkgjUzzi0TJ+d5d5t3x4U6UQC6NECLak5LlKUR98mOaDMWXVMBjsTLyuR6JqnW0bpLjuFKztSPVW4bUHg3T/ydUMKnTM61Rb4QdAYSN+X42zo7lyq9/bL3Qsvv5m6lhnVSc4Um94WbT1RQHD3hLJOVRAGXTo79D98GuBIwqPp7vCOJZkwcrvU7dFiu00JLKMcV/VtMrdKX++vvgauB+0TkfcA24IfAvcBXROQLuED9+cChaR20me5ZbaiUhoZJf0G5hNTboFzSUXvGx9ss99K0YABXiTfnHssgJ0qX2aX4MitOnjT4WesNMg9o58Sv4PZqdETBeqi5psL+qjXlG62b5mg2tHEzthMmb3Z1iOon5PlqzEUIEA+kCtaGcx+xZEgGDXWlAUnHqI0KtuEcQjC+rPYdbluKMuUYvH7cf68aXETl4I+fWsRNSyulacF0oc3rn1KsozNtieGlFp4uOVdgcfREPG83L4e6NeLZfYlTKmlCSrMUTdbibL7P/Z9uankGYJruL8ZbKgtqqowJBW4YXwLOE5EjwN3Adep4ErgHNyP0H4EbJs38GkerQpnku6Ez8B061K2UTpr7+BHsSK2xdHubrNFdtfbZwdn6T2nq7chDG16J5bAUatpI7XvRlbZUuE44WfM+uIZ0qaBcHlAuDyr54yi9S3A/mvV1t8rlgnJlEK9FPGbo8LxlkFoJ0QoJ+ybWjayW8ZW6uqIFslxUqbRdJO070sbp9QpWmlesnb87yaBDW+q4pW1xEq/sgCmRt6ZQPPsP3dp6X7YF2JvnMHLuaRt0DcQyLuncsacaqB/7ms6hNhu9WCqqehz4rZZtdwF35ba1ImRnNANV9pWqL5pX1j+HuslcS1f1m5sxhpYR5rgid7XvhrilFKPbG9+REy4bKk5yTOVucbel55W1pjqoPYRxUpz/33cmwTWVHrPmIsq4pHKfud+eoNP2x4lZVNsG0QVVHB1Wijq1oJYSl5JSmyuiS4Pqnmk79rjFVqMVV9buneDuiYotCfTLsF62p+ZOGjau7Vo7wMb9fDKjck2ehdDRx0y8xDo5cP/N7T+SuBLrgwd3vWsTlcdZII1MxBGihdo+Uqxdm2kxgcJfVLbEjPomOhhUnYtqTPfVgSD+7oqlQKCKdyQdUgjIu8qwmfTiDDnrpeZLjx9mlECJc+2kfuTw7EV3TV3u2gNaE6ShbIJC9fNApCgmU4BQFdbU+j6SpNi2ur2aI0epPh933FHZmkIlCiaua+LkkuPD6K8HqhhJQT17y7uzxqXuxsOOySB1OyUu08SNVovtJDO7awomnR+UugzbRuYTfJablNo1qIj7DAQNA55EKciwZP+Dn279fjxuaPNwj6ZxRFj73KEWd1yQCzrOayP8MWUZS9i0oms9ya3BllEqtYBfmvXpH2wV35GKJmUbkhvRK5ToeyV/k44rTNcaOB/XcaZ1iYIcaSJBFCCxBnIKJd3H/933yO21zbt37KkUasPvn55HnFMxoD7qbCi+EUsodJRF5RpzG/yfqFzSL+VPpQrgN/ZtXhpVt8IgUK4MnBWVWCLlKZnMrXCICRRLbQGvpnE5kNF5ElLFfmrxFVVffZhk3R/qpW980kNMJigblkdulNzSoY5z/bTey5l9J1ImzXhiunQEdM4fmtSCXrMLK0nKmRqTWCoLashsDaUS+uLE5NZQKh6i6yXexINggYxaF6mF0nq4tdzU4268+JBVbobixDDGXmr7hdTMMALveFCaiqS27fCeMULX2b1jDyLJZDU/Ahv3O6EIYcyqg7obLCqZlvYcE2upT5tOr6Fzb4VCkLpUzZFoWhvZJaPXOMDUQhLFUSndcG/VllBIrbhwf7Ypl8BIVl11X7sNHQo+cYW1KZCY8Zbd6M5nEoXSlLc2X8vLF2RJ3WzZhe6S/ZvE76cpybQPBLt+a12Y+yvL1lAqTRoxjy7LYsTyyCiUmuJJvTllvaBd6graf+jW7PF27dzrRqHBLZbMLA4ZVLUUWn8+ourqfA2Vfd9pVxgbwVqVUPzehHLuvvR2H8BPPmx2mG2IMLIcr6dcrmuMtnVGct9to/Zdf5+JwuqpywyOrlbzngY5E6v+vchAKMXdD82ioVklEygav19Quayah1xLCf0go2dShbL7ottgOXETeG9APNdG+SNNlWO6nHYy+IuVF4bK8LQVilA52S9fHN1q4VrU3K1163+aaFmi5v7K0lf218zIKZSueMLEVoi27Fu0KxTw20pnjcSV8rz1IX7VRfErVFb1r9TFQ3pQKLNg38O3+RU6y8ldBsKIQoFuhaHF5PGTtSIK5falWPAwS8ex3VwPl52WJp10WRgxWysldLAnO4pufHf/Q+33cpZxAfXm3+b2zDZdHrj1dAqqmfMnkg69LUjfdBtPM7geJj92vRbUkNlSlkrNjO/I0W+Le0ykUHJf9b836QPYpXQWlWabXHPlncQMqBCYD6sG5kiunfrKwF1xkPid9XYyjZHwcPuAwRurbkSe3k+NoHLrz/lzblWODYsYyJbTqcl2kpyUQmlYG7UU+NDeEyYZhN+U466gaPH6sWrfQqsyL+E3wytlgywVprRI11ZkyygVHYgb0aTB9jSwmfhw15q3riIceOAWrrnizpFtBx64ZQrSG01qq/6JjLoEaVEU6bVNO7kJCNlj60HUxeU09O6NeUYjx1xLZyd+f3X127KLRE0pKL1mhdJEBB0MYuFM9cpQQkmhoAAarueR97ntIpV10nBxVck6Le7TaXmkJsr+WkylsyWUihaCbvOnknMXJDdedhZ3B6nSMAUyO/Y/+Gl2X3p7XHZYyvbR+8hoFeJqnrJaZhVSG+mywBOTWknTHhDHY9Tfp5Nn3Qz85J5vWi4NK7yZRZU+L2sKyOdIny+f5VarZiCN2sot10VTBZJBkv1qAfrkWpddrsh1oqWiY6sUm1LZvCj1tRlSivYHZddle6uZx41R7bofLmPd7PO1ogB2XX6HS61txlL8NSuO+lGjT4KAKsHClXuZgcCqDN6sMvfiRMd00mxKYjWfVAZcGIyLQHALan1bzuVUpSp7t+007/ValmCmUy2ozc1pZUxsJk7KDe+LorYcNTRchT7DbHplWiZwf5lS2by87+fOqXVAk7JuE9+YGc2O75or7qxSclNKapNNw9LEekpyq5/Ew95pJXkGb666fdN0WS/TSbukmqnT42jum7qAPQe+vUEWd81iSyySQqM7MNaNi+6wpPgm5Nsq4xYbmSUflFlZUoSKyP6cm+n1InvWcZLhBHWC2l+LyZZQKsbiceCBW9h1+R2+JlijJ83MeyjeXIWBMNw+cItbNeatTJpFlo+LwNJrx6tRckwW0bwPP/MbnRMBJ+i7RLV36zrUBgvuqJoLK8wJC20fqlxQ1rPY2hRKRpnUKoPj53fBSQ0w14qWJTqm6qcuqNIxpWJsWkInetWvfo6V/z5ajXwT90qwRnddtheAwRurbna9dwu1ZoW1EGImxfHSzZkInV0ooBl39B1KJutLC8m6qbITMYf51NR5jO+FDL7dO/ZUgfS0FltDySi4Kggts+zTOEnbPLEQS5p5RmUyCbhjp5mIMm+YUjE2PQfv/eP4ftdle2szt8F3cssD5x4ZuEKYWsjIGitVQUfXkcdJrz6OAzA4Vrm4UkUy4seHEeVUi33IqDWUTQ4QifKE3+/bIhlHbrLs7ktvj0H02KbgllhI2iHbDUu1UU6UtazOk52Yu15Uy7GWiFpMxTA2P21xspEqCcOS4viQ1VOXEaWuCEJ1A6gSOcLvJNlFrSVQGrEF95n7blAcnVV+tyD70gW6lge1Gf5pTblsfbJho9JAiJX0pFCAg6/oC7yDd7XuMNRVfsz/AjwzM6nmBFMqxtZHMsUwRSiXCwbHkvL9ibKoLTmcyxwLiqRlst3+h251GWuETnMDA+SbiFQR7L7oNnRlqWbBhaUdRpbfzny/R+47xlFe1x9xqrwtu8OLPMc5vJdn9PE3Zixb75hSMTYVl//m53nwq3+0pu84JSHICa3qZXVYF63psOl+mRF10y01726qvukqObR7x55YQ01Wy3lRJgCoql4iH+B5nuL9/OLI9qGu8jL/yWu8emoP4vWObAW/344dO/Tw4cN9i2HMMbt27q0V7wTyimMtM9xVLS19EyIij6jqjnX+hpzB2eXPctGItfIf+jQgPKOPb9RU2LnGLBVjIZgkO2jX5XeMX1agtNptG8E1V7oSSJvFRdhmrSy6lQKmVAwjMs5dtWvn3hlJsjgEZbIZeZSDxRmcXaaxlUWOpQR6USoiciHwl8AKsAr8nqoe8ttuAj6GW4nh91V1Xx8yGkYTs1CmxzVX3jlSLWCzWCmBprViVoqjr/VUPgvcrqoXArf6/xGRC4CPAj8PfAj4cxGZRdUmwzBmyIFv31Iv1rrJFErgUQ4WIRMsWCmqurBWCvTn/lIgRLdOB17y7z8C3K2qx4DnReRZYCfw4OxFNAxjo9msyiQQrJVnOcKbvL7wVgr0Z6l8EviciLwA/Clwk//8p4AXkv1e9J8ZhmHMJY9ysFjlhFkpng2zVETkm8A7M5tuBn4F+ENV/ZqI/Abw18AHyddjzVduELkeuN7/e0xEjqxf6qlzFvDDvoVoYDJNhsk0OfMoV5dM753mgdTNy1jI9OEcvcxTEZFXgberqoqIAK+q6tt8kB5V/Yzfbx+wR1U73V8icni9eecbwTzKZTJNhsk0OfMo1zzKtCj05f56CfiAf3818D3//l7goyKyXUTOBc4HDvUgn2EYhnES9BWo/x3gz0RkCTiKd2Op6pMicg/wr7hU4xtUdcxC0IZhGMa80ItSUdX7gUtatt0F3LXGn/ziuoXaGOZRLpNpMkymyZlHueZRpoVgS9T+MgzDMOaDvmIqhmEYxhbElIphGIYxNTa9UhGRD4nI0yLyrIjc2KMc3xeR74rIYyJy2H92pogcEJHv+b9nbLAMXxKRV9I5O10yiMhNvt2eFpHdM5Rpj4j8l2+rx0Tk2hnL9B4R+WcReUpEnhSRP/Cf991WbXL11l4isiIih0TkcS/T7f7z3tqqQ6Ze7yvDo6qb9oVbk+854DxgG/A4cEFPsnwfOKvx2WeBG/37G4E/2WAZrgIuBo6MkwG4wLfXduBc346DGcm0B/hUZt9ZyXQOcLF//1bckq8XzEFbtcnVW3vhJvWd5t8vA/8CXNZnW3XI1Ot9ZS/32uyWyk7gWVX9d1U9DtyNqx82L3wE+LJ//2Xg1zbyYKp6EPifCWWIddZU9Xkg1FmbhUxtzEqml1X1Uf/+x8BTuHJAfbdVm1xtbLhc6njN/7vsX0qPbdUhUxszuX6GY7MrlXmqFabAfhF5xJeQAfhJVX0ZXIcBvKMHudpk6LvtPiEiT3j3WHCdzFwmEflp4CLcaHdu2qohF/TYXiIyEJHHgFeAA6rae1u1yARzcl8tMptdqUxcK2wGXKmqFwMfBm4Qkat6kmNS+my7vwB+BrgQeBn4fB8yichpwNeAT6rqj7p2zXw2S7l6bS9VHapbpuLdwE4ReX/H7n3KNBf31aKz2ZXKi8B7kv/fTVVGf6ao6kv+7yvA3+HM6x+IyDkA/u8rPYjWJkNvbaeqP/CdQgn8FZUrYmYyicgyruP+W1X9uv+497bKyTUP7eXl+D/gPtxaR723VVOmeWmnRWezK5WHgfNF5FwR2YZb4OveWQshIqeKyFvDe2AXcMTLcp3f7TrgH2YtW4cMvdVZC52R59dxbTUzmUREcJWxn1LVLySbem2rNrn6bC8ROVtE3u7fn4KrJv5v9NhWbTL1fV8Znr4zBdb7Aq7FZck8B9zckwzn4bJLHgeeDHIAPwF8C1cw81vAmRssx1dxZv8J3OjsY10y4JYheA54GvjwDGX6G+C7wBO4B/6cGcv0Szj3xxPAY/517Ry0VZtcvbUX8AvAd/yxjwC3jru3e5Sp1/vKXu5lZVoMwzCMqbHZ3V+GYRjGHGFKxTAMw5gaplQMwzCMqWFKxTAMw5gaplQMwzCMqWFKxTAMw5gaplQMwzCMqWFKxdhyiMilvqjgiq928OSYelWGYUwJm/xobElE5E5gBTgFeFFVP9OzSIaxEJhSMbYkvhbcw8BR4ApVHfYskmEsBOb+MrYqZwKn4VZQXOlZFsNYGMxSMbYkInIvbiXQc3GFBT/Rs0iGsRAs9S2AYUwbEfltYFVVvyIiA+ABEblaVf+pb9kMY6tjlophGIYxNSymYhiGYUwNUyqGYRjG1DClYhiGYUwNUyqGYRjG1DClYhiGYUwNUyqGYRjG1DClYhiGYUyN/we1+VW0l+gouAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACuEElEQVR4nOy9d6DkVnn3/3mORnPv7nrNYpoLNmuDDTFgmiEEQi/GEOAHCSGNOARCwkvoHUIgJBC6QwgJmJKX8EJoMQESwJhmaiimgynGNmCwQ7W97d4Z6Ty/P07RkUaamXt3btnr+dqzVyMdSUca6XzP00VVmWOOOeaYY45ZwGx0B+aYY4455tg6mJPKHHPMMcccM8OcVOaYY4455pgZ5qQyxxxzzDHHzDAnlTnmmGOOOWaGOanMMcccc8wxM8xJZY455phjjplhTipzrBoicomI3FNE/kREShHZKyJXichXROS3knbPEpGL/fZLReTtybaPi8gjpzyfiMjjROQbIrLPH+udInJzv/3/ioiKyAMa+/2DX/8nybrriMhbReQKEfmViLyl5Xz/V0QKETl6Qr/+REQ+1bHt4yKy5K/95yJytogcNc31zjHHoYg5qcwxK3xWVQ8DdgFvAN4hIkeIyBnAw4B7+u2nAh9Z5TleCTweeBxwBHAS8J/A/ZI23wXOCF9EpAc8BPh+41hnA5cDNwCuC7ws3SgiO4DfBq4E/nCV/Q34S3/tNwIOa55rjjm2EuakMsdMoaoWeCOwDTgBuC1wjqp+32+/XFXPWulxReRE4DHA76vqR1V1WVX3q+pbVPVFSdP3AXcUkWv67/cBvoYjkHCsewPHAk9V1StVdaiqX26c8reBK4Dnk5DUwUBVr8CR4C1ncbw55tiMmJPKHDOFlwweCewFvgf8D/DHIvJUETlVRLJVHvoewKWq+vkJ7ZaA9wK/57//MfBvjTa3B74DvElEfiEiXxCRuzTanAH8O/A24CYicutV9jtCRK4FPBi48GCPNcccmxVzUpljVri9iFyBkwh+H3iQlwL+H/BY4DTgPOCnIvKMVRz/WsBlU7b9NxyRXQO4C046SHF94N7Ax4AjgZcD7xGRawOIyHHA3YC3qur/4tR1ByOt/KOIXAn8HLg27n7MMceWxJxU5pgV/kdVd6nqtVX19qr64bDBq6juibO3/AXwfBE5bdzBROSb3ri9V0TuBPwCmMrAraqfAq4D/BXwX6p6oNHkAHCJqr7Bq77eBvwIuKPf/jDgAlX9iv/+FuAPRCQXkTsl/frmNP0BHqeq1wBOAa6JI7U55tiSmJPKHOsGP4C/E2fjuNmEtjdV1cP855M4aeH6InLqlKf7f8CTGVV94c8/Lj33HwMniMjlInI58AqchHG6qn4y6ddNp+wLAKr6deDvgFeLiKxk3znmOFQwJ5U51hTe3fZ+IrJTRIyInA7cFPhc0qwnIovJJ28eR1W/B/wz8O8iclcR6fu2v9ehTvtH4F7AJ1q2vRu4poicISKZiPwOcAzwaRH5DeCGwO1wBvVb4gjwrYxXgUnjGhY72r0J5232gI7tc8xxSGNOKnOsNa4CngX8EOdN9RLg0V5FFfAvOJVU+Pxrx7EeB/wT8Gp/rO8DD8J5fNWgqr9U1Y9oS8EgVf0lblB/Cs5l+BnAA1X15zjieI+qft17ql2uqpfj3Jl/S0SO6OjbHRrXcMA7LTTPPcAR3nM6jjPHHIc0ZF6ka4455phjjllhLqnMMcccc8wxM8xJZY455phjjplhTipzzDHHHHPMDHNSmWOOOeaYY2YY8U45FHHta19bd+/evdHdmGOV+O75F210FzjpNidsdBeuNtiI3zv9fc8///yfq+p1Znn8vzhjl971jtv4vUdddrWPP9oS3l+nnnqqfvGLX9zobsyxCtzLPOTgDyKm8dW912o7nm21nYc6177z4Pszx6rQ+Sykv++Y364Nbb+niJyvqtMG0U6EiJxyx9sufvXAkvKlry/nqlrM6tiHIraEpDLH1RyNgUZLvyAr1+6mA9ucYNYXzfsdf4sVEsl648H3O+yrT/zzXbzvQ/t4/KN2DYGrtbQyJ5U5ti4OcjCaE8zGouueT5Ju1/O3EpFT7n3X7dzhtts48fic+/7BTzjjsdK7Oksrc1KZY44pEAayOblsPMJvMBPV6UEiSCkA17l2j3veZfvVXlqZ21TmOKSw0QPJnFSmw32u+UgIOTON8MGfr7gu21RYjdQyK5uKl1K++oF/Pyau+9nPC07//Z/w5W9cfW0rc0lljkMKGzlLnRPKZNzn8Ic7MjEGTDVZv88Rf8YHf/m6mZ/vXPvOsc/CWqowUyklIEgrT/jzq6+0Mo9TmeOQxLn2nfEzTds5NgCp951Zm/F1oyRXETll7z7LHW67bWTbk/9iF//w2itoSyh6dcCcVOY45DGOXGZFKHNiWgFUwa69x1YboUiWdXr9zZKAHny/w776nCe1J6wO0sqbXnW94cxOeAhhS9hUDpcj9Pa9e/Oh4ds2uitzHAKYZnCZk8jqcZ9r/KlTf4lECWUtbCrp7yi93BGKEbCKliVatIzpYviwfcdB2VTabClNXJ1tK1dL8WyOqzfmhLHGWGdCQYwjlMz/VXXnVusCYNVG6UWMwMELUf/fw3//8LENrnPtHjc5sc+Xv7F8U+CrB33GQwhbQ/0lsqpAtznmmGO2uM8Rf1Z5fQGyBu9lU9IMGRQobTgpkmXuY9xyrd3BQxYXJh9rcVHgamisn0sqc8wxx2xhJJLJB372mjU9VSCPVBrBGGfTEYNkoGVZEcqMSK7UkuEErZbd5JkA1gobOr0XkV0i8i4R+baIXCAivyEiR4jIuSLyPf/3mpOOc9Ktj+dDg7euR5fnmGOOMVgLt+FOpATR6yH9HLJs1KVZTPWZESxg0bGfQ99avTpstM7olcAHVfUmwC2AC3D1wj+iqicCH/Hf55hjjkMEa2VDCZ8UzpaSIf0+0u9XRGKtM9gHmwpO/TUrFZhiJ/7H1ZRWNkz9JSKHA3cG/gRAVQfAQEQeCNzVN3sT8HHg6evfwznmmGO1mKXaq9NbT61TbQGUJdGT1br1tdxvatESPjR8GyIHr9UoUIYT1Ft2TirrjhOAnwH/KiK3AM4HHg9cT1UvA1DVy0TkuhvYxznmmGOFWKs8aW3Hu5d5iCOWsoxSSwi6jKUPxDgJpTe74c6ilBNI4+pJKRtLKj3g1sBjVfVzIvJKVqDqEpFHAY8COO6449amh3PMMcfUaEoUq02R0jzOuH1H0vaUZc12IsZ7hmZu3X0Of/jU/RgHZbIkcnUllY20qVwKXKqqn/Pf34Ujmf8VkaMA/N+ftu2sqmep6qmqeup1rjPTIm5zzDHHBqDNZjItasSjFtRWhGIqF+PU3flgUKoynPCxWyCwfDXYMFJR1cuBH4nIjf2qewDfAt4LnOHXnQG8ZwO6N8ccc6wAk8iga3uXAR4qd+HTdvzxVPt+aPi2SkpJPb1E0LLkg1e+kQ9e+cYprmYySq/+Gve5elLKxsepPBZ4i4j0gYuAh+OI7h0i8gjgh8DGF02YYw6P9198M0o1ZGLJsJQYSh2dm93/hK9tQO+2AHx0fEy54nHv/PdqnlxNtNlx7nONP43LsyKTAKtQTmCNOalsAFT1K0BbDp57rHNX5tgieP/FNwPgvsd/Y83OscMssyhDMpQSYUlzljRvJZc5JiBJn1JLBpkQig4GUx/uXuYhkVjkmtcA4AOXnDmjzlZwNpXJbSZBRI4F/g040h/yLFV9ZaPNA4G/9dsL4Amq+im/7RJgD1ACxSzqxBwsNlpSmWOOg0Igka71syaXHTJgp1lihxQYgaEKS1qwxyoDMoZk/Kw4nPdffLM1JbZDEU1p4l7ZQ4HEmN5CKFh168e573ZtHxZ84MevmknfmyhVGOp4+8yU8fQF8GRV/ZKI7ATOF5FzVfVbSZuPAO9VVRWRU4B3ADdJtt9NVX++kv6vJeakMschhfdcdEtyKaJUkPn3Okte4XINTIXnXXISuRTcoHeAnSZjUXIAlrRkWQsyDrCkPZY0h95VAJxz8cmcdvy3xh12a6Itcj0Z9AOZuKZSufyCI5RgTPeGbjGCWoMYC2TVviHwsddzrsR+n/tc40/54JVvXDNCASgRyglpvXSKtF8+fCKEUOwRkQuAY3D25dBmb7LLDja5Zm1OKnMcklgUl9a8LyUlQpa8ZwPNsAglpibJrFZy+OglNyYDdsiQo7Jt5EntpR4FGUO2mzJOTcP5r05oVmAcjVzPaEVKQCmhpOusy+EFWY2cZGGhWs57MeX9rO0nbbAwBakA8GAReX2y+ixVbU05ICK7gVsBn2vZ9iDg74HrAvdrnOZDIqLAa7uOvZ6YK4HnOGTw9gtvy05zgF1mP4ebJRZlGD+5FORSYLD0pSSXsia9rBbnXXISANvNgGuYokYoAcYPLkbcMJJJdd5zL/61g+7DoYg08HBSzq1K/SX+e/DgkiqFfviEAMcsg7wHec+RiG8n+frMk0sMQx3/sU49dnYIffCfLkI5DPgPnL3kquZ2VX23T2f1/+HsKwF3VNVbA6cDjxGRO8/6WleKuaQyxyGDI7K93CTfw4IfpJZ1mSUNxnL3EpciDDWL0kuJUKphSMY5F58cjzWNWipIKMf29nCEMVzD7BhpE5IHBhhRUDDJuo9ecmPuvvs7B3HlhwaitBKliUQ66SCWNJbEfTe1v/XGEmu1hHT2tW0zikGZBkESHt9mOohIjiOUt6jq2ePaquonROSGInJtVf25qv7Er/+piLwbuB3wiSlPvSaYk8oc6443fe8O5FICzpPqgSd8ZeI+X/3hsewwOdc0C+ROF8Jeu0wuliV1OWNTlYTBUKoFDIgNs8aIcy4+mRIzohJ7z0W35AgTVNgZO80SRxjDYdLHNAaRoRYMtWToh49wjgwFsdH1GJzEc5fd353yDm09pOowtVpPRd8gFPelgyCS4l9OejGcftRj1qLLY2FVRp6pUUwmORER4A3ABar6io42NwK+7w31twb6wC9EZAdgvC1mB3Bv4PkruY61wJxU5lh3GFyMx6JxdpFzL/417nX8BZ3tP/eD41kUuHE+YEG2x/WHm20MtWCBgkUpGaoyUBsllMzYKLUAlGqirSPMMoOX1ju/fxuule0FtgFwrewAO41lp/Q43GyniaEWHNAhS1oyRFny57FaGXADoQR7zycvuRF32n3hwdy6TY80TuRe2UOdcb0hpYwQyjQShqk8wyStm7JBWIFNZRLuCDwM+LqIfMWvexZwHICqvgb4beCPRWQIHAAe6gnmesC7HS/RA96qqh9c4aXMHHNSmWPd0ZeSRePtIJRT7bPTFK3qp2DjsKoYUUdY4tJkRKiTbLqM504t5sjkyOxKdpoBRxhlu+QstNhQhlpQUEZCGSqeTEznQGO8NPOZH5zAHW5w0VTXfMhDbfTacn+Te3OwtU2MOO+wQEieYNbS4ytFqRlDHT982ilM1j7eZCw7qeqLgRe3rL8IVzJkU2FuqJ9j3fHQG32BRRnUDO3BIN7E1390fY7IljkqWxxRPwXk0mNBeuQYFiVjUQyLIuSi5GIxotEF2Q38o8c5MruSI7O9XC9b4gij7DQ5201/xDC/rEOWtagRytBLJ5PUIUFy+cwPTph4j7YiovG+c3uHFaIhkajamIk4wtp1IxQINpXxn6tn3cc5qcyxQdguA3aZAyyagkXjvLY+ecmNam2+9EOXffqGvcNY8HEh47AgPQyCQVgQg1WnelqUgmtl+9guA3bIgAxLTslOWeLE/JfcvH8FJ/eXuEGvx/WyRa5pFtkmC5HELNaru5bZqwOu1CFX2pI91rBPM/ZpL6rZwuy11Hr6llQVlm3uMIPZQm0tvUokllqtE40xKZ3EAk4q6SKmbds4/YSnzKLHU8F6B5BxH51oc9mamJPKHBuCO+2+kAxllxmwKFWt7zd/7/a8+Xu3j7P5I7PpBuBcMjIxZCLkyWOdofR9jq6AnWaJ62Z7ObK33xvhe2yXnB4ZBiETE6v3BWN8kE6W1LLko6mD62hQe0VpqCNdS0omX/jh7kiaWxUzqaeSuhdDPdo+bE8kmfUilgLnUTjuc3WLVQqY21Tm2DAYURZFySmxZpnvD69d235kVnAtc9h0x/KksSA5JZYc5drZkKE6r7DtLJNlA9/GkGPIPJEEFJSUPmV5mbgKL6mlVBgi7Lc9L5FkkUhsYktJnQEAUOd9FuSsGMtyNVWORBfikQ0tHmAdhCJNA7/xaVpmWIN+Eqy2JxJNMU1E/VbEnFTm2BB84Ye7OdyrhBZFWPYBi7uy/fSlYJdZ5shsOkJJYTAYL2ksYskx9TgShFyyGLAIIdbEsqSlq+inytDvE8gk2E2WtFeLfQkIA8xo/IL1xFKtSQlly7sadw30NaN9S9DjJEJp7LveUGSiIf7qSipz9dcKYS9vNyjPMT0+esmN4/KiV1ktiHJM7wqO9Hmzjs4O7tE0GHpkLHgjfvg0CaWgUm3t15J91rJHYb8V9ljDfjXstxn7NGe/zWNG4iEZQ60+FqkRStStY6L+vYk9dvGgrvGQQlrnJEgZ/iPGOEJpBjAmhCJi6oTSRjwep5/4tDW+GCjUMNBs7GdyHMvWxFxSmYA2EgnrzJFbeIY5I9z6L84EcZP1L7/6ibVtbsYfUptUsSPXyfZymFkYOdZKkYkLgDSNGWOQXIJ0MlTLkir71UQvroGXQkLcSZBMht49uauOSnUOv00BwavIbC3SfqdZOuhr3Ow4t3w7APfu/4FbYVqi4WHENTgNcqziUhLSSUjJfa+rxE4/6elx+QPfedFsLwr3e9q5+qsVc1IZg0lSib38pDmxjMGt//zMqPZJ0mGRoQzVsEf77FPlcBmw0wjHZoOoGFpWYUHyTjficbBYSrXRRlKtd7aSoVqGKKXCHh9vsKQ99tmFKG2khGExlFpJIW2DiZF2G0kWbC0iGDXO+ytmVr76eIFJP8fsdOpMHbqg11ZPrjYicSuqv225weKJGu2B02/8DGC25DJNmparz69bx5xUOjBXc80I6j5fem0lpQT1QECWWRZ0yKIIBhetvF8LhomUkUmVfiVFtT2kZYFlLbBoTJ8SiMVFQav33nKeW1fZBYZkTq1lc6eu0tFYlnJSDAqm3fgu7eRxdSKU06//OMxhVeBqlFREXcxJgrFkAjH3V1xnpP43bbuGsCoTn4m5pLLF8Prv3ikuP/KkT25gT66euM2fnYkIhPfu1n9+ZiSWJa1iThZlSIlhWYVMKuP4QDWJ7RCfpLEiF0gIBcGoJN5aVWAiVOk0rDq11T7NPan0uMouertIL1ZvXIkraKXOKii9yixr8fAq1cR8Z1sR97nFc9yCJ/APfu3vADh9t59MNFVeqpAJ0jUwN20rTekEEttMYo/pIpSRVPwHh9I/P+Mwt6lsIaSEMsf64zZ/VpVvFa2IJSDUb3/fRacAsGR7ZMaCreJVSk8kUM3qjUDWmNk6oqm+l+pUZyWGpcT+Ae4lH2hWGds1Y59dYOiDF52b8HiVRkoURrT2Paa8D30UE9OzpOnwq+vZGtJKJJR03c2fzQe//gL3xZhINjVMCnQMaBJKza6ygvxhM0RwzBiHuaSyQRCRDPgi8GNV/S0ROQJ4O7AbuAT4XVX91bTHSwllljXDg+1krhZrx23/9BUVeUyYFQYyCbAY76pb/73CTC8O3j5CPiZsbBmcrVZuv0EiCtJHsJXstwsMvHSy3/YZahV70oZUVZXaTlxETOqaLE5yiTaTumSS+ZQxzT4fijjtVs9F2ogCIoHc5+bPRkQc64e2ViuSybJkfYNg2jIWN20oTUJpEEuwoQSbyixhJzhqwNymspF4PHABcLj//gzgI6r6IhF5hv/+9GkO9Nrv3CXOWsMPfuttP+ALP9wNwG2Pu2TqTnUZ4OeG+ckQVVQkej6Jwkuf9Ro+eslr/MDtHrswex/EFCfVa5gmZsxaBq8RYsFGj6sl7TGIqVMq43rpDe777UJUee23/Yp0WgaJVMIIqi5HDharBiOWXEq3TXEeCUnK+3gcn54lw3qSPDSHnNNu9dzRlSLtkgjU1V7WlQSgtKP7tHmEpccPf2tBjzIqvXjC+cAFfx93XwvvL6f+GtNn2h06rg7YUFIRkevjSmO+AHiSX/1A4K5++U3Ax5mCVF77nbsAFZm0qTGuVhli1xG3/VNXBiJMvlUaxJIgtSs4FZWTJtIXMPW0SrcFUgjk0SSBIDUEg3v60g81i1HQy7ZSdxU2qMjqJBVgEuki81mQg+SUGxewOZSMRSkwYsnUp/RXw6K4ZB2hKqWrRunSxhyKiIQSvKVt3e4RJZdAGKVC39vPSgtGY4YBf4A6sYxLOBlrqGTJshklmHXCoeb9JSIPxmU6vi5OlhZAVfXwsTuuAhstqfwD8DRgZ7Lueqp6GYCqXiYi1532YM5zRzCiI0ayoR+AzrvkJO7UiDmbSx8zQHiDOt7ru+/+DuddcpLP4FqpDtK4jyZ5QKVmCJJEW3v3PRjjXZum9DH0wWgWw3Lp1F2FrfIzlYmjAFRSSY1U0Pg9F1+T3oBRQ56VUUIp1WA8eWaegIKkUqm/Vneb1xun3aYhmZiOZQsqUv/5jTq7gvXpWWJByGBjyRyRBBtUqiZrQ5eXV7JO14lYXJGuQypO5SXA/VW1u3DRjLBhpCIivwX8VFXPF5G7rmL/RwGPAjjuuOOAHWRYlnUhGkeh7oExyVtjjlUiIRQV912j3rveNPWaKTXJ6ptIFk3yiFKGt3sEiaMihMoQHyYWNiUmPwCEwMZl28NqaJd6k9XtHcarsnI/s7biXJwzda5oRhQs5KZ0A4xYDCbWiDFiMTj1WC5lVHuZDjfjzYaxhNKE9wXXILHUVFLeWyP4i48cM6ukFKGewThFmvKlZluRdSOTgFKzyeqvzUUq/7sehAIbK6ncEXiAiNwXWAQOF5H/B/yviBzlpZSjgJ+27ayqZwFnAZx66qn6y3JHpVrxum6gFg8xxxpCOpYVzn+dcysNnlfhN7E+1UVTGukikqFmDG02FXGE40NIUy6RSAo1cTmFEfVE4pfDdj+WZQg9Snd9NnOSjYBR5zwQhrxMLJlY+lLSlyKxp1Sf5LCbEiOEkiIM4E2pokkaid0kSjGhTdOmUpN6xtyZFg+wSCjreEOnq/y4qUjliyLyduA/geWwUlXPnvWJNuy5VtVnqur1VXU38HvAR1X1j4D3Amf4ZmcA75l0rMsOuBKtQ81YtnnUlwN8aWk3d9p9IRYzEnQ3x2yhQVMbIBWhAIkrb48lm0cPrPB77bML7LcL7Lf96lMusLdYZE+5yP6yz95ygX3FAnvLBa4aLrKvWGBPschVxSJ7yz77ioXqU/bdp+izv1hgf9Fnf9lnqcxZKnsMbBY/hRr3sVn18URX2CAdVcQ0bkAxqJdQCi+lFORio5RiqL94P/nx0bP+KWaPtjiQjrgQbWtj/PogYTSN7OnHND4wuo9fHiEUv73NzXmWCGlaxn3GafI2AIcD+3F17O/vP7+1FifajPqgFwHvEJFHAD8EHjLNTkPbq6lDMrEsk/Psm/4XQMwE25XLq2lXabab21268YV/fVI01qeqr/PPqgjlPRfdkiW7EONDAoKXVrSF4AbuJZtHdZZTV0k0rA8TSSP85qmOO0oqtW2pBFPtZ7ydw6rQM9a5BYv35PLT6spGZ7CiXhJuD2TMqKSUHP/xhJKLjsTVhDQul//4aI485ier/QlmihEpZZJqaZz3VwrjjPsCrn1qZwlISwSn7Vo8wNSTVa2PY/r6nK8/aHIfp4SLqD90bCqq+vD1OtemIBVV/TjOywtV/QVwjxXtD7WBqgT++mbvXVEfArGMi0OZJ5Icj+j9RV1CCVjSnD3lYs1rpqbaCgZ2FZY195KBs4EUmlGqMPAE004q1XJASjBt23vGOucO6s4dtdiXEH8St43q/FNDfJBOnPqrZFGKEULJkgFnM6vBVouo7kpJwtuiIrFAdfFdDnFNkpiGUPzf+9zyrwH44Feez9O++hAWZnijp3Ip3kSk4j1tX4UzOyjwKeDxqnrprM+1KUjlYHH0thvxtzd/91RtxxHHNIQyRze+8MYndW5bsjm/LA5jT7lIblzkfM1Ty0siwU6ynJCHIxXXJpAKQGHrdpFaIGKDWLpSZsT1QvQcHIcYq+JVXEEycfEqBf3EfTiXgkUp6Hsn6EwqMtlyRBKklTF2lREbSyCcKLXoeKnICBqCIg3t0smY/Yeazaw4WjpJ6cTmStPyr8BbqTQ/f+TX3avZUESumnAsAS5T1dZBcUuQyhwbj3GE8s7v34afFdfg58PDWNacBTuM21IiKWzW6qE1SEglJRKLcMXSNg5fWGp9wdsklhRBrTUNkQQjviMPS8/HqIRYlfTjpJOhl1AsRqAvUiOSrGXw+9lPjuE6R/94bF/WGqfd6rmrZ7xxxAKV1GI8sdiEWKD7vKm78JRk0vQGs05EwjIbm+o0cSqbSVIBrqOq/5p8/78i8oSOtt9X1VuNO5iIfLlr25xU5lgXXDbYxS+GO7Bq2JY11V/ipZbKVhI8tJzx3H3aVFiH9Zc7JZF0nTa2SwehOPJISUTpmdIHPupEQsmlZFEGzqYillyUHHWuyC1EYqgSYW4a+PibsejyAAswCWmk+9Skk3oAZfPu1IihYYiv9aHZtgUvu8Xb4/JLZzDYl2ooJqi/NpNNBfi5iPwR8O/+++8Dv+ho+9tTHK+zzdWOVOZqrPXBZ35wAj8aXoufFTu5Xj65/RxzHEqYKvX95por/CnwT0DI9vppv24Eqjox7ci4Nlc7UjlYzI30k/G+i07hWskk7psHrs9Plq/BwPacQTyZwQ1tiHSXKLFUkopTd4XlcbaRSRDRKK1IktQxfqgv90wZ1+Ve7RWklnbpZMiiGbIog/i97yPp++KklGYFyoB0/eXevXizeIKN2Ci6vrfYTaCSIGpG+5rKK2nbNbNvJpRsHHsczvny30xssxroFDaVzcQpqvpD4AHTtBWRm+DIxwKPA54D/H/Ad4EzJgVRXu1Ipc1QP89APBucc/HJ7LML5ALfXj6ar+47FoCfLu9kf9F3g7JYisQVM02VUtjKJTglksKaEfVVFyRRZzWzFzfJJC578ugZGwml12I/MaIsmCISyYIZVqTiCcX9DeuVXEJcSnv/M4TSDz97bMmiHyiv+Mmx7Dr6R1Nd86zQmiwyYBq3YhhRb7XaVgKa7sNd52sjkinsPuecvzaEAk6deiilaRGRE4BXArfH8d1ngSd2SBxnAS8FDgM+isu9+HBcXMs/McE792pHKk2kksc4wpljenx+3w25qljkh/uP4IrlRVSFzFh6xtI3Jb0kmj0SCXVJJCWSouXljaSQzAdT0kj/ti2H7z0vgQTCM2LpiUsW2WsQiRFlMSUSL50EO0oglEUpWJSS3Ht7BVtKNoZYAHaabGy7dccUsR+t+zSJhQ7bSdMzrIFWm8qk/vjjrSWhABS+eug4bLIiXW8FXg08yH//PZx95ddb2u5U1fcBiMjfqurb/Pr3icjEG3u1JJVxRDEnkdXh7O/fikz6fGf5KL5x1dEMyowrB4ssD11Q6mKvcDmyMsH4PE9tsSWaqMLC9yZSI3uIIemSQgJqy4mqK0gnRpS+KZy6y5T0EyLZbgYx/qQilYLtZuDchs0wIZRhNNBnCLlXe01DFJuGTGBVxnCg7s2VIqi5bEvEfa3dmL60tR/Xdg2hag4pSQUQVX1z8v3/ichfdrRNPRBe0djWn3SiqyWpzDE73OgdrmzsS24D31k6iq9ddX0u2+uyaQ/KjNIKIlBa48iglJpdpTmbS0mkyw249p1R4khtI53bapKKk06cmsv9rau5CnLjcnhtN8tx/Q6zHGNSdsggxqUsio0eX4FQ2tRf47y+utRl64LUbZcxZNISuBhtKM2gxxYbSg0rcA/uQmfRsDWAZdO5DLfCFz0E+JivT/U2nPrrocB/d+z2ahE5TFX3quo/J8e6EfDhSeeck8ocq8bJ//k8wiP0tQPH8Z291+PiK6/FvuU+xlhUBfW2jNIKkNVsHitFF6FIzQ3YqbHARcuH/VJ1WeouHI3xXt3VRipt0klfSrabZR/sWCZ2FJ/mXlwsyjjpYz3diX/zwS+Ly586+yldHXJI40Ka28btF9CQRmp3oJnSpYu8msfsIpbUKcC7MJ/zhTG2oRmh9MlNx2GTqL/Oh1AuD4A/T7Yp8LfNHVT1tW0HUtULgSdMOuGcVOY4KIR3/YI9R/HDPbu46sCC32L8dqeasqGuRmNwaBJFk3TS7dIgh/R7z1QkEZdrXl0JwSTrUs+uBVOQidKrEUkZpZNMrF9fxADHfhI5b8QV4Aq2lCBttMWolKpx26aKU/EeVp0G8UlSQ2JHiatsY58pbCWt0slIIIvbJ0ooGZzz2b8e378Zwepk0phG/SUixwL/BhyJE4DOUtVXNto8EDf4W6AAnqCqn/Lb7oMzwGfA61W1VuZSVY8XEQP8hqp+erqra+3nl1T11tO03XLZIuaYY6tg32U3WJPjplLLHKuD4m1/Yz5TThUK4Mmq+ms4z6zHiMjJjTYfAW6hqrfExZa8HkBEMpzx/XTgZOD3W/ZFVS1wsD/61GLXXFKZY9U4fNsybFvmlGv9hK//8iiuOrBIaQ29zEaJI5U8LILRVPIgWa4b19tcg9sM8m1xJn1Ttqq4grQSpJN0uekunKq8Uqkl2lGoJJUQyxIyEWe+tso41VcmEqWVJlLJ5sBlx7PtqIsn/xgJ7vC7L3f3MBxe1d3rSaNcl9F8BTaO1i1tdpQuqUTa23SeLClbfe5n/mp8+xmi9GUSxmEaN3hf5TZUut0jIhcAxwDfStrsTXbZQfVL3g64MLgFi8jbcOXYv8UoPiQivw2crboq41OX/WUEc1KZY1V45Bf/hGN2bmd7NgBg79IC1jqPrF5W1jUcDfffqFmRugqrqd5qrgv7tBFJ6sUVAhd7pirpa5qlgP2xqoqMNhrkUxtJJrZmRwnBjTkli6bwNeiDt5fGWimBFKYxuHepwMwaKBJEGR/q3VR7tdlXYtvRVa0qn3HkIKNtdEXuw4KUuoJ59GygUwTi+nvxYBF5fbL6LF9gcAQishu4FfC5lm0PAv4eV2P+fn71MUAazHQp7S7CAE/CEVIhIksESp6iRr2IHA68Ihj9VfWX49rPSWWOFeHGf+uyPNzpdDg8P0BhM36w75quHklmMca6v41BUmRUCklJpWkjaQtQbK5vI5JgdE9JJK0tH2wmGRXBhCzDiz7DsBH1pOKJxNtRMizbZUDmbTF9ymhHCYSSrWBwGyetpFi+7AQWjrpoZqUXROEu93sJ5/3301q3RwJpEkrz2loH/CkmwRMIpDZWjyWVcAzhIx9/1uTzzhDTeH/57p2tqhMNPSJyGPAfOHvJSJZgVX038G4RuTPOvnJP2qm09QdQ1Z2T+tDSpz8Hng8cwNfr9Mc/Ydx+c1KZY1X45AduwUl3vYg9gwWuWNrGQl6QiUUEMjOaXrxLGsm8UR0Sb61EAgn7pi7Abt2o91YgkqDSyo2rEQ9UEolYvxzUVWHZRjWX8cuZry+/KEO3XyKdZFQqr1DNMaS2T1OyWO9avFrM3LVYFSnaB/5zvvg8Trutj21LCWXMID8aqjFlfycRSPBGHqdqUzYsF8pUaVqm7JuI5DhCecuk8r6q+gkRuaGIXBsnmRybbL4+0JnfR0SuCZyIK98ejzfmdE8BbqqqP598FRXmpLLOOO28J4x4PAV84M6vbF0/xxzT4g4PffnUbe922ov52DlPX8PebF2UPnP2OExjUxHnDvkG4AJVbQYahjY3wqWjVxG5NS4A8RfAFcCJInI88GNclPwfdBzjkcDjccTzFZxTwGeBu4/p3vdxJYhXhDmpzLEi3On0r/KjfbtYzAp+sbSd/QMXYLu9PxgJOEwxjYF9kkQC1OwkvTbbSKLeyn1bg8bgReMllaD+CnEmBhvdgzPRaIwPEkowyAeVV2WUd2qvfrShtKNU7XQrdvtJp1STiamlD2orf90GFT+bj6lTqtm9Kd2573H3vwfgIx99Zsv+iZQSJItJEe9T9GlkvzapxLSsax7L7/ixD60/MSqzcSnGVWJ8GPB1EfmKX/cs4DgAVX0NLs38H4vIEKeKeqg3thc+Kv4cnEvxG1X1mx3neTxwW+B/VPVuPmnk30zo2zOBz4jI54DleF2qjxu305xU1hnn3OUfOP0Tj4/f0+jy+33icfz3nf9xo7o2Ec/+2oM5UF4LgKsGC5TWsNAryLOSbT1XeKtLCmvaRNriSJrfs1rAYt0+AkT1VjC0N9VbjjzcMYKtJKi0MrE1NVcgElcyTKPKy+1rW1VeuQ9ydH10GJeNOJDItLaU6t6t0GDf4umlRvj0O5/MXe7/Ukco2h6BrpmMlvZtEsqIN9g0fWr38ErjYdq8wEaO3cyKvEEILsXj20xxHBdvMvZAqvpi4MUd294PvH+KUy2p6pKIICILqvptEbnxhH1ei0so+XW6Cz6PYMNIpSvox3sYvB3YDVwC/K6q/mqj+rke6Jrdbxa86Xt38EtHuqzCPlJ+ez6gn7mMvv2sbN03JRP3d1TyyKJ0UsZ2qYeW896yLesdATTtJMFGUpGHRgnEHaOI2/tSVMcgSEE2Eolr7/42pZO0PLDbr31saEog41yJp8VEacUTiwp85h1PjqvPe99Tufu9XHycDC3pHODet39+6Eh1DJHVG9Mbq9sCKptOAPG4beepHVOQ2VQGXhVKKzNRf60jLhWRXcB/AueKyK8YY3/xKFS1u6RrBzZSUglBP18SkZ3A+SJyLvAnwEdU9UU+V80zcKmX59hgLJjCeUllBT1jOaw3SNLEt7jEhsG45r1VtW16ZbVJHUAc9MP+FXGksSdlrBcfiKdScznVljuWHSGSVCJx/apGq5h2JZFO3DWFqHn89+ldiFM0XYnbc4TZ1bkXd3XFgtjJExmx6iSXuKIx0HfFl9CitpqSSKrldN/EWyyVcjL4xHufOuky1gTT1PbZTFNFVX2QX3yeiHwMuAbwwQm7fUxEHgW8j7r6a6xL8YZF1KvqZar6Jb+8BwhBPw8E3uSbvQlXHOZqg/t9Yqy6ct3xzu/fZqO7MMcMcfd7vKh1/T3v/IJ17smhjeD9Ne6zGSo/ishtReT0dJ2qnucXbz5h9z/A21VwOcTOB7446ZybwqbSCPq5no8yRVUvE5HrbmTf1gKzVnc98ot/MrLu9af+34M65nsuuqVfclHDSzZn0QzZ0XMGeavCzt6yU18lUkiKKJFE20iVf6tNGslN4c9YSSLpccM+YTlVfxlvFwmSSVBvufM3VFsNNVc8XkNVB7Df5uwyyxghJop07aUW5OiuoXvmuhb5vdpUYJ95+5MneoCN2FL8dzUmbu9yJa5JKW22ERjN/dUlmfjjjEgnRhpt0mPV973j77yMT7+rI0HmGkJ1GvXWplB/vRSn/WniW7hiXJ3eX6p6/GpOuOGk0gz6aSYcHLPfo4BHARx33HFr18EZ4/6ffCzNh62pOrr/Jx/L++70qqmO10YoYf1qieWci08mlE0Ig3MphgUz5Nr9vRwoXdH5bdmwPtA3SYX6epPYJprLbYQRjpEeNxBTSiDAiHoLKvuLs4FUx8yovMz6VDaasC3FTjOIhBJVXYnaK8WI7SRcf5fhPjlXs82souk/8/Ynj65sy5pSNoJVVfnQZ54DjJdixtpJoJNI4ro2Iumwr9TXTekgsEYo1bQWj0uxSVLjX0tVL2muVNULReRaa3HCDSWVjqCf/xWRo7yUchTw07Z9faqDswBOPfXUTSBorg5d3lIbjVwKSjUYgZKCUoQjsr0M84xhL8OqIxkYHYhTiSW1T0wijSBtpPu1HSuVfLJUivHHSj2+Qv/S+xyPk6xvXkO6rkko4DxLDHWPLre+7iYMdfLoQom2EMvqBqVWIkkRvMOaaeg9RuwhHRO9FXlujUg6/m+DTCbZV1rtORuEiZLK5ni1t43ZtmMtTrhhNpUxQT/vBc7wy2cA71nvvq0VHviprkJro3ASzXh0SSnTbm/i3It/jXMv/rUV7TPHxsJeftJICewudNlTunDPu7yQe97lhavp1pbHJHuK1amzFK81PiwiL5CGCsiXBf7oWpxwIyWVrqCfFwHvEJFHAD8EHrIx3ZsNHvTpxwCbpmDPVDAoxntFlRj6lPSzkgee8BVe/907AU78T6UNGFV/VcdLpA2vtoK6rSRsa7ZvHrcm+SRSTlBxhfZ1KSTdv56cMl03KnHVryOTukQRjppKLFXb6eukNCWSLtfkcVhxXrAgrYCTCnqCFNV9Sr2+Wh/dKGmMpnLpVFsl0klznVvuUIG1qb/SPmwArBrKQ8Ol+Mm4VPkXJuPsLXAG90e27eCj9jsRHKy6sGGkMiHo5x7r2ZeNQLsLrtbIZ1ww5MO/8PAVJS+cBvc6/gLOu+QkSoQMpQyp6pPzhIy9QKzRHWwi45BJqhZKB/92O0z7MSoCaR6ntj4hrjYSqR2z43yBUFLVV6kVsaQoGbWJWNWaGiAlirbo+pHz++NlYlZkX5mGXFLD+Uc+9kwnjXTVlm+iacCvHTdpQ0PVZVrW0SCTFiIZab9ZKkDphsdfTgVV3Yers3ICcFO/+pshXX4Hxnl6KONTu2y8of7qgEAU4W9zcGumdm/ut94I3lFgQGytH7kUHG4OYFCW1Bns28ihiZQsmhJN18DefpxuInHf29dPOk+dfLrbl12HaLWN+d+bUUkmEEskD18p0q1zI2cmsx1BP/qRZ7RvaPRNGzXqxyFIKSOSBnSSyYjdpItMmkTSMM5vpDlyuizFm0JSAcCTyDgiSdve7WDONSeVQxAP/8LD1+S4n7zkRmygmW2OGWJaddjcZrI6TKf+WqfOrBG8I9WjgTv7VR8HXquqw3H7zUllDfD7//MorBpvsMvGShzjvL96LSnkV0Ioq3EpDh5VpRovFRiQKgXLks053Bxgh1kmUxttK9NIG01bCXTbYcpEz9El2XR5dKXbJvWry46Srp8mG4hVGuquyv4SPMWqbQ0bSlR1zX5mO1XySe8FNrVqSYlSRBXTIiN2k6bU0iahdEothroEE/qZfFfgc29ecRaRmUCnUH8d4pwC8C9ADvyz//4wv67VFhMwJ5UZ4g8/92d+aXRwsCqrch9+4Kf+kvf85j+1bis1DEYal8N3gL84/2EAvOY2b57qXP2EPPDEkuK8S07iYSd+18exwKIMKaOqZrpETFOrusaoyMaRSbo9XTcV6U0xppcdKo0MbRju2wt2NdO5BLVX7APGq8FmJzFOJbWk7sUNchNtN9aLKmrFG+sZVXeNUWu1uQ5rqM7bsX1k20ZimuDHTdFRBxG5Pc6Wssd/3wmcrKojVSYT3FZVb5F8/6iIfHXSuea6jhmhIpQ6Zh2H4iSg+s9WNh7eUiWmhYeKXCahmX4evOTic18FnHb8t9hnF1z1Q5+0MbTp+uSxeNZoqvvmOYGR/dP+ue22VToJmYxTj66V2GwCSqT1M037Jr2GyPuUUDL/MYmUEghlrTDR9dhLHFNBvT0lTT7ppZMgZbjlSopJ17tElVKty/xf09guyXqTHCMsbxDUJ1Ud+9m47rXhX4C01v0+v24cShG5Yfjijf3tmWMTzCWVNYJLlAjvvP2/cP9PPrbT22u1sGpG0qIcLMIgXWLcQJyowe60+8Ja26FP32JEO+X8lV7ftO0P1rOrC2mOxS6ppSsPY9q+GXnfTIcf1F0poYztV3DBXuc54IfPcyV6a3aXFmlGE0IZF8DY5jY8ouZqNd6PLsfvGwSrQmknGOo3F6uIr8ECgKpaEZk0/j8Vl1TyItydvwEwUf8+l1TWGCsJeFzLY8wxB9Slla1gpD/1ka3FEtccIffXuM8myf0VcJGIPE5Ecv95PBO8wVT1I7jyw4/znxur6scmnWguqawBjChv+fXXAdMTQjNGZRo01WBd28869U0rOm6GBTG+WFXBPtsfaXPf47/BF364O7ZdL/fnSa7LKUK8zWowRWb4VkS1m1Rqr2pbajupSylNKaTUNGDUbVt1CvwGpjHeByklLN/jro6APvLxZ9XahdosATX7iWlZl6izgG4JZkTCobb/xkOmsKmsT0+mxF8A/wj8Fa5nH8HnTuyCiGTAabjaVj3gHiJCV9njgDmpzAiBRJpoG2wPRu31ptu9gYd97pETjzOJcNoQBsSm7WCHGXD6iU+L8vwHLnypbx+8viyWjCa64nLWGimZhGtJyWWcbaQNk4ip6THWLN7VtJOMq5nSVl8lEEwmJqrC3La1UTSkhBLQJJMUoqBWEVPZEXScGixVeXUa9tuJpZnx+Pyznrji65sFpqunsinYDwBV/Smuhv1K8D5giUOl8uPVAU5KaQwoHQNs1wM6njhkbLuVZEn90g+Pq9HCNBJBSIUSHAW6JINmP9eCbJrHbJLJSokkxTiJp0ko0wzzaTbjNLq+TRKpt7Uz9QpTOfgAwo+e+wzudtqL3dw3EEsgiDYyCctd0kmbLSWtV98gm1s+9kwAvvKqdSYXZbIksgkkFRF5mqq+REReRUuPJtSbv76qnrLSc85JZY3gjPP1dbMyXFtkJJ1Jk5RsHIgOfrb07HskExypE4RzpVWWwvlaBu9azEfSn9UQqXMiCA4Fo4N9k8AOhkya0s2k3GBdCMSQpsK3kYSklunYtpL57L3C7OUn8ZGP11Vg97zLC1ullGkQ/TUUL9GuziDfpgJLpZOKsMAms6BbPO5MvvqP60ssk9Rfm4BTwBU/hCmKa7XgAyJyb1X90Ep2mpPKIYIHffoxcbBdzCpi6ZJGDpQ5fV/0ahrc+rgf8tUfHgsQ836NYJXBeeMG9kmSTYpKCqkTS9dxV2rnaZJZk0gm2WjaZIggidQkjlpSyrrUEvvfuNeRmGYorTRdjD/0dnA5XVeGj53zdO56nxcjSJzBx0tJCGV88GO3HWVEeknbUl9eL0wT/LgZoKrv83/ftIrd/wd4t4gYYIi7+6qqh4/bae79tYZYK+P1W379dVgVihi1X/9U53cxLcEGsxKE+I5bH/fDkW2f+cEJ/vjCUA0DMko1U39SdMWDtMWGpNdXYsZ+BmQrOnZ6/PQerkTSSWWM0gdDWhxZlKoM1WK9ZFcmH9v4kOxTP37YZv332bqUHww+/sGn8/EPPI3z3vdUUK9WkzS+RJJPGo9Sj0FpbZ8Sk2khF/855YlncsoTz1yX61VrJn42WfDjSSJyloh8SEQ+Gj4Tdns58BvAdlU9XFV3TiIU2EKSyk2fXj1M33zxxhjvJmG1UfVQn0U/5DOPpjdmOhDOc7CkdovjfjSy7jkffhfgiGUx2AJUsMn8JKRjsY05S1jfJJaAzpQtDQlhki2p2m/0PE1bUUoaXVJI0/Aflq22q8DSbMbNNC2p5AKMqMVgtIJka59mbF+ZJT7x3qdypwe9jDSdy1QSSVwnrdJJvU39nOsdCBm1fBPabCK8E3gNLg3+xABGj+8B30jjW6bBliGVzYT7feJxY4LnugeL5gAZyKHVCD/xLbIg41PJT9MHgA987yWAI5JACJlYhuqlATWNGb1r05zll2TdBm9G08IEuLouHfdtystLVWe1YyckUyeM+gSgi1iaqCpCNtPku/6HjMVppcguAlmLXGAbApGakR66bCgtthPa2jEipVTnglOedCZfe8UaTywPEUN9gkJVJ0XQN3EZ8HER+QCwHFZeLVyKv3np/3LCRneigdV4OK1kn0nk5EjHYhH+/fZnTXX+IJl8/UfXH9kWVF4h2WSpJkbcW0yNbFICaCaG7PQQw9CWcHISJjkGxOOvQkocRyxVG3zJ5dXHxGxFfPLdT+EOv+vKcqSEEL83iKBz+yTJJkXL+ps9tdJgfOOlT6xpNA4KKi7v2dg2sznVjPA+Efk/wLupE8Qvx+xzsf/0/WcqbAlSaeKmTz9z06jAVjuYBbS54LYZ502LesjqaOzINLj5sZfWvn/uB8eTvrFBTRUIZaBZ1aeGtGHjDF1r1SLbsFJ1WdqXFG2xKTAdaa+UHMbVXplq/9bfUiZKKZtV9ZVCe1UcyoiEEdc1tvvlNoJpXe64TTd/0pk0H/+bPfXMmVmRQ0T92DYrsMetA87wf5+arFPono+r6t+s5kRbklQAbvoMNyP55ovWl1zu94lRt+9Jto1pSWfcoLiSmJTVYNrgwXH9aBJA8zgjJNBip2liXIr81UgP4/KJNcsOt6k4Y96vZFuV6ytsa5OuQptNNRAdFD771icDcLszXlEZ2CEhBhlPJn5d13Ir2STHryFw16ykh2nUX5sIqnr8tG1F5Hmq+rzVttmapJI8VDd9xpnrRiynf+LxOKVTNTufBitVla22PstaIRM7USpKKzWuJnakS4oZe86W+z/u/nSn129fbq6bhlBqfYkS1XhCaQuKDIb6jUo2uRLUPL0aEfHjVF3N7RPbUt++tkg70IFNRjoicjPgZGAxrFPVf2tp+kgRuWrcoXDR+c9r27hpn0QRuY+IfEdELhSRjjqobTuuYaemQDpTt8iKJIg2shjnMtx1jObnQZ9+zPQXMAWCu3FfSnIpkvLDozBojVwnpY9fdZ+myNg8Knkk+bVW7NCwuv1SRBfh4ByQ3qeGS3Egj7rbsa1tP1gX44nFvFaJL/zrk6J7cOoWHAMiU7VYsqwty0D9HZ+GUJLvM/Py1Sk+mwgi8lzgVf5zN+AlwAM6mr8O2Dnmc5hv04pNKan4RGavBu4FXAp8QUTeq6rf6t5pnTrXgdM/8fjObSmxTJJeppFamsSyntKJi6KvUuQHW8lKvcy6sFYG79nXtRk10Dc9v2C8W3GKql3latxsm0osaTAk1JNOuv032XyxRbIYmexPkFTa2ij19m3qs9r3WUGbnW9rM/kwInIs8G/AkbhH6CxVfWWjzR8CT/df9wKPVtWv+m2XAHtwbsKFqp7acarfAW4BfFlVHy4i18O5F492e5W2lIBN9uRF3A64UFUvUtUB8DbggZ2tmzOX5meNca+PP7FVQmiVPLz0MkmKqYztk6WUrnOnn4NJnx/cmn/9Bhdz2+MuiQGGALc97hKAqliX/6SYtirkwWCcMR+6AhtNsjwu0LLali5bdZ9mgS4LDNWRS6kkQY6MBESmQY9dAZGp1JJKJE2ppSm5rARrJaUERKkkDXAMkkhbAa42ScbU10XppEPCqX1P287ieiBG1Xd9pkQBPFlVfw24PfAYETm50eZi4C4+D9ffAk13zrup6i3HEArAAVW1QCEihwM/ZYyR/mCwWUnlGCCNvLvUr+vGOhHISjFJZTWOYCapw9YLaZXFL/xw98j2ZgEvSGwoqyCUadRgTRsLMBKxPy5yvmpjaiR5MOTS7Hu48jJu00TVVScXt278SNSmDmvutxpiWWtCAfjSa544GlsyRuXVRRQ17dK4fVkbMomwgJXxnyneUVW9TFW/5Jf34HJ1HdNo8xlV/ZX/+j/AqM//ZHxRRHbh1FbnA18CPr+K40zEZiWVtl+j9saJyKNE5Isi8sVy/774ULV91hL3+NiTgMmD/TRk0EYuB3vMFKuVVoaaMewwxAeS6SKCttQs02CaEr4WEz+TzjmOLKo2s5VcXB8DedTJZeR6G8RSJyAdaefWdxNLmsplPUhjGnzpX55YI4BOF+EuqSMcqI08Gvs0CWbWmgvRyR+PB4dxyn86a5iIyG7gVsC4uvGPAD6QfFfgQyJy/rhjq+r/UdUrVPU1OLPCGar68OmudmXYlDYVnGRybPL9+sBP0gaqehZeDNx21LHdLuHrMKFvxqJMTEk/abvvdFvsyaTU+WthX8mTevd77AI7zfJIm7vv/s7IunMv/rW4nMaotJHMOIlmXNLIgEAsqVdYGpCZHqst5Usz4n5cJuSDwbgULtW1jCafbGY1Hmdnqc7lr+Eyp+XIJ1aPXXt8+dVPjOnqoVuaGHEThjpBNPdt+T5yvFljusfibFX960mNROQw4D+AJ6hqq+eViNwNRyq/may+o6r+RESuC5wrIt9W1U+07HvrlnU3BH6gqq2ZZ0XkOsCfURXpAkBV/3TctWxWSeULwIkicryI9HHua+8du0fLTGetCeVuH31yXJ4kTXRhkv1lNccbh9V4gqWJJXf3rmKXGbDLDOhTcrgM+M6PjuY7Pzp6ZL97HX9BTfpqkyCa21abjLI63qj0Mo1abNx962pXyxxQazO6bhwqNVlKkqnH3Oj6aSSWgEzMpgqWbJUmWqSMNjXXWLvJhOPNdEyYpPqyMi3pICI5jlDeoqpnd7Q5BWdYf6Cq/iKsV9Wf+L8/xUXL367jNP+MU52dhVOBfRZnq/6uiNy7Y5/3ANcAPgz8d/IZi42furRAVQsR+UvgHCAD3qiq3xy7zzpIJG1IpZRxXlnTJEFskza6Yl5Wm5xylraYRam7Ep93yUncZXdd1XLa8d/ifRedQl+qydBAe7Xv07pdB0+zVrRKOvXgybZAyWa+Lwh1WEYlFvdda/d+UrLJsK5NIqmnwB+fF6wtXX5bHZa0emQz7mWzeIaldU9u8QQntYxIHcnyiJoLWvfplFiay7PCpNdvOu8vAd4AXNCVU0tEjgPOBh6mqt9N1u8AjKru8cv3Bp7fcapLgEeEcdQ7AzwVZ/g/G2irmbJdVZ/esn4sNiWpAKjq+4H3T9W462FbY6gK0pINOCWZSeqvtH1z+yRyWQ2xzEI9FgIYQ6xGjvKDYicAV/zkWHYdXc9ufP8TvgbAORc7p5aUUFI7RoYdGcxTjCWfNrKpqb0aySy1vV1ahyUll6p/0tKmIpw6+VTEUjup/5OqwVJMQywrwWbOaNz82UbsJjRciNuIQiYTyczHhNnFotwReBjwdRH5il/3LOA4AG8D+WvgWsA/Ow6KrsPXw9U7ATeWv1VVP9hxnpukE3NV/ZaI3EpVL5LulED/JSL39WPx1Ni0pLISKB0PlceNn38m3/nrJ45umMW5/YmlQyoJmCbuZFpyWSmxzNLOUo0B9WPeoLeHXcY9Tm3EAk5qAUcu1TWkA79pXZ4GQWZKyShE+ZsoSfg2Yil98WQ3+Ff2mFobbdhTxMTjxPPUyKmlY6lvqdTJxaq/n/H3CROH9liWFNOkxz8UUPe+qS+32kwmtBkryTA7chEVZEJCSZnO++tTTJCjVPWRwEhRJFW9CBd7Mg2+KyL/glN5ATzUr1vAFeBqw+OBZ4nIIGlzNSrSZfwn6FNT3/d1gKqMfKBuA5nWQ6xtfe07dS+xadO2hHiTh3zm0dNfGFX24gOXHU8mboadS3XLV4NMLH0pWZSCXMqaM0BqA1lJ8a9SDQPt0SzYNSSruW4PNUvaV8W8XDtnjxlqb3R7UhTNpf2vFwNLt4d1A0wVw+K9w4Zaj2sJMS0DdR5fQ68ua8aywHjPsUMRX3/FE0fe3UgWqW2kLWalaSsJbZP2MeYlPcYsoFN8NhfOAC4EngA8EbgI+BMcWdytbQdflMuo6qJfnk2RLm/beEviJ7350CX+rjEm2gK0kiqGZRalmbYCWm32l0nrpkXYJ5Vwzvj8I3jT7d4w9TGu+slx5JLV1S+1/FjCfi3ZLpMzI5cYclyKF4BSc0p16yxSxYxo8GqajrrGZTUuMQ0vsNBvW5No2qSZSZKMJUtsLF5NpmmkvUQ1WbS/qJeSvBrR7ac16cWtk0ra6XjcDnWJ5esvc1qEmz/lzPgeN+uvtNpLOqSSdbOpHCLwGUrep6r3xFVzbGLvmH0fANzZf/24qv7XpPNN87YeiUuT8g6fj2tz/jwNHWw6O1kraaUtcr209RK/hZpIPkGCaZNYxgU6NtfF5TFvSpBKwmDXE4sRpWdKtvcGADzqi2dMdZ1X/eQ4Frw76nbJKFEMbsALn5Xgvsd/gyvK7fysPJyfldXEJxBKOvhPSyih7bhPq3TTkGiCVNMmzYyTZIZqoqTSJsVUEo4ZkWKGWn3ceaQmvQTJZdgoS5xG31dSzagtarPaU5pokzxq0kYSld8plZjx+89sLJgmTmWTSCuqWgL7ReQaK9lPRF6EU4F9y38e79eNxURJRVX/SkSeg/MseDjwTyLyDuANqvr9lXRyLVF7WFpmMDd6yZlc+LTZ2lW0ixQaUoULgKtsHyZ52MIQ0FX+N6xvSi1pbRXDaJvaMVCMJxWDkpuSnlc3Pe2rD+Elt3jn1NdsELZL5tQxqrUh7OhjftK5X/ux3N777EJt/X67wHazHAml7FDvZSutU9NGUG2H8Kdrk2Zi6V8vyQSbTJSSaJdiprXDhABJS5Ja36vFXD6xoEp1v2UoTWwCuSuJ44GJ+cECsWy059dYNGwnbVJJq50l+T5OazFTY73i3IYPHSzhnAHOBfaFlao6Wqujwn2BW/r0LojIm4AvA2MT/E5lqFdVFZHLgctxuWquCbxLRM5V1adNc4w1R5cxTmY4O2kgJYG2gj3Vq03dSyxparTathJj/rSeX01X5EAsRpQF49RPz/n6g/jbm7+71q64/EaA8xwKUsos1SxL2mdJiSqwDEsmysAP3vvtAotm2Ekorm/1bZlobd00pNNWs6UZNFliIiEEEo8qNkl/ZY9od7c1F+RwnKZ7MnR4kYUoe0mO668pBE62qsaUVu+xzY5OFVaDbJpt078TCWXWNpVJbTYPpooxacEuIFSHnErSmcam8jickefnuOCbp6rqUEQM8D1gU5BKm6thJU6vza/bKal4hGHG+s6kkkuEVJJLU3HRJqW0oekRNtKPoAoL8Qt+sAMisbzsgtMAuF7vShbNkAftaDtPOqAFO83K8Yyv/Q5wLCctXs5QMownlEUGsc2S5iyVOTvNgamP2ySZcYQEo6TTLGlcL5FcuTo3q1kCkVycdGKquBippJOUWGA0RqYZ+9L8a/1xmhH57rzu94m/jZdYppFM7OUnbZpULjXVlf/eSjYwSjgwdnLZ3H5Q3dTJw8pmonJVfZMPJD/Jr/qOqnZ5fQX8PfBlEfkY7nLuDDxz0rmmkVSuDTxYVX/Q6KQVkd+aYv+1R6pvjevcL76WBnyrgmq3bSMMamEwT61RmbG+f4ptGNLD3zBgNAMsmyQzrfTiyMXGv8HrKjcFGco1sv2x7UcO9MmlJMOQS8EdbnAR+y67Abk3xC8AexkclOfR95euywtOOZt/+vbdMaJcp1fFrwRvsD12GzvNgbHxK6tFm1QzTnIBas9RqtKymkVDf5tqrNaWlEDGq8VKhMyrGZ06rDLmV6o4t68z8NtKMomqMAMTYlU2BbH47rWpv2r2Furtat9hhEDWZAxQRmeBbW02CUTkrsCbcEGQAhwrIme0pXQJUNV/F5GPA7f1+zxdVS+fdK5pbCqdeWtU9YJJ+68bEkPFWs5QmrBUxveRLiUzTxH1L75b99l7v4jbn/PMWqR1fEb9oaaxvcTvMr5Wi4kDkCuw1VbZMCXH4KEVBtZv/egYbtDrRUPwfp8u6MgV2lGe8bXfqRHDc77+IK6Xh36MBj8OyVYcs7IaBIJJpZdp8om1STB0qcYStVhYrgdYJtJOQ90Z1WEyGqFfRrVYaBPO6qPuxWKCJxvTSS/rjZOffSZCg1CmUXvRaNNBOrMmlmkklU2GlwP3VtXvAIjIScC/A7dpNhSRm6jqt5N8YZf6v0eLyNEhq3IXtkTwI2ycG6GqUHqld9Oukn4VkZreHLxkgRvQRDQZJHykfotxv2tyZHz7lFdWG/RoG0aoHeKk5B8UBbuMkh+kA+CCKZynlz/PX97ko7z+u3fyNpHKhmHEsl3qySsnEUxTkpmWkKJKaoXk4traxnmC5DGGXKQunTRtLrXUMZJkMWiqw0jIJbGfhNiW9PskaWWjMeL91VwHo6RBS3u/blRVNksWaJ6gBZuLdPJAKACq+l2fc6wNTwIeRbv7sQJ3H3eiLUMqhxpu8V/PYWF+9wH4+2/dl+vM78WGY6NUYCf/1Znrfs6DxiZyGZ4SXxSRNwBv9t//EFdXZQSqGlLon66qS+k2EVls2aWGLfEqq1B3vllHC5lVqcWfuKpvTtLITLCluCewaThWDVKJ67SKVulegsdQQ2oZpxIL0kqbGixdXyK1H97NgJ3kYMVp68HNxtNI98VUXw9c5+gfr/h+ZVhykyST9LP5nxU7uU5vT01KakpM42Aa6qiVYiTH1wR7C4wJtoy7jpFYVuoh5o+ZRW+vZDtEA37wCMtEquh7rdyTS7WYTSSt/NpzzhxRKKiMSiHNd1ob0kun5xiA6MzHBFHac5jWOjnbcx4kHg08Bngc7s58Ape5eBw+A9x6inU1bAlSgTE60/B9DX7gqnSoU4Gl6VlK6wbnQBhBFSUJcZRqarYW69+IES+xhGBsEtBotNtjLMBKpRKzKnGwtCpYcYGZVo0PpvMBgWJi/RPrA/QMLjBvSZXdK7SjNOEcAPw98IPjdjNgyebRpZiVDnwz1mzUj90WUKjdgZmRMNyfaIyvkUu3KixcezOBZU19qjqarLJBLCZxK7beCrOp3YvbVF1t9hXq7drsMK2OOrO89EPP+2sZeIX/jIWIHImrPrlNRG5FdSmHA9sn7b9lSKX2frf+2mvzE6c2ldp6K5RiIgGoEAkmM7aKW0kGC0G9m2olvQA1iSW1wSDtxOIsnm4xzHKrvz7iH+Ois22GMc4bzKqLGs/UMtSMTCwDX/UxQ12k90HexxLjj1046SKkYlFhj3WStYmDYDuChFCrmZL0qy0+ZZJ7cbpfqaZmm7GYKAlVxxvjiSbhmhIXZamTS/ASA1O1a3E/Dj2I15D2Q4OLeNUqdTVOXcCDwd7dvc1jrK9FngsjOb26DPad21KpZJz0crCYRv21iSQVEbkj8DzgBtQLbp3Q0vw0XF6w61MnoT24DMpjsTVIpfkwtTZZm184SCZNI70tnRRiw+TUE4GIUpSmphoLhONlmyi9VOeoCAkTamL4oSaST3BtFXrGRmIJUkthM3qmpMBQBGnA4uJEnF80Qx/k6EilR3AxGqjPbTWDW/iiU97F877xQDCQU6nW8OczonVPqla05RfLElfs1bkd2+T6miRVM8wnRNGGGuFIIpH4fQK5WM0gqhfrKrG6e3E9sDJD6+eODwjut0ydOyQcvSKWMnoLjhLLettVVKo54FSEMk7VFcaAzu2z6/dU6q/NhTfgEkmeD+mLNwpVfRPwJhH5bVX9j5WeaGuQCo1ZzMjGtbGzONWR1AhFRLngQc/lhLe+EGslvrZBLR7IpfQPZGYqG0w4TJpebUSKsSZKLpmxiQQjlf3F23eMaByoTaaRWIY2i5JdTzOwTk2W+9T12CpOJFNlKK7NEj3utPvCg75vQ+tIYRnnfOLSjVhyycildMGZLSqnaWBEV71vmnMsHXCbJDXEB2y2DMpVLIqTbkLalQxxKrMYt+JznGmVyDIL7sJqIKk5M0ow7ne3qWt4Gn0fzil+vVRSS5CCJqf9XEd0Ece06wENxkYzui31/FpPe+smw5Wq+oHJzSqo6n+IyP2AmwKLyfrnj9tvy5DKHHPMMRvYy13Q9YYHQ25mHGLqL+BjIvJSXJXH6Kc/LuZERF6Ds6HcDZdN5XeAz0860ZYhlSpVduOXVFkzg1lpjdc8KKrCBQ96bnVaK9jSoEHvbTTOtCTpl2ow3Ds7SmrQ983q3mFope2wJtpZCkz0DitsZcsJhvq4zksuWGckN6KujYFlm4Nxqp9FHTo9v3X5uZbIue/x35jNfcNQWqeGG1pDblzu38OyZaeOS9LINNG0bQSknmKpx1pXexi1iQy1mr/XgkMTyaeSZrIoZdRT6idqszSQU2iVWkpstb9WCSnRHs0klaFNlWrf+u9CGYJaQ3vUe3+JN9pX12MZrwJbV0gy9nZJI22R9k3pI22fHGutJJRp1F+bLDjy1/3fU5N1yviYkzuo6iki8jVV/RsReTmOlMZiy5AKonVxN0JR4JK/eMrMTnWbDzwbAGuzqPpKCQUcqUSDuQRDeZ1AnLFdIoEIxJQtzv7ijmX8fo5gHLk4Tx8bv7vtLuWLQVFN0r8kZGKDR5Ap6YlQiI0GmoqIDEuSx5d5T7mNh97oCzO7fy865V087asPwWB55a3eDsBjv/SHVV9pN4IbUXIpSXNvBTRtMD8d7OTYxV9ibd3I3kVW7vhJu0b6GdPw0ArR/6GfuZR+4B+17TgPrro6rYzR80LMOeYvwRX5qio/ptUpAwkFUqiM/8TnzdlcJLGvVJmMSxQTSGaCe/F62FfCJEuFWqqlEbtJVHOF9TpCIKmarLUNMySXaSSVTQRVvdsqdgsxKvtF5GjgF8Dxk3baEFLxYtj9gQHwfeDhqnqF3/ZM4BG49+VxqnrO5ANSeX8ls5O1xrDIvOtwC6xzDVA/MIhxJKGJvUQExFhqJIPEF0BEI9EEkjGeOEQUK1kknMyTSpNcIlkYnwLfDyjWCtbnAbMIVpK8YQaG2iPXkiE9Z7RfYwzVUJb1FPjR7ZhqcN2WDWoR7mnesyZ+tHQE1+ztr60zUpcs4vrGCFGzrzQM5ykx1eJjvIE+EqPaimi0Om9KMhXBZPRDfJAnDpdxQeuSSuotRohT8Qb/xDCPKkMRrE+b7/KCOYO9RRlqSS7ZxnuCGW8OmmBD0YQomm1GvjedduJxZjgu6LoNMwcFEXnSuO2qOs7F+H0isgt4KfAl3BP2uknn3Kin6VzgZqp6CvBdfOZLETkZ+D2cYeg+wD/7qmWbHif8+wvj8u7XvXQDe3Jo4VFfPINHfvFPNrobc3TAXn5StLHM0YBO8dl47JzwaYXPQv8RVb3Ce4DdALjJuFyQARsiqajqh5Kv/4MzAAE8EHibD9S5WEQuBG4HfHbiQdOZyKxF3QQ3f+9zEckoSkNRZFgrTtXVgJaCJP6SasX3p95HMZX6i2A/aajAJHE/DpIJQGYqqUWNevuKi+QPEoubCVbBcz1joYSesV46cTPi0kgtcHLBDFkqezzz5PfP/iZCLAwWqk9aNewr8uhRB1Xtl1TdNUxsJ5WqrC7RFDaL2ZiXNWdoTbSXuKzMqZdXXWqpJ9ocs01sTboJWQJcsk5b/fX2mNQrLRMbJReXKDKrPMOkklqiisz/Ru4a/TWL1G0ymlGK0tcy2lj6aoNBjqEPjkSIlTqHWrpgyA20rbR6drXZVVIJpKkag0RT0aHyStXjM4AkYUWbGar6N6vcz3obym/478skBv5x2Aw2lT8F3u6Xj8GRTMClft1kmFQsrg/cALvf9GIuOePpB9dTj8GwR1EYbNEdUS2lV3h7dVfVr8AmeHVY+qJUD76IVmRiiPYYNVUba4NaTNHMRhJyKg2/7MkkMzaSCxne3dmrwsRS+MG6kCwOwC865V0zuV/jcNapb4rLD/nMoxnYrE4qyUDek3r8SlUfpj4lDNe8LRuwt+hTaEapwsD26JuCXGzNftKWsdmt72gTbFUkhGF7UbUWjPd1ctF4zExtjPvJPCkEkjGeeKwYv7/7NYf+fEEN5mx0JSVZdEEOdpZgYylFCF4dwb5iNbipp7VX7IYQy0kvODPaDYNBflTdRbfKq6HyHqvyatpbZoFJksjmkFQOBh8Skd8GzlbVqa9mzUhFRD6Mq2/fxLNV9T2+zbNxlSTfEnZrad96MSLyKFwmTbIjdo08QNF0MeMZSlEahsMMOzTRSC+NQY1SwAqi1cshDUKpeadIfTYVMqtEAgnSiYD1thkS6cQ5+EhFKqbKPRY8xcJAG/oapJZBmVGIoWfcQFegGNtjX1G3b6wHLML+Io+eaj1TzdDD38PyQfzeJJ2AsO6Xy9vZ3htixNITy/6iT2FcrE5sWyORUUJJo/PTImdp+0Acxtu2gq0n2Fe6iAa8p1piiwkkM9Se38/S995sgZAyUcrEUSBIL1WmASepOGJxEkuMXxFX476qDOkjXDcoJ1hKDDarljvrITUkmrZ2lfTSIBSq9gcLmcKmsgaKkvXGk4AdQCEiS7hLUlU9fNxOa0YqqnrPcdtF5Azgt4B7JCx4KXBs0uz6QGuiKVU9CzgLYGH39Q/9OcEcc8xx6MBySBXpWg1UtdPmMg4b5f11H+DpwF1UNXXPeS/wVhF5BXA0cCJTBNu4g1az/BGRd4YYDjPK5QxKU0kZSE21JoW4j6azqqQjNb2vVLErUTLx24xvl0gs2qIKEwHNJJFm3HIh0MtcUstMXWxETEYpLjrfZi6tS2GDR5XWZvLricIaDhQ5RZnF/GhBAgt9DuqxwrpYl3Rb+jcs26GTaJZKp54aSObsSi1t4zLNY7arwYL6ECD39yy9fy47wHTSS2hf2WSq9kPvrmy8lOLUZzbaXUJkfhZEXEnVXzAQJ4nkQeXm5psgMFRL7h6+9fcES6SO+JzDiN0krqOxvs1+0iqdMHONBcxM6FlTHIz3l4h8RFXvMWldExtlU/knXEXac31Kkv9R1b9Q1W+KyDuAb+HUYo9R1alGOEkMdXUyCQPvbJ6AcpihQ4OUgmbVeXa/5mUxFsYsC2boScU0XxJFxQdkpi+U1ylD9QJpMOIbqV6izOuzBLfsr0+dZ3KNYMQ412FjFGuE0mg0xgc7i0UorHUDbeEM+AOb8Z7f/KeZ3K+VYKnscWCYMxj2nNOBqRwTMt/fK8ptLBc9FnoFReluWDNotLkcjP0GZdAg1vRvbV2nWqzaJ20bSjSDs/0A9EzpCSVRjzVUZT0pq1gXUyYpa8qoKsuliASTJwQT7S5qKcXEIMtgwAen/goqM/yj5FLjQ0jZgieW9QyIPPFFZ7rnNsSmhAkT1FVY/nttuUvl1Xz3GxPMmboV+1dvYpuNR5A2bowrC/xe//3+uPT3I/A1U7YD1xaRa1Ld0cNxk/2x2CjvrxuN2fYC4AUrPmg6ExEIv6iY2f6yWhhkYLzNxCtWG95f2ZJgCteFQDzVSyK1Bz+SDkRDpQSyicEFwZjvlvEvoiMYRYwzvEfJKSEY4w34NqvsLDbzpGKFzBgyYxlat763yrxZs8C+YZ8DyznDYQ9JCCWQizE2JuLcP8gZFlkklBhAKlpbFxwWAuL6pH26LS4nI0JbmxqpROJw34Mk1PPkEUgkJZ9ANj1TSSe52ijRRPJAyU0R2yzKsCbB5FJ4G0sR41xyyii1BKIZqnqC0UgweJIDorHeqpOqclm7oeHEF53pbyzJs039PWlqGZpEQrU9lXJoTi5hxN46C0xjU9kMCN5fIvIh4Naqusd/fx7wzo7d/hx4Ao5Azqe6a1cBr550zs3g/XXwSB5K9z0ZMGYs8jIwmKF7+mOW4AayZSpS6XW5R/rvaQJaL5E001GoSYgmk0rsz/DMgXs5vTrMhmh+UWwpNYmlNI5MRCAzll5mEWvcwORVYJ+994tmfNOmQ2mdm3axnLlgUYMPDiW6VhtxGRJUnSt33R1bvaZRI4Gm9WvCcWoOC43pZFulZCN1gmkSUiCM8D2SSsworTWVW0o26XLwSgukEv7m3rMsl5KhyaKabMEMGar7Xoqrj+PS7Bj6FFFqwS9narEEackRiEvtoiDGe4itX3p8FUYJpUXKaA0NaEoekuzTQSYHWQW70XkONZvKcbhg84ABsLutoaq+EniliDxWVV+10hNtDVLZRDjphWdurgywc8yxSRAllC2ApiDV1WYT4c3A50Xk3Ti6exDwb+N2UNVXicgdcOST1mAZu9/WIZWg8hJGZq/V9oPD7te8DCkMMhA/AUokC+DEv3elUbMlCLZua0dnYO25jCr98mhCPamklszbZILU4tUHapxE4jqQGPj9spbi3JEN2MwiRinEUJROpeRUSxubXFBVKEuDlgYtff+T2bKYutRRbQiSXJXOJjgqpNJEpSJjRNqYZHNL87BV6zRKOjWVm2+TJZJKtO+Ik1qCKiy4cgdVWFheyIpoi1kwRZRUFnzxtFzKWBUyl4JF43KIhQSgLpXNgJJQLXIYXY0NTg2GwECVvgjDqP7y8Uv+2V4raSU8z0ET525i8rdLSulSaSVSSjPYcU3CC6axqWwiqOoLROQDwJ38qoer6pfH7SMibwZuCHyFqgaLMoGMtg6ppIQSH6awzn2/0Tv+jgt/969WdfTdr30ZANl+gwlCZHDxF+LYZ4ZO/SXeruF75jtU/W2quNqW1fhd0qCwQuJ3zSrVmGZVOy0DwUhFMJl49Zi3r/h4F5tZisRmsdFQK+4aJdFZq7j8UEZr6sJ4Z+PvLvXfPCGALLO15yL+FA2SaBZbo7Wd+5sSU1sC0NSekyXqr8zYSDSRVGpqMWVge1E9VmRZJJ2hj77vSRlLPuc+k9FAelH9lalLFJpLgVXxWYudV5mrBuP0N5koA2+4TwM/C0qsKlCy7aiLx/9oU+DEv69LKWEOqMbVCvImntSSxYjRIiWU5HsXobSSyQxJZRY16kXkWNwgfSRuRDnLq5/SNn+I85YF2As8WlW/6rfdB3glThn+elUdp7veDlylqv8qItcRkeNVddyPeypw8koCH2ErkUpCKG1pT2bh/WWWDfke9zCpCdKIRAIwQ8j3QTbAPVCpvaRDWgkCD9QllSaZpERTkQdRihlLMKLulxZPLDYMzgnBGCXLZvXGHQQUf9Ea099I6csEWEGy5Hes3U+/D+56FBKPQGJpXjf4S1wO0mZnX5pIJyxpF1okoXRdkAJTsgkEE6SYLCGVvikj4Qxsj54p6VkbgzdzcWWhXdqZyoUZoC+FW/blDUIAZy4lVo0jGD+CB/sK6lK5GDSWSwhS2LbOH2tlkDC797e9Ign/m4WxXysnFSFxG1aSG96hgagRSKPNLB/v2UkqBfBkVf2SiOwEzheRc1X1W0mbi3HhF78SkdNx8Xm/7vMivhq4Fy7G7wsi8t7GvgCIyHNxJHFj4F+BHPh/wB3H9O0bOLK7bCUXtMHFFA4N3OD1V68EkbvfvDGG+jnmOFQQBaIJn0lQ1ctCoSzvmXUBjdRUqvoZVf2V//o/uKBwcHkRL1TVi1R1ALwNlz+xDQ8CHgDs88f8CWMSSnpcG/iWiJwjIu8Nn0nXtGUklZokkupSZyChAGR7DAtXCL39foJiEnuIF4VN4aQUM/SiuNbLCYe+RbfhsD5IIl5lFnvcyIUkQVLxf1N35VapJW1jxad18SoxH0QZpBYx1tldyo0v2lT7zRTnsq242Ww624wSR9hH4rVCEjgpxFmuIrX24yTY8aowqXkTNdWuEtsR7TvRBdnYmlosSC6Zl0xElMIkqXOMoWcyrwoz9KwlN07qGJqSXOuSihUZUYUZ49K65JQuhxgh35dL4zL0ecIyAauAWGdXmRFEQdKIM00k8vC7eB1YWB/c6Ed+d/zGoC9r6Wal+mr8nZF4MVVCSXeqB4vI65O1Z/lsIKPHFNkN3Ar43JijPgIIZYGPAX6UbLuUqhhXEwNVVfEPpYjsmNB7gOdN0WYEW4ZUgJrqq6n2Ohh3wmxfRv8qoX+lU3FpVpFEEOlNAWLVPWhefBdbvTnxJaFSyzTJZYRovJG/9vKlpBJIKKi8kvXRPTlTt5x5kvGDbgyqtN4V2WQ+mNLhBq9/KT945FNXf9NWgRCwmaq41BNKVIsF5TvE8cHV4wiDfNi3IpbKkBs2aXWzOx6Mmha5MQ41a+JUX1IbSzvRABhTEZJNslRnJlTyVMrMRJIJ8UMhiLOXJADtqaGQKgOz+xvcji1Dv2w0ROC7/VxMS+HqugjRcB/qr8Cou/VqcdILz4QwCCd2SKfSdPdQ/DsTnVCCPaoxEUg5RNMv643p1V9nT5MuXkQOA/4DeIKqXtXR5m44UvnNsKqjZ214h4i8FtglIn+GS+Q7tjaKqp4nIjcATlTVD4vIdpjs3Lq1SMWjnj4+rHPfT/qPv+W7v/2cqY+1+19exuKvMvpXQr7PHSM+/OpmSoFYapPeYKhP7Tv4AakxS0v72SQQoSIScC9SsBeoTewo6XJWSVFW3QtpfWbJaHMJZGRBjDgjeOh/Syr/9YCqkGWWMtP4asR7FO5lGszaGPi9/FBtkOqmqdfPu6Ze8hFtH5jSU8T0Bo02Laur31Aaz6CTEMMzaDWLJGNtkgg0yTptEUxpYrDnsNRo7O8ZSy+QimQs+xT6ziPMkEvJohkCzlBfiivqFSPwk6JjwTgfDPeWKuq+P8PADrFeUkmf33Abw/vguV7DDMx0SC3xmMErMkwSNOxcfxbCI5G+cAd7PTArJQgikuMI5S2q2lquV0ROwdWJP11Vf+FXryRX4stE5F64AMYbA3+tqudO6Nef4ZL2HoHzAjsGeA2wKdO0zByqftBInpmau2iy/sZnP5/vPHji5IHdr3EeX/2roL9HyQYuk6oTe3V0oIknTiTzdOKMX+FfkNp6EkIJ68O+temZf/ECkQWX5aDukqSNi4Vz7yeVW3JMXRz66Ylmhu/cqmDVDRpZbh1Jqlfn5dUgGDMkJDcr3IsasbSoRqI6LKjC0u8NpGTSqgZr24dK3eaFp5GZNoAxmrStl5OOpQx830LK/JBSB6Cnlp5No/bdcpBYCpMl9WMyFszQBz469deSdWldXOqaQEghX1jlbjxUOPH6rWPU1DjpBWe6ay6I6iIFJ7nUpMf6soT7Hp7XIKE3pRZ/ozXcS//wO6cWN5Wov4gzwjSSyhSnFOc18gbggq48XCJyHK42/MNUNa3v/AXgRBE5HvgxrsDhH3Qc44nAOycRSQOPwdltPgegqt8TketO2mnLkIobUPwMNHVMlPbladHba+hfqWTL6vjASHskbZhh+b74VWn34jr3jFczqFhyuNmoOYtOZ1zpy+j3Va9aCKoEsb6rIajaE00ckMPgFtRxoW1KaOuIUn06+8w6adBHzdug9goIg0Tt2teBDcfeEz9DjjpOGgNmmE2HWiie/lJvNOMYPpCKMYqq8w4rfUodem5/ayTmagvR+oUftV2pYJcLbMEUPp7FEUkpJko8UHmENaPuyxk+AEElDJVE4r4k62BULeZvmU3sLXFCIBLrDCm4XHwpKYl7tjUQtpkxuSgTbSpTnuqOwMOAr4vIV/y6Z+Ei4FHV1wB/DVwLVwkXoFDVU1W1EJG/BM7BqaXeqKrf7DjP4cA5IvJLnEH/Xar6vxP6tqyqg8pbUnpMMTJsHVKZMXaf9VI2dNo+xxyHOE564Zkb3YW1wzSSyjSHUf0UEwYaVX0k8MiObe8HJpZn9TnA/sar0R4KnCcil04oUXKeiDwL2OZVZ/8HeN+kc20NUlEqXap1sxMxTl5RrVQKsDKayPYbFn4u9JZsjE0JqDkodR00kTyCminV0FWbtbGbxL4qxEBKTdelx/bCUzR4JlKOgegpFqSX4GggVlD1nmDG98pSqy65njC45JFZ5opzqZe0xNhKqlNxRdDSPqrE+6H++qMKzKPNO3AENRVjVyBkx86abIt9JfnBkl0bjgJxNh3UljhPPVWNz29m1NlcysxlnPYPo8sy7SSYwj9HPTVYI+TGUlrDYmJvCd5gbrkgU0seg6WLGHWfzSixaPCSis9/8+EnCm3RaA9U6i6pVLj+5lRSqpfyxUvdQT0WbqQk9101OdEsrkvVaRsOPfwUuBz4BTBJlfUMnGPA13FJJt+Ps+uMxdYgFfBR5DgRWgWsJ5bwZuv06q/d//Iysn0ZC78SFn+VDOpZVfskSuOTntEx21OiqdmC/MOq1MzOdUIJL5VrmNqko/Fz5AX26rF4rJAFuWJf93JOvCiHE175iupCgIse9+Sp9mvDvT7+RES2+bLHoNYZhAxAbimXM0zPqYKC/4ktTXVtmTMuOaKkusiUxeM43ngOmpcbyF8qA7/WdJvJDm2PVDx/GM0S1awkHmkwSjB+nSF4UhukBFWLMa4yp6q4zNJksYxBUIUZb+R39e6VBSMx9cqiGWJDinz/HAy1BKkqa4aoezuLwTcQSlkRSqr+qv0MKQFI9c6NkLL6+yqAuumX+nez8v4TTyQa20b7zYwmSzI79de6QEQejZNQrgO8C/iztiDJBrbhVGqv88fI/Lr943baGqSi4nSq6gdqP0V39j0DxlbrvdfNTc5+Pt9uGOt3//PL4oC18Eth4UroLamf6UtV7rSaOI9HOvbIdOvc+u7ZcHiJ4vfwwiUvYZzxNV/iMMalM2i89GJ8vXIjrSGxN3xFYkMM+zecC0/4B9fmoic8qb3/HbjzR57KQhb6WE9VH1GNu9WyH7B7/YKyMNjCuctJKbX9gqty81i1wzd/g9g0IZZAwF1It6UDINTJxbcNpFWdrPqBg+TpyEXwS5SuzkH0ILNWqrr1SKyXY43Lbozff8EULsLeCLn6ZU8wpThJxtVykVjz/mBw0gvPdM9dsKdIQizp7WlILHGyZsI9okpXlDy7zuNR4jMvqpXXWEpA/rdwxbuk9bdfFUJfDh3cAOeu/JUV7PMR4J641DDgCOVDwB3G7bRFSAUoJap+RMTPBhUVRdW9kDWvG+DX3v03XPCg5wKw+3WVDSXbZ+hfBdmSa2dzRyhqQg0VIoGNDCRptxqkMU6b0kokbTPo5JqbBBObBCkmTILTflh8yvzR9QbxqjB3sBu9+EzfTlu900Mwm/qAyoDjX/VyLn7syqSW5bJHqYK1Bmv97+cPqVYwWWNaKIrJiOsv+v1nccO3vwBUXGVOL8JFz7+UlNrQmFb6Mmp+DGsSS00UakeDuJvk4ntXk6BHSEvEyQzROcRXujQGQWOFTJs4ABhcQTaL0Cv9PTOwbHux3ZLkURWWqyOPEL+SYWOA5MEiqL3wxNAU8Gq3pyk8atIuiceK5OKvy9+mKP1FckkdUtJ9ZkgqEyWRTUA6InKEX3xJ4zsAqvrLMbsvqurepO1eH6syFluDVAAppIoix4CPHnc6ecViUPVxAL0qk+xNzn4+S3sXAIMphOwqQ36Vz98lUPbBZtXsXa1Xsyku2LFrxtIkEhkjgcTt3dvajhfRJnkEkd/W9412F/H3ys8KgxSjxpGnNqQVF2PQHPT8X+MyJ0cCYnpiufl7n8uOhR6lFQbDHkXpygSrV2Oldo2g1nQTTkF83ixw8Ufff+hzuPHZz8cWUoumj9LPhFEgVYtVY5DUiGV0NKR78Eg1ZXE5HVm1uq709xOf98woWINaxbp5EVbcc2yMz9OlWRW/IpaBZF79JfSNgdK94stSBmGH3FRSyLLm0dUYiFUkLcJpx0/SjrQjBDsGXtImqQSNgibL4+5juk+Sz62mfgqTrEyqyVNanjuRamaGTUAaU+B8uilVgRPG7LtPRG4d0siIyG2AA5NOuDVIRXEqj1Tc9gF9eDJR1VrqdM0qYgGgEPIrDL390DtAVHmpcbEp4aUPsy+xnmAsMQhyBIFIUsLoenmaZNEYvLXxQtQIqE3ISbuk9fEsFv3yUkuMdUmW05e32jGZQYb+CFF1pqFoWLayt+3AsIe1hkGRYUsnqaCJbSQhlyjBmCpCPb3+fq9EF0MKfT979YQyjU2t4n2N/6bEQjIrHiGWtt+2i3w6CMbt4qUiTyzWunQ/1kBpxbsgO5tKZizqU+vUJi0GBrYHpsDYjKHJok1t2eZYMVgxMQq/VBOTTw7Vsp+FifdqHOJzEsgkeQeEZDmEICUEA3ROsFIJJr19KcHUAijDZKL2PB88VpCmZUOhqscfxO5PAN4pIiFY6SicXWYstgapzLEpsRo12ByHNkJNoa2OKQTfTXcfROQBwJ3914+r6n+Na6+qXxCRm+Ai8AX4tqoOJ51ny5CKlDgR16um4gxJ3Uxaeja6G6t1BasQnHH3QEa2z9Db53N7GSi2uf0VqllOYkcJXi1uxiLVrKUhaKa5uiKCmiN5KJuSSBNdRv32xq5d6kEZbUBBQkmPJVX7WpqYcdq6VKVhcWlIgnuy17GpOGIBOsllWGQoGWqFsshiJH20pzQ7ocRaMCMJHYGvP+BvOOV9f82wyBgs535jvd5JuB9t11S7Pm/vqPVBvCqspq+pb2+doTabjuwqtbZR5WbFSYI2aK+M75Oh50UPFYWSWD6ZEq/+Kgmv+ILNKvVXUIURpBaJEstQiYb/VSOohKXx/CfPYmyXuumnUkvjlsRDdz2TbapffwyVJHhyVlDaH6KWPm0GiMiLgNsCb/GrHi8id1TVZ07Y9bZUlR9v5ezV4ys/bmhKWhF5ioioiFw7WfdMEblQRL4jIqdNdRyv9pIyfARTOI8whgYZCgwMOgyfDLvcwy71YE+PbK8hW3KEZHNnRykXoViEchuUC9620ocyr9rYvlu2OdgeLv4j/PUf22v/xG2Z+4Q4kvDd+u9hnSZt4keq5Zq+OLy86Quo1SfGDtTuGUjhSNWEv12fovpI4erKmMLdd/dhJH9YIJcmisJQDHoUg4xyaLBF5is/ug9WXFxKKVAYtDDYQcb3f+9ZVaXLBr52/+fTzwsf3zJKKBOfpxA3Eu9nldyw1iZVlbXc/1aE36H5XRvblJhMU73jgvXZBax3aCitoSwNpXVxK6UVSmso1G0b2IzCGgqbsWx7FNalb1nWnKFfdp8eS5pXH+s+q0HqatvMqB2f26zlY1q2m9FPvM9+0jMy2dKqD3ECGO6rnTBTWgma71HLZzORCnBf4F6q+kZVfSNwH+B+43bwlR9fhktgeVv/OXXSiTZMUvEVz+4F/DBZdzIuf81NgaOBD4vISapath8lOZ71s+PE4wRvVHeZe5PMvGE2aSFbMpihm8mUC8QZVk0HnA7IqXFxCMYHFEbjfVP6COdP+0o1yRkXRBkmV132mK6JV9tx4v6NDZL8be7XNhDX+pIlM/pw/ca5thJcOJO05W3qsHKQecnEEUd0eW5cSHSL9mTljtWeGPQ2H3g2YHyak3Atic2iYfxv2lrCOve3PiEddQMO/Q3iYbU4yfBcHbRlm7/5IRO1PzkqNj6bIaGi1QwonVdYEDIMFNbEssWFGjeLAYZSgskp/fbSCJkq1ufrMQcjqSRScO359ylVRm6Dl0qlec/G3Z/0+L6tlMn+ybFGnusZDfRT2VQ2H3YBwdvrGlO0P+QqP54JPA14T7LugcDbVHUZuFhELsQlNPvstAeNBmr176WfoUgSoRvbWqncYpPMvk1CSQe69L0wAupn+SZ5IWrvRsboeVNimlaCbqpNoAp0nLR/Y5bdhZFgtLY24VoS4hWcxBK8yQzeYy4MzAYfJ9DSv8KJXGq9pNP0MGv2J1U1TrwgkJYfReNfqf0NDdrjZLz5PCGTZtbjajSr2kw1iI1r41lN/aTJ+ghyERd/Ip4AHSFYZ8S37kEurAuApIS+CeovV0UyGO2HmnlHAE8uqH9oV44T/vHl9DDxWY/vVCgD3foMavg/Ott0elRC9S6Je6bcO+TrFtkWfp5GelwtJv22m0tS+XvgyyLyMdzduDMwSfW1qsqPG0Iq3mD0Y1X9qtTf4GNwlc0CLqVRBS05xqNwaZnp7brm6KDVEIdRnG41bEukiqBKSq1vdSmlbcrut3tS0axdctBWMkv6tkoxOZWe0v6MNkz6MdK5lmOm67uIJWzyQZZxYp30x6hPBBgGFK9NOeGVr+Cix1fBkVqYaJcKsUbx3C1EOg3Uq4diRHwSBxJUSW5F/XfV2lIiJaV2FU8mqQdYXXoJs5mRw6zsOpLZdsjArUjMx6PiXOZDN0rrxIJSAGPBGko1DEogg0GI3PVeYVYEqxaDi8LPpYzkkrocT4sbvP6lZJgaH2lPKymlQ1KpGktCEuOlgCgBZWHC525WUOGGNnV7zmxHeFc7afwxm+mXNhKq+u8i8nGcCkuAp6vq5RN2C5UfPw8sJ8d6wLid1oxUROTDOJZr4tm4LJz3btutZV3rL+Orp50FsHDssRrjSFIySNt3vNwaiCR5CGs2U23skB7HgBQSDfadaFFvpAb/ptqs2ccRhJmdrWbdE97XRIXScux0IPeD2VipJUhIST/ifUsGQyNE9UYcWBqQQnw6Dy+BtEkqHbPME/7hFbXo/dt98FmoBnWQr7QYCEWTV7zhrlydRyJJTmKAWrqVlFjcydo73fYMjiPOlFjwjs3hniO+FgsxNVFpnTq2tAZ83i+nBlOXHwxnwO9JlabF2B65sVW6FwDb50WnvGvs9bfB9hUZauWWnhPzyHVJqunFSimVyje1ySXPeHyWjcYMF6LEOjA11WYkFa0//7NA2zvb0mazQETuCHxFVd8rIn8EPE1EXqmqPxiz2/NWc641I5Wu7JcicnPgeCBIKdcHviQit2MFRWdGzhdmSJIMCSM6pzrpuNl2NQONL0A6qCYvv/qHOa4XQTLioBg8nuLpmgznv6dE0iyxWu1L/aFsDEiiQFm1GRmHR4hz9Bgjy+nfVJpq9qVxnkhwXi1DiRu0Qv+UaHMBl/Ll+0/yZFBK5UGXtB+57kTt0YbbffBZ9X6J0kui8IvSRDJJ1Zm1IlxxguEvpGvUSImkSSw1Rf/owDhyXY1jVu0lubkCWklDTmrxbVCwghUfy2INxlhPMhWLD6wjjiC1WBVKn0TU+uSRRmw9dmsFkL6FHEqvxgQnqZBV79TY/dW/w+H3sYy8g7XbY4Dc25fUrbDVjMC3aUwWZ41NRBpT4F+AW4jILYCnAm8E/g24S9cOvvLj9XDSDcDnVfWnk0607uovVf06SXZMEbkEOFVVfy4i7wXeKiKvwBnqTwQ+P/GgQiyFWx/Hq189SiShfdicPhhJBG5tJpuoxlI1khWcsdofrEk6YqXx4PkI/FTNk748VuoeKzaZnaWX61+8OO61TIwbl18PZkzW18gnnREm3jMxoLTRvqmiioJK02VZ8fUstKYe2f3ql3sPNEkqA3ZIKsHbKlFVSov7hograJU1pCKruat+SXX8KEUlxBLVZUaj5DIOkyUWfwEt0uoIyU9BLHWppbLqqLrsEVaFEH5fxpxhzr4SiN6IYsUljcxEfT2V1RvoT3zn39Hf4XoykNx57imuLLT/3WqXH6+xcVO8pKp+klG9g1K9q+E+GaBvqxACQIdBXeH3S9Res3L6ij1XOuccaZtNhMLXqH8g8I+q+gYROWPcDiLyu8BLgY/j7vqrROSpqjpWjN1UcSqq+k0ReQfwLaAAHjON5xfiZ0XpxLD5g4bBvjFrqulFk22jM31FDEnlQVztd+tfbOOTFobBzOIiw70kFO06zl3HvwVVR9x2jUQkFqcaSsalcN7otunHmYYgNDo4pfs30LxPqU47HjuVIFIibjlmbf8wmBjndlx5hSXtE0KJWRFoXJNArF0uGi8vJfjP3+eF7RfoccO3v4A8L5MUXJ5QbCL+BM5Jry+Q2TTokGBaf4x4zHDB0k4sDdTsK5oUSfaSjA2xWtZQGgXrLPLDxKYSCcbCMlVmCVdqeHUj4RGH7ceqsMdYiiKrlUmO7tf+0Na/E9HrjyBt+OtTXJbqZLJVVTr17Y26rNX+ebK4iaUVU7VJJ5Izhuhkm8omwx4ReSbwR8CdfcbhSX7jzwZuG6QTEbkO8GFcluNObDipqOruxvcXAC9Y0UFEPakkA0Bj0MZU+Z9qs89GPEXcPeWaKME0st0m+0qmmMxXLfQvhVqibji+QEr1kiTHVkALiQZrLJihqc/O/HUFd0bjDbcjE78GObb58odtEZr8CWQSbql3m475nFolicY6HSUYP9ahGZxw5iuQXnLc1LU0IS7x/6TBlmG8/v5TnkQTJ/3dmdUXk1z7CY1ua+M3qc00nDQQn6cwMLZgJDgzIRZ3mjZGajtWy+yhuTl6Q7T3I5CZ5xFnvDcGrI2qsGA7idUjqSQUI87FeCW4ydnPZ9tiwXW276VQV1VyuXA53IDWoFOb9MUmjhPqr0OtYK17aNQTf7SzBBWygOkpWc+l7i+N8zi0As0qoGO9yVaLaY65uTjnobhSw49Q1ct9ieKXTtjHNNRdv2CK2MYNJ5VZQXJbDQIKccoZBuQghjcGBzXpE58cL4z0kYh87rAgUmuo1eIe8CwvyYyl5wtMhUC1lFRiTqtEPWQynz1ZhXLoEylaA6V7QUZIz/p1pZuERltFmGwLtdiQcJ76RfvV4XpbdAPR7uM9vII6zhTUB3/pPETcXw2VSq2QqOsWT55ROksIpUl4URPUopI66QVn1simFSqUhYmDVpRQkllwdfFprXOXuFLHHrx585Lrn6gjSa4xip6J5LQShAmEJ5bgZowxlGFWnUgqtgyk4tVfqHM3XiF2bT/Arv4BX/NeWSp7DG0WiUxEI5EBcX1pDaVWpGI9ibjATufBp1AL/tSyShaa5SW9rCQzSmEsZW4ojFYefnEcYOQ9OlhMo/7aZNgDvFJVSxE5CbgJ8O8T9vmgiJyTtHso8IFJJ9oapCIgXhROa4akM5YgEYxkq009gSCZwVYrJfNivHEEMDKZFFjIC7LMkpsSi3hDafXClElK9/ByGVHyXhkNq0smB4WyNNihwfqXIZ1paZGIHakaLTgJJDN6tzz65EfVUpylt7RJnQkKidKRTbbVB+L6PRz5Hm5bCWYolZtnKqE0USN5IkkBfO+ZTwRGc01pLyUg0J5iFxQdGGfXgUq1Yj3Bq4ycPwoGqY2kTWJJBZxk2zgSaq1CmRCqarph9WjaV6xmVXp8FVfb3ttYwP0d2Iz3/OY/TX0OYywLWcG2bOiyI/eFRduj8BH9sV3yY4YsylZd1UpnD/KTMO9gMAzr1SUHDRO1sjSRVPKeI5VeZlnMlaHNWDa9OJmzfoIWNAbtlTxXCQuUE1hlc1WG/ARwJxG5Jq5OyhdxJPGHXTuo6lNF5MG4iHoBzlLVd0860RYhFaXXL6M0EWejgSAAE/Ii+YGh5vXjoVrtEwhJvDQR9g1pxuOpvXif90p6xpL56nu5Kdk/7Md2pX9Zmn3qZ2XcHojIGMVmliFEqaVKEx59f6An3kvLq1rCO5Np5acfMganM+IooWg1oLYNqkH1YDTaPozfrRlRHAby5j1t+amiCq0mJY5BtEeJTw8zaPTVOPKIP2kau+clVx1kLg4inS8oUf8+YuPCE3Ia29S4NAlG9GR7bVvrxYTt6cVVi86Opa6qZdih61CJFJ1CIUrSFon2FUHBGgpjqpQvRlbt8RXQN6XzHAN29AYs6pDCZi5LskfTsyxMrAa2VyOYUB55WLoU/qVfDu/HsMjivnmvpJ+V5FlJPyvcxKyXx7Q1y8NeJKSyaMQczACHmKFeVHW/iDwCeJWqvkREvtLaUORGwPVU9dOqejZwtl9/ZxG5oap+f9yJtgSpiIFer3Q1JvwvWTakAiEQQHtiQU3EcIX4Uos/Ztg3S2b+VY4oJfMvjRGNxLM9d6NfeDlKa6KIL+Jmhr2sUjecf/oLuPX7/yrOzoqh81dWNZWLsi/3G4nF0BjR/SBrFDLQnnO7lKRMcFT3qE8CGY49IrG5v8bbQZxtJDGsN8gojq9Nu0uL+i1IHpEIvGQlSZum0VoUJMmResI/vhyTGXetiVeYzdXZ0ILhX5y0Feqe17qTkknj+kMalNjZeDGexAkTD/9dpV0KCV8TIhnJLwZOnertPKGcQpfU0iSSei6ycDzXV/f8+ZT5xtaKe7WlqVkJijJzOcY0oyclOzIXIzfUjMJmsSxxT8r4bmbJjR6qwaphqC5HWeG/L5WObAo1DMos5jQbmF4kmJ6x9HsFC1nBYfnASVrlIBLTnuVFBmXGsMgojFd9rvpKG4i+6YcMRER+AyeZPMKv60qd8A+4WMIm9vtt9x93oq1BKij9vCAzbnAPs9FSTTQYQiVVNGdMTWKxKpSxvYt3aBsEApozPYNGPXLYVoihNCaSXNgva8zgvnTfv4vLJ77z7yhxRZpirELmxw5xxOJmpc0OqZNWMkVyp1tKvdZqg2hiqG6qAVFBrKskGOuNC5UbcCCWZh/CbNxLMtXAXC1rGJuTbakZK/JkWBeklcYTG6K2g+1Lff8ufsxT2P3al1XxNkBVqGnMYJB2wNOG+ih256EbWIo4qKRR+817AKNSSZSafbuUlNxFAmQxXsP5PyYM2yCnZrLL2uX4Y4a/Id8XsYpkddjVqIe++9vP4a4feQoAhWYcbpYwomxjSKFOwgCXGdmIkmFZMEXMhDzUjFKNS3TppZahZhwo80gyS2XuEmOq4YB3hQ4OB7lx0sr23oC+KckXSkoVCpthRDlQ5Ayyniem2anADpV6KgmegEvL8m7vZXsC8LGOtrtV9WvNlar6RRHZPelEW4JUjFG25QWZcTaNzEcIl2oYFL2Rgbyp+w7bVYn2kMKYeOzMWE8U9fOmg3BIOx4+gVB6JnjWKFZtFPVTIgnLp533BM65yz8ALililvlCSV4NFRIc4o2RZH6mHFnRH1BwhGIUySwmU5exN7lmt1B519QIJh7Ez5ZLiXED6pMWhpQYI8Z+Jbo8197fdEaeEkvNqSD0g8prTavhNDT79nOfWB2np/Vjpm7dotVcrCHN1RBPVu9n7EAYmGkcIvXGCgTYmPm3SycaycSk60gk5l5JGYpv2eo8KRmNXIa0+5qF44aOOpUYxLLbHnaVA+7+YZ9fDbZzeH4Ai2FBBp40KrHSkYoll5LtZkCGJRPrsisTSCWPmZP3losMrakRzMD26JsyEgy4apc9Y+mbkh29ZQ7vLZFhXU4zhL3DBfZnuStX7bUFs4Cg1XvX2WbzQFXPA85Lvl8EPK6j+eKYQ22bdK6tQSqi7Ogv0zOWnlj6WRkH7/0mjwbA8EKGFzmsDyJ66p3SM9XDl2dlq4qgaXQX0fiQR1Lx0xnrZ7fNc41DPy8YSubP5Qec4P3iv9dJgErd46WTLPdqwY40GdYfo6oL7wnWJsc3UhGOeIIrFckksUlo7Es08pejBnBIJBdxklcY7zXYKBI7h7Pr1ISHiLYaLbtf+zIwyu43vdiVlqVlxwRV/xKxaHRjvfN1ZnHX3mS+dBlIJV3xVStFNKpsmxOdYeFUn1akIn1/upScQhxInchGl52B3qG0xsf7aG1iZFc5DIYYoQd9+jEc3ltiQYRclEUzjO7KuZTkUtKXgp1miVwKMlFna8SrvNSRykB7bDcDljzJHMj6LJc9hmrYVyxEFVlKLAumIJeSa/T2sygFJU7i2ZYNOVDm7C/6DLyqbiYIrvDjsAkkFRH5B1V9goi8j5YedeTx+oKI/Jmqvq5xrEfgyhOPxZYglZ5YDu8ve0Ip6JsCq07VlBIM1Akl6GzD93R9CBYzaDS+pwjt0pmeeMmk5yWbVFJpnsM5b1VeL02cf/oLuO0HnkUvsyz7FO6anrOhsmiW4A1G3KxnfYR5Y6Yc+pTYeaILpz9+cFywpam+G5zjQClQ4O0AkHpQhaBJbarHmioywWdx9mq8MHimeq+ojnKfcSqHG7zhJfGJFnCqP/Ud6iDx6N7tVX2V7q5bImg9Tpi0NMgkPVYkACpC6WVlVMmm0op7JvyzaTTe/0rKqY6XOKd1kku9r55A1CWmhLoaeLV49x1fzf/50h85kkBq0smiDMmloC8lu7J95FLWbCsl4kmlx0AzFmXIUDOWNHdSS5axZHMWTBHtNcEeY8TSMyW5sSxKwc7sgFPxLcDe3iJ7y0X2Fn0OlP3ZkQpMlFQ2BavAm/3fl61gnycA7xaRP6QikVOBPvCgSTtvDVIxJdda2EdPSnL/gAEUNouujmUyqATCsQiDsleboTU9UYAobaSEBPgZU1215nz9KxIK68ClKk/3D+cxopFcTjvvCQCcc5d/4Aunv5A7nvv0SEzBTtQ2AARySIPJgj3I+PgZYESNpzrqAt1ctplGbzpr1HltZQKZSVxyE/tO6J/Vimw02EXE+yUT1XRR82RSSUUrUonqOTrf092ve6lL8JkpktsRD79mQFwYiUVCf31G48aNDSq62HbEIN49cDQrSYbTphJKIPtMKgeP0hrKrPTCn3EejVZIpZ2mFBUIpVX1xqjdL1ym++398gxUQ/uKBTLcZIYMp+bCRkJZNEO2y4B+YmMJGOqAgWZYDIsyjCRTLWfsNYuxwJizwbg+L2QFC564FmTIonGf/VmffXaBK7PtLNsee8uFg75GwD3bkyLqNwGnqOr5/u95PiIeVf3ZhH3+F7iDiNwNuJlf/d+q+tFpzrklSCWXkuv1r4qG71AatVTDcuLW6MRsqc10nF97Q1rBGfqa0k2KIOU0SQUcCdVtJtbNqAK5BBWYJFKKn+GG7/f7xOP47zv/I5++14u520efHIkl9etPkXqXpQSaSaVeid43DekpOif4QUUVhjaL0lFwhbbWYI1iM+f/bwut1GKpJJASS5hhh4HdqvPECpo2n3CQQALWSQ9GcGRi3bZp6qhIpi5eyQ/8qcpPbaMscPDg8g4QzlWb0dm6V1eF5bp7WvV9xNYR/45KiNHmZmx0LMmMJfeegEZcVmHNXPySMYomJNlmm5HaearuN202kEg8JGpVP5E4GNz47Odzk+tuIzclC1qw5L0qau9CQiKObCy+oDSllJR+cpVLEYkkwzLwFSpzKaPdZdnmcZIV0vc7FVvJDrNMzv4o4ezK9rPPLrDf9kf6vRq08PooNgGpiMva+1zgL3HdNiJS4NyKnz9uX1X9GN3G/E5sCVI5zCxzmx0Xx++BVCwuYjfkMwoP5p5ykSXNWbY5+20/PpglFbkMfaCYVUPZoQMJLpOlbwfdSfnC9nD86MFCJaWknxQfu/vLeeyX/pBt2YBl26v1LZDLspe4KrfM+nGaBJlGOMfzJv1I4wRSV+hANtY6zzqNg7GMvkSNMdxawZYGO8yqtkn8UCAgVCgHxrkEl2AGBkqN9psb/+2ZfOc5T6yfa6F0qXJ6liyz8XiEvmUtA79WtiS1gi1Cvql6x6vA2aaU0g6JThuj56zbQZyDR+bjmxayAqviDNi+HkzwFKupJsNxSAmlnUAmuQunHo9FuXrV0PFv+Xt6fcOvlrfFCVBPSoZmQInQ94VOjC9ZbP27tkMKjDg344WEqHdSMNQlSoRd5oB7d8nYY7fF93jJ5v79c8b+DMuubD87swPslCV2ZUtRxTZUw4CMJTujIW8ql+JNwCpOlXVHXA6viwG859e/iMgTVfXMWZ9wS5BKLiVH9q6k9AP3YlJkKB1YB15Hm0vBks1ZNjkLdsH7yWd+lmSii2MgGjfgjqoGSlPUiKfNNhKlIP9yl15XHsgEQySHILk0CeEpX30oRy7sw4hlaCt1XbD7lJhYg7xEGNheJLpU+kqJpSKUJA8TleqvZ6xTAZqq7rmqkFn1BFMyzLLaTLd5/ZmxlcsrbgAvrWE4zOJgXnOv9W3UGkrUJXQqvFOAjxnpLsshiNiaU0JUqyUvd9PuEMpVBtWkM4pXg5tzeCBKHK0llht9iqSRSkpeOkh3T0kg2OCClJJKk71MKKWSKqrzVJJJGkvV7EsXRsZE//2Gb3sh3/+9tjCFybAqLjbEx64ETcGiDJ0nZQjIxKuGpR63Al6zCv4dUUozJFcnoYRqlQPtkUvh3z33vhqvZgsqtQwlF41/F7VkRzZkFhCryISI+omSzPrgj3G16X8eVqjqRb6myodwFXhnii1BKgZll1mmRGoPEhClDKswwLCkjnCWxM2YFmTIUN1AvWTzxBOlFwkmzIZSBHfIQDypT346YJcNO4zBYL3Xi1PxOMJJJQ8rbmB/6Gf/gp4pOco7+G03A/LsQOxDOHeqCgiqgdCfNtKLRNKQsqKEY1yKDWtcPwpjyBMVWSCfnrWJ80Cl1ou5maRycghu3qrCgWHeGjMQjmWtMCCnHIKqISSTFKNOXdXA7v/7YifxeDfqLKtsUKMqo7o6JkgBruvW2Yu0ClBFNEo+KSmkNptUggjbmob3lYwvaQCtVXHR8FJGVWTaLpxvnOqrC7Ymzrkdy8JNVE546wu56A+mJxYtK5Va4Y3npQpDMoxqNN5D8AQrWJTCqb0S0dHgsp9k4j3mFRbF0scyEItRZaiGofboa+Gff2fcd+q00jnXJBoDA+SilP4cM8EY+16tzQSIyLG4uiZH4pS9Z6nqKxttbgL8K3Br4Nmq+rJk2yW4vF4lLr39qY1T5CmhxK6p/kxEJmUpXhW2BKmIwPbkIeq3RIOVouTqPE6GxtDXkkUdsiROFB9oxoLkkWBy65aj9NI4Xkpaw0QlFSQbqNRvNUlHLEM1mFh6L5VUNCGfShXR87riXEp2ZfvJsNFOE0glEGIkGN/vEFzWlLqahAOVOm9os3h8ayrbUSCY6KjQkrepdo+8zaBnLItZESWkQT+j8Gq1IAGltp3CGpfjyZcP0EydqsrbXAJ2/+tL4nTQ5JasZ30uKD98JH1quuFWz46TAoxCgatPW9vH2ztS19+mfaJpjwg2kvjsWeMyB3u0uRDTIIMsqc4YCNupxKpraxJJkyxTNHNvuXWVod4E1Z6o8+xbMTxhmJKloudsJZ5cM7FxwF8Ul2ViUQr6WIYq3PjYn/CdHx0dwq5qcMSiuIz+FvcrGXKxGGvdu0vJorjnO8fZVMC9mzmKxUk+bcdfNXQa76+pUABPVtUvichO4HwROVdVv5W0+SUupuT/6zjG3dqIw2PQsX7StlVja5AK4onEIZUpMr/eBUIrYNkhQwZiydWRS+klkf2yEPW1BmWoZRyIgwQDvu6EH91KDENvPGxKNlaFUuoDueuLrQZzW1eNhXMEY/+CKVg0w+jjvygDFs2w5jUz0B5LJseqI8eh6cU+OLWeqfrnSTDdHkhiaNzy0GTkiQrNVQqsE4yTaOp2GKirG0PcUM/YGPEcyKrwaTnSdByFdZ9B2eNAlmN7Podbz1QeSj6X2e43vyj+0tKz9PplTDDYzyqPtmYcUTO1eymmJnU4D6i6BJD3ykgUwT5Xj3WqbE1AzX07DP4F1fY2pFHi4fiqCsaSGZemxyTJSpvT4BiDNbJ+9FzGdySUXsFlx3fnNBoJ0t1juORhz4j73vBtL6RcysAo2UKJWsFklp27hgyLjMPyAdt7TsXU895eC94TK0yMdsiADKf6Arjo0qPIG/0M0gpUEotTh7nfoMT6CZkz6g+TVAsGGyd9VmdMJhGzsamo6mXAZX55j4hcAByDqykV2vwU+KmI3G8VHb2FiFzVsl4YH+S4amwJUmlDGHKtOpE680WQMgFM4QhDBFiOqqElXYp2l/1mwYnv2qNMCCEgS4kAk6jOJD7gIQCrlWxCW5P5ftaPnxLKdfOr2GGW2W6W2ZXtj7Ox4JAARJtQqYYhWVTXheVALmmQWemX3fkr1Vnwmht6986hNZGQms4JbbE2Yb2L0ynpiWVXvp9t2ZCd2RLXyPZHoruy2M4B64Lb9pZ99hcLLJU9MmM5MMjZP+hzIFNsYXwWAetVXEq2fehmwpllIS9iQs/gRdV2TyEMTl7dEzzmrKHs1YkokEi/V5CbMkZuh1gkIGbjPTDMEwlAI1EV6iSy5UJHpJlxMKIYH2NFrx6YC+22lbZrbUN6X6Jnn/HkV2YMTcbwQDU07P63F3HJH1fE0j9sQJZZti8OUBWWBj36ecF1d+5hV/8AO3rLbMuGbDcDtmfL7q8ZRCllSfM4odreSLVfc3MJJC0VMSx4vZMF+oTqljBUR2RBBQ51bYJRnSm5rMCm8mAReX2y+ixVPau1vUuBcivgcyvoigIfEvcQvLZ5bFWdXWDOlNgSpKKNGUHT/6oSf521M+hYc6/PzfGiv5+tZepyvA8lI9eyJmUEL5MAJ4m4uuBD7bla4erUPDl4V8nUrpE4AlAVTArqj+C7b0TZmS2x3SyzwyyzKMP4ycXSx8XkBOTiU9NIXQU30AwrJhKORVjSfpTIFnUY1w+0F0kwN70o0Qwli8dcFvfIhCSAYTl1cW56w+ViXWCan7Ue0dsX3UQXZch+u8D+rI8ZbicTpWdcrqdMXNCmKhRFRlkmHlFG6ffK+L3v1V49qfK0pYOIaZEwoCKYzCdabEo2mbFs6w3p+xxTi9nQRXBnzjY3tBlLpSPmwpqRc4h1KiCnuhoNlm0zrodjBGLOxGLwbuSNdDvjvLvasgK7+1LfR7UaiKNTRV8oh1lNFXbyfz6P7duVHQsDelnJgldpsh0vjQ45or+Pw7JltmcDrpHtdyovM4wSdk4IhAzE706aR3d7h9Lbe5ruMZk4KSa8w2F7Runf5QqpbXXmcIa0CW0U4GxV/etJhxORw4D/AJ6gqm2SRRfuqKo/EZHrAueKyLdV9RMr2H/m2BKkItP4eSYI3iWlegOefzYWg5EPQymGPk6aGcYsjkS344BSDVYMRi2ZegM8lTdRIJhAPoiTKjK1kVzCsd3goeQ+5cQR2T5HKOGl9MbN4NufJ4NDpo68cnCqAQmqAffyhvOUSPSkKWsSlolEE21K4mxKTi3myHDBe7y12WegcgIIdhqn5rA+MK2MevVF42aWfSnZY4cs2AVKNTFYtMgzN4j3CkS0Vk0QiIGdQW/f7xUxOWeaxSAgDUINsAhFdJJICD5pn2cl2yOpFOzsLbmUIMZisCzbHgdMP2bTbXrYRS86lUhatawHoX+Nvo3khhMXS2PSZ30Fj32X5GKy4M1XkazJPZEbZbjcQ0S56XueB8CRh1/F4f1l+qaoxWMtmIJt2YAjF65kuxl4yXoQgx63y7KXrgu2myF9bFR/ZV7yCAjPTiCWqGHwiMtRJebWhUliQJ7c05mrwGaYpdgbzP8DeItPNb+CbuhP/N+fisi7gdvhaqdsGLYEqXShRMmaBnYRQiBsTWcLWDTqY8s4eAo55YhLcfXgu1m6oUeGpRQTyQX8YCHpoO4IKAzsOc4tMqSzCIPwogy5Vm8vizKIEchuQC6jPjp9aaJ+HEcwQCQRqCQZqKSnofZiUbHUi8aqiUFmTdVZ0/U6VemF+wH1mXFQ5eWJw8GiuFlrltkYBT3UzEkn4u5BoRnLZY+eWJbKnsv/VGa1YM6gamqmx0nPnf5NYVXo+fsS0qWnpBBsQtt7AxazIQumcLmtvFrSiGV/uYARZV/Zd2SYqP7COQxKYUwkmtSDqy0FULPPPe8514wtOtg6KEBFVIKXzASrTtoreu73KbxH2GGLA47efpW7B1mB8RJ1kKwXzZAjsn3szJZYFEcs4ZkO0kmG0sfWJkQpUm9NI3VigVFyCVJLvHcdRNIcBw4W06i/pvT+EuANwAWq+ooV9UFkB2C8LWYHcG9gbEDjemDDSEVEHouL8ixwKQCe5tc/E5fvvwQep6rnrOS4ZdMQ20Is+RiFdolTi2UMor42nf1Ug2c1W3e2k96ITSPM4lMjf7DPWG9TGDRyuUcvGTNkuzi11+FmOUonAM3aVkHyyvFSV217cj+cGpvtlFgNNh8Tr2UYicLEYLOUVAB3nUn/o+0maZMGelb3vPAZalNVXsEOBuwyB1jSnEUzZE+5LQamBpvUr4Y7OFD2OWBzDpR5TSoaDeocHaShGmya6q/K0aCyD0HIfuvUaUf097FgCrabAUf09kaj81Az9pkBuZQcKHOWTS8WnQrnCsfuZ2Ukrbb8U2mZhCYxhmSkcbnj2laC5n1I70W63ohyeL7MYfkSu/ID7F78ufvtTBXvYXCqzb6UHGH2smgqd+H0mW2qoly+L/estKqpEpEuWF6CjbSJtTHGj8H06q9JuCPwMODrSdGsZwHHuUPoa0TkSFylxsMBKyJPAE4Gro3L0QVuLH+rqn5wZRcye2wIqficMg8ETlHVZa8PREROBn4PuClwNPBhETlJVacqnB0IJZ1AhIetVI2eYF3wvkTg7S2pzSWm+QkqJGDos9MG4+BAM6evVueLb3Fqr6Aic/2oVGG5lORa1mJgQpqZoDbIxDIgw6SivfqXMLyoSvR+63q5wr3J8Cq5KNnYqDILaj+AXKt+D7QqtjTQ3ghZlg2CaRv4XPyAG3yyJDWHS6/hJLcSiXmeXLS08Wk6lP1Zn/1ln71moSIB6ilpxiFrUX+FvjYDRcENprkp6ZvC2wiWfbLCJT/jTrLvmoKFJOA21PIAvBrSuYAX4u1o5eiAHs6Z/m2uD1JPG1YitXS1beuPEeUa/QPs7C1xzd5+dmX7a6QS0q6EicKubCmqtlKicO7LDk7SDX8rco9phBIDe+bfvTCRipILdQklvPPrRy6zUX+p6qeYoMhU1cuB67dsugq4xUF3YsbYKEnl0cCLVHUZosscOKJ5m19/sYhciNMRfnbSAZsSSmubCcQSDPmBWKByvwyzfEgf5pCksT4zNTj/+eB1EgkGQy6VHaZUIaMX1WJAjEFZlCEuQtgZ5cFHK/v4FTeolSAt+viWawt9tOAC+vy1OfdMIYvL7pr6VEb/PEhZamJa8WkkstShIbhhN7PT9n2bTJSdZpmckiHOAyk4DgDk5bZY6Kkt1iagTao0DYNtSKXTtP8UiQTRM05Nt2CK6DCxaIZsN8tVHIQ19L0EtuAzY2OKEUM4gLEZPbEuMDAapduzMLRlxG5bP26fuD7xdDO1ezD+fQkSn0HZkS1zWLY84jgSpRCsSxYpBYuJRF27BioyGSQq0tT2FpB6cHURS9MOE9P66zoRi9UpatSvQz82ITaKVE4C7iQiLwCWgKeo6hdw/tn/k7S71K8bgYg8CngUwDHH1NUJbQ+VxT14bcRSDbhumxtw3bbUf76aabmNIbAqPOQlripdLuWIbSEd7OJAnHhkObWYiZHAOcHA7j2zbBb3CdtLU7BIAWKjw/kkaSy9tkzctRgvcdmGqizVb9eNp9WAEFSAIbts81rrs1U/qzVF1MOHgSLHkssAzCAOPIFEd5hlrsq2sWRz9thttZgbm6jfwr1NA1GrflRqseAQ4X7T+u8SkHspccEMuU5vD4syjANqaFuKI97tZsBh2XJUiaXeguFeWVNlNShiX0clpGaf2kinDeNUfm1tA7GmElyaty4XN7nJjeVa+R52GucKfmR2JTvMgEUpa3aRYN9bVmGJbKTf0Z7kVZrp+gzrnhmd5ArdlFgcUoIJEfnu2qp929TgBwPnOzET9deWw5qRioh8GJd6oIln+/NeE7g9cFvgHT7JWduv3vrLeH/sswBOuUU+8debJql3k1xSlDVdrt8mwYDoVVHeA8v4mT8Q7TJOxZTqj526Z0gvOgPUBkH/grtkedQIBf892gCiw8HqXprU4BmW3f2oPGtCz6IqUIJdqU6kYeDIxsyK+5Qj0kN6bUZgEesnAsp2GWCMsl8W4rWnTgLNANU0xU7zfgaHiDbYBqkEiTEQSnAuAHf9mTjpri9FVAfllAxtFtWIwV08laxi8GGixgMaRNStSuy6r/Vt3Smd89q9qJbT40WnClPGOBPniViwKCWLYsmlMoDn/np/WWS1iUZQdaLw6ze4GIDP/OCEqp9NjzzvgNB8hmaBabQZU+PQq1G/blgzUlHVe3ZtE5FH4/y3Ffi8iFic0elS4Nik6fWBn0w6lyCts5BRH/cpZ32NY42QTHyYpKZKspK4NaYSTvLslV6t5NYLgxBfQn1mXT9/RUZN1UBQKUyahJWNFyAMORlCidYyEkQ7FBqTxYSZaOoIECUbodaPNpXGJLSVpgjkcq3sAENdZsABdpl+zcaTOhAEl+iQebptRhxsVgbnZZaq6Orntr691txh4zUpPn+VY9xBtsSCGToPOVN5yLl71h74mko0bS7ZzYDScURR7/vozUx/i54pvYRiq9rxXnrLgoSSeOpdK9sbM/8eLgMWRFkUIRcT37uPHrh2/B1qqk6xkYjPufhkFqUAev7+e49EqatKU2JpXkMqrTSvq4k2VdjMpBXV9oe22eZqiI1Sf/0ncHfg4yJyEq6i2M+B9wJvFZFX4Az1JwKfn+aAXZLIZOP8yh+yTCQO0mFQDqkk3DGrhynM9MFH9uIytQbiydR6ScC0eseAO25KLCtFk1BGrqfjHmRx4K72r72ktcNWEcu1NDkt/W0OFuHdbKrYMq0yzGaU5LjUHIuBhBPJYihZ9KZL629U/baRSBZlEAfVkJfKnbeuLgM/Y6eMRaXS7e63U3IKb2NwLuUxDY8Peg1qsdS93JFiGdP4BGkGXCJGE9aFa2whlJRkukinSTDhutP6IymRpC7tmY8v2m6W2SEDFk1BLm4CEt6rXUf/yB34+7caOXfs25TvWJt00oyO7yKUrve/lu5lhuovX/9hQpvZne5QwkaRyhuBN4rIN3BJzc7wUss3ReQduLw3BfCYaT2/2shjNYSxEjTVYeMMhMFVudQqpiRrGMrTWT5UKrNgr4FK759JVeBoHLoIpeslrAehtRBCY1XbazWpT2lm2pRQwuw8ldoyLIuU0VvscBmM3CcgukY7N9/lSDCBjFMCcQGkhSescizxBQ+1eL2+f0Hl56w/Pcgqd+tAZlV8T+opV9kUUhVdpQJr2uKmUdy23eP6L5Pak4JqL0NZMCF+pPI6DMQbIuB3ZQeiEX67f8+uc/SPa8d/8A2/XPt+9vdvFYkpNeiH75WnV1q0KxBHXTV6MGqwJqGs7m624NCpp7Lu2BBSUdUB8Ecd214AvOBgjr/WZDJ6vmlQSTRWg0uwVPYLb8gc9YKxuJof/ntXETCAxAlhknTSeYx47kTd1dGuSQyTkM4y26ST1Buo6odhqEopGj3FYHSgyXzVwLA+uGFX26vBLQ3Ea8b/NPuVniuqNRVKUT8RqArCubbGTRRioKl1xOBVg+FZsWrI/OBOsi6X0nsHBltc3eW8fs1JuqAW+1GKcC+yRLUVJJIgrSyKC+hsRsDvkKGrRyLOk+zoY7o10m/+3u09KRFVX1lj8mMaaseUTGrXV9uH7m0dfVkzQgH3oBwC5YQ3Alsioj593taCUNJj2vhyTinSJ4N7UJWlPvtuvZu5N2fE1YtTqchSBIM3wMAnzBuql4aoBsYTr18NAhddelQ0yE9SBwRCacYXhOVU71/zbmt5fTNsFRXdYaBvi8YHGIhLa4MQJZYmjLiB08X+WC8RDGoSTzh3HmfLLak8gqoy+d1qruSeHDJ1mQCMT70DA3KpgkedxFJSxuUqM7SbKIzeq6aLc1sQ6WpgasRZqbZiZoNEOgnqvh1m4N3ZLdtN8JwaTyhARUReZRZtWY3frMvu0xng29x/TB/aIulnSiiAq8swQYkyt6nMMQu0EVBASX3Ab86Ka3mnEhVAnhwBqtKoA9xgO8Sw1HiAb3Hcj1r7d8L1L2td/6MfH1X7niEc68nookuPqkkUKRF0nQfgk5fcKM6ah4lNqFl7rymdhHb1NmG2b0d0700DbkgWGiSbUW80r9YK+7dwa9N2ZMN5/CqbkFMYNKOLNVJL1zP0r5nFRGN4G1JpY6Vqry7X41TNFIzxLiOAc+veYZYxqI8zqSS47SZIcu5ZmEQm1fmsz1UX0vJUZN6lxprG8D7N3egyys+cUMA9ixNF9DmpHPIYJ6V0zcpX6mbossW2zJRbjt/UO19y6VH+nOnsfJRQqmjztP/VOU8+tn7cWeDYY9rJBrqJaBLutPvCqdp98pIbAZUKyWAhmV1X3kBmNJtAgpRYssRxIGf8LHeaaOymdBmzWUsIZnRSSy5lrHZIQ7osvSTVmQUgVQ82emnoUnsmx29INtGN2gcnBq+sUI8nSCrBtpTmlVuUKq5jWkKBxE4kREknja6fNMAfbOBi+p6v1vtzKkxjU7l6csrWIpUujFPztHk4TYtxJHatoy8dWbfbD87fu/To2vqYpp6Mvpa1AXPNUndvYlgMISBuGqM/jKpLVoqVDGaR7Nx0NTpTBA8tl43aRgN9yFRgsN6WMs1ZpvJPgSS+qUk8qct0UHEZbOXNRpWxwXmDaZTgMmTFM/w3f+/2LPpqn7V+TJAKZ4EuqWSmRJJiHqfSiS1DKl0D/LRuhMHecTDnaiOSNqQ2jjnaJZrzLjlpRGLpiilpYhwRjQ46U3fT7Z8Y840Pfs0oGYhzDHBE4sI2XfxPUVNlBS++WEFy2mtqUZmlkklTsgnHTjM0BMN5cI8ONXlS6QQqQjlyBRJKQFrKN5W21zJjMJCQViqprKHDjrVQTrKpTPfbbjVsCVJpPjpr8dB2YVoimWNlcNHYobiZU9tUSQetr7HRHnndFXx5sIQSjyMkGXTdn1CWmlCHJ6Ye8YozcQkn89rgWqWLcf1pH4Q6STIa++vuyOFYTkLwudxCkCM2sQVpLHQVHDcOxv4wbGTcrnLKNbwIa/E+43+EafvTRSZrNhbM1V+d2BKkAlN4Mh3ELzwnjo1BSFEDWeW9pRptBFDU0sWP7N9wCw7532AyoaSSa71uR/DUoz6oeFfjILWgQTrw7RsDUHPQbyOUcalumkirh4b2bR5vwAiRQHVfViOdxD7gUrOETNw7ZMBQXNBqaqjPE3UYiXSUYrx31+iP1yWVzDQ1SxNz9VcrtgSpFKrs11F/mTTyPX1ZfvGTtizSo5iTycbhXsdfEJfff/HNfAp8yxBHIENcevm+uoF7nCNOKPbUJJZJSO1tTWIBXOnGJrFANOAHN2o3gKdxFRWRhEDApmqvi1AmSS1tx0hdp9tcyVdiiB+HgfZYsnltXcjinKrddjCsVGMhR17iWJEhdTfu9Jo6bCTBeSa875Z6rFXqYj8LqLXoXP3Vii1BKgv9W3D0MV+cuv2cLA4t3Pf4b9S+n3PxyVjN2G/7YAZVYB+j+aLAp+pAQaZLUtiZtiYhluBiHGsC1+JavIpOqj41g/2a8RvjoshXmpok7W91PVLzYJsVkTSx3y64lDSi3oXapbJxVSALV0XViCcai6UqKxwKcKUEU1L/PWxDOgjEMfSrh7UA2mq/usfkDMhlHvzYiS1BKnNcvXDa8d8C4D0X3ZKr7KJLeGgGcXvnjFQdCdTsGFMMMF2qsEAsqQ0nBrEqroWYxvlGiSSVKNpcb5vk0Ia0/cGosA4WmdjomLBkc6fWU3zuM6e2tEhMlbMohVNpJhkTjFQkkaEsJcdvBt+6dVWdIYDbHnfJWl8msyrStRUxJ5U5Dlk88ISvAM6V9aT+/44mfAzqD4QhLm4i5Ftzhv6DO39TYonpdyAWT8tb0pHk0Y5QEUilllp5bMhmwf+58ccAeO137hIL0wUs2TzmQrui3O4DJIfszA7EkgKhzk6IRQqksaS9WBRuSfNajrWQ5uYhNzx/fS92Ku+vqyfpzElljkMeDzuxqusW0quHhJG/foOLOffiX+Nw4+e7U6aPT9Fl7G0eKbgbt0WPN6WQtsy5q3Xj3Wz48xufN7Luld++p/PgU8MeXWRJ81iDx0ksQ3awHF2fgUgk+7xKbUn7XFFuZzkSlLt3zzz5/et6fQBqFZ2YpXhOKnPMccjjtOO/xTkXnzyiAht4PX9VSE19bZjuioDTZGkOqFRf9XXQTiKHoiRyMHj8TT7M87/xAHZmS1g1LKthKE5ltSj/f3t3FyPVWcdx/Pvb5WUJoC12a7AlSGsvRGwQEY02bdI0SrlZ9Uau7EUjiZbYNvECQkJo1BjrS2Ji1NSXpBq10dgG7rRWG9KYCIhAl65bQBrBbro0thZKtu7L34vzzHZZ5uyOdmaeszO/T3KyZ84Mu7/9Z5j/PnPOPM84YypO8C/RRLE2UZryZmxqMa9OLmcsFnN5agmXJvumL53+8vufyPb7NHZJsZuKWUeonXOpGaeXJUxecdntzKvA5rvstKyRzD5R3jPjvMtMc02B0032bjhwxe09Jz7N5Z6l9PWMs7RnnPFYND2FTDE7dTFKeWVi+fRyAfs27M8R/WqNLNLVpdxUrONdnFzGykVj06sczlRvdcCyJjKbm8db89VbH88d4f8WU1PEPFPpRJc2HTcV63ifec9hAJ47d8P0+Y75Ziie2VjKTui7iXSxiAY+h+KmYtbRGpndubYEQL1G4iZiNRFT845EwudUzMyNo70GntkJwP7bvps5yf/k4Gic43reVfqAyZjgIq8APN+2VBXRkvVrzMzmM/DMzukF6RaYp99gjNfjtdIHnOcMq1lLRFxuY65KyDJSkbQR+AHQB0wAX4iIQ+m+3cC9FDM0fDEifpsjo5m11gIbnUyLiPig7uAsQ2zgw1fdPxkTjPAPLvHv5RniZZdrpPIw8FBEbAT2pttIWg9sB94HbAW+J6m37JuYmeVwlIM9ZaOVbh6lQL6mEsDb0v7bgdonwQaAxyLijYg4C5wGtmTIZ2ZWKiJiHe/lLENXHK+NUk5xoitHKZCvqTwAfEPSOeCbwO50/Abg3IzHnU/HriJph6Qjko5cuHChlVnNzK5Sb7TS7aMUaGFTkfR7SYN1tgHg88CDEbEGeBD4ce2f1flWdc/iRcQjEbE5Ijb39/e35pcwMysxe7TiUUqhZSfqI+Kusvsk/RS4P938NfCjtH8eWDPjoTfy5ltjZmaVcpSDPdfSP/V6vMbLjLCatTwfx7t2lAL53v56Ebgj7d8JnEr7B4DtkpZKWgfcAhzKkM/MbF610cppBj1KSXJ9+PFzwHckLQLGgB0AEXFS0q+A5yguNb4vIuZZtMDMLJ/aaMWjlII6YSoBSReB4dw56rgOeDl3iFmcqTHO1Lgq5por09qI8InYFumUaVqGI2Jz7hCzSTpStVzO1BhnalwVc1UxU7fwNC1mZtY0bipmZtY0ndJUHskdoEQVczlTY5ypcVXMVcVMXaEjTtSbmVk1dMpIxczMKsBNxczMmmbBNxVJWyUNSzotaVfGHC9IelbSMUlH0rFVkp6UdCp9vbbFGX4iaVTS4IxjpRkk7U51G5b0iTZm2ifpn6lWxyRta3OmNZL+KGlI0klJ96fjuWtVlitbvST1STok6XjK9FA6nq1Wc2TK+ryyJCIW7Ab0AmeAm4AlwHFgfaYsLwDXzTr2MLAr7e8Cvt7iDLcDm4DB+TIA61O9lgLrUh1725RpH/ClOo9tV6bVwKa0v5Jiydf1FahVWa5s9aKY5HVF2l8M/Bn4SM5azZEp6/PKW7Et9JHKFuB0RPw9Iv4DPEaxJktVDACPpv1HgU+28odFxEHgXw1maMvaNSWZyrQr00hEHE37F4EhiiUWcteqLFeZlueKwqV0c3Hagoy1miNTGa/T1EYLvak0vP5KGwTwO0l/kbQjHXtnRIxA8YIBXJ8hV1mG3LXbKelEenus9tZJ2zNJejfwAYq/ditTq1m5IGO9JPVKOgaMAk9GRPZalWSCijyvutlCbyoNr7/SBh+LiE3A3cB9km7PlKNROWv3feBmYCMwAnwrRyZJK4DfAA9E1FkXdsZD6xxrZ66s9YqIySiW/r4R2CJpwxwPz5mpEs+rbrfQm0pl1l+JiBfT11HgCYrh9UuSVgOkr6MZopVlyFa7iHgpvShMAT/kzbci2pZJ0mKKF+6fR8Tj6XD2WtXLVYV6pRyvAk8DW6lArWZnqkqdut1CbyqHgVskrZO0BNhOsSZLW0laLmllbR/4ODCYstyTHnYPsL/d2ebIkG3tmtqLUfIpilq1LZMkUaw2OhQR355xV9ZaleXKWS9J/ZKuSfvLgLuAv5GxVmWZcj+vLMl9pcBb3YBtFFfJnAH2ZMpwE8XVJceBk7UcwDuApygWIXsKWNXiHL+kGPaPU/x1du9cGYA9qW7DwN1tzPQz4FngBMV/+NVtznQbxdsfJ4BjadtWgVqV5cpWL+BW4K/pZw8Ce+d7bmfMlPV55a3YPE2LmZk1zUJ/+8vMzCrETcXMzJrGTcXMzJrGTcXMzJrGTcXMzJrGTcXMzJrGTcXMzJrGTcU6jqQPpUkF+9JsByfnma/KzJrEH360jiTpK0AfsAw4HxFfyxzJrCu4qVhHSnPBHQbGgI9GxGTmSGZdwW9/WadaBaygWEGxL3MWs67hkYp1JEkHKFYCXUcxseDOzJHMusKi3AHMmk3SZ4GJiPiFpF7gT5LujIg/5M5m1uk8UjEzs6bxORUzM2saNxUzM2saNxUzM2saNxUzM2saNxUzM2saNxUzM2saNxUzM2ua/wJzlGoK1XaofQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACVoElEQVR4nO29eZwtRXn//366Zy7XBaIG48IiYEBcEQSjYnBFwBhRs2g0Ro2RaNy44L5FoyjKMuIubjF+jVvEiEY2jcvPuLKKgCKiUQQ1aoys987pfn5/1NLV1dV9+sycmTN3pj/31XfOqa6uru7TXZ961hJVZcCAAQMGDJgGsll3YMCAAQMGrB8MpDJgwIABA6aGgVQGDBgwYMDUMJDKgAEDBgyYGgZSGTBgwIABU8NAKgMGDBgwYGoYSGXAgAEDBkwNA6kMmAlE5Ikicq6IXCci14jIGSLywGW2+VQRKWyb4XZHu/+BIvI1Efk/EfmNiPyXiBwUHKsicnLU5mNs+T8HZSoi1wftv3c5/R4wYD1hIJUBqw4ROQZ4M/B64HbA7sA7gCOn0PzXVfWW0Xa1iOwEfBZ4K3AbYBfgNcDW4NgfAo8Xkbmg7G+AyxPn2S9o/++m0O8BA9YFBlIZsKoQkd8D/gl4tqqepqrXq+qiqn5GVV8oIvcVka+LyG+tBPM2EdkUHK8i8kwR+YGI/K+IvF1EpMep9wFQ1Y+oaqGqN6rq2ar6naDOz4GLgcPsuW4DPAA4fVrXP2DAesdAKgNWG/cHNgOfatlfAFuAnW3dhwH/ENV5FHAQsB/wl1gSGIPLgUJEPigiR4jIrVvq/QtGOgF4AvBp6tKMw1dE5OcicpqI7NHj/AMGbAgMpDJgtfH7wK9UdZTaqarnqeo3VHWkqj8G3g08KKp2vKr+VlV/AnwRuHew735WynHbD227vwMeCCjwHuB/ROR0Ebld1PangAdbiepvMCQT40HAHsC+wNXAZyOV2YABGxYDqQxYbfwa2LltEBaRfUTks1YK+B3G7rJzVO3nwecbgFsG37+hqrcKtju7Hap6mao+VVV3Be4B3BFj2yGocyPwH8ArgJ1V9b/iPqrqV1R1m6r+Fng+sCdw1z4XP2DAesdAKgNWG18HbgIe07L/ncD3gL1VdSfgZUAfm8lEUNXvAf+MIZcY/wIcC3yob3OsQB8HDNgeMYjsA1YVqvp/IvIq4O0iMgLOBhaBhwMPAXYEfgdcJyL7As8C/me557Vt/QnwMVW9SkR2A/4K+Eai+peBQ4ELEu3cHZjHGPRvBrwO+Blw2XL7OGDAesAgqQxYdajqycAxGBXT/wA/BZ4D/DvwAuCJwLUY28fHJmz+/ok4lYNse38EfFNErseQyXcxEkncP1XVL6jqbxLt38726XfAlRjbyqNUdXHCfg4YsC4hwyJdAwYMGDBgWhgklQEDBgwYMDUMpDJgwIABA6aGgVQGDBgwYMDUMJDKgAEDBgyYGtaFS/HOO++se+yxx6y7MWCJuPy8K7srJFJ7SfuHzuPS7cPe+92pX90By8YPLvzv9I5WpyE1kUD1kp7HGuxzn7385/POO+9XqnrbzgMmxDOfcit98ME34wlHXbPh45XWhffXgQceqOeee+6suzFgCTg0+4v0DsmCj9Je7r7nmS2z30UgCwTxkGBsexK05crO+MU7J7yCAdPC4b/3t9UXVbQsm2RRBt+1DD6aci2KWvk55Sca5xGR81T1wOn0GkTkXgcftPmiG29Szr9463xbCqKNgnUhqQxYh3ADg2R+wDAogs85kpWGWFRBBC1LJM/rbTlC6SATV+eIOzwbgDOuefuULmRAX5z5f++vfT/slk8xv0tILJlUxCJZjUDCZ2Y18bg/ueVFW/7+Vnzm7Ot5/lG3WmSDZ1cYSGXA2kY4aIToGjgswdSQJd7ziFDCY47Y5bn++xlXvaVvbwdMEWdd98FG2WE3e3L1pe3ZAM4pJo2ZXRpE5F6PePDNecBBN2PvPed55BOv5inPlbmNLK0MpDJg+4SWoIKWmZFWysy4nYyxo3gpJSYUh1B9ZnHErs8DBnJZCzjrxiod22Gbn+Q/SyaUi0aCWS1CgUpKAbjtznM8/EE33/DSymBTGTBTtNpUqOvDU/W8mkuy6nMmnhAkyyrbirO5SFaXWmIppc0OYzEQS38ccZeX+M9nfP/4FTnHYZufhJaKjtJZclbSpmKllIvO+Mguvux/fjXiiL+6mgu+u3FtKwOpDNgu4UlGMiQTQyoJwjjrug9y+G2eAZnUpRRJEAt0kspAKP0QkkmIlSKWR8w/wRjoWxATy7RI5c8etaNu+ftb8YCDblYrf8nrfsU99t3E3zzn5xtSWhniVAZslzin/ITZUqoOqUjjsFs+hTN/855lE0pv9+QNjjZCWUnUHTmaODT7i06JeCkQkXtdd33ZIBSAY595K9787t+yURdu25AXPWB94ezFj1YG3FJrtpWasTdlrO+JM356yjJ6uIEQaz4cGa+ARiSUVjthpdlpIrSlxHC2laP/fmPaVgb114ANhSNub5e7bzPQB/sGddfScMQ+L26UnXH5G6d+nr7Sh+S5UY9au9vZN3xoWeqvlC0lxka2rawLSeUHF/yIw27xN5x1fWo58QEDKpzx83fMugvrH+FEdYXUhr0IJbS3xbFLy8NjnvZXO3VWuO3Oc+y79yYu+O7WuwMXTfPkax3rglQGDBiwNnDEXi+oqxmLkjOuPHHlThirvoIASMnzqau93Fk37zC+3c2bBTag+msglQEDBkwXYwzny0Xs+RdCy9XxPSq0YHGMVqvsCM5cz1gX3l9777/noPoaMGAN4IwrT4Sy8NtKSiljpRAtx3qGLRUlUKKd2/ZvrV4aZkoqInIrEfk3EfmeiFwmIvcXkduIyDki8gP799az7OOAAQMmwxk/XoBRYbYp4xGbnlgFu0rW2CQTv3lJRoIsCVOy8Sjl2H+JXMobArNWf50CnKmqfy4im4CbAy8DvqCqx4vIS4CXAE13kgEDBqxZTNNz7hGbnlj73kgYWtuZyGIdxCaddd0HEVm+VmOEsjhGvVUOpLK6EJGdgEOApwKo6jZgm4gcCTzYVvsg8CUGUhkwYABw9rZ/Bep5v1rhCMbGLk1TRV6iFGNIY2NSymwllb2A/wE+ICL7AecBzwdup6rXAKjqNSLyB6mDReQo4CiA3XfffXV6PGDAgFWHI5IQZ930Yf+5lrk4BSupHL7T0zjzdx+YSp+U8ZLIQCqzOfcBwHNV9ZsicgpG1dULqnoqcCqY4MeV6eKAAQMmQSp+JJXUcZI2xh3vMhc3yCUw5LvF22oLgS0DhSqLYwLHy3UQWL4UzNJQfxVwlap+037/NwzJ/EJE7gBg//5yRv0bMGDABGgLSOwb+d6Wo6t33q7c2k8yMZ+tYd4Y9adnpAcorPqra+tDKSKym4h80ToqXSIiz0/UebCI/J+IXGi3VwX7DheR74vIFdYGPXPMTFJR1Z+LyE9F5C6q+n3gYcCldnsKcLz9++lZ9XHAgAH9MG7gPzT7i6TEsZxEj+Gx55SfMBmpd3oagFmKmEpCCVeVFFm+CqxUKMawRk85ZQQcq6rni8iOwHkico6qXhrV+/9U9VFhgYjkwNuBQzGT9G+LyOmJY1cVs/b+ei7wYev5dSXwNIz09HEReTrwE2C66UUHDFgGDjrjZb3qffuI169wTzYW+pAW1FVljmBWAsamMr7O2HaM/djZkK8VkcuAXTCT63G4L3CFql4JICIfBY7seeyKYaakoqoXAqnEbg9b5a4M2M5xwOdeUft+/iNfN6OeDGhDLK30llLitej7wqq7QillWihUWNRudZrt8eNE5L1B8anWHtyAiOwB7A98M7H7/iJyEXA18AJVvQRDPj8N6lwF/FG/K1g5zFpSGTBgWYjJxOHe//FKAC78k9eu2LlF2jO63/fMl/GtwwdpJUabGqwVPnDR/h1DLofmj/dr7KwEmTgUCMWYtF5q9p+mqq/qrAiIyC2BTwJHq+rvot3nA3dS1etE5JHAvwN7k84rNnPvgIFUBmxXuM8ZL/eftWWmWI6ZQS7nvMFSLUDT9qtalQ3EksayFszqIbWExLJSKKEHqfSDiMxjCOXDqnpao52AZFT1cyLyDhHZGSOZ7BZU3RUjycwUA6kMWDdIkcl+n32l/3zRo5YmtVSEombJe6kPF+F5N+oCkeeUn5j66oo1jFN/BZH0K00oAAUZi9rtPNtnciMiArwPuExVT26pc3vgF6qqInJfzNzm18Bvgb1FZE/gZ8ATgCem2lhNrIuEkgM2BtzgriqtUkqIaYQJhJIRNAllHO5/9prw8tx+oeVYQpk0DmYaKBEKss6tpxXoYODJwEMDl+FHisgzReSZts6fA9+1NpW3AE9QgxHwHOAs4DLg49bWMlMMksqAdYE+s8JJpZZYQpnknJkoYgno4HNezH8dOv2VD9caVlxaWUMoVXo8c30mPvrVcRVV9W3A21r2fQ743NgTrSIGUhmw6rjvmZVbbibKNw57w9hjjEF+erolRzApcjngc6/whJDRruqCShpqU3s5yeaBn38RX334m5bT5QEtODR//Kqfc5o2lfWGQf01YCbIRP2Ae7+zXtpZt83DC/rOGNsRSi8HfO4VnedSbW7hPgd3Xe6v2Gt98BdesOR+bi84p/yE31YNM1gMq9CcRZ3r3MoNOrxuzKsesCYggX1iHLE4hCQyLS+ve//HK2tkkpJSHGmUSGNLQQJCCdt6yH8eO5U+D4hgbS+rYaQHZ1Pp3jbmuo8DqQyYAUI3Wxlj+N7vs6/0RFKqeAkhJJRJDPKxgT9WW6X6M45AYsRtZBHBPOyLx/Tt7oAJsJrSUYlQaNa59XEmWY8YSGXAzFGUwmKZNTytHDyRlOI9v8qy2tz3NtVUiHDAd+7B8aDv4AYOd854q7dr/oaqL6f2Mob+ukpswJQh2araVkZkLJJ3bn0nIesNA6kMmAm+cdgbUBWKsv0RDO0dbhBvG+ANsWTJAT+FlGG9jThCSWkSxAQSEs5hXz56ora2R8zC1Xe1iKUcI6UUmrmI+g2HgVQGzAxdwYr3+kyV2aJtkF8qYqki1a82Iom/h3aXVHtuf0go7vMRX2lkOR+wnUARSrLObaOSyuBSPGAmCLP9loiVWsxL6AgllE5SNpRCpSZxZKKoylg7jUul4mw06TphlLxTj0UeXTTLXT9CSEAkIakM2H4x0oxtmnfWWYl0QdsDBkllQuzxgSHWYLkIbSeOUMqAQLoQk0BoP6kTT3s7oU2mj72kC22G/hSxpcjkT77yvN7nGtAPj9i08plKSjJK7d4GSWVAK/b4ZxsNbQebPT7wJn78tBfNsEfbF1JrXZRII7AwNZjXCae9ngs1M+2mMS4BZWrQHyf1TAovsWyQ0Dj3m7vsxCsZcS+Z+Bxgh21+ElBfy36acGlaurAxfuEmBkllDNokE080AzrRNYiM847RhMpLI2kkNuCXpVGjldYJINycjaQo61voptzHXtNGNA1XYgIPsFAFxsZVha2G8V6Ctekb69ZPCaUKxZhtkFQGNNCq6rIDwSCxdKPPrNRJIk21Vl1CCckj1UazrD7I91NpVTaSUsXbaEzZdAb/2HC/kbBiUkqQoTgkFC+1WGI568YPTe2UhWYsavfwuVFtKuuWVA78uyqL9LnvnTzYbI9/fmMz1VQ8EGzAgaEv4gGkbYbqjPNQJxJn7wAz1HeSQuNnkNqfLngbSNRgSCxdCNdPCdusxakE8SrrVTqJJQI3gD9i/glo6RKk1RUjkkm1bxkI1V6rhT7BsBtVUlmX6q+QUAasPlIz0rDsvCOO47wjjmPbYjWnCSWWsgxcekuhLDK0FLQUyzBmc2X1WJXAAF+mN98GJIlrvLNAd3bi+HtIKI3ydUAwKRWTs2k4SJ4jmdQ2JKt/D+vHdVsQ7ktJKSuFkj5xKhsT605S6UMo93zBAgAXn7ild7s/fuqLgcGW0oZJVBt3/dRrEFHyLA5qhNLaPtTbOrrTqjjE9UJ1WlN1ZVVaKAg1N2T3OSWBqFITaVLOBkAnicSft2e02itsgkdHLJ2SRLBMcF/ySLXh9wfncdLSSthVjPprnEvxupyzj8XMSUVEcuBc4Geq+igRuQ3wMWAP4MfAX6rq//ZpK0Uo5ZxwwDMXOP9d/QkEKhLpWz6gG079tfcnXsecfepKFe9RpwpFaSQSJ52YHfV2VJyNo3mO2C7j6njC8QO5+yuGWLCqCmkqLEoV8iD+JbS1VEREUtWWkkZSBvvtCYfd7MnQNcBDc8nfcNCP0KYaiyp1nyvxObSfTNOW4rC9eX+JyOOANwJ/gHlaBVBV3Wna51oLVPp8zKplDi8BvqCqewNfsN+XjQOeuTCNZgYsEXt95PXc+aMmkWRpU6qUpVAUGaMiYzTKGS2arRxlaCGUo4yyqLZQhVUW4hcF9IsDan3TMkpVXxoSq9RlgQeZU4cRSk+2bExUfYyG1xcJ28p6sK9kkt7AD/BO7YVkzQ16qbjGSTkzsamobG9xKm8CHq2qv6eqO6nqjitBKDBjSUVEdgX+BDgOcNb0I4EH288fBL4EjBUP+qi9nMQyidprwHhMovpShbLIrIrJEAtqCKIssmp6Fwz07t00UopWZW3vbFjuqjupAiOfVLuMUd4Ri4h6YnFqMKciI6jvJJhYBRYnjkwSiiiZbH+J0XtJKVDVCfO6+bJQL1mXaFLEUpNkIumn7ZjVgFlPZYz6a22Ryi9U9bLx1ZaPWau/3gy8CNgxKLudql4DoKrXiMgfpA4UkaOAowB23313btvzhAc8c8EPOue/cyCX1cKVf/Uy9vrI66HMKO3YoCpoYdmhtJKEQziBl0DdFYxTGtWJj625FAd2lJTyC4x2THFkUrkSxyqv0N5SpWqpZzvOUltAKNuLhHLYLf5m6QenBvxMmsQCrSqumoeYI5aYUCRBXiuMfis/rilSOVdEPgb8O7DVFarqadM+0cxIRUQeBfxSVc8TkQdPeryqngqcCnDggQc23lBts+gG2P8fjErsgncM5LKScPYULc0griMrkVhSceOrOFJpuG5b04sohPm+WqWVyuju6oW2k5BKqm/WPRhtEAtYiaQlt1icfywZ5BgRyvYQr9IglE4VVcqroQVtUgt020/CevH3VZZYXJqWLvRZ50dEdgP+Bbg9hqtOVdVTWuoeBHwDeLyq/pst+zFwLVAAI1U9sOVUOwE3AI8IuwisH1IBDgYeLSKPBDYDO4nI/wN+ISJ3sFLKHYBfTvvEGzQmaebwUsm2DAorCZQ0fxCJPjtJRUCdhkyMuFARTKAWi+NUNDCmK17acVKLWCO9GQQMzag4S2YlnZQYlVcKLi7FfW5E0Qcqr9AzbK2qwXqrutomb0anOPmJYzVXa7XVt6OEMBH14wz1vQaaEXCsqp4vIjsC54nIOap6aVjJOjS9ETgr0cZDVPVXnX1RfVqfzkwDM/tVVPWlqrqrqu4BPAH4T1X9a+B04Cm22lOAT49r67L//kXrPimoeX5tUC+/maEW9Fhk6EhgURC7ZYsZ2UjICsgKQzJSiNlK85cSq29w5dhyI+loWcWsUNvscZYsnJ3Gxao4O4paqQmcUd8a8m23U6lhUuNlLIF0eX8ZiaUkF+Ufzv/r6d3w1USXNqAPobSR1qRkkWhnWWq7HnAuxV1bH5uKql6jqufbz9dinJZ2SVR9LvBJljjJFpFdReRTIvJLEfmFiHzS2rSnjlnbVFI4Hvi4iDwd+AmwpNwOYh9qF03viMWpvKqKsP+zF7jg7XUV2P7PrteL9w+o0JYoMCSUvd58MtwsQ0rIRmIIwnlqAYh46cCrtdxgbHeoER38YCbq//OTBS/F2Da9bV/Utmlm0E4NVv3FqtYqN7DYzbjLdTjMTtwgF+pqL0cmAJuyEQDPPf9JvPWAlUl+OCk6pZQeauXeEsoSo+lrxvkJ1F7TDIou6bGmj9n/OBF5b1B6qlXdNyAiewD7A9+MyncBHgs8FDgoPgtwtpgH8N1tbQMfAP6Vajz9a1t2aKIfv2u/KFMFuEZV90ntXBOkoqpfwnh5oaq/Bh623DYnTc0SEktMKGEdGAimD1JpWWSblTSKQO0VeHiJqLWdYEnEkkdGRQqIH9g1STD4MhMGYwf7zLKLYgYirdtOBGOvCT3CHLryf9XsKbGnV6wOs/sdoTjiyddUREOEPiQCS1N1LQE143wtgt4/FL7osFv8DWdd/y/A9LNs9IlTsZLKaar6qs6KgIjcEiOJHK2q8aD+ZuDFqlpI8/c4WFWvtg5N54jI91T1K4lT3FZVPxB8/2cRObqlOz9U1f3H9PeCtn1rglSWi7ve6Xa9SeSCd2xpSisWbWQybt8Ag64MtNkiRu1VGCJJxCGimXH2VQEyrT6rIRjxhBNIMO5YRzCB8V6s3UXFuqZ6yUUrnX8sfVhiiY32MUSanl9tUkryfjiJhTXoXuwH7ilKJW3naZNWAttKw224FvAY71uiLWdCFJoxGuNS3Nf7S0TmMYTy4RZvrAOBj1pC2Rl4pIiMVPXfVfVqAFX9pYh8CrgvkCKVX4nIXwMfsd//Cvh1S5f+rEe3W+usC1IZMHt0Eco+xy2QSSWheGkkfPcFY//AjgtZQBCq1edQgskDL66ykk5qqi4nAVlJJRRoEKmRB6q9xtF4JchkgGPs8dX4XDbiVV500V/wpv1Wf133EN4W0Z4PZ7onHEcs/rxlvSyTiZwEwkmnvO/YpfbWw6W+70JP7y8B3gdcpqpJcUpV9wzq/zPwWVX9dxG5BZCp6rX28yOAf2o51d8CbwPc7Pi/bFnqfFeO63dXnYFUBqwI9nn9AlJgRvzcSCpSmE0zGrYJFTs5DQlH3PgQEIxUBKNWFSYAmfXYUrx0QlaJQWLVXQ13ZQ3cjL3gIkbySUgpcXCjWAkljFMJ98fIA7fiPFCHZawxaSXGSs7+e9lFckM+jcSTaRWUlit7P7WHTaXnHTsYeDJwsYhcaMteBuwOoKrv6jj2dsCnrAQzB/yrqp6Z7IvqT4BH9+mQiOyLIZ8SeB7wSuAxwOXAU8YFUQ6k0mJ8bcNgT5kc2WJFKmhAHhCoqgJDuGD8EoWG8d6rwcAc4NpS8XYVJ414EgmkHBcf41/5cb994vnwgY+R3SRVVkkkdanEqb3yoG6+VohlkpiTvu1N2kZKCsnHEEpwjOQ5Z/7f+yc75wRQm6als04/76+vMsEIpKpPDT5fCezX5zgR2Qs4Bbgf5qn+OrClReI4FTgBuCXwn5iMJk8DHoWRdjpt3oOD7YCpY+/jB/vTgPWNkQqLmnVua2yRrn8FPg7cAbgj8Akq+0qMHVX1M6r6EWBRVT+qBp8Bbj3uRIOkAmO9vgb0w14LJyMFZC4lSmHK85us6svZ10OJBJISiVFvBSYVjfZZIURLOxF2x4bBi05aidKwWMu/+Ru4GLvcXzUERn+R0J7SVHWNS22fB3aWEKHq67hLHuUlmpfe7XOt93olsKTYjr7eYeOkn2h/m1qr7/lXUkoBTN666QQ/rhZEVcN0zf9PRJ7TUjf0QIjtPJvGnWjDk0qYouWCt28Z4lOmgGzRGOQ9mRQVf7jBX+yXwIHL2+O9dio8KCoTdbaWYHDyH4PYE99GVTe1VgrUiSJFIJklFmeEd7YUtw/q6ezj2BQHp/rKrC3Fqb52sDErM0Xdl7pfveWexxVlHV5d49CXhKYEE1e7pkgjCbuUCMAXReQlwEcxb8rjgf9oOeztInJLVb1OVd8RtPWHwOfHnXNDkkpXrq+BRJaGPzzhZBM6sCieTPJthlwcnBFetDb+1xDbWqodiTKqtiQgqGpnn54r1AjENCZSlbdJKctdFyW3Ek1OGUg5M7Sr9CGUCQf73hJH3L47ri/JxXVXGIXmLJbjFulaE6RzHvW35++DfQq8Nj5AVd+dakhVrwCOHnfCDUkqA1YG+VYh2wb5VqCs1F9AXd0Vl0ng9UWCHCBNPmGwZK2uBuTkDPXqvzvicOeW4HNMKJkoeVZJJXlWWinFNNfH48vvDyQWV9cRSi4lud2Xo8zXbt72hSUTCTTJpObtJXX3Y0cyq0gmDqWOJ421oP5S1T1FJAPur6r/tdR2ROR8VT2gT92BVAZMBdlWIVs0hJKNsF5WdqcQJIKsCCT1VzMaJFP7G++zqEfi27Isjm/BE0eDQDJFMiXLKvdgkeq7WHJxhJJKzdKFvEY+LrFkRSiZJRIXELm9oZVIJhnwQ0KxZCJRHjDNAknOfYyyHp/5m/f0P+cSochY9dda+RVVtRSRE4H7L6OZ3j/kQCoDBmwAHL7zUf7zmb9qSw81oC8KzRiNUX/FK4bOGGeLyJ9h0sYshe/a7C8NDKQyYCrIRlZK2UZNQvESSId04utl1CQL6KqvdanG5ger1cvCuk6lZcupJBRX7qWSTMmysjLKZ5Xk4sryrL4uyqSoSS5YaSVI25JT8v7LH8jf7vPVJbXfhcN3Pmo8saS8tfp6aKWkkz4qsUDlJS3rpEi4mmQ0pp/xm644wenCxKmsffVXgGOAWwAjEbkJrG9MjyWFRWQn4GRn9FfV33TVH0hlwJJx95cucMkbtnCX1y4wt9UGOTqVREgEJNRawcCfIpZGPV8/II4sPK4KZvRqL/vXReun1V7me+bUX4GqK4yUFxv57shEAg+wiewqUXCks6XMS+EJZV4KNssiAB+74iAe/4ffnuh3OeK2z5yofi/0y19T/z6pN1eo8mrLP9bGTUvMeLxU9PH+WivqLwBV3XF8rTpE5O8xaV9uxFyyYC5rr67jBlIZsCTc9VULZMBd/mkBpHIj9hICaVtJSjppkARUZEN4bA/pRLSKxo+IxEkoThoxpFJ6z66UHUUEcgmklsCWEqIzeWTkVuzSsuSEecBK5mXkvcHmZcSmGRnrQwmkd7qT2GsrLIOxqVgkXhLYHZtKGBnCLICz6is/9krTspZYBRCRWwN7YxZFBKAlo7HDC4C7j1sALMZAKgOWjNI+PU7l5WPBQjKgRSJpkUw0IISaqquvdBJIKGSBp1eLyssRimQVocSqrhRqWYlTJOMyFVOXYpwR3h2XW5WXywO2SUZkKJukYF6mE7eiPVZSrCFIIy9ZliSWZExJh+dWbHD3aGQgjsikpyfZGT97a69600JRZozK7r6tJZuKiPwd8HxgV+BCTLqWr2PWaGnDDzFLEE+EgVQGTISDnmYDbHdbOy/Mesc5P7orh+55Gb+7encAdrrjT5bdZi+7yoBWKNuHS3GA52MW+PqGqj7EJo18zZhjXgp8TUS+CWx1har6vK6DBlJZZex39ELNvTZ87i4+ccuMejU5bvlT5brdhHwrjczDtQDGhO2kYUMhUSdUbUV1ulRelYosikdJSCk12wo0IuqXimbaljKITym96ivcl0nppZR5Gdmtsq30xXLsKWdd90EOu+VTKqO8TWHTJq0AnVJKQ6WVOi71Pcvq35e7bPEKYHtyKba4SVVvEhFEZAdV/Z6I3GXMMe/GJJS8GPpnOx1IZcBE+N2e4qPknR0FQIMnKUUqNdKJCShpX9Ha8UmVV0gatc/xXyyRBK95i23EX0NLKpflII4/CVVfzr7ibCnzUrDJft4si1z6013YNc8pUX579W7c6o4/7X1ekSypAjt856P8wH/G/7R4TiWIRVLR7u57HF+SMringh3D8jZ7Sovd5IwfL6T7voIoStmu1F/AVSJyK+DfMStE/i9w9ZhjRqo62RK6DFmKVx0XvXlLPSfV9gb3vltfEM0NoZR207zayjko83qZ5pY8sqhuDpqr8e7KjOThSSajKrd98OulZHjpJSQgCcjEGecdsaTIQjGDgNpI6fBzSfV5UiTtLc4WExjpK08wlxLfeIHNy4gds20AlMuY+4pknPmrU8eqvM667oOtbCpZ1nQjzrKGZCHxQlrx5o7J8/r3sK3ceoDlWbVleXqbAUrrUty1rSVJRVUfq6q/VdVXY9ZHeR9mjZQufFFEjhKRO4jIbdw27lwDqawh3OOFqz/jmgR3ee3a7t+A5ePwnZ426y5sF3DeX52ksgZYRUQOEpEjwjJV/bL9eM8xhz8Ra1fB5BA7Dzh33Dlnpv4Skd2AfwFuj9HXnaqqp1gm/BiwB/Bj4C9V9X9n1c8VgdT/ri0puYk/PMEY53Mq1ZdaKQWoSV3he5RUcwXltbQpcf3Ak8xLKLXyQLXl6nk7SbA/gqpV59Bci95JK0YtlpFnpfVWFUqBTJVShQzzwGbIxMtqdcWxOFtLTsk8hVeNzYtyC4FFSubtPPB3V+/e22Dfqtqi7hl2+O/9bbpSapEtJ2HULkCaUkqqblgeux37fQl7zLQXD1sGjCfzuBd3TbzYJwBPTZRfilmMq9X7K1zGeBLMUlIZAceq6l0x7m3PFpG7AS8BvqCqewNfsN/XH2JCsQPk3V+8tqSBO59UX06hprqas1tKxRWquayKqq7yqlRdvjyL7C+Ryquyk0SE4Q33aSIBRyap8mqfU1moCmUpLI5yijKjKI06rEQoysyrx0JD7XIy0joiqVRfatVfIx8UWaAU6tyUl36uw2/zjHR5kMYlia714ANbCpk01V5x3ZoqTCo1V5YbMnHBj17tFajFQjVZnnPGFScs4S4sH4VmjMZsayQ1/u+r6o/jQptx+PdX4oQzIxVVvUZVz7efrwUuA3YBjgQ+aKt9kPF6v+0P8bO2PUgspdQG/dpnibaYSBqbVuQR2k6c/USqOkBl7I8IOJRykvC7zIGeWGy8HIHtxO3TgFhUhaLIzN/SEIoqnlg8udiOuUEkJJgU2RgCKb2hPt5nJBb1mynv93B0SSXjcOb/vZ8zf/eB9gopogAvoXgpJTbEhzaXmFD89ywimIBEnI0l2HQuR+dmY09xUP/8pLc1YlS5Wce+W6zECdeE95eI7AHsD3wTuJ2qXgOGeETkD1qOOQo4CmD33XdfpZ6uXezx7hNrD/GPn/mCZbW318LJneP1gNnj+mvuxC3u8N9Ta+/w2zxjpiqlpeDw/V7JmRc1lgRZcZTaJ/fXeLSZAVrqHgR8A3i8qv6bLTscs/Z8DrxXVY+PDvu8iBwHvCJMJCkir8G4C08dMycVEbkl8EngaFX9nfT041TVUzE6QQ488MDt5k245wsq9VZoZwhx95cscMnxW3q1t8e7TjQfpFm+VGLZ682BystKCJIp5SbItklDsnLk03jHYunCVQ6uu3YPWiQPjY+N0fXIqN1v/7oZpFsZUlyZreDsK64fQqg7V0qETNWXme9mkMlEWwea8anxq9iVUPVlvMRcHQnqL0NyifNkZVIvs9KBSyHfamuJ24C6JBO6HtfsK2HdhKdYop76Nmm2OQOUmlFMx6XYmQHOF5EdgfNE5BxVvTSsJCI58EbgrKjs7cChwFXAt0Xk9OjYY4H3AleIyIW2bD+Mwf3vUh0SkQO6r8tomNowU1IRkXkMoXxYVU+zxb8QkTtYKeUOwC9n18Pp4p7HLrTr/COCcckau+AJBZLTokmJpUYmtk/iBmNXGKvqJEEmJMgECIMWGwgIpdZen/fSE4chB0cPlj0I2KPenlYXmSIWF8fijPOAX8K4sqtUhOGIJURmE1Gaz2UtO7ErC4/Jbe6vUP2VS7ueeus1ewGwwx2u9GVtKrA2ewqlVsQSBC/2lVxqaq+2YMiuzykbTG6OV7EXPy6GZbWhvW7N+GaMVsZpZq4VEWcGuDSq+lzMWHlQUHZf4ApVvRJARD6KMR/4Y1X1euCvRGQv4O62+BJ3TAtO6uoy3aldZur9JRhf6ctUNRzNTgeeAhxv/356Bt1bcYQD58SD6GrAjrHqBBOBHx5zDPu8fiFJGMlJWShhtNUZBw35IiYKPCmIRvdUI2IJ2kPxpOHrBQN75QFWtRW24aSVUoVcjPSSIpQQoe2kkWAyTCzpP7ulhrXVnjIX535fDmLpJZZcXES9JYsz//e9dZJKDfIpAog9vGJCsd89mQTnrEksMFM3o35ZigXgcSLy3qD4VKtlaSAyA4TluwCPxQzmIansAoRRsFcBf5TsiyGRLiIJ6z6kT702zFJSORh4MnBxIJa9DEMmHxeRpwM/Af5iNt2bDu61ZaGa6a8Vwhiw7lD+fB+y21++audrlXo2CPqpvwCzKNarxrUXmwGi3W8GXqyqRWQeSI0oUzMFWE3Ss4BDbNGXgHeramfuoJmRiqp+lfZh9mGr2ZdVRTTrjT2a+s7m93jniVMnqSuPPoa93nKSdbWiJq00+guNa+mN1HGOdRNSB1Avi+wkNWmlTToZ10+v65seKunDqb9syvvA8yu0o9S9wtyCXd3nyCUjs1P28uf7VOfuSTBn/uY9TYIIbSxObThJSvtUZuFGSpceUkqwr6EGmzFcxv3OOj3bajEDhDgQ+KgllJ2BR4rICCOZ7BbU25XxqVcmwTuBeeAd9vuTbVnSFuMwc0P9RkTTeJ0uv9srFrj0dVsax+/xTmtLST21y3jn9npLQpXqBm/3NR7w7YCdIoKqTmLADgf62mexp9UGiXjSMB+afWw7/wTqxaXm/IoX6mraVpr2FFc3d0kmA3uKQ46SIeQiE8WnOIIJySW1dnsvicPdkHE3JxUQmbSdZE3Dfkwoocorr1RmGrQvs/RUc27onXXG/14dZoCqmSAIUUT+Gfisqv67iMwBe4vInsDPgCdgouBT57kfxpZyrf2+I3A3Vf1mqr7FQaq6X/D9P0XkonHXNKRpWStoIZqJodW2LLfieCC23y9/WZPk3Bjo4xK1Xu6bCcvt5uuHW1A/PkaccT1x/to5JkDb2NQ1aNRV+5UkEsIZ6Z3txJWFOb+cPcW0U9ULY1Rqba6GDrVtFcVxhBJ/T3lyQZpQoCGhaJZVhGK/kwG5QC7oXMZZ3/7HJV3icjEuRsXFO/WAMwM8VEQutNsjReSZItKZclpVR8BzMB5hlwEfV9VLWqq/E7gu+H69LetCISJ3dl+ssX/synGDpLICOOBZC1Vw3/x02/ZSyoABPbDatpaNgtIGxHahjyA1xgyQqv/U6PvngM/1OFTCOBVVLa2k04UXYpJKXmn7eCfgaeNONEgqU8R9jlrgPkct1MoaM+c+EklQdtdXLTT3xzP7cIYfnG/Pt57Enm/t8g5sget0IKEA7HXKybXdrX2CprTi1FoJ6cPXr21jDExuX9iXCaWUWBKZNFV5vN68L6MunVTlgd3EuwuXPjtxbu0vGZWbsXeAQrwXWN8YFYfy5/vU7C1TRUqq6UzpErkfh1JLKKUE373EktvPmZgtn93w5bIwdEbUry3PnCtF5HkiMm+35zPGG0xVv4BZfvh5druLqn5x3IkGUpkS7vOMYPDvaetos624fZr6dbpmR8FgLaOq3pKIJUT0flz+si01YmmQTBexBORSq99CNqg02k+q1zpUYsnP0d/GrLJVA6Te5de5HYsnAI2IpnIPzqXaFy7MZY6rBz72QRa8umXPtJYrRixdqKVniQgl2KeNnGA0PqslIc2rbXYYr/6anh/WVPBM4AEY24tzPe5M+GaDKw8DHoxxnnq2iBwz7kSD+muaCIzFoiAFnP+2LdzzGEs4HdJJI5iw631ZUsDHhIgs71c+P/0sSUQgSeN6iyHd29slKksY8LvaaSB0DHCfFTuIaRWH4toK2nRBkKk4vYpEzPcsIJhwc/tShnmHcGEuUz9NLJNmQZ4mfES9M+aHXmGx11dsxK8FQkb2lKhew5YSeX1pltmJjSUTCc4xI/RL07J2JBVV/SXGkD8JPgPcxLDy49rCPY9NqK8mxL6vXuB7r04YyAcMmBChjWU9xJo89GHH859fmEEi88ippLXOjCEiL1LVN4nIW0n0aMx687uq6r0mPedAKisBhfPfZUggJhVvCuiyqYR1E/tbc20F+0L86LnHdvc36ptvw6ZVkYTK7fKXbWHvNzQJszPGxEsG0Yki6aMmwfSSTII6NanDCSeRtKJVGpZa9Hzk+iyJz06yCFVfocQCRN5eNt4ksqekUJAxT0GhJgtyIVV6mLIjsj6bUIvdx3gfuh+f+Zv3+NT4sVtyLWV+yjLtbSYJV+OsRUoJ1V25VFKKz2YtVqKfrSQwzga3BjgFjFcY9FhcK4EzROQRqnr2JAcNpDIlnPeeDkmiTZ2VIJga6SSO+fGzj2XPtxkbyZRj9TzisBLNlAf9abVuxZc/88LO4ztVVTUCkCoexRNZjw6lzuFYKAqCDLRek9lNA5VX5gnElGVJIon+TjiklNaAVmhGLkqBiUuZRykxKWgLG7Oy0kjFs7QtQ+zzfjkGL8t03i9oqr4iNAglw6vC1BFPVt/3xbNfvIQrXD76BD+uBajqZ+zfDy7h8G8AnxLzIy9i3zRV3anroMFQv4IYK6WEkI7PqYE5ZVjWln09EBvzxzlfjUNsTE8Z5pNoM7An2uzbQW1pszHTtMZ3b0MJd4kzztclGGjPQDwpsRTBwk6Fi5KPmpjU82ulUUte6UbaMlK/p2JYHMGEBvna/uo49URjiERz6/2VwR8/5gT++DGrv1CXltnYbVVsnz0hIvuIyKkicraI/Kfbxhx2EnB/4OaqupOq7jiOUGCQVFYMNUJpI4wutEk3IVZpprT72WkbXYMooEXSoG60H1e+HLQkmJwUoXorJJpwfxu5xNH1KRhJxJBISUYYU1bYm1j6bJ51OHVXHquUJkD583048zd1Fdjht3lGUkqZCE5iUY3KehwbZSNWCVRfTu3lFnETKDdV1//APzuRr35yeWsITQJlvKSyxgSZTwDvwqTBHxvAaPED4LthfEsfDKSy0miTThLlqUHQqcH2ed0C6n6tjvXaahHnE+jHfvTcY5fvegxj1Uy9Bvuk2qypAut7zta+xCq1QBKR6Lvbn4qanxSGUOKyJkF0r2cv9u/yiGVcGpc+OON/3sURt3tWVeDGIFXs2gDdDUSSisZSi69jJZXAruJVY6uN7cRQH2CkquMi6GNcA3xJRM4AtrrCtnQyDoP6ayWxlJlygnziQfhHzz02GbvRNgYlc3r1RMrIf5fXLt+jDWgY55PpVqb9YiYkDlpU/THpOHQP9k1pZVK0GfJXAi4wcuoBkrEKrA0p1RhUUgqh2jiSXAJoJtzvSSdxvydNYWLUBypo2b2tMVL5jIj8g4jcQURu47Yxx/wI+AKwCdgx2DoxSCqriRZpJVZ1pTzEGrOxRFBgfb89cBmDW4pQfn7fxCPTcop+UskS+zhGOgnP2yAMqcjEE0oolQTSibOjOMN8iFoUfRfRxAtxuWh6qgh65xlW+053luLlSCnTxhm/qE+Cj7jDsyujfUm/6WuC2b2BXrDG+Up612Arp5wOaRxcRH1nnTUUp4JZmwpM6hUHBfZqO0BVX7OUE62dp3KZuMeLFvw2a4yNTVnGs6YCdz65Q/pcoqF+UuzzuoXqfG1dmZqdZAptTNCXOMgxtS9FIrHnVxa5D6eICWgknUyh2B5cjVJYTr+7nBJ8xuOgnhgD/n2f0qmdmQ5ix5jUtoagqnsmtiShiMirx7XXVWddSCqXXPUL7jy+2upjibp+BymhnKu3obl9WsMxqGF/CD8LVx49NrMCUEkmsW3ly595Ifu+ZmF6JDEpUudtc34IB/ukZKg1aaSSUqpyqNtRwr/x5zYbS5yZOKceu+Kkl660LAVCrkoh5kEqUUMuYqb+JeWaklZCnHHN2zlil+dWHmHqHKN7IHFJWou0b/dOjCX6ez93wUs2F52yhXu+YFqTzpYO1DozpVNNCSJyD+BuwGZXpqr/kqj6dyISLxRWawoTnf/q1M51QSox7vGiBb77pi2z7sZ0EKnFRJvONK3P7hIf6ljtte9rmi9iI0Ax6uss0VB9TaBec0Z6SHtztWFcnYKMLOF0U2hm1V2ZjVEpWSSnICNXZZtkzGvhb/i8D+KcYJCeNZy0UmqTMNrWaPGq30r1Bfa3DXSCoQosjO068OknU2yW2vn2O3pheiPeGpRGuiAi/4jJ4XU3TFbjI4CvAilSeQ/jbSetXh3rklTWMpYb+6HQGMRXKgiyN9YImcwSXWvUxzmiSs0oUZMIsuXeuYh6FBNZr0ouqxcAuebRcQvKkGudtkCC79NAn0CuWb+Xdfw5sB9wgao+TURuh3EvbmCpthSH9UMq9uFxv/PdX1rNri95w+pJLfc8ZqHfICvR3/izQ6xCc1Ho8b42FdiMxp81FPc1EcK0LaUKuaj/G9YhqJMFn03ciRji0MyormzalUUrWcwzIrNxKotajYDzwedtTgqRgkUXr6LKvCglZnZRWFJasyqwn70VgCN2fZ6VVqx05VyNXZbhMLZFxFdrIKXODLzEIHByyaX2fkw7E72yPHPRDHCjXUNlJCI7Ab+kw0i/HKzNp3G5CFUyqwifjXgZ8A9/NLvyLrdqKvl8XOOMhAp/+KYp9WuC8lmiITBM2EkzYJhjwr8lJqV5mdhGZVaRigojzVjUjFGZUyAsau7rLpZzLGrOoho1V4mwqHN2y9mmcyySs83XEUo7DheqFCv0cK/YYl4iRvWlWk8REAdIhmi7xDYBoRbbEu2K3oepoMQsQ9G1ra2X41wRuRVGbXUecD7wrZU40ZolFRE5XES+LyJXiMjS0pCuot7zXscsVM9y6pxdz1fK4CiRt60llpBcpJT0crx+P0gx5Qc7ekFjO/NE6V38tUmzDLpjVcJjw3q2LXdPtLYPoFrrQlXQEhtXkFGWQbkKZWlW93N/izIL/mYsljlFmbGtyBlpxsh+3lbOMSpzRmXOomb++6LmbNV5QygBsWzTOUqEgsySTGZTtmSWUIQCs5VgVWdWYtkOcMZPT6m+aFkZ7x1TjkEqcWTNjuKQkEbcMzRtFbF777q2tQRV/QdV/a2qvgs4FHiKqj5tJc61JtVfdnGYt2Mu/irg2yJyuqpeOvZYne0EwQtJsdpqDDrzgWn9s4T13SCaGmCmeCPcS9KWKHKSU7X9Rr48pbqzhOATUMbtRPeouklRUklfxbTlfjC1F1GWVhOTV40XZUaelYAaYzolRZmRiTIiY46SUWnWT89Q5rS05cKozCErTBS9ba9UoZRKRVZSGkJRMQb7DlvLSmHVlhwOMzE6skgZ6xvPVzPg0e/rmBqv6FiwxoijCyJyQKLszsB/27XuU8fcFngGsAcBV6jq33ada61KKvcFrlDVK1V1G/BR4MjeR6/yj32vLctXLyXRdh2xdAL1qVs4hbN19j5+GX20bXzvH6MVH0u4/OVbGitBQkoFVb+etuSQsaoijrSPj/VpaSL1YEOSCe8HdYlEgzrmu5VewH8vyozSqrgKzXyZWlVXUhWmoX1FfCbiPihXm1VWGGf85M3VF6cKU0U6DBM+1X2ITCpbSlh3jIQ8dXIZp/rqGVEvIruJyBdF5DIRucQu8xvXOVJEviMiF4rIuSLywGDfj0XkYrev41TvwGQdPhWjAvs6Zly9XEQe0XLMp4HfAz4P/EewdWKtksouwE+D71fZMg8ROcre4HOLG65f1c4lEQ6YY/ankBSX45m6NgfUNtVXOIiviCgetHnEbZ9ZO0/4t6EKaCOWhOqqVj9Vx5Y32zH1qnJDDBXhgiMW174GdTzZRMRSBn+LgEi8ukyr1QBjEik1VGUZ9VZhy2pqr+CVLDDnWWmslpRyxo8X6mTg1WBU0ktyTRbSL5UPfgyalKZUs2LSyrh3r997NwKOVdW7AvfDLNl7t6jOF4D9VPXewN/S9Np6iKreW1UP7DjPj4H9VfVAVb0PsD/wXeDhwJtajrm5qr5YVT+uqp9027gLWqukknoMaj+Rqp5qb9CB+c0TGRbtj3rJ8VtWpocW+x0dSADxgzRmll2rl0I0OIfEEg68bTrcuHyf1y9RWumQMlwMy50Xvp+UWJJ9SV2LP1eTWJrkGetGiAij3r773mVfab30kGS8dFPfHxrogYhYmsvONqWYrFbHkUxoV3HG+gL1xvqSkkLL3mvUrzlYu4qE5NIFn/4+QRQJe8qKYjqEgqpeo6rn28/XYhbV2iWqc12QKfgW/VuvYV9VvSRo81IMyVzZccxnReSRk55orZLKVcBuwfddgauX0tDdX7zEgXQCpGbkndLKOEJJEIc7TzwgxxJJoy+urn1hl0os33uNIefv/eOW+rkK+PGz7uLX1bj8ZVv8Fp4/7kft+ltII3V91TH13GdJacgSRpJYCMsqqaWSVugknDIil7A8/AsEbsZ16aWSVIy0sqg5ha3j1lZxnmOLmrGNjMKOvS66fnsx1juc8aNECpUUocTr1Lc5s/QcwaZvqDcemJ2b6fTjnEbFbke1timyB0aC+GZi32NF5HsY9VNo01DgbBE5r6ttjJrrnSLyILu9w5btgFmAK4XnY4jlJhG51m5dkfbA2iWVbwN7i8ieIrIJkxLg9Bn3qYGalGJRm2G7whZJIiXVxJJMyqYQE02nCozpvlD7vnrBtFsaQnG466ua9+Lyl23h8pdX5CKl2bKR2RzBSHDt1bVIRRytm9TuV8O+EiIp3SzxJkyApAosUnP5fZqxqHPelXibztVUZCbWRdimyqI6DzAjrWxX8EsMi2d5b1txa6YkoE4aScSm+J93taSV/pLKaU6jYrfkEpoickvgk8DRqtoYuFX1U6q6L/AY4LXBroNV9QBMhPyzReSQlh4/BbgCOBrYAlwJPBVDKA9JXqJZlCtT1c32c69FusaSiog8R0RuPa7eNGG9EZ4DnIURBz8eim7tB65wx9rOlxrEU1KJ/R6rdiZRkaXtB00ppU1i8RLEBMja5jEWl/2TaTNFLEBFLDECycURTkpq6VL9JYklaJ9Y2nBlE2DSx8oZ2UNje9GmArPqr662/Jr1YbzKdiahhDjjihPM9oM34WNYCIgFgvXoqRFJlwtxg1i2E18HEZnHEMqHVfW0rrqq+hXgziKys/1+tf37S+BTGCenuP0c+IyqnqSqj1XVx6jqiap6g6qWqnpdR98eLSIn2u1Rfa6nj6Rye4xL78dt7Miq/FSq+jlV3UdV76yqx63GOZeEFinCz77jsg60GahT0kvT+6vfNrW1UKhmiPu+umpz339sIZZXbOH7r0yQi5V6YjVYLLW4mJwudZlvr2FbkUqKWSbGpTtfLspAkqn/dQZ98StDOvvK9qYCayDO7x+t/uglEVuvYVNJLfC10qPUmIlcUsOQgB1P3wdc1rb4lYj8oRt3rWvwJuDXInILEdnRlt8CeATG+F7vqmoB3CAivzfJJYrI8RgV2KV2e74t68RYUlHVVwB7Yy78qcAPROT11sd5zaBrwF5Ru0qH6BsOkA61soQk0mg7PC5Cq+or1b+gjbv80xTvh315Q/fPrva//8otrSQrxljgJZak1FKSvN+hVJZ2M67KNdwfuRebz+57RSJ+P3ViCW0nfQknllp8+QTaaGNbqVRg2yvO+P7xNDzCoF4WIly8K3Q5noWhfpxLcT8cDDwZeKh1C75QRB4pIs8UkWfaOn8GfFdELsTE7z3eGu5vB3xVRC7CRMf/h6qe2XKem4CLReR9IvIWt43p2yOBQ1X1/ar6fuBwW9aJXsGPqqoi8nPg5xgXuFsD/yYi56jqi/q0sS7RNRNRag95NrKJ7oIysQOYgA/6k+jQ8BQSfXeVwsFZG5XShLTvaxa80X0cLn39Fn9MfO76iehlOBWtxnNPBIU51l+/1u8JuMuqcp9JieME8xIL1T4wq++5E9jGzLkFFQVxAZBulFJ8UKS6cFKtcn1ZlVUGqColJtGj8wAz11P3Bgu9wqCZXLLQzKTB3150NSuAMy59PQCH3/tV9R1CtW59p3RSP6yhIvM7SD+3S0EfSaSHpKKqX2VMr1T1jcAbE+VXYpJE9kGvGJMEbgX8xn7uJemMJRUReR7GyPMrjH/0C1V1UUQy4AfA7EllhtJ/asDWeL/UB3v/MVUW7fcDcLCvdp5Yc9DjQV+W4T7FdpNCK1vK916zhbu+csEQSgGa2+vX6t7ZMd7ciwwjsQho5mgm7I7UicXtLfGDk1jy8A07+rDE5HWW3vuo9L+hlGIGujKjECArjXQlmflMxsimeJ/TshY5vwjM4yLqM28X8VmLbQzLvDRT5G8oqLZqKlsJoyemxSltbvwrca5pQFU/aJ2e3JrR31fVMdZS3gBcICJfxFzOIcBLx52rj7y9M/A4VT1MVT/hOqKqJdDLcDOA9BPW9lC6QTdWE41Rb3UiUS+0hYzDNFVm33v1FuMBVsDdXmHabcar1P9K4l602liovk9HFUY9X5hWLsVhosmirEfWxxvgY1OKQKKJUbgMx7o6wY/bG1ISywqbuhKdwPl2t28znOzGEJEHY4SAt2Oi6y/v8BQDQFU/ggnIPM1u91fVj44711hJRVVf1bHvsnHHrzpCdVKAu79kYeUCIWN1U1gs9XK1U2in3gklkdqMW6qBUSVqM2gj3NH1YjW9oszHu75qwXtvtWHf1yzUh75owHc7v/fqpd3f0L6UbwNKGN08Ok94vXbTUvwiXKHqDC9xqCcQzYK761Rloq2qMC2D80iGilslEtTm/SolQ1XJMrNMsPNhycRIRqNgffaRmoSVc1IyJ4UvXyxzP7Vb1Op13GbT4Oei/jOMWCQjp6AUk7F43t77tbwKZF+kE0dKZaSXsDyolPq8wiTTR1JZYzgJeISqfh9ARPYBPgLcJ64oIvuq6veCfGFX2b93FJE7umDNNqzJhJJTxyxmMbHqKqHPlZAIIrIJB+wG8UjQXlRvbL+Cv67+XV+5wGWvrRNCzT143AKDiWvrjYg43Pe5GyyxxPXCav7eCT7eger+hPfX2VL8rINEeWSQcvYVY/eyNharOlOo2VdcoklnX8kim8qozJnLCkZkjBxJlLAoeUUwwXoqxuPLEMpmEZuQMqMQYRtmtUiwi3bFS4Fur1gmJ66utBIbeRJYW6Qz7wgFQFUvt67MKRwDHIUhohgKPLTrROuKVGqD9AzO7VAb9IP9fiCMZvg1IukilqA+TOmZtY04NZQv6yKS+tg7cWf2O3qBeWDRZdfRiDgVNIO5G6HYXD+2ZrwP72nYB09Q9azGvgGNbqwtVzU0gpNYnOFenY3GqLlcmyYQXKDMECmNpFJCnpksxC5zMSXMZaUnlkLNAl2FqCePTNUQB/XFu3JKtjkJRvDLDC8iLEpJjtro+pJMljYqlz/fZ/WyFHehkSQy8TK3SSttWM6EZ1y7a4s0xuFcEXkf8CH7/UmYdVUaUFUXmX+Eqt4U7hORzYlDati+5eUQsQqqRd2zGvC+6tY9Vgq8q2xWBn1LBfwF310bvqykHiTovif2NWwIZbN+w2YTXkNRbdk2k57FxQeomEE/K4L2lnB/526AS4/bQr7VBFimgjXzm6j9fr7fZXRNQRxLW/Ck62vt3pRSK0/aWEqbXFKhtOurqF1Xpb7mik0SWWYsFmatlVGZMVK3zopZa+WmYp4b7XaD+1xu4oZiB7OVm7i+3MFvNwSfry134Hqd53qd54ZSuL4suUELtuqIrWPtru0of77P+EorDM0yv7W6FEP3Pt9YUH0F3v34nUtta4x0ngVcAjyPKvbkmZ1HwNd6ltWwLiSVmko1VnmspuSSGpwDtY6fHxfwnVO2cK9jFiqXYpoTblM53XZoT4lP23rJbf0bUwfgbi9bgGCOMnejubeXvX4yO8p+Ry/UfpN7bVmopjbxrDIlmUnid9VqZ6WuClWLkW4wdsWLyjU4Z20hFkc4opXh3h1qJR2n7jICipFiwNhZ3Lorc5JRilLalSG9NCOhWqzyAMu1tDEs2wIV2SLbJMMYf5RFKUFhXvLt0rZy6ANeZ36KtozEfdEmmQTv2VTQYyK1ljSSqroVONlunRCR22OSWt5MRPanupSdgJu3HmixLkjFIxjAZ/mLxg+bgo+paPQrGNtCrVjYRDx+Js+XqJQi1M4XoW2fLc9vMjErd3/JQk1ztFxcfNIW7vmChYZa0Kut7b0LiaIR45Pqc9yeK5e4TtPWUmvKqbywOq8w5sV2oFSXQFB9cGNRGjdjF7viF/TSyoCfBZ/ngxxeoX2l+ryJXBXYBpj6JQVQsEmN2/OiFszL2l23vhM+JiXUG7O2RmeHPtqPNSSpiMjBwKuBO1FfcCu1Tv1hmED3XamT0LXAy8ada32RynaEez9nwSRb2M5w95csTL3Nex2zsJ4UsdstZmVbOfTg1636OZcLr0LefvA+TCLJ84DOQChV/SDwQRH5sz7rp8RYP6SSmq3X7bArf37S6iRneG6I30qYqLUKlCS4FDcblnqd2j53/ugaa31pUaMtGbq0tWrafgcpQeKV/lIqi7br9KooqUQYqP0uDU+wmnueM8g7XWX9zIogoVEf+7uVQKbNlC6YYEassX5UqjHWk5HZ4EhKs/yw+7woBWTGqyyXklIySrHLF0tGIRnzMgI2UTBiviwo7ax+XkcUFOQIJSVz5MzL2n+9D32gSevnkknWcncFE40+76/7OeNsDLNy3llj+D9VPWOSA1T1kyLyJ8DdCZTfqvpPXcet/aduUsTqjUgvP03EAXnjgve8di6LymKbS2gvsWqfmkorUOtI8LlL7dWqT5sUApe8YXIyidtw0LgsobKKxv7mwW1EVSPdwBPMk1VEWUF53ROs2u9Tv4iNb3HGfDUZhDNcKpbMzGSzEsrMkAfGtuI+x+qvOc0pi4y5rGCxzD2RZFL6hbvmy5GJxhdhPit8sslMlc2UzFNQoMzbc+TWI2xNq8M8Q9uvXanvl9y++Tg1ftnO1F/AF0XkBEwQ41ZX2BVzIiLvwthQHoLJpvLnmBxjnVg3pCLQCCxccQQPTc1rKfjrJ7fBrCmULhxhhAGOrr4njZBgIhJJSSpJCSXq91Lvz7Tua40kpKNd+/J6U5kjmHH9SE0uUsQS8oqzlWDuvzlMKrJWkKzKD6beZmJJxZKDS+VSeEml9Eb7UtQHRwJkVIb6baLMSUFhkxHOi5FEYqllUQo2Z861eMS85sa1WEbk2Yh5CuYpKVHmyey/klyytUcu4Tr10Top0PFc9Pn9VxB91F9rLDjyj+zfcMlhpTvm5AGqei8R+Y6qvkZETsKQUifWDalAC7GswsMVEwkkHjityjOFcs58dqqt0EvMVAwODd45vy+u1yaptMzmG8b9+LgVwncWjNdb1ZHqHoRqvrGIVWMx8YSqLr+DOjMrdVb2bFUd5Nozjbm0LraaqCEKjJE8A8oSMhH/twAjqYgaQkF9brCyFE8wpZg6hQjz9uEpRUxwJDCfFcxL4aWW0hNPziYprIeYQAmbpWBeFChYxCSrnCcjx8TAzNs21wTBOCmlBJ0T6qs92t8miKZvk8JTE8mkl+BU+z3F9lYYqvqQJRzmYlRuEJE7Ar8G9hx30LoilQEDBiwPW6/Zix3ucOWsu7H2oWtOEklCRI7p2t+2hovFZ0TkVsAJwPkYGn3PuHOuH1KJ1R2svJGuEWxncf67tnDg00+uz7ptvil1k7FArZOSMGpSSaTGSQWE186V+twmxUizaqNegEsnjEtJwpgkxk/04v4ptezFNTViSqUXSq3U24FYaKnf2KTRXrELRbl0+Fix00SCltYKU5SCiDHsiwhkJVmZmVxjgU0lE2UbOWUmzGUl28qcTDJKMeqyESYCH2BeK0llXgq2Mk+hJqPxZrs056IYVdo2cjYzoqBkXktygc2iZCpGfaYFudSlFsAvS/zbq3cD4FZ3/Om4X2j5cL+ZjU/pzJ8ZBT2mpRP7u7WomKeK7cOmsuNSDrJZ6L+gqr8FPikinwU2q+r/jTt2/ZAKVINVoEpaUWLR+qB+/jurAdfHpeDsJS7lh31xEmQ0lhicqoz6Nan7L1D5tJFJrPZKPveSfmGnQijBiQX4zolbuOexJvV9pb9qUV2439Tty+rqLbE2jSqupLoe3wb4hsM6XnUa9U8RtDQPlghm6Vu3vkchGBcupXTJLTMoy4wsK/3fwhrqxRr3RUz9XEqjFiurLMZz4tLlG9XYol1KeCQ5i1kBo0oVBjAvIx/HUoiQoWySgkXJKGWReSnJVSnEkEuOMC/iCSZMRGnWu1/lkdDFpah60nC/rXneZbzjSaKsFsdk90nLYUvqtouaX+NQ1dcs8bjS2lDub79vJTDwd2ENKFWng9BQHs7+3WDz3ROmOCC6cwYpUUJCcfvCdCrmrzVKZoxN8eDTpJRBOhRbRrRftFLx19K9BFtbGolampXgntXuKdMllO8sbKmlZLn4pC3JftQkQYLPwT0N67nybARXvPCYWjoa0ah9pcnMLj2L+1y6lSZNuQafnaFdC6FczNAyM8b90iabLDObvsWmcnGp7F06lzJjscxN+haXwqXIuamYY1vpNpPW5cZiEzeWNq1LuYkbCruVm7jBpnFxqV1u0B24Xm2aF53n2nIT1+scN2hm0rooPrWL2UbcoIvcoIvcpMYGs4jZvxowqzdaO0oq+NHVa5sYxiS4mpyoPbbtG2eLyJ9NuoT8+pJUVgn3ecaC+TAue++AmeEur12opZUZMDl+cNUd2XvXq2fdjTWJcFLUWmd1urKSOAa4BTASkZtwAr3qTl0HzYRUrL/0n2LyTfwQeJrV3SEiLwWejon6fJ6qntWr0UjV1VBnrASC9g98+smc+z5jE3vAX56E7GBmXrXcX+4pK6mllHIdTsa5uOsJVWnOnhDYaOqqtnq7rj3ffKBiCjxmm+qBuE8rgP2eZwha5jAeQE6951Kz2H77tUzC7rlrCu0mQYVsq1BuMhKiv/fRRcb2lfpKkeYAsSovFeqqMK+yUdNfMhu7kiHW1uLWWwEQUfJMoTCHZfbkmahXf2WiJj9YZlRjmShzYlK7uNxgXhWGUYXtkC2SlTtQSEYu6j3CylKYl4J5LSiyETlGFeZUYpmYvGIZkEcj4E22Pxf9xNhX9tt9hewrIlZlab5Wz3WL2ivVhAYqb6jsKk6SBf/8T22gd1qALvR4d0RkN+BfgNvbFk9V1VOiOkcCr7X7R8DRdhliRORw4BTMFPe9qnr8RNfR1X3VJdljZiWpnAO8VFVHIvJGzBKVLxaRuwFPwERw3hH4vIjsozpGFg9VJgSD5ApMFQ7625PxGcatW6eUzafHlEk1EAY63VZdbGPAM19qKcBd4KQY1YE3cDp7S0RGoU3Ft+JIzp8H38+aEVyXFjXfBxe92bTrSSUgFGMQr/rur2EuuC5nR3G7WwjQtCsVKWdaT1AZ2VecHaU6Kd44b+xhlkQUY5bPLOHYLMY2+705h1sauTD78kxN0snM2EvEkkme2Yh5zbydZU5LHyi5KS8sqZgHZ5QVzKkhEJcZ2cSp2OOZZ15GFJkhlVxKFstF5jGf5yk9wWSi5LUZR4XF1V51MnAn7nQhbju89kybWVw4kZqmTcWdbwoYAceq6vkisiNwnoico6qXBnW+AJyuqioi9wI+DuwrIjlmJcdDMQtpfVtETg+PXY73l4h8QVUfNq4sxkxIRVXPDr5+AxOpCXAk8FFrFPqRiFwB3Bf4+rg2aw+UO8+U+tuA1+WrP3fcF2MjUDMIBS+GsUnWD2hN/OiJMmQaq9bPxNerGTZde21SUCA11e6Tm3QHx373TStDKCEuekt1Dpe1GcGsVx9kHgArGFgJIpRKapcb3Usp6pKdp49IIgrFHU8ejmVL8Ovbh1KLqgl0FEUdC9o+m4lA6b3AlIyyNNJKlqknFc1Lu76KkmfGQywTJc/KypCP2W+kl9KsZZ8JWaHsYNduyWVTzXg/LzmlXe9+XkYUkrFJRmRqDPkmGLIili4ctPuP+/+gE8I7XJRS/UYuXc8SZoVxcKyXdN37NK2JZvB+dtYZV0X1GuAa+/laEbkMkyH40qDOdcEhtwhavi9whapeCSAiH8WMoSEhOWnjLsBBwOn2+58CX0n1ya6ZcnNgZxG5NdVd2wkz2e/EWjDU/y3gctLsAoRy9lW2rAEROUpEzhWRc0c3Xj/2JPs9f2G5/RwwYEPia/+dSmS7fDzsoW9YkXZXA6HjR9tm8Tg3TtntqNY2RfYA9ge+mdj3WBH5HvAfmDETeoyXqvoa6wG2M3CAqh6rqsdilhHetaUrf49JPLmv/eu2T2Mko06smKQiIp/H6AljvFxVP23rvBwj/n3YHZaon+R7VT0VOBXg5n+wmzbE23B2PmWRZawroSpSuKmwWunEXJpKdbxXWRF8p5pVNbyfwHrLGDVO6Q52UwOJ/rrPWrXt7Sn1r2b2HwpEq+P8U0PlEkxSnZVvg8Jmdg4lL29Xoirzf+P9ga5MBaPK9JJbcNKyasxrgUStKowqX1uodrS/s7G7UN1rAclKq91RSlXrLWvUV05qCSWY+az0UkupJo6lRJgr53wcS273jVzUvZdUcualoMBIJ/OSU0rGTTJv3I0x9pVM1UsrAJl1MHafAfLV8JsVQTNzb30kvQSSS6QK6515IZRMAql2KlD62lROU9VXjWtORG4JfBJjL/ldoynVTwGfEpFDMPaVhzPBeAnsjlszwWAbsEey28amc4qIPFdV3zqu7zFWjFRU9eFd+0XkKcCjgIdppQ+6CtgtqLYrMN79xKksiIhlBdC2otu3PnhMrY63h2T25citqix4MSQoiAdG4/Zr1THBAK+5JZbMDowZVLI+9b8E34N9XnUUDIbhC7iS968Tpe1CVldvhQND3SWYiiClGnRiUqkt/OTbrEjfOz+4g4I2wfyW6gp8ah3DKN6BICArsb9NaVNTiyiSuc8VwQBIZkjEkYwz5he5UX25Qb3QklILb2Op4lpyRllBgXgiMSovU7boCMbaW26iNOovMXYVZ3PJEyNkhibLpw2n6lIRNJfqtxQ8iVc3bBkqsSmiD6/17aldK/6TwIdVtTO3lqp+RUTuLCI7M9l4+SHgWyLyKczteCzGQaDrXG8VkQdgyCdcg6XzuFl5fx0OvBh4kKreEOw6HfhXETkZo7vbmx5ZMYGaIS5FLNPyYgrjHmoJHgNkI60GaCdZuHczeCnMuGDquuA/NzBmI7urVKyjj9Xjm5mz5mpeQGwbVN4yjYc5HFjdDQpn2sHg7HZ/Z2HL5DdnmRA190kgHVktZtnhi0/cwj1etNAu8TlbTFa/PqAm1XkJ0h0feokRHCNVHUcSKgHBIMbbyw6OZHZ/ZqVUT/7WluPsM6K+H1hJRUQZCeRFSZYZ2wpAnmWUuXgby5yVVoytpWAxy5m3D8ooy/3KkfPZyCemNEZ5k5DSGPTrBAMY478aKSgjTTZTRZDq3hOKs0PaCVkfY723LbrPts3a5Ikpkksfm0oP2BiQ9wGXtRnNReQPgR9aQ/0BmJWYfg38FthbRPYEfoZxcnpisruqx4nIGcAf26KnqeoFY/r2IeDOwIVUa7AoY8hoVt5fbwN2AM6xcTXfUNVnquolIvJxjKFpBDx7rOfXGsEDHn8SX/vYsbPuxobAPY9dGGKEtnM89GHHT08VNQsoPdTgvVo6GHgycLGIXGjLXoZRV6Gq7wL+DPgbEVkEbgQeb7U7IxF5DnAW5o14v6pe0nGumwO/U9UPiMhtRWRPVf1RR/0DgbsFmqRemJX31x927DsOOG7SNmP1l4Sz0ynCq6WC5mP7g4ys26oaacLNwAAbxxBWFltuZmp+tlWqP1ddUoEyN2eXgkAVpJHdwLWP9xTz9gVbpyZpuX0zfNPFSSlqPYrrglg9FmFU/41DW5qX+nKsBFLfp3mgXnExQ4JxPW50qn5f1LoQO5fuqjysbxf0cjNuJ6m4m20/V7YBI7GUVlJBQOeM9FNmpq1ctZbKJc9M7EqGkskcm/MRc5lRjy1qwQ6Zy/Nl1F+LmUmP73KH5Rj12iYZGTWXLQ/duE2d6UsqDz00CKWw94sMH1GvgZTipL9edpRQJWrfCVNcvX9Ti7uakqRi4006r0xV3wi8sWXf54DPjTuPiPwjhiTuAnwAmAf+H4bU2vBdjF38mnHth1h/EfVO7x6qd6YIKbQikcQg/uDD30hW2nqqlHMZWmjHaG0Hl1woy8oFWQpLKoUihRuMnNrE/M0KtYZhaqqzWusZfjSOAyVrf4MB+sK3rb7qC/CzPymC2MNwtx14nAoyK2ioq5yLqgpo4JbsjpfMqNh8kF2gdrSaLN8Xwu/QGOw0IAf3m1T32BqfXSOOVGz/TLFGTgCOtOy9yPAqzrm8pMhMvMvIks9iWVhXZONmvCk3sSxzNl8YGHXWVkrmyznvOuzsKPNiAidDggkxLwWZTo9UHnro8TXi9mTi1YvBvQ3/Tgqt/3V59+yXqcDOFbrrzMw4mcRjMZ5l5wOo6tU2LqYLOwOXisi3qC/s9eiug9YFqfixMfwRNRgopoh8WyUSeQkgQratMHYV2w8/Gwv7HAY2ZqAjgXnB5gb0ZOKIxXlFlbnRoxtHKbv6oFCbKTt46aeEEqffD26KBBvTv1eTQqxTgnj3L1te1EmgllMtHvRDoggJxTk4SF1S8YksOy4+Hujc5ypXVaIO0W8S3vssMPx7CUaMAsMSTWnF7dKSivMSK+dMkkoRGBUZInhScQGShlTMltlYFyelAMxnJXPWmL+ouZdeFqWuU5yXgs2y2Ou3mxgunseTdOBll4X3VCYimNoYEMQ0mcXZZCrSBdAvoeTaIpVt1iZjzE0it+hxzKuXcqJ1QSqrhT9+zAnNfBYBHnzEm1axNwMGDJgZpqT+WkV8XETeDdxKRJ6BiXXpXBtFVb8sIncC9lbVz4vIzelhzVw/pBJJKW6iGxYf8MwFzn/X0lQ7hxx5gplYLnqZ2s98gcrOUkK+tQArXWTY2XXQVjjD8XrkTEAqVVklqagVUcysVjKFuUpaicXw+oxZKOcCt2Mx6hXfZwlmimsEzobkPbGkmhV6KUAT1wyRxBDMdgkklQwo4vtUlzBi1NoPbSehbSbRRi3dSHhcJpWaK+xrbh9cu7yw5gqlMlLzu0tuU+xnRpmzmOfkWclc7tyOjaSyKc8YlTnbstynejF5xKykIiVzNn3+Yp7X1GEmYj+zHmHKdWzmRXc7g+XiIY94Y13tFd7bMM/XGI+v5O9kU7LE77v7Xv3VhsZgqYjfu7UOVT1RRA4Ffoexq7xKVc/pOsaSz1HAbTBeYLsA7wLWXpqWFUHwA6dStixnVnHIoytCyRa1Ghi8jlyQxZKsULJtJbJY2AfdjGCNzNGBM4VYQnF1XG4pKUpjrLf2FM3NmyalGL+4DHJHTqXWr88a/DUzL5tmUsVaWDWDV9/QtPcc9LST+fYHOlMGrRhc6vpwsM9i/79gfeWairM2sFf2ChUMkTgCzYL2g88pUmkSRXWeUHUWqx/jmJmay3hIJEG5cyzQDLS0M5JcKecFyc0kpcxKQyoZJpYlL1kcGSO+W7dlW1kwl5XMSZWU0ievRNmUj5grS+azglIz5rKCXJQdIlXXuPQtk6I2oPv7E6ZniSY4gbtxG0JX4tpkw6m9HKtkFbFMBX0klTVEOiKyBfjEOCKJ8GxMKphvAqjqD0TkD8YdtG5IJban+FnLlH7YbGtJvq1ECvUGW6heFClKssUSWSyRUYnP/RSKBVAjFD8o2kyETqox7QVSCmaH2PgUcjdzd15mBMZ8TAJDS3xiuU2D2Xk552btYqIQsqpPs154SBS77gzVYBLespqUp964XovRcfc1rGunliEZaKjHD8gjafz35wzKXTsQ5PwK2qudO2grIrWK3MTvK+dtvVwoCzG/UQblnCEjyZRyTpAsQ3LjsFHMmTVd5nLjHebiVjIxecPc501lzlxWsikbUeTCfGm8vLbKXE1SmTapeAT3OSmRjBMm6uJHLU9eo477fcIxYRrQ8e/KGpNkdgLOEpHfAB8F/k1VfzHmmK2qus1NeEVkjh63cC3k/howYMCA7QvaY1tDsDnA7o6RPu4IfNmm0urCl0XkZcDNrOrsE8Bnxp1rfUgq6nTw4r2qzExFxs96ekDUqr62FkhRolmTi2VUIkWBjMz0RaDS3fsORcjsGuYuC65qpSqzLsnVmh0lSkY2KtEyuC7FHBfaGDKj8tLcNR1E34vJrFvmYqQeEaeS9tcK8EdPPplvfmhGKrAisKEEfYq/1ySYmgpKGz+7U/0BgVpMm3YVCGbSEn2vPsfHeVVYUD/ss58xRyqvmtSSV2VSiI/dkHnzm2KlS3WqsHkxuctyRUthNDKrTc7lJhp/PitMgL8Yt2OXS2yUj5jLSrZJzqjMmcsK4zUW6BlzUeamlADuIY9ohljE0mASwRLDvqp7Vq2k4CX7aPkJoxaVylPeDfRTGA9MP7Qaa7Yv/BL4OSYif5wq6yWYta0uxiSZ/Bzw3nEnWB+kAlafao3l6h6qyj/d7Tvob0/m2+/vP1gecuQJ5FtL8ptGZFtHduB3+UHsQ1WClGVdtWXRePDClyQknUwrVZlru4z2ZUETsTotNCI5+4sfoTAOAOH5FRPjkttjXduznGVFs7yKPKrf1ZFvbT+mvGbMj9oVO7JoZkirThT14LraRCAim/rninRCUkkNmK1uycH3Mq8+i1VRkoGMKrWYzhmVmFo3dE8whVDmipYZi7mxu8zlAanYXGIiaozzuTHOlypkMudtMA6b8hGbWlzmp454sB/zPUy54l/FaJ5neEcRz+ZuTJgOZDtTf4nIs4DHA7cF/g14RrRmSwo3w0Tpv8e2kduyG7oOWjekEv7AXh8v1H7ZSX/kQ448AcATiiwmZm4haQQG5NZlJ6PZVyVZJTS+wT5jeymswb3l1ciqD1KamW+Gse/4IzJFJSOzQpBmxsbSILQZwK1T3yiv3SJN/47+3tOY3Zr91Tl8W76q2VmTNoI6Ne+kGrFoVS8kCH+8JI6hYZfxXm6W7BSQUUUqWeC5piPxn8t5QzBkUI4EcmU0EmROQZRiPsflFMvy0tirs5JiPmNbkTOflaiaRcJqxnxR5gozNHzmjydOUlvDQw893v8ePjYL66kldcljHIwDTvQ+B5Okaof9m4NLGGomWTA1VlmDKq4xuBMmA/KFExzzBUw2ZLeey82As4EHdB20PkhF6x5C7mGtiIUlPwCyqGQ3FZVHV6/+pEbGMYP2mLb9SnalGRwa1jAT2YhLEeIdAEyIZDWolUKWqReCpIDM3jANPdBn8MJIoX5W6gUvrX7PUIqKiaWmGgsHe9L13a5anbL6Uvcq0zoR1CQR86XmaRadNFavxWlzQg8yX7esJJmaV1iOd4/OHMHkVrLJpZJecqUYZZAphYDkzmvMpNvPs5LFvPQrTzpC8YuETdljQ5zk7e6j1qUJFaA0GZ5rZENVP7il/v7VJhPmAqpnx2ZUEEzbQSrq5UObz1SqzqwhIrexH98UfQdAVX/TcfjmcIEwVb3Oxqp0Yn2QyoS471NP5lv/3K0Cc27EAwYMWBpqOb7WI9YAafTAeQRztGifAnt1HHu9iBygqucDiMh9MAktO7EuSEWI9Jtutmc/LvXHz7Yp+Y0jsq2LUI5ToAa/VzgjcxgnvcRIqdJCQ76dxnkVS+bsDGbpWrGJDxmZjIlCpd6Rkbr4OrKsKi+D6flqL09u+l6dO7VuTZjMM3Qr9W7TTvXlbWoBWp6B+mwzUK34/2xbBV4NJrVKTdVZqDbz38N9ooHUUrUVBmx66STx2avC5qrrzuaM1FJushJLDuWi1lyRQ6N+kZeMrCtylpXkoVu5mDVbpgUnpYiac0vWVOGGkkkonXq7iEObjdK/8+rVYkqlUqzS4UzpmraTNC2quucyDj8a+ISIuDVa7oCxy3RiXZBKLU7DqxOk+pyo34UH/ekJZCNDKHPXW0JxRBE+SF0Db596fdRpIbkkjnExLlpKnVjsd/PgO884cDEOjGx1+8KZxJPVINfH8echh9W9er541ovHH9SCA565YEJ/JN2Hr37yBRzy6BOq3xl8bjSAYnPm1SngiKY5cLWi47cQb1PRuhYzoTrzpGPre/WLhPvSNhqfgFKgLCuCCTMAlKEqzAaJhgQjhXhbjLO5aOaIRiF3Rv3SBFQqxuZi7Stgvuv8FMV0NxmQiFicbcV5UihGTZVVaipzG0O7ZdS2U/XWZpGmXAiIquyZ6bgn7NxgbJ21BBF5NHCI/folVf1sV31V/baI7IuJwBfge6o6NhncuiGVMAq7lhG2RRq4/1+dxNc/Ul//5JBHn4CMFHIhv3FEfsMI2Rrcw3hmUiMOTddxZcud+cfulZEkI2CJxOzzNhj3UuVYTzitUsqogmTGtTazwZfJaLSIQNQeGw3aD3nEG/ni2ZMTywF/v2AHHDvwilQBkGqI4yGHvRHJxQ5O5rwN6VSjF7nU1t/fXEdM0O31wgHKnz+s4m0S7rutmiCbMGgzrBt6oYVpaqq/VtpwnmB5IGVaw342qsqlqDIIeILJoSyAOZPCZxHIckWy6ma6ZY2Xg1D15V3jcffNEgvG1d0TR2btIUVA3rEHWuQ6XFteQKLfUCqHgJhklg37bI6ts0YgIscDB1Et3f58ETlYVV865tCDqFZ+3F9E1ubKj9OGUM2E/IzHPmvh7M/DFj3gL0/iax83xPKgP61sKNm2kvwGq/Zyg3lWifApaDmtp7UFbYNjQDahhOIPc5JMQaUSK8xLrpmQLZZmsFGTXsyvlkhFJOJmj3GXyqYawx0zsdSieFUWavOeqSGO/CYbDV4oMoocCiy+8ukXcsiRJ5iBJVg/JRXr0KsvCXjnj6QqM/wcDGZOcgokkpBo/KER2VTZe0PS0Zoxv3Tr9IidNASZEzQHsel8yrySYDQHSptjbmQG4iI3kwvTT6XMjFrsB3/xisnuWwz3vrjb5e+biyDBrCdoswn4d9jdMCBcH6rmYh7sF6Eilxq0GgfcvZ5S7q8+EfVriVSARwL3VjVrGYjIB4ELgFZS2d5Wfpwu3CAkJh9X6wucIJYQ2aKSjUqybSXZNru2RBjomNkZVks8yrSS1TUb79GufdE8sUCdXKAinLIasF2cismIndn7J41gMhkF0o0GjdqZcC2l/lIu0eqopVCyRevNp/U1ZcT+zloAmVDO18W/r3z6hRz85yeSLwYqsK4+pVy/3RykVWqJvrrnrDZDTkxkYqKJblfDbuM8zmqkUlfhSK5+vzg1l/V40qwilcxLKpZsSqGcE8p5pRRgTv3kSwXjkjwFuGclfJacW7i/z1bCdM+RuUeV2JniCdt44OVZWzEl3ZdMaiS/XPSyqaw93Apw3l6/16P+klZ+3PBpWg7+8xONp9eAqeLBhycXqmvgPs9YWNXzDVh5PPRh69zry0F7bGsHbwAuEJF/tlLKecDrxxzjVn6cCOtEUrGzhkBv6rP+pnTdKaN3oeQ3FWaBrW1W0hPx0ofxYCmNtIJ0qsIaCKl7paQZaKp6nC3HR6C7qXtZ9UVNhmTNKsN9KHGZ69ZaxmR3DudRpKXYQDN3vKn2oEe+iS9/7kVju+2XTR4p+TbIRlpbpCwblZV0NSpNFmaa5wObusQFUQZec633PZZW3MzZN9j9GzdaDYzMdUlFq+bjg4LgVHXPsI/8D6WTerxMaHwureqotBILQj0q36Y0Meov07ZJBWNVYaGaeBHK8ctmJOEJxS+k1m23Uqw0E9z3Wor6eNrrs0xQ/aZtUY2xmox0taVASm1cW6POGmIVVf2IiHwJYyMR4MWq+vMxh23clR/BqmfcM2bTx9c9cfDfwxfTpbPPtpXkNy6aQUvDXFnuoQQkN+lYwIjfStowH8Kfa5lPc5/jU3WCVC++WrDmvbO5UIq/Nu/SC1YFZWwwnqTEpdM3thixA0MVQV45CDzoT40U+OXPvLC922rWUMm3QbZYmvVURpbIRmryqpVBX0TM7xOphgC+/pFjecDjTwK1q3T2gSWWhqHXYZKxoYifw3ob6XNUA7qfFHmXca1NiKqlrM2aLJ5ASpeZucrELGUVfe9+u9J5+RXY4EDxqV/8e5JNaTBMZZsI4TwS7f6aN537nFpXGoyG35Xba2rU8zMPP3+aHrTlWWmcvxsishvGRnF7zNWeqqqnRHWeBDgj5XXAs1T1Irvvx8C1mDsyUtUDW85zMHChqp4uIn8NvEhETlHV/+7o3qvHX0ETM1V/icgLRERFZOeg7KUicoWIfF9EDuvVkBojrp/hjsyWLdrPi9X3rDAz4cx9t4SSLRb1mXiWoXmOZplJIJllZoY8l5ktz32Zv4tZYrNtGRfnxNbvRo3f37ct54mjipQmlT+FHbhHBTIykpqMCmRb4VP5O5uGJ6nQaGrJtSG5BatkupQ3ja57u4kllEU1a9OMzFIC2ag0v2FRIkVp+rqt4AtffGmDUBy+9rFj0blmeSeimJK2AchF9ndtXvVh7y1ltXkJLLVZPX1W4Jc+yEKJrbD7nO3JP8POHmi+54uQLwYTpkVL2NvM33wb5DdBvtV+3ipkbtsG2TYh27a8EbiXFB88iy79jt/KcDKT3iSQoP17nyoP7mVW9OhXX0xH9TUCjlXVuwL3A54tIneL6vwIeJCq3gt4LXBqtP8hqnrvNkKxeCdwg4jsB7wQ+G/GGNxV9cvA94Ad7XaZLevEzCQVy9CHAj8Jyu4GPAG4OyY98+dFZB9V7YyaEKgMyWDzW1m1Vaj2AuuuKP4hztygObLHRBKKg3lHArVXBurWj9eOaYs19DdUSm2oqWKiF3vMIDk+J1h0Dn8fgmn0OIRtqU2xYQPO1MUK1PqEn0H+8WNP5P/71AuiCpZQCvWDqfPyMkRiCS9UZVl86cy0h9n9/vrkYMafvozUpZpYh0hiycQQAz1mpq6dhoqnJ8IYHKHyuLOqL8KvVGpeFfX30awgqpGkopSllUoy079yDighz2zuNx9gKUnvuklQc+aYBEkHGPchrd5SqzZrlWy0pXyZkI5XPqwzDqp6DXCN/XytiFyGWWHx0qDO14JDvgHsOnGHjRSjInIk8BZVfZ+IPKXrABH5S+AE4EuYu/dWEXmhqv5b13GzVH8tAC8CPh2UHQl8VFW3Aj8SkSswK499vbMlNQOQf7JKrDeTHWiz+HlSTw5hAJ3Ouai7uH182yLWpqKKX9S3xSMsPH/4UmjtQZf6gJl6eWKCGzcDHyd/drknT3A+o6d3xIK5p5lVC8ZttGS89V5fIwzhe2+v0s8wJZzRWhy2/z9y1gWvGXOhVT+68oA16hudnvnZ2+r2taeFKp42pO674t1pPcHE7YjpoIDJOG3VmWrVYSVqf6PqYjQzmROktERibTc+p5iYydJS8LAHv76u8lsC2j2qAntSWN89a8Hv0To3mqKQIk4VOx6PE5EwXfypqhpLGqZNkT2A/bErLbbg6UC4vrMCZ4sZ8N7d1jZwrYi8FPhr4BCbcXh+TN9fDhykqr+0/bst8HlMluNWzIRUbGTnz1T1oshvfBcMEztcZctSbRyFWT+ZzTv8Xt0wW6uoJgADgime+2uJJ6tmqekBN3xg3QsqQIlgpn7JMaZmY0hIKtaIXpFMWprpLYHE550UbWSSfJlNv81sWEG9zGL327sWqZIe+Gcn8tVPviBoJ1J5FIGayKk/3DbpYCdVH6qLigYdO9M115sepBrG+64Ztasi7XVbEQdj2o4rVFJMSI4QxA85A794ySajck92z6y6Z64ESvGGe7JqRdClcMqhD3gdbMpcV0z/2t7J8BonOFlfwmmVbpYSs9R+yvEkZfafpqqvGteciNwS+CQmk/DvWuo8BEMqDwyKD1bVq+0yv+eIyPdU9SuJwx8PPBF4uqr+XER2x0ghXcgcoVj8mh4mkxUjFbuqWMod7eXAy4BHpA5LlCV/OsvIpwLstOMuLaO6e8A6HqYudVNcrtGL7VQF4wIf2yQVqEs5Us3GnYeZP76rX21Yxgs0ccyNN/hTC6Cs2qP911UnkdgZoFbllMHfSa8hnjU7D6DUjD85KaBm/43VaV0SSCvJ9Kjrj3FG5uDGNapaxwCX6bcWQIjlx0xMpL1L26NiVLc2qFV8/IrpZ74VLj5pS3uH266j1Oqee7ud/ZrFdSduvklQ4UQt0V7S4WCykItW9FF/9W5LZB5DKB9W1dNa6twLs0DWEar6a1euqlfbv78UkU9hNDspUrkWOEVVCxHZB9gX+MiYrp0pImcF9R5PXUpKYsVIRVUfnioXkXsCewJOStkVOF9E7ouRTHYLqu8KXN1oZMAAmiqw+/31yTPszYANhZKaDSyJHgQmZhB8H8YInnyArVRxGvBkVb08KL8FRpq41n5+BPBPLaf6CvDHInJrzDop52JI4knt3dcXisjjMJKRYFR3nxp3Tauu/lLViwmWsbQucQeq6q9E5HTgX0XkZIyhfm/gW+Mb7TPzqVRdsMSZUkM9ZCeFkWGztqyx/V6fpVf68dBGU5NaVBvt9ulTG/pIHr08dhIqBXHJDxWjAlOnPqrratxs/eC/OIn/+sSx9pyBXcV59jjngcijrCtrwR89+eTqbPaY0j3dgl2iWJovekry8L/B2LuRbKdqMNH2BPBZm4PGJSHuKRiVIQS5sAjWEFH7jhhpJrO/kaqdzZcChVV/LVVzqmoSX+ZV32sL55V1aWWSLNhV2p3o92txU24ct0KYhqEeOBh4MnCxiFxoy14G7A6gqu8CXgX8PvAOOxF3rsO3Az5ly+aAf1XVM1u7o3qDiDwdeKuqvik4X72iyB8Ct1PV/7KS02m2/BARubOq/rDrgtZUnIqqXiIiH8d4PoyAZ4/z/JoUXQ/axA+6RIN1qOKKXQNSdomSilCQKlAxJpgxmEhV1XaNZY92wutr8cYB8UGW6gY1aR4PlgjUDvhFpeJyMSlh36qlotuJJVRPmUSK4j9nOLtC+mVvI5SGuiv1m7T9TGH5MlT5tXQzCRWQt1+BX+gKpXqexHbAJVm1q0SikI3Eqq0IZkmT4eGHHOcN9D5ZaTSL7/1uJX5b743mJjApTEmt1RuR48jSm9GvMuauq+rfAX+XKL8S2K/nqURE7o+RTJ5uy9qmrW/GEFuMG+y+P+060cxJRVX3iL4fBxw3USMyGSHUvWy0WdYDfm33oM1atH7Ydkv7lc5XqgHLzqalzfgfYykZkFPX2jPgrZV4Avdiyubg5NO7R+Uu3sLn9oq7Ec9MW87/zQ8dM7bvD/jLk+rnjokkKPP7SjvLDwil1sca6UQDaeTNZSqN7WZVPyHpNCQJe0888Sg+C4C3s7j2fJtqAlddbjEXIKna6qU3DsXmOeOxV0Z2lNRz3+cUyUmL7X/8XnWQzUqtC7S9rKcS4GhM8shP2cn7XsAXW+ruoarfiQtV9VzrodaJmZPKtBC+DKmZaOuD3CJpVAcmjIMxEdkIc7MuiRs9qQcLZtUgUw0+dQOsjExiP1GpguaC+s3jCdJrTEiKsTdaGxmOQ3ReP/gqoI4s3Tnxl3z/J54EuTEgZ4Fbd72t4PojNRjAmRc21cdH7HkMzM1V/bJ1r7v7bZEgAaXzNjN1ov6DJxMIZt8tZBL2KVU2Mblo8LfPz5oiFqiW57XX4NcdKd3FSLWEswqZYtZcmQCHHvw6ys1zZj2bQshvKnyfGwTVmGj0uDj3k5W2ASsF1ycYYt8bxk4SpxVVL2jyN6/XWTuwQYtfDr5fCTyvpfrmjqZuNu5c64NURMxaDOFAEj9gPX7hpNvvmLgRF4dici6JCZ70A5IkZ5ii4fFVeZbZWXGhZJRVziY/EJmXybs1k76s3uowz3/9CaahfnIDWhlIXmoGK8mtNSBS0Xi9u833JaNIldD2srZIKkfssQU2bTKRfF2X68ihrOJh6u2H11mds/octdeTfJMqu0kll56oq8qoEwuYe+hjXhQp7G9nV4FcygoOxQ4Zo5tlJrM0dhbvrnkZ11cjgNxem1r1ql07KJxoeY+2NkzzXpeM90hcA5KKiLxZVY8Wkc+Q6FFLHq9vi8gzVPU9UVtPxySi7MS6IBUFyrkqwjF88PxsMXf69Z5PltJ8aBJjllrff53P/FoXErxMfjxyQk00ftbiOBbNAWZpi8y6h0bTVcXbc0isZxK2OxYSjj7uUwfBjGvOGmPdrDgr1NxCuyiUdzm1p8tGVDPlvnBSykWvBaxkEuJmm6u8bSWQC+XmTbX7ni06dVvfc9rrW6IOfWL37EkHv3HtB8QCgdRSiolhsZMUEZPS5WsfO7azuQZyodwkdi2X3KRCcY9uH/QLInQ8aCZlwaTPvD9SSZ/x77UUFXEPjH8e1gCrwIfs3xMnOOZojAPAk6hI5EBgE/DYcQevC1JBDGl49YodeMUm0gvX/jb1O15Cb6iNZlkth7jFlNzmY1f8/qA5DV+MSh1kXnDQOXysQIl96V3OrdpsWSti8WWJPrpgt7g48sQBaS5sRUUwvQIxazfF2Fco1K/AnI1Mks7Szpl9sKO9F7UByEfBJ5wVVDnzO6+rl83Po5vnbT626njcvcswud+sFJhvK73xv3E94wafcbFD8a1YDunX2omPn1y9E6rHzB/nuWcDJ5cykw9eF7OksVCWUnnzjRlXxUr0zXbTBxonjvoxfuEy8LYVUbwEnIqbWjacp2IX1gCnqOp59u+XbUQ8qvo/Y475BfAAG2x5D1v8H6r6n33OuT5IBdA5qSQFxUQLB8uSaphHqcsY6R7aSfSzXRzlFwcyTTq9r3/e7ExLM/jqaS/gjx97ImaQt4kwM7tglfOAUntMppWLbMuA02ooTfh8GMeDip3c2vbm/66Rqr7PE5ZzCQYyq8PXQpE5Ma6+blbZ9mKKGHuRSoNcDr/XKzjzO6/jiLu+1BDKDnPopjlL6ILLYCCj0ixXUMLcjQVudUGnIjHzBq2fMyDrTgIdM/tNHrvEga0PoYwdNF2goyMB3IBePeNL6d45X3sFD/qTNxnCysS7cZv7LAEJhP13nW62V00umipYc47qHXL91nBSGbRjMl5bL8QpQ2p9bcEaIBUbB/OPwHNwo5/ICONW3BbTAoCqfpF2Y34r1gepiFky1aWo8NJADpldYr5KZd/xkmrgjlloJa2EJJR6QJ07pZrZXzioe2kkNDg2XKCqjy7h4gMfd6IZs0aON6p1vZN9jxBKSPE1tqEWuW0XVwnJZVKIgpaG2LNtxkakI0E2ZdXM0qmhghmvEW/sSom5m52m+6+b59H53ORtk8quds7XXmFSh1jddxYYkJ0E51OyuLZ8J7CDbPO6a2SRIJZJyGRJs+eaPW/CY4Nn1+fo8irexORkkm6NQOejJSMknqxQ7Ush4YVnyu37ZQnKPS+VtC8+xYwjF1HIJUNHdSeQaUXB93MpXgOsYlRZB2NyeP0IwHp+vVNEtqjqwrRPuC5IRe0MNVzX29seHCSQGFIzTKdXjo+L6+fhGhAEs9rmeertV21Va5XUqzzg8Sd5fbZmmCDCHLOIkohZY750GbZasskmPNPqary2Fzq4htCbyC03PMYombynzsjtVGoFxt7kywLVWhjgZqeB6mguM4k7XSZqp/7STXOGTMJM0BJeO2ieGfWX2iBTaekrwSAV3JN4oO2Ok2mfLJj96fP2Qh8ymaR973YcYKnJIBW7hLN5Jt1kqoobspOsQLJPJ/gU/06kPO2cylRtmxKsqaJ2cTJHLu6EmptYnKQ7+DJQW7Surc6a4BT+BjhUVX/lClT1SrumytmYxL5TxbogFSOp2EE2eJi19uRK/aGOBxYB47WEMVgGs9iaztapiVMPTIJgfBxANc71i+q3Ki7zotoROJBUfExMPAgmVA0+U7JDSnUTRq+763Zfy5YZZ1+opwdQNStrhn2PmlXBkLfzfMvNgmBxRLUz1oc49IEmxOnhD3p9bT0X59YUqgSXMsj3IpRElXoSy6WzSyMZ5pIaqX+tuVEvAW51z0MefQLlprwmnddadGQi6fsY2g4lepZ9TsyymvyFub28XdN6YgLIvJkcVdLu+MlRb6TetVSd2WM+JBQHVf0fm3Ns6lg/pDJPRRx27BEN3NvDGWyEkDAQhZH4NOCxsbumhk4NhkGfgIY0EQaj1aSWVJ/cCpZzwcxbpRogg9UPK5VANYNyZKLxAJ7THJCE+ktQJuq0DUZtaDO2OjVh1/Gh3UjELJQmndYdHn7IcTWy1DzzfahNIsapXwJJx++aBhGMkTa67udYMhknZSQIIw7oXK4x+yunv5D7P/EkROoTPHOC6jl0QZc1KLj1eEJPPe+9af8TN2EEMwkM1abBORAo5t0zhHGdnjKpLNUbcJWxbYn7lox1QSoqUM4FT6kdIBWMK2UkmTTiDtyhjoHmlDKUUkKDdxC30Him2tQd0YDkE8QnnskHPN5EfX/t40YN5qLAJRNrYLYDpSO7rNIhG28nqyaL+zFuULTqIYnvCeBduCJvMA0GpRRqNpqlDFhOWivtNeUpEbMOE4TqJBFp9rlthmx7HHS+tT4wgffXmLKA7NMqoQ5CWcbaJbXMAS2TpKUgWwSVIDLfDvSeSCLJvXbe8K/dwqUU3AcN+tv2DrrzlZkYm5qLAZtaPrDUyRN1Zo/9RCSVSl/oDnJcMtYFqSBV8sCG9ADeO6Tmv554kZyGRURsrAgJQpJ6lohwptS7u9XKI22qsPv/1Ul8/SPH8rWPmzXXNTezrTyrvJfKYF1xFGROvNeNqTDJQy0VEfuXO7i4DH/PDPmoVZm1t5h84eO2/b5QLIhWX3SkGBjiYzzsIW8wg2wmpGKS2mQcb2sJJLOG3WSiFEDBZXQ9EylJMUDytro6SyGTrP2Z8JkflhnL8bAHv57sVvN2CW77bCs1MkmpnmvBmu5v9H46SUVFapO6KgFr0JaTkNz8K8NMEnU6xAlsNzYV1eWu4zk51gWpqECxOeG+KMFDFgyKoS977QEO3XaDNkL0munEhBU/XGoadio67xbc8hB+7WPHcp9nLKA55NvU2H0iMgs9Ylx8QN1bplJzpPpa76/zyJLmMX5Qcve77r1Vg5/tu+9i6rv7HN7Lms3HBkoGnnSAt7O0rfqoeWZiYebC3ze8wKbk5APp8uoeNggoVOO4opbfapztxDuSgJcyU2gMWFmz70uCdTRRF0NiCVtQ7wixFBz6wONg3kTV62L1jBiPLKUI7Vttp4mfFxJzD/d6qvsstXcYr1kI/ir9Mn5PgjFSuqmzBlhlBlgXpBKK1LGOtfY5nPnGhGLVDxroaf2xBATUknixFksRz7iEZpvuhS7rkkvteIv7PuVk2MFIJcUmCcgibDQklmpWVg38UtULB/Pw+qnqesIDNCSkILeZU4uFdZuRzvY6vZrOxg+pVMFx0WAiGTAK+ul+PxdHkoCL1tcMb6D3XnMaD/bB5UtwYrvAVeO3igz7tfZaJK42VZZHKG2kSKJFGmm6wyertcP2XTKpUuOLmt/SEtnDH/R6Pv/lVJLacW0Hz4md3IiKDeS1VbL2Lmv8HATPRq2OKw/es06NQUjk00Ivl+KNifVBKlSSiBUCKsSfg3FMowezmv3EjQd1y2gwqA2KwYALuBxkba6qLpjL6+giN8/7Pekk89Ln1TXWjPJhX4IXK0yUKNYW4l7qUKJxfax7tLlo6JBMxF+Ov3Q1+31cj2L7H6qNAseJYFYuuZMKpb7Qkbt9GuTJtKowo36r1JIhDn3A69BNWRD46M4jNpVN1R9okTosKaUM1l5d446HSmJLWtyD+u78ifGnMfEJ+lMbWFtOs6SB0r0Dllg0yAUmwfkefshxfP4rL+/frtczmWfAT2jELGtc2pRCtffLE3PVrz7qw/Cw4JLqO1cYfdRfa8OksvpYN6QSz0Za1RXhSxwO7qH0EiOcCaVckRN9MW2Kz7OUVKlptOFeunpeKueJZmxDgTAQ2jQcWSqV/agmvcRE4/bV426cq2ZIRqFh1NRTe65KovEE467LXqc6QrEZnI17p/iEjlmodw/utycw633s9fJ5pcd4+CHH4SLBNa/0+LVA0zwiCkkMVkol0cSZiwXvZQfBYB9dqyMm83tV9V27YdbjGLFDRyi1Ng5pGTQns+lVbUtuJEef3qZcoiVb8T9atq1Es8wsCpZV+51hPRQOAS54xxb2/4cF37H496qdIzjWX4dQk74b73LqN18uguttr7MxWWXdkMq4hyae+Zkvwb7wYY+ehbC8r/dI1Z9ooHWlzhhdej6p6ln1lWvH6KWpiDPodzzgp77XdM9QU5/58+PKTMOOsHxKcddW4AVWIxSVmq47vA8u0rm0uaGw1y0F6GL0m8RtCMhi4E00Z0aphz30Df6WlTvklPM2AHZOqsHZ9l3DQSUVnOoGiIBc4v6H7uruEAcpqVRJ1Os7QjEp5+1RKdVWLc7FrktTna4VSxksw0HZEwvmt3H55rrwiPv9k+ljZiXDDHDel5lQ+kW1qmMq0g08wQJc8I4t7P/shfq7EF9bLEGGX7K4oF4xJrLlI5z5DAixbkglRqtLJnTP9gLpxZcHhyUTNEbPVkN/H0lATorxrYfHR+SAuLT6iXO7QU6jcwZN1lVbjigcGQSJJC3JKFSrWgbSU21GHsY2uDpFfD53gBlcHaFobj672AHX/9jOI3aMlhGgmRnoBFQyPwCXO+T42Ic8yKoQRFTHs9tWScXVjRw1QkmrFgflBkY15JiNAiIPXWbtb52FklwLaiow+wNMPBD2iafx7tURscwJbiloKdSQB0AJZ3/rVYCxt7Q5iel8Vtmg3MTALokgRXB/vUhi+rD/sxcS19HnWt2Jq2tZNZTaY4361enKWsO6JJV4kA/F6dCY71B7IFsGafcn5ekUDuCuvcbOBHG4Acf3MZXoUaDcRHJ2V11g+/eEEFAjuXpepPpgUFOd1UhFgs9BOVTHV6xkil0ajRwjVdjfoXTp/ktqarlyk83QXEC+rTRJNQvrTu2SCAZBoWUQCFrP51XdRy9lRKNinFOqvlO8pFip8bApQcTfn7mbrDt3ERFO4JHosjL7jqUIzt06quuYxDW1FwmFz5yAU2fqDhnlnCBFxtyNhen/qHpAHvqw49EdckY3nzPHBR5dTr1Z5lS/T44n41C15SUWoeaV5Qk7npSNvR6a72zi+Gm6+Ip7L7qwQSWZdUMqy33xamQTk0I8SCeIqe2hjvW/vsxJRGW9nqscvmCdhLIUhBJOOMBqtbku4iSaQIKqBT8SSizx52DQSVyTus6UjlTqTgOSO0kqMx5jBWSFVO0Fyx04MmkdpIN72Cq5Fq5yvdxLWZ5ciDLyCuWcXfBKKpWbu8+eaFzb2pEZQKK/0XOVes6Xqtapnk17TzMrHmZCUUKWiQn92VbwsIe+AUQoNmd+ghASeE0S9C69FQmXQRYHdb9Ty29Su399EdyvRtlKYEreXyKyG/AvwO0xVsBTVfWUqM6TgBfbr9cBz1LVi+y+w4FTMPT8XlU9ftmdWibWDanUsMQHq8vu4tuV6iMt1VL9aQwM8eBB88UMB6ZaH1JYygsUHeMIM5aqJHp/XE61vkTjzmWIRWrXVOZ2XMqAQhrvqVsoTBdtYkCpVDdxuvPG9WRVeXIADK7bDGTNhbv8eQLpxA2IXo0YBvqFpATGNmKdE0x2ADOIOwnB9K/jx4sGy36SSI86VQdr5KKokZjnxQYxVsGkxQ4ZxQ5ZZeNr60+UjSLMHhz2saHSdZOauM3UZK8NK0kkIVR7rKfSi3RGwLGqer6I7AicJyLnqOqlQZ0fAQ9S1f8VkSOAU4E/EpEceDtwKHAVZsXG06NjVx0zIxUReS4mx/8IswDMi2z5S4GnY+aNz1PVs3o1OEVJM6UiA+oveDTQt73sSV/78EtoYAxmbSGhtPantdEWjFEP1JoKvHaSqrvws6aJxnwPVGBxHrWQNKPMzXW7jxPrqpsZDmxtaBjn2yQVf94mqSFV5ltnE4rbqrmGU12L6a4dqLM6sbh+xedK9S/1DPVBHwJqzFeso0I5DzIn6DwUZUY5b4JKi014Z4tkP8Nzi5NSqvvmVIxhJuO4L639XuJ9WBGojveU6/FOquo1wDX287UichmwC3BpUOdrwSHfAHa1n+8LXGHXm0dEPgocGR47C8yEVOyKYkcC91LVrSLyB7b8bsATgLsDdwQ+LyL7qGoxttE2EgjHo9RhLQ9p1wvZ2NUhSYQG27h+zZU5bitIE9OQnFLXkiC6TnQRjJtsRwRRqxOUxbaImt0gcaKaFAaVii9qw/dBBZdPyqlR/DFd5ycY3MaRSsex5VzlsRRnrPa2oHBiEJ9HrXrMXkvo1NC4N62EtzJIqmyjc5pMBeY+jHaoTwzcNYRrw9fS41jyL4ORxjuCRFJ467Wv4PUvGb3UXwrwOBF5b1B4qqqemqotInsA+wPf7Gj06cAZ9vMuwE+DfVcBfzSmUyuOWUkqzwKOV9WtAKr6S1t+JPBRW/4jEbkCw8ZfX6mOpILdxqFTx902sCfKU/aWsLy1X13E0oWQePrM+rr2x4NBqPaahNza2gyLxEoJgdeS191DFNFfP2eaVNovrNbdgLw8qXT9Jo6M4+dD8BJL7Z5O4p6+2gNrcI/KOSqX8JwamTsC8vc0mJh4iSSyCfa2ES7lGa9dwwR1J0X/5YRPU9VXjWtORG4JfBI4WlVTCSDdZPzpwANdUetZZ4hZkco+wB+LyHHATcALVPXbGOb9RlDvKlvWgIgcBRwFML/jrbvPNmYAXQqx+KaDWWuz4eD8qXK7b0nnbmt7JdCHJEIibCPTtjbb9gfMohmUVBmYnSotqW6LA+GAetbcMecO+yB0EopKNf46L8Jav1xFlxFAwa8D0tWPlvs8vSy7LadNuK07CdE7KsTPnnYcb9uYidqqz3O45LZLKMcoUHoa8u26Jp8EPqyqp7XUuRfwXuAIVf21Lb4K2C2otitwda+TriBWjFRE5PMYj4YYL7fnvTVwP+Ag4ON2icvezGtFyFMBbn673TQehCbu7zKIBdqPXao+3B3r9M6dNpW+xNIQiWhKPZOSVJcabRKkBgB77X5Ne8WnpvESSKMNqRJuatVGUi01ps8VIbV0OSCR0kXuKzYZZqRK03BmbxpO/qYtajy/uyX3XAp9PSJD21P9u33+cmsXCVZV1Pjep4gjeq4uOmULAPs9f6H3NUwN0558KT2ygI8/qV1D/n3AZap6ckud3YHTgCer6uXBrm8De4vInsDPMKaDJ47v/MpixUhFVR/etk9EnoURCxX4loiUwM4sl3mXORtZLrGk0GXMNAXdx/ciFksMyTiZsR1sfp5oMFoGkafOG7pb187j1CnxeSIpypG4V0NFA2TjcxsmvR4JODozyUVrakHq15Z81oLrru2vEW66Y2PtM22z5pBIQtINPsdeWuF99H8VLnrzFu793IVGGw77PX/BEMsyJlprBn1sKv3eo4OBJwMXi8iFtuxlwO7mNPou4FXA7wPvMBzESFUPVNWRiDwHOAvjUvx+Vb1k0kuZNmal/vp34KHAl0RkH2AT8CvgdOBfReRkjKF+b+BbSz7LhA/utAmlzzmWEl+TMtyHZa3kmCKANiIZ16+Y5BLnbM1q0HGf60b+xGDX1S87sGfB8UnpZBIVWA/UnAyshNTIdq3UPeGi62i4Mo+RWKqKtT8NVMemL7hBtLW/4tV/DTuI/eykj9R5U/d4v+cv9FOnThtTV3/1IJVezehXGdM7Vf074O9a9n0O+NyyOzJFtGVcWGm8H9hLRL4LfBR4ihpcAnwc4xJ3JvDsXp5fMWalw3Wn1/SWgpNC+nokhccsGRpsPZEknaiN5HXaOjEBpfTxqbZF69/9bxuptGqHBwNh7J49dUIJZ+vhuRLnN5ma7WbdckO7TfgsNFZKjPdL/TqT92XcsXEdv0ktNVBoUwpJPkUoF741KFu+dmh56HhGlo2yhKLo3nSFDWBrFDORVFR1G/DXLfuOA45bcuNTeoD6SBCtRvo2TUNC7A8HuGkOdiki6lPPVE7XaVWx9KivNK9fozptbsledQS9SKHNBrJctKkX1ZKI+UKDMGvu0cHf2vLNtQZrf9LpQOLft2ffG/0OJZKIjMI64ec26QRgv+cteCk2dPWe1rM9aWjAimF66q91h/UZUb9ETJobaOyA3KqTaG9j4pdjQolj2uh7zxoxOVIfdMa1FapTVntgic/XaXuT2iWafkXfQ+eIpEpPiAg5cTJpIZsWtHnlOa84R4w1FRjRZ1j1Z23Sd3JVsUFze43D+iOVPr/zUgbucccmZqdtbbT66cuEL5HSDLwLUFNFJHDv50xXv33B28359v+HheR+CfuZUn+N+V38jL9tv2tyieSynAEsPGetH6F0Fl5zSJCJ36DXQN5yoX3tdjXJJFbfUScW6JZQxp1vJcmhrzffVM9ZlmgxzqV4UH+tfyRmhBPVbyvrKA8Hdp/iu2yee6wRmvoxF52yxZAC1Qt7wdv6vfS+bxPW74sL3tHe7v7/sNDvHvZQ1yW9p4jUZWOw1MGuS1pJEYwvtyTSUKUlJgaSKAvr9vVg85eYlFSCtmIyCeoth1BWCl3S4oqjf/DjhsPGIZVYLRXPIrvqLwEpKeGCt2+piCVlhxg3SNljLnqLaXulSGEl0UY4Demm67fpgbWiNmmo7OxzlyyvHZgeNCeJe0q5X8dkGEsjyyGU/Z63sGr+MatuQ2n2YFB/tWB9k0qbKoopTiKihtyA3wanIhpQR0w2bSq0XlgmIfXFJHFBNRIJB/XWxpvn6XuurnM3PAdTZGLL+5LJaqH3tfewZS4bzvursx8bk3TWD6mE0keAOO7BFEaG49TDllKVtTwj44hkwBKxSuSwXEwSNKux3awPIS2pV822U33sDCad9HRTGENXVAKZ4hivpaJjsxQPpLL9QutG3HEPt5TByx2pI1IISWO/5y00ygZMHxe8YwsHPCtaszzA2MFnlQlpUmJpayO9Y0ld6nXO1HmWKqE0CLPnMdPAqqs7e7kUD6Sy3aP1wdJmnTjhX0Ol7V6wiDwGMlld+MlCwqNp9nr16WKSANjltteG1VZ5LSm1UHRsK1ZyTO+zSNcGxbohFSlo+tRbpAzaTmefhcv5Rl47g/1jtjj/neb+H/D3Cz5C3aHXIDShtFLz2lpj48VKEuhamCiNi9fq9XusoiuzliVKt01FNyjprAtSudvut+PcDjfWFLrcXgesLZz/7uZv5dypx6KFWKY9SG9PUtNaIJFxmDReK3mcpt9zeccxS+5X1bb2iEMZSGXAgO0GTvr0AZxd72/scTUlAphFkGWMcQGuq4mL3mKzFE8aDzYJxty71dIuqJZjJREdbCoDBmx/uPBtW0x8RFvwaUw+PdFldF4R/X8CKcJwqeXXKi58a5X+vjNpqEN4L5cxBq9yzNZXfqk/5Q+4Y2uFQkdcy/8CXN5aaZ1C1gObHnjggXruuefOuhsD1gDimfKFb9ti7GdS2c1WS1U1LSJZD0hKMEtAH/XW2DZEzlPVA5fcBxG5Nbct92V/biE7Jev8t34fEC7Xi7Yjxeh0MEgqA9YV1sKg3IdM1kI/VxPueu/9nIWJPL7acujN0iaqqnofeRA/4jLuwR819hc64hp+wnX83y1m0L2ZYyCVAeseUoLmqR2siC3VD6DPXdhw5DEOoZrKpywah+A3WisONufzlezW3La8Xn/XkFau4ofcgTtxuV50w4y6N1MMpDJg3UNKagtN1fT4U9LppzyqBkLpRpdRPUzTs1aIJESbtLLRpRQYbCoDNgj2f/aCXwFxSd5IQ4qedYPl2lSCdhq2lY1sS3EYJJUBGwKpWfF+z5/Ak2qZKUwGrD/E0sogpRgMpDJgw2IgiAHLRWhb+RXXbGhbisNAKgMGDBiwRDhp5Qq+y41cv+GlFIBsfJUBAwYMGNCG8/lKNmKRO3AnVHVDSymwTgz1InIt8P1Z9yOBnYFfzboTEYY+9cPQp/5Yi/3q6tOdVPW2q9mZjYT1ov76/jS8OaYNETl3rfVr6FM/DH3qj7XYr7XYp42CQf01YMCAAQOmhoFUBgwYMGDA1LBeSOXUWXegBWuxX0Of+mHoU3+sxX6txT5tCKwLQ/2AAQMGDFgbWC+SyoABAwYMWAMYSGXAgAEDBkwN2z2piMjhIvJ9EblCRF4yw378WEQuFpELReRcW3YbETlHRH5g/956hfvwfhH5pYh8Nyhr7YOIvNTet++LyGGr2KdXi8jP7L26UEQeucp92k1Evigil4nIJSLyfFs+63vV1q+Z3S8R2Swi3xKRi2yfXmPLZ3avOvo00+dqgIWqbrcbkAM/BPYCNgEXAXebUV9+DOwclb0JeIn9/BLgjSvch0OAA4DvjusDcDd7v3YA9rT3MV+lPr0aeEGi7mr16Q7AAfbzjpglX++2Bu5VW79mdr8wqTRvaT/PA98E7jfLe9XRp5k+V8Nmtu1dUrkvcIWqXqmq24CPAkfOuE8hjgQ+aD9/EHjMSp5MVb8C/KZnH44EPqqqW1X1R8AVmPu5Gn1qw2r16RpVPd9+vha4DNiF2d+rtn61YcX7pQbX2a/zdlNmeK86+tSGVfn9Bhhs76SyC/DT4PtVdL+EKwkFzhaR80TkKFt2O1W9BsyAAfzBDPrV1odZ37vniMh3rHrMqU5WvU8isgewP2a2u2buVdQvmOH9EpFcRC4Efgmco6ozv1ctfYI18lxtZGzvpJJaCGdWPtIHq+oBwBHAs0XkkBn1oy9mee/eCdwZuDdwDXDSLPokIrcEPgkcraq/66qaKFvNfs30fqlqoar3BnYF7isi9+ioPss+rYnnaqNjeyeVq4Ddgu+7AlfPoiOqerX9+0vgUxjx+hcicgcA+/eXM+haWx9mdu9U9Rd2UCiB91CpIlatTyIyjxm4P6yqp9nimd+rVL/Wwv2y/fgt8CXgcNbAvYr7tFbu00bH9k4q3wb2FpE9RWQT8ATg9NXuhIjcQkR2dJ+BRwDftX15iq32FODTq923jj6cDjxBRHYQkT2BvYFvrUaH3GBk8VjMvVq1PomIAO8DLlPVk4NdM71Xbf2a5f0SkduKyK3s55sBDwe+xwzvVVufZv1cDbCYtafAcjfgkRgvmR8CL59RH/bCeJdcBFzi+gH8PvAF4Af2721WuB8fwYj9i5jZ2dO7+gC83N637wNHrGKfPgRcDHwH88LfYZX79ECM+uM7wIV2e+QauFdt/ZrZ/QLuBVxgz/1d4FXjnu0Z9mmmz9WwmW1I0zJgwIABA6aG7V39NWDAgAED1hAGUhkwYMCAAVPDQCoDBgwYMGBqGEhlwIABAwZMDQOpDBgwYMCAqWEglQEDBgwYMDUMpDJgwIABA6aGgVQGrDuIyEE2qeBmm+3gkjH5qgYMGDAlDMGPA9YlROR1wGbgZsBVqvqGGXdpwIANgYFUBqxL2Fxw3wZuAh6gqsWMuzRgwIbAoP4asF5xG+CWmBUUN8+4LwMGbBgMksqAdQkROR2zEuiemMSCz5lxlwYM2BCYm3UHBgyYNkTkb4CRqv6riOTA10Tkoar6n7Pu24AB6x2DpDJgwIABA6aGwaYyYMCAAQOmhoFUBgwYMGDA1DCQyoABAwYMmBoGUhkwYMCAAVPDQCoDBgwYMGBqGEhlwIABAwZMDQOpDBgwYMCAqeH/By2s/Dr3EZxPAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADcH0lEQVR4nOy9edxlV1Xn/V17n3PvfaZKpZKQiZABAoiKzSiCjSBIEm2l1VYRtRG1kdaXGUSUlkGRmWjb2krjAIoDKip0G8LQII0DQ0BFg0whTJmHqnqme+85e6/3j7X3Oec+c1U9VfWkcn/5VJ57z91nn32mvfaafktUlSmmmGKKKabYDbiTPYAppphiiilOHUyFyhRTTDHFFLuGqVCZYooppphi1zAVKlNMMcUUU+wapkJliimmmGKKXcNUqEwxxRRTTLFrmAqVKaaYYoopdg1ToTLFCYOIPElEPiwiyyJyS/r8U2L4PREZi8hS598PpP2uF5FVEVkUkYMi8nci8nQRcZ2+f09EfukIxvJkEflYOs6NInKViHxz+u2lIqIi8sw1+zw7bX/pBv29JP32+KO+QFNMcQpgKlSmOCEQkecBvwq8FjgHOBt4OvAooJeavUZV5zv//qTTxXeq6gJwIfAq4IXAbx/lWJ4L/Arwy2kc9wJ+A3hip9lngKes2fU/p+1r+7s38J+AG49mPFNMcSphKlSmOO4QkdOAlwM/pap/pqqLaviEqv6Qqo522peqHlLVdwA/ADxFRL7uKMfy06r6dlVdVtVKVd+pqi/oNP0oMCsiX5v2+1pgJm1fi/+BCbnxkYxliilORUyFyhQnAt8E9IG/2q0OVfUjwFeAf38UYxkAf7GDtr+PaSdgWstb1jYQke8Dxqr610c4jimmOCUxFSpTnAicCdymqnXekPwiB5Ov5NFp8/PTtoMictsO+r0BOHCEYzlj7Vi2wB8APygiJfCk9L2BiMxjJrRnH+EYppjilMVUqExxInA7cKaIFHmDqj5SVfen3/Jz+DpV3Z/+nbmDfs8H7tiqQXLAZ8f/D200ls2gql8CPocJjs+q6pfXNHkZ8Puq+oUdjHWKKe4WmAqVKU4E/h4YMekIPyaIyMMwofKhrdqp6hUdx/9b01iGwH/c4aHeAjyPDUxfwOOAZ4rITSJyE3AB8DYReeEO+55iilMO267WppjiWKGqB0XkZcBviIgA7wJWgAcCc0fSl4jsAx6NRZL9gap+svOzF5FB53tU1QnnuaoeEpFfAH5dRGrg3UAFPB54rKr+zJpD/gnmu/nbDYbzOKDsfP8o8FzgqiM5pymmOJUwFSpTnBCo6mtE5KvAz2Cr/mXgOixq6u+AH92mi3cmIRCBa4E3AL+5ps3Ppn8Zfwt88wZjeYOI3Ay8GHgrsAhcA7xig7arwHs3Oafbu99FJAB3qurSNucyxRSnLGRapGuKKaaYYordwtSnMsUUU0wxxa5hKlSmmGKKKabYNUyFyhRTTDHFFLuGqVCZYooppphi13BKRH/1ilmdKU872cOYYoop7gI4PLzpNlU9azf7fPpT9utjHjXDk552o+xmv3dFnBLRX6fNnKuPvPipJ3sYU5xI3NWeW7n7zTW65pxlj9yzd33qldeo6kN3qz8ReeCjHjb4p9Wh8vFPjsodUgCdsjglNBVY/wBvhO5DvZP2R4rcv4rsmRfouGA3z617H3bSb25/vCfpnZ7jHhMWR/RcH43xO7Yft3vGd/IObDTe3Xh3jsf7vRm+5zvm/+k5P7mfd757mWc9bX8F7K2H4gTjlBEqO8HxftBy/xu9FEdy7D0vkLY6l+3GvtW+e2yC3hE2Ot+153Es1yTvu0mbdc9VFhRbCd+txrzdPfCdbjbrM39Whdh5njc4rqiuO+Z2Gs6JFBjbQUQe+ITHzPLIh81w6cUl3/7kG3jKM6S4O2srdyuhcjxxJKu27V6KY3lpTrpA2mxCjXlcnfG5NW1Ftp1EN+z7aMd2NP3FNW2cbD/h70Bz3VQ4rF30RjbGWq1ji4k8j2nD9pv9npttdg03EgSq4NIdjxGQSSGzrnPd9lrtJYECrZYCcNaZBY//ltm7vbYyjf6aYooppjgKiMgDl5Yjj3zYTLPtuT+5n1/5rYPshAX7VMXd9sR3it1a+Z+oFdaeM7Nl7aOrlcSO9tIdw8TYj3BsXY1hq5XwVuPciX/HtdrHhDbQ2be5B45mux7twnVTDWYbbKV5bPCMbPvcbHBcCWr+wxDW961r7m1Hw9qptrPlODbR2I7V9Hwk6GopGVlbefZP3n21lVNGqBytU3CjPnTNBLET05WonlzVfJuXbSNsdS67ijwBrzUd5d+aAR3FcfP+UWkEURIw6ruCbIsutvIxbDA5N9fNS9tvd9KNbdvm70Y+h7WCrLtPFzs0TW3XZkMT25GaGdO5TbwT3q+/ht3r1N2saqaw7vXd7Jy3EoSeScGV311kw3u9289015eyFs97+n6u+MG7r2/llBEq22EnE/5mbY5k3yN5eI9kn23HcATCZDMhedQv3mYTQ/f3tVrJ0cK7zYWUmxRQkhbQE9du7Yo7bvf7mt+aYzN5zWPn9zzhhSzkthAK3Wu3kYDdSPDkJptd866zfoMFkopYmzx+L81vsWee+Pf+zc9t3PdJwhMe/nIkxvbak9SAtZpR8uMAO9OOjhIbaSkZd3dt5aQKFRF5DvAT2BLzk8BTgVmshsVFwPXA96vqndv1tXaCbr5He7JkgzYb7b/hODdzeq5dga5FTGaf2Hngu7uv7UtkvfM69dNsnVg1dlZ8rjMbdvvYYMW4nfA8YuGyQf/r+tjs+5G+7F2NJHZnDYUAOIeW7WMtqq3TGEyIFJOSo3lmutu7Jqy1WkZXO8nPwEYCoXuYbcxP67BmJd8Igo3adH/v3m+ZPNZ7PvTz2x93j+LdH/mFTX+77KEvhbDmPqu2wv0IFlw7wVZaSsbdWVs5aY56ETkfeCbwUFX9OuwReBJWD+N9qnop8D4m62NMMcUUU5xs/Men/uC+LRucdWbB/S/tAXztCRnRHsLJNn8VwIyIVJiGcgPwIuAx6fc3Ax/ACjltCRlX9qFKf+88hJxxAPpls1qTtStOaLQJ6a6c166qQ1K7QwSNXPWFNxzhaZ48XHHBsxDvoCjaVWvhUbf5eqKrsRxNIueEZreR2Ws7c9lWiGuWnSFCDEnTcyBqz4Iq9Mp1WokNsHOPnaLiNjczqaLeT5qU0r4StD2XTZz2E8fcZtuEgx9shb12W1c7Sef27r//b+v7vhvh6o+9tPl82UNesj43Zq22eeyQQX/753cwMAPdbh74roCTJlRU9asi8jrgS8Aq8G5VfbeInK2qN6Y2N4rIPTbaX0SeBjwNYFDuM/NPikLROw9Zo7qGsqAxl4Rgk1wMXHX9lcfz9PYMrvryr67bdsXZ/xUpS7s2vR54t6FJLG87JrOYl42Fy0Z9bWYSC0mQFN7uczZz5AUE2Hkks586t7UOnid+ka1NdVnQdAVT3jesOR/n1u+/ETZxYFsf7THVr/GHdKLb7spmrOONq695WfP5soe8xPxqqse2kNkAQQPVNlatqLtsd7uL4KQJFRE5HXgicDFwEPhTEfnhne6vqm8E3gjG/YV35sQtCyREGI9hNILRiKtu/p/H4xTusuhejyvO+SkoCqTwUCatzrsNNZnNMp031WZC56Wq7AW86rrXccUFz2om3qu+8t/bsdzzmelAa5zX2TlfRdNGNvI7jUaNtiKFt3Mo/fr+cp9popHuxJ2Fh7gJwdB1bEvHAa+Fa7dtE/004evbSOB1hBxeUG+NpgLk6HH1NS/j8ge+GEhaJbsXoWlxGlsvsnY33uyug5Np/no88AVVvRVARN4OPBK4WUTOTVrKucAtO+lMU3inAMzOwKAPq0P08CKXn/4TALzrzjcdlxO5K+Oqm36j+XzFWU+3CbsskUG/s1K3ybkrPCYmzBjboARohYkqV332NeuPuYH2BJMCZiNccc9nTpqpukEQaRJGI6iDOiB5xe8mhUSOzJJs0uzmuIhYH12hkKlJHCgOIbaCyqeu10aJwWT0UdY81phXG0EWQXueWNr3973/RVteixOBKy55PmALgbsiLv+GZBZUnQwv3wUokbhtBMDdU6ycTKHyJeARIjKLmb8eB3wMWAaeArwq/f2rbXvq2J1VHFIHM32JgPdb7ztFg6tu/c112644/xnNZNgN4RQnHV+TmR2vuvHXj+/4NhA66wRNHqOk8Yk3P8yaPJIsUMKBuWazWxnbBJTNZyL2OU9IyT6vuDbfIocSe1mvrXTDdrvmNkzI2HFkqo2cCPiO1roLqFGqbcxb22kypypOpk/lwyLyZ8DHgRr4BGbOmgfeJiI/jgme79utY15x/jMAuOqrv7ZbXU4xxRR7DNnktZs+lLWIKGFq/toQJzX6S1VfArxkzeYRprUcGbq28ZkezPSQcY1Ula1SeiWkCLEr7vezXPXpVx39wO9G2OsCeMInc9Fz7DmI0Uxe3iExro8Ac6AIgjP/iDObe9cHo72C0Pf4UZhMuMvRZ1kbyorwBn4bFUHcGjt+0qbV3QWc7qur4FyrrYKZNL/6a+aLS+iaUE8mGmGyFtvlkx0FlKlPZTOc7JDiXcLG0Ttaejjj9Hb77IyZxqY4JZEj+swXEJtk0sxRBTQChOEYgHdf+8sAXPawlzUTpzqH1BGfBM4ENYnqZKRX1xeT0NjvRYw2pJvAmBIS95owueLi51qAAp1gis3a5oCKPYJ1wqSbOHqcEFSptuk/Hsfj72WcIkKlgzVhqdpbc4qlR5aHJ3hQU5xIHI1jeZ02kR3va6k+ujxXXUGylamlm/ezRX7QXkF20DfC0/s2EKJOmlth79V2wRXHGxtqJ1uFq+8SwtT8tSn2/hN+NJAU8bPRC6yKzvZP/Jim2NN490d+oaUCOVLyyS66JI1dPqq7AjZyPDch3elf4e1fOseTqbVsau46AYgpsnyrf3eRu77rOPU0Fefa6J2170iK3Jliis3Q5Zh6wiNebh9iyy6wM2LPblIkk76WjZia9wDWskRccdFz7MO6/Jv0YhW+yT26O8J8Ktu3uTvibjvDXv71e8umPcUUU+wcJ/v9DSpU2/y7e+bTnzKaikzyM22G7HCt774rrCl2jnf/wyQz7hMe/vJN226UFIqjyUWJhW1/3wf2FqX8ZmiCHu75TPOjSEoSdZ28r+MYsntMWMvHBq1JfJdMkQEhbEPrddSF2e7iODWEirC+SNJWAmavvgxT7GlsRb/+hEe8fLI+ibNs/vd+8K6tEWdH/BX3fCaobPjuXHHBszZlSdhNXPE1L9ogPDx9z9Un07svdZxkMciBOxsRjB4FIuxAqNw9cWoIlbVwnb9rdNC8onzXP//SCR3SFKc21mo1pxoa4XKvZ7eRYMch/2MjZFPXuim8GxCRhUtm6yG2/tXjgICj0q37jnr3XLyeGkJFM2FcZ1OXMjy2SWvv+qdfPMGDm2KKUwg5+dNZDlAm1zwR2ooWbjIvaCOhlrdlip0s/zIJaNydiT4ihG3s7VOfyimARt3NGdDpnl/9iZdtud8UU0yxM1z1lf9uprBurZfjjbW8bgmZR82+aMumsAGahNRdmumjyg40kammMsUUU0wxxQ4w9alsjlNLqETAtZTkMFkVbooppjh6XH7gv4BqU0JiKyqXo8Flgx+y2j7JD6IhEIcj/Nde2rTZzHzd0NxP+Fk6DXbZFhXUU+nW02e8m2ZsnFJCxejMLUhlavKaYorji+xDuWzmR9AQeELvyWhtpK3viX+6436eUD4JKcpNfw//+lneE/5kyz6ysLnsQS+xeUBk+yjQY0DcQUjx1KdyV0fHYXfEZW+nmGKKbfGuO/7XxPfL5v7zpm0vG/wQVw/fuunv3+a+DylKpNcKE5mZMWZpcahGpBLcjDT9xaq2Oj6AeG/8Y7meT+Iiu3rpzS19S2ad7szuuzU3RISwTfSX3k2jv+6e+tkUU0yxe3CC9EqkLHD9Aa7XA0wD2dHuMzPIzKARKID99d6ExxEkK19x/jOQ2w9ZqegqIHVE1Kp8WoXS3dEfahwVfst/ceqoP/EQkf3Am4Cvw/xaPwZ8GvgT4CLgeuD7VfXO7fpS56YmrymmONEQMR9IirpUiWZ/DluXmBDvTRAlAYSTRqCoRvvsxEpDi0PKAt/roTGmiqNxUtiEiMzNNF/f9clXWH5Lt86NSFsz5xgR1W2vqdxNhcrJ1lR+FXiXqt4f+AbgU8DPAu9T1UuB96XvU0yxJT755Xvy2a+cx7VfPp+Pf+lefPxL9zrZQ5qCjbWVnWowx4LLBj90XPtXhIjb8t/dVaicNE1FRPYBjwZ+FEBVx8BYRJ4IPCY1ezPwAeCFW/V16QPO4+qPTbWUuyM+/eXz6IvSlmBs8dEvXcTD7nX9CR/T3QYiZp5a+13VwmmTtvKE8klo1Alnu/R6SNlxzkdFXWua0hBsf1VkYKUqtKrse1mYxgKIc2gIaFWjh5cQv9pS+Ls1mf8i65Kkjxa1Osa6tdYzzag/8bgEuBX4XRH5BuAa4FnA2ap6I4Cq3igi9ziJY5xij+HTXz6PWacMVTgYe+xL7+05XnE4IspNIbISS5woV3/hAVx28bXHZSxv//yDKMUmzko9XmzCeuIl/3hcjrdnsUEpZUmOc0IwAQE8ofdkm/DFtWavTsGzbP7CCRoqEwoiyNysNRmP0dXJAnta1aARcYJGtX0rReuqXWZkaqZ/fHk61LGzakQccRfMXyJyAfAW4BwspOCNqrohNYGIPAz4B+AHVPXP0rbrgUUgALWqPnTnZ3F8cDKFSgE8GHiGqn5YRH6VIzB1icjTgKcB3OteU1PH3QHXfvn8dfpIKcqcc5TJkusR5qRmhZI7gk1Gf3P9ffm30bkA/OT9/mZXxnL1Fx4AbFzs7U8//xAAvu/e1+zKsfYscgGyTTLrpSgs70QVHY9t0oeJiK+mKqZPxb/AnOlZ6+mV6OpqI0zEe+JwZIIkaUkaTXuRQhpNBo3Eaz+Le4DluOw2PdNOaFp2qBPVwPNU9eMisgBcIyLvUdWJlZCIeODVwNUb9PFYVb1tZ4c7/jiZQuUrwFdU9cPp+59hQuVmETk3aSnnArdstLOqvhF4I8BDH/rQaQzx3QSXlvPN58/XSxxwBfvczESbfQ4uKuD6+k4OxpLFODguY7l/zx7NSh1DLTgYZxhrwUamuFMRVy+/hcvmn9KYvBp6+bURViJm7srfuyYz1y1gFhutRnql9VfX6PKqOfL7faTfwxUFurJCHI9N63GCVrXtE9W2A2g8blx/UYWwjXlrJ5pKsspky8yiiHwKOB9Yq14/A/hz4GFHM94TiZPmqFfVm4Avi8j90qbHYRfyHcBT0ranAH91EoY3xR7Dp7983skeAgAf/uLFfPRLF+2o7ds//6DjO5gpThqCOiottvyXfCrfIyIf6/x72mZ9ishFwIOAD6/Zfj7w3cBvbrCbAu8WkWu26vtE4mQnPz4DeKuI9IDrgKdigu5tIvLjwJeA7zuJ45viBOLy03+ioQDZCBcXvYnv9y7mN2lpuKhYAGCkFV+tzXySTWEfuNPWMn/0iDfuaGz/9KULWHA1YFrPAb9ipjeBUiLLccgBPyIqfDUsUKlnOfb5088/5NQ2g601gW2WByKTGkl2ols+iuWkUNdWorgsYNC30OEYcWcesN+cg7JAYkTBsvCTU17rCrTVdODIsvqPFBHZNg8laSpvV9Vt6yKIyDymiTxbVQ+v+flXgBeqapD1psZHqeoNyff8HhH5N1X94A5P47jgpAoVVf1HYCPH0uNO8FCmOEGob7oPYBM9wNy5X9x2n2u/fD77HfRlcyqPrdCXkifN38n19SJfrhcmfvu7L17CIy+8btN9r//KuRxw7XEvKccEVYaqVAgBJajiBaIqEWFOxgwpOYyZ5f7wc9/Ik+/z4c0OcZfG1ctv4bK5/2wmsCNhLc5tvZvYT2YGkJ343nVqt5T2uarR4cj8KN6jtQkVv7CAzM8RD62dj48PIjvJU9kZRKTEBMpbVfXtGzR5KPDHSaCcCXy7iNSq+peqegOAqt4iIn8BPBy4+wqVKaaIN90Xd85nALbUUvpy7Jbai4oFLirg3w9u5D/v+xKfGNtk9tJ/eSIv/bq/asKT55yjj6eU1vZ/cSHMujmCRmoJzKpyY6hZVMdi7OFS5FePgBMlqNCTwHI0Z/7vf/YR/Mil/3DM57AXkQVL43TvJEPahjXCxrVRXnjffu93Ah9CR+PpCpfCIwvzuKTZyMzAfCkzpkG6s86ANRFixwNm/toupHj7Z1ZMUvw28ClVfcNGbVT14k773wP+t6r+pYjMAS75YuaAJwCb17w+QZgKlSlOKFxy481IO4F0BctaXPeVc7mnL5l3u+ts70vJI/rw8tu+BoDRjZds2O5cP0Mp7WtSERiqmVgOeOGOoDhRVqKtriupWY59KjyOiCdum89wKuDq5bcAiVxSdb3mkh34rtVMRFwT6bWu4Fa3PkqOChNnJUrKFGYs0tFkcsnHCDMDrvrChvPzrmEXo78eBfwI8EkR+ce07eeAewGo6kZ+lIyzgb9IGkwB/KGqvmujhiLyPVj02D2wqyjWve7b2TB3jqlQmWLPY7cFCsBSHPKpyvO00z+atKDeRGQZQFzDMxvTf5VGVlSpVBjjGEhNJQ6fppEK86cMpKIUoxLJGsupjqtXf98Ei8TJxEiYjPrKUDV/Sa+Xiuulax5Cq8U0WktM5jI3OXN5b//UkmCv+syrj8OZTcKKdB17noqqfogjqOalqj/a+XwdxkSyE7wG+E5V/dROj3W0ONk0LVNMAZi20sUNXz2P5RsvPEmjOT74nc9888kewhS7BKunsvW/PUYoefOJECgw1VSm2ENYK1igjeDaDYy04ithBMBZzvOwfgmYE77SmsNxlb4U9KWk0pqaQIEnEIkolQa8CLNSADWIaS8BpceQgLCYzGA9CQyk4pziMHeE2UZTefNnHwnAUy79u107r72Gq1d/f5IWP/tM1vhYNISGyp5My5KRtQ8nrabiXepjTYSZM59LUzL4BGBnlR/3lFD5mIj8CfCXwChv3CQw4JgwFSpTnFC4cz6zofBYizPcYMKXcTRY1dGE76YvJffeoBhUpTURZUZKIspIq0aARLQxg3kRgioRpRRHpSZQVqIw7PhN5mQMMsYRORhmCDhKqbetFHgqoUmM7CZDujWGESdtsmOiWJmAKoROuHJI/pUchjwcQb9n7MN+A7/MccSOaFr2Vkr2PmAFc+ZnKDAVKlOc+rgzrnC6mz3mfroCZW3/lUZKcZzuZhstZN4NGGnFSGv6SaBFYhNcEIlUREYpN6IUoVJlOQmLgGPBjXGq9AjcHmc5GO08Bq4iRosYCur4rU9/y65Rxux5qJrW0S31KwJrBYl0osG8A+fb3zei0s+ztneTfZwAWEb9XYf6XlWfeqKONRUqU+wp3BKWuIffOqnxSHB7XGY5Ru7VMaNlgbWqI26PywRVKnTCquIwLQVah31Ik1iZNBaAgTjO8zUrqo2DcsGNMDLcFTzKUAvGWtDzgcNhwIqasLvyU7ZofM7XvHvXznevQWNy2Geh0AiOyQlXNSLdOiyq4NQqOjppqzx2MTdr2k6OHkuayuVf//NNk3d98hXH5bx2FFK8h4SKiNwT+DUs2kyBDwHPUtWv7PaxpkJlij2D2+PyEQuUriYBJihuCBW3hgHXV2cxjPeglJofWrhj3b4z0meogdBEbUU8QkXEaZ36V1yaHMwUplR5ctMsdCYjXiqFoTqcKPvdKodjnwU3ZDn2mS1GfLk6owlBvjugm+Uuzk0IlCZCLKppKDnkeCIDX+0CdyjsjWcshSbHiK712xxnRGR7avu9RX3/u8Af0jKU/HDa9m1rG4rIdhmkAtyoqhvasadCZYrjjstP+zFkfo7/c81GBKtTTHH8cMUDfg6Aq6795V3tdyd5KntJUwHOUtXf7Xz/PRF59iZtP6+qWxLXicgnNvttKlSmOG74NmeLIr+wfQTXnXGFM9zcER8jaylLcciK1gxVmRMhuiEXzHwJMBPVUvRURFY0sBKFBdf6RFxqU2lsw2IkJPoVmxiGGqnSgrlC8ChlNvcrjFQsQRzLX8mRQU6UXqq5MudGDLVkv1+2SSme2hH9Vy+9GaBx2GuMZg6LrTahhESR79pcExFzyOciXnWYTJDsOvyjojk5Mu+rZsqUjtZyxde8iKs+9cpdO7egjnob89de8qkAt4nIDwN/lL7/IHD7Jm2/dwf9bdpmKlSmOO4Ii4sU83NUWm8Y0TXS6pgd8/NuQKkVA62piBzwkIv8Vaoc1FzPXLglzLKsYxZcTaXCQCKzwB1RKEUZiLIcoUSJqizGAnCM8fRoTTmlmK9lqJ7bwxwDqZhzYzzK4djnuuoenFUcZiAVy7HPfmc+lpvq/fSktjrne2vi2XVcNm+E491KjThpaq1QVZMO+hhbE1b+WxawvIIuryBnHjCzV8xU++lAa4qE4RSNYoIl9bObgmVH1Pd7K/rrx4D/AVyZvv9t2rYOKalyS2zV5pQWKpc95CXgHFd/9CVH3ceFv/0aUEEiqAOpBTeyJ/m6Zz13t4Z6yiFrKRn1jTfRP/e6deHEldY7JorMob8OoSYwI31WdcRirPAiLMdIhTAnsKw27wRMaHja+ecMv9pkvweEoTqGanVRIFKpcDD2KSUSVRhqiSM2mfIRKyXriY0JpCeBxTjghrpg1o3oSU1Qx+31PCMtGcaS6zrmkqjCSuzhZBNW37sQLj/wX+xDNyMeeNeh3wGSIEkO94aVGCyTPtdgCcGYiZ0zzST7XTIVS1kg83OtltLkpXQiyjaAiliLXZ7hdQc+lb0kU1T1S8B37aStiNwfEz4ReCbw34D/CHwGeMp2SZSnpFC5/N/9wjEnQl34O6/Zts1Fv/k6rn/684/pOKci1gqUzXBTWOIefmsNZVVHTT7IoRg42/cYqZmxbtYxlbZmpqF6K5glVk44Y1kUT8RjPF1RhWU8VbQQ4KF6hjmHRI1SZUX7lFJTEpoiX0PtMUz9RoRZN2YYS4ZaMudGuBQldsPoHE7zK3iJLMYZW9XiGMWSSj2zbkyFZzEcn+JhJwpXnP1ft/y9yVNJzngR15JIZo2k17NtrhNKnPnACgtDVhFjLw6xNXV1o4iDmiDKWkk2r2XB1OEb2y3oLtG0nCiIyCXArwKPwOTd3wPP2UTjeCPwWmAe+L/AC7GyJP8B03a2ZJE/JYXKBI51hSKAKPn50Z4SCkXqvfPA3JXgzvkMt95wPg5hXgqWonkxciZ7xuG4yoyU9KVkRhwjrfBpkgiYH6QUcBgF/VBd0jRgMfYaAQKJpwlPBZTJfDWMBV4id4RZ0zokNtoLgCMS1BFwDLXX5Jf4bPKKfUJoJ5WDqXSxJzLrRhwKs03CY0g+GCeR2eRfGcVyW5v8XQXSK00TCQHqgObKi9BoGuJ9O9mH5CPJYcKuMBNX9omURdNWRcALKs78LjoZ+p3bCJjwWFlt3/nZmXYMu6yp1CrN87YZto0OO7H4Q+DXsWJfAE/C/CvfuEHbBVV9J4CI/KKq/nHa/k4Redl2BzqlhMplDzEz19pbednDXjZhAvumJ7+++fz3f/i8YzrmRb/1Oq7/yam2shPtZCeZ9FPsbVxx7k+f7CHsCajuIKN+D2kqgKjq73e+/4GI/H+btO2udtbSPW8bC3/ShYqIeOBjwFdV9T+IyAHgT4CLgOuB71fVO7frJwsUoDV9deLdL3vIS7j6mm2F7M7gFO0pUp3a0Ts7xU4EytU3/FPzeZ/0+WpY5aJilkprlnTMbXHIHaFmqAWlBA7GWQZSsd+tcpaHkqyFVFQoJdI44g/GHsNYUOEpCXiJBMyR6tFGE6m0YKglQy0YavtumEax1kdSN5/n3Iixem6oTmfBDSmlZiAVQy0b01ZUh0vHCDj6riKqmM8kTT5RHSuxZOCsQJkjMoon/RXcMa645zMnN5TlZMVH52BQWM34EBqKFjN7ORBttZNuhUiNpr0400S07ERZ5PwUOn9d+q0T4aVlgdTB+k19H0+24sieCxneEGk+BXi/iPws8MeY+esHgP+zyW6/LiLzqrqkqr/R6es+wHu3O+ZeeKKfBXwK46YB+Fngfar6qnQRfhaz6R0ZNihvetlDX2ofLm1DXC8/82m867btS8p+8cd+BoAL3/Raezlgb3ni7kIopWAxFlRa48WxEgO3hpLllBBozvOS5djn9jDPTWGERzngV/jjOx/BrB9zxcI/89nx2dy/dxM9AkMKFuMMt9YLXFDezlB7HA4DBq4yf4ooy7HPMJYNHX2lRfq9JOAaoVKpZ8GtUmnBWH3TR+43qLAYB5RiBbkcgVFn5RrVUcFExnU2f3mJ9F0FEfquZjXs/STIK85/RmdCz45y3xI85kgsVdtWFDbd9vvoaNS274YF98rkW1Ezd+UEyU648YRAafwl9lVU21BjVUTEShGfIAT1VHG7Il17Quhcg81UeTA/2flNgV9cu4Oq/tZGHanq54Bnb3fAkypUEnXAdwCvAHIo1ROBx6TPbwY+wDZC5TP/diPfdL+JjtvPaTXTddzv/5DlL+jqarPtMZfbquYD77JD+cMF1z17fXTXF3/iBduc1d0LO3XKZ9wSlvib1fO5tDfk9jjk89UsQ93PQCoWdUBQx0BsEl+MM3xxfCb37N3BOcVBVmLJfWduwhG5vjqDd9z+7xic9VFmxSau/W6FoSu5pd7HYpyhUk8ZQ/NyryV0dBInMtudKKPkiD8osxyqzU+y4IcmCDBfyIJfZcENiQgOKyFciW+0FTDBkoVMQPBSM+vGlBKa7VUKLNiLaARJ911amyOStY4QTEjEVBul37dtZdFmzBcFxGBtUg6KlkWbS+IE7aX7IwLayU2JcZ0fpRFgAFViOG76Ov7XNOr2QmMvmL9U9WIRccA3qerfHm0/IvJxVX3wTtqebE3lV4CfAbrZcWer6o0AqnqjiNxjox1F5GnA0wAGvdM2dcblh1aCNqwJeniRuDrEDfoTFBJdbCRQpjh63BlX+FxV8jfL38BiGHBOcYhbQ8E/rV7IN8x8kf1+yLAuWU68WGf4JcZq4bkLbpU5GZvWIDa5V1rw0H1f5PZ6nuvjmVzSu4WIcDDMJqd7ZCU52MEm+TI5yfM2h1B1zMd55RnVNVFeAIfCDFVl9DF9VzdRW6cVK40ZzBMpnfXviQRxOI0mQNQTEJbCYCIvxcxjyk987Ed500N/b9ev+a6hoUVxMDdjM+po1LIGlwVx0ENCQFZGMK4sqqvX0cK8g46pTwuPDgo0gozrCQGmIkhXQyG9xyFO5rF4b9pJtACBZqwnIEFEkW3NX3vFkKGqUUReB3zTMXSzYwl50oSKiPwH4BZVvUZEHnOk+6vqG7HQN06bO083LEXa2aaN+g5xZQUNgbgakfTgZw1lit3He+Kf8v+uvw+fHF3AgWKJb5j5IgBfrQ4w74fMypjF2OPWsI9SahajRe1U6jm7PMQ+N2SsnhXt8enhuQxcxdnlIfqu4lCYpVLPUEsOhllWYh8n0SZwdZSuTmYq87OUEuivyQ2JHXLAqjPx5UivHAVWq5/Igq8qTynmw3ES7XMn/2XWjVnqCKeAUKWos9x+vFd9KlmIDPqWoBiiaRP90sxNoxH0S9Q5pA426TvLJ8khxDrTQ1bHTWivFh4yRX0uKawKhWu4uyRGJMZ1Y1Gx36g7Jq6oJlC69exPEEtxUEe9jflL94b5K+PdIvK9wNtVj0rqbuZ/WYeT+UQ/CvguEfl2YADsE5E/AG4WkXOTlnIucMvxHsjl+57Kuw4bLc7jH22spu/94M9vtcsUU5yyuOKCZ53sIRwXXPagl+xarVvLU9n75q8OngvMAbWIDDmCGvUisg94Q3b6q+p6dtYOTppQUdUXAS8CSJrK81X1h0XktcBTgFelv391TMfxwtXXvIzHPcYI5dwHEw+aODQEXFpVXXHJ89HDh+EBFwLwhPJJIM5i8Ouaq4dvPZZhnLJ4T/zTHflVhlqa3yQO+Pz4bMA0kaiODy7fn0P1DBHH189+maCOzw3PpnQ1A6lZ9DON7+OG0WmUaaU/kMryRxC+OD6TpTBgKZmmVkLJvmLILFBRWHSXRBzaaAoeZdaN0uvlLTkxrT6daFMvI6rgidT4ZiLJSZQVVjq2lEAU12ggQGPuiuqYlWAMxzCRRZ+pPp7ykR8H4M0P/+1juyG7iewMnxm0TvAqaSX9PvXpxtXmViubrCPQK9Cik2zY8+bXjDE513Xi99grTAPJTvi1PpwmACBpTpITxqJpKTAZAJD3Aa6417O56ku/wrd98ytww2pXL81Oor/2ivkLQFWPuISqiPwk8HJglXR3sNO6ZKv99qLu/SrgbSLy48CXaKmaN0f37ongDpsDfichhToeNyYwgOKTXwDW+wUvP+3HGgfgu+5807b9TmE49NeX8huffixf3684pzzIHcPz+eTSPbl45jbOLg9xw/h0bh0vMFeM6MuYL47OJCIcqmdYrs2/4iTiRLlHb5H5YkxQYSX0uTPOsRT6lC5y+3iWqI5aHQvFsJn0V2LPJv/GtyL0k0ks4Bg6M0+NYsFS6KfQYqVwoWkLUEpgxo2bEGIw/0rTL0JUj1NHlV6rUbTw4hxCfKg24VhKoJTASEu86LZRRCcc3bK/yYGuMyU4h6yM0dKbGSw373vUOVwVUBUziaWwYe0VkMgkEUFqe7MaweJT+5DaJwHR5exCBOqI9jzShB47M4UVhf0NMflttpjKd9F/vyOalr0kVQAROR24FLMMAaCqH9xil+cDX6uqtx3JcfaEUFHVD2BRXqjq7WxDA7AWlz7gPK7+2M5yUKQo0bqylQ4Qx2MYj5HhCH/aPjTWjc8FgmkzM3dtOo0TjffEPwXgge/8BQbYpPz+pQfwr4vnAfCQ077IvB8CVhGxcIFRLDjQWwZgGEubzAtYrAes1n2cKLej3G/2Rm6rFzgcZrhxuI+lqs+B/jIrdb8RPlkQjGIxQdqYQ4AjjpXoqaNnVcrkU0k+kzRRlMmuP4oFTrQRNFkg+RQevBZeIosplLlSj0tCY+gK5oshoW4jvwAKCSzHXpP9f7Jxxb2ebZP4/Cxx3p57tzQE54gLfRgUaOmRoKZhNDkkJiiy71Iqm/ybjHjfmWpUQWl9JyKox4p05WivKrZtwTQVVXS23wqmXtlqOZkCplvka22lyV1EiI56G5bpveRTEZGfwNI37gn8I0bX8vfAt26x2+exEsRHhD0hVE4E3vcBq6tw2fxTTKisgdYV9e0bMEFrRMcVlHvjpd+LyEJkI3zNgZv5l+Xz+etrvoHioCecO+IRD7mOT6+cwx3jOR6870uUErh5tI97D24h4Brt4vRihdVQcubMEqNYsFz3qbRg3g+5s5qlkMh8OWKpGlCrY+AjhVhCYRYslTpWQ4+5wsKOc7KhN9J1gppwcRIZhc7r4MCLgjpqtdDhSh2jWDTCKf8duAq3xtgRUrRZzns5VM8y68YMXEVQZ2HIakEChUTGsaBwG0cinnCUJfXpc7hx3Ra/Ki3PJMyZVm9CRU1oOBMG3ehoTZQq6hxaGCGr/aCNZUG9Mxr8lOiohTNhlM1g68oPW4Kl9kxYiSpagWRalxhb81hnPn/P37544vR2wDSyLZS7RkhxB88CHgb8g6o+NpFGbnchXgT8nYh8GNqqEKr6zM13uRsJlSlODB7+rp/DiTIOXV7gKXaKh7/LFj8fuXx3i0rtBFdcPA2j3ynuSiHFCUNVHYqFa/dV9d9E5H7b7PNbGKHkJ1nvEdgUdzuhouMKKSap1jWExhy24T4h4Obn9p6RdI/hwX/9YoqOHFlaHPDRcAH3O+tWytsKJEB0yj8cvIR/uvE8hof7DO9bcs/ZO1mpe1y7ch59V/O5xbOIKpw7e5jbR3PcOZ5jthgxjgX/vHS+ZcfXPU7vrbBc98n0hW2Ip62mR7HAizKOnjIWRBFq9Y1GUriAF7UExqQ9uIbJ2FkVW4lGgY8kuhUrYGzeZzvaSphMoJx1NqIoglNlpEXj3/FERloS1MKbZ/yYiFCr4+M33JOFGVsQfuf/ewbv/Pe/dpzu1BYoCnTBQrq1cEgdqc+YJxbJrJWJHn1Hk4i6LotBvZvUXFxiE4b1GQ/emIjdKFkQCjf5Osa0g/dtQADY+1g4tAapq5Sc2XHaH0eEKLti/hKRC4C3AOdgZ/ZGVf3VTdo+DPgH4AdU9c/Stssx9mEPvElVX7XJob4iIvuBvwTeIyJ3AjdsM7xaVY94pXG3EyqSY+aT7VXTSyLeI70eWtWJt0gs+ssJ0utZFBhw1U2/sXHHd3M8+K/NxDAOnvn+iCo6Tj99mXvMLfG5289kfFaNn6s476yD/OON5zH+6hzlkuOa3gVcd/oBFlcGLMwOURXuvHOO+5x/C587dCZ3rMxS+MhMaRPOoKgY+JrCWWLhOLYRWTWOGC2hcLEeNMmFAIfGNlFmE1MdPUUyPeU22YQVVej7emJb+5sjiLEku0SpH/Gshp75XKRe56Dvu5ql0AdNzv1oZrSRFE2eysBXPODsm5treNJQFsTZRJczKFr6eGXScQ40LDSZTkVpzFzapViB9X6NzNmVqV4U4/yK1p+otPt4ay9BITDJG5aRin8BjbP+qk9vNr8eO+KOQop3hBp4nqp+XEQWgGtE5D2qem23UeJIfDVw9Zptv47Vmf8K8FERecfafQFU9bvTx5eKyPuB04B3bTO296ck83cyaf7amyHFJwtXD9/KZTM/AgTcvGVJ52iuy+b+swkTFaRvkUe5JOoU22Nl2GN40yyjc5eZH4xYGfcY9gtmehWLZUSccufyLKPDfYpVh0QIKyW31/sQF1lxPVSFMw8sMltU3DicoQ6OwkdCdEhyeufPhzEHfoiO0ockaFKo6pq/PReoNQmdRK1SR1v5dv0h3c9Fh1IlI/tqojpWQ0npIo4UoixKrZ4ajyOyEnopbFqY8RW1elZDySgWRnuvdEKYI7NJa4kqJ0+weIc6wY1q4qBvGkkEQcm1TYDkT0n7iLR0eF7YaK4VzBmPqgmeCU6vtp9McNBEkOU20PpR+iWStRpVI5LMUWrJB3T1J47db7IVdiv6K7GHZAaRRRH5FHA+sFYwPAP4c8wvkvFw4HO5JoqI/DFGc9Xsm7SbM1X1qs4x/0ZEvgv4eowbbDM8Of19UXfI3AVDio87rl79/Y23L7/lBI/kro0H/NyVIFA84k7AMTw0YO7LnmWZQ88WVu+YYfngDFo5xCsahDo4XC9QzwdQwc9WzMyNme2NGdUFIsq+wZClyiKi5vpj5npjJOWNhOjARULwlC5McGfV0RFVWKp6FBKp1SXCx6Rt5Poqyf4SyYWWYtMutwkqONyE3bxImfndSK2gwij2Gg2oKTErjlEw57sT5WA103CDbVVHxYIGrP8rPvgsrnr0hpaQI8bjHvvKZpbLQSvrUNh04MaB6rTBhEusESbpWqpby1jBJJtwQ6+Sfuu2dUmj6QqU5sdJFowcWmw0S9IEAAAQ1H7PVSBjZML+ehxhw9rOvCUA3yMi3RyENyY2kPWtRS4CHgR8eM3287E6KN/KpFA5H/hy5/tXWF8f5bXAj25wuGsxRpJNo79U9eLNftsKd0uhMsXuo/ARN6hZug/I2DFc6iGVIKsFTiHurxAHMThm5sZUvUCMwr75If2iRlWoak/hI8vjPr2iZlBU1EloFC7iNCcumgDoRmvNFFWTmwI0+1mBLlttO9EJbQYwTSV9L1wATe2AihQBBq3fpSOESL97XxNSzfKYKgLWGC0LHT4xG5d9D6ldm0xpQq5wFv10UmjV0wSuXtCiNXtJh2p+HdZwdK0N3VWh0WImIrDXhhV3f8sBXF0Bkwhhh2fP0r99iIyB0jf5L1p6ZFy3fpvjjJByorZCuodvV9Vf2K4/EZnHNJFnq+rhNT//CvBCVQ0yeX03ekjWXoAzVPX6dY1UPyciZ2w3rqPBNDxniinuZshURF1c/sAXb9Byiq2gKlv+26lTRURKTKC8VVXfvkGThwJ/LCLXA/8J+A0R+Y+YZnJBp909We98n9ni0HM7G+GRYaqp7BCPufzVzYrr/VdPyScBtMD8Ah85HfnGO/BFROZqwrgHiyWUES2U6BURCJVF9QTv6PdqBmVF4SOqwsq4pCwCZRHwzhILgzpUhcPjAacNVtnXG3F4bL6uWh3exUY7qWMydYlSR0fPBxxqfhQVxtqalboO/Mn9WoqWrMFE0Q4ZpeXAFC7g1bZ3+2q1Dlt2V9l3Ak1kGazXUrJ/p6tBFamPn/r4D/M/zvtIs92d85lt78vjv+WXbcXe0R4kmZy2XFz3Sqoz58y0RdIyMP+BEUaC5kisjgZi1To21qxEE0P4RseVtW2TaS1u0FfSZPw4Up3Wxw0K1Dv8sEa9sHLugIXP2AL/ePtTYPcc9WKqx28Dn1LVtVUWrZ+OGUpEfg/436r6lyJSAJeKyMXAV7ESwU9es/t7ReQVwIu7RJKpLPD/3cEQjxhToTLFEeMBL76S0AMKGB+IDM5fYnFxhjj2Fv7pgCJCL4KzCVuDw5UBcXkOMkEzKMzhGqJQRU8dHJV4RJTSBZxTKmcFkQ6P+4xDgXc2wxQS8cmcVUVvvF7ptzq6dY57l8KLnWhr5nKx8aV0kw+LxA+WTV4uhRUXidcrpBBj+9sKlJx4WaZQ5AozfWVTXVzj4G2EmzpLgEzHPdBfaRI2dwPZhyEBEOHxj37FBGmqDCvivhnCwGqcqBMLH97RzJj+pgixteQA2XSlTtvosFzfKEsbR1s3pRs2DMRBadxdEfxKTZgtGJ3RY+UsD9q34wsMH7Gfj//P5xzBVTl6xOzf2wI7zKh/FPAjwCdF5B/Ttp8D7mV96G9u3r/WqSTw1ViIw++o6r+uafY84E3A5zr9fwNWbfcnNupXRLasm6KqH9/q96lQ2SF2g0Xj+/7uvzJfDhs7/Zse+nv81Md/uCEg/NUH/dGxH+Q4436/eGVTgcQPoTx3hdXFAVoJEgUKhX5Ao+CKiCsSfXz67gsTBKrCsCoofWic8Hl7UKEOnjrY6r1X1BQSGdal0Z4EEwxRhDJpGUQa5tgsTIZ1cjxn4ZFzUsg+FMvAL1yYcNLnSd+L4iWwGkqySABPgTnfl0KvEQRRhXEsqNXRc3UTqpwjvwCGoWzG0xUspqk4Zotxs61O1OprBcvyjRcyd+4XN70/j3vsK3FrtJQGCk26zRrEhYGRO6oSSpcEhTnc3QZ+ijYyizb0d63jfqJ9ZxiORmg12faZsyuPzQvRe/PxFI4w30cFXK24caRYiZQrjmpWGqF2ogSKncTupMKo6ofY2DeyWfsfXfP9r4G/3qL9MvCDInIJ8LVp87/miLFN8PqthsDW1C5TobJTvP/qF/LYy169Ybjk0eKpH30qM3uMS3Ar3Odtv4RnjtAHFFa+ZgSLPVDB9QMIOK+EyhkVUxEpSxOYc7MjCt8uP2NyzA/rgoXeiJmyQpKAcCjDukREmS0q484K9j0LlGHwjYlrpqyoUghuFig51Ni72AiPbOYCms/DUFAkQdCTwDj6RJviGUfPwFeNs98JjELBiIK+ry1SK5nYxkkTsYS4gjGm7QxDm4tiJJVuIoigK2CyM9+JjXfGj7lH7zBvXTzADy3cwaoegeYiQiwTRUoVceOWZyvjcY99JZJqkbz3mpdx+df+PDCD9D3j0wpcAKm0jcLqlvKFydyVTt+N0OoIHHWg4nB1RJ2gToh9wa/WTdJiLDyxb7xibhSIhaDeE0sh9p19FxgvOPxYCT2oZjmCKXn3sDOW4pMwsE2QhMhWgqTb9rHHcqypUDkCvP/qFzZlh48G8+WwiR7K2so4ZXrfVVDPKfW+QLlvhAvGwaQq+J4JDxGQpHH0+xVlERphkjWJ0oV1kZ+lC2YiShpFr0j5IAghOkKUpnosQM8H5nsjRqFgHMw8JqKUhCbsOCKWRJeQJ/DCtcItJ0+aX8ZTq2kMK3Wv0W5yPks3KisLum7f2UQGJjCGsWhDnN2kQF0r4AqJ9FzNgd6yJUbGgosGt7PgV9mXyDf7UnIoDrf0rkqnYJU6aasoOmk0BGgz4yf2XV7BA7LQh9MKEw4+aQIhRYHFTqhvDiPuaiGFRdqplyRAHLGUVrDUJhjsdzOzqXdUCwXjBUc9I7gaihWlmrOxlivKaJ+jXDXfjCgsn+0IHZ7Xa3/5BGop7NT8dYIGc5yQAgj+K/DotOkDwG+p6pZ1BKbRX0eBx1529IJlKzz9mh85Lv1OcWrhpq+ed7KHcLdHZubf8t/JHuSx438CDwF+I/17SNq2JaaayhEi24Yfc/mrj7gE8e8+7Hf5oQ//F3oSmyS5Kq2CswN4L+LiP3glqoIrHHLeEB8t30SjIE5xTimKmJzvindKiELho5XkwDLhVS2fxae8h54330TdmH3UtBlpV/uqgohS+JwvAt7ZsbKGMazLxmE/CkVjWssmsVBWeIkMihqHkV0WLjbJkotVnyp6vIuc1htyeGwUL8NQmPkrRWcVPjaMxjmnJHZMWbUWTZ95W476WmvqqqNjkHxFhQtcMnsbN4/2cX7/IPfp38RHlu/Ng2euZ6yeexWH+FKtnOV7VIkU64avnsd5529A3ZRo5LPPQkK0BMTkGBeFMPD4YcCNw6TPZTRGRFLZIItEjaXgKnPGWABYG6HVmMG6bhuxZwKBeuCbY8ZSkKDEntU80UKIQJ0oYRraNoV6RogewsC0m9Cz4I/RaYIfJu2mgHrWdvnMi0+slpLHua0jfm9R3z8C86Uspu8LwANU9cNb7PYwVf2Gzvf/KyL/tN2xTpqmIiIXiMj7ReRTIvKvIvKstP2AiLxHRD6b/p5+ssa4GY7lWXnrN/4vs6uneh5ggiVTd3zHB7dklT7huOSPJtlyxUVi7YmVUaUgEINN/GUR6JUB7yO9MjQvXeMY963ZD6D0gUFKWszCw7tI6YKZyCR99hZmXPpA4VvhmyOqSmf1Tbp/RZRR7RvSvyp6VquSwkVW6pKVuqTnA73UdmnUI0THofGApapHRFga9xmGkjo6Dlf22YRNyUrosVL3WKp6TfssUMbRMwxFcrZPZuWb8LHItIGvuO/8zVw6dwsDV3HfuZuYdSMqLfju067hHL/EvYpDlKJ4gUOxokK3pIvNpiX7MrlWfu/f/BxSR8pDoybJ0Q0r3LDisoe9DGZmrCY9UKxGpE6BC6UQS7GkyGRSw0Ho+/ZfzzHeVxBmHKHniD1H7AlhYH9jYX2E0rbVfcd4nyf0hGrOUc86XGVRahJMsKiDWEA1D+N5qOZs+/g0GJ4B43uNGN9r9yLkjgTb5aioyl7TVP4nsNT5vsz2WkcQkXvnL8nZv+3q92RqKhsSqWGUAu9T1VeJyM8CPwucMokhV3zwWezv+SZMNTuHnTgOjmx1+B0ffCb/59H//Yj6ff4//UCj7bzqgX92zOO895+8oskXcIWCmHYQKg8jB1HQ+cpCc4toGfVJA1kZ9igLG4tLK7peEgxOlOVxj7neGO+MSkXV/Ca9om4y5ldTpFfpQvKL2IRdB99oGkGF0lmZ3yyQnCirY/N11MHjXZ18MkbiKKIcGs5MhBs7UXo+sDjsoyrM9cccGs7gJXLzyjxOlIVyxMHxgCp4+kU9ESnWDV/u5q1kv0lMCR/Zn5MFSiGRg9UsfV9TSKDvKmbdmIDj89U98EQuKG8nqGPgavbJmL5AmWTGRpFgkqOSOqG97/2bDi2LghYeNw5W66TLsTXo2c4RencMUS9Up/WpZ1xDEBkV87MEbbLu7bfUJmiqd0LzWxQh+hT3Kx2aFmhIKSVCNW/tJCouCLHoZOErhAGMDpjQKYZw+llrE89PHKIKYaN8mg72mE9FunkqqhpTnstWeAFGKnkdpo9eCDx1uwOdzBr1mxGpPRF4TGr2Zsw5tGeESo4CA/OtHE0iZE586zmLMsp8Tz0fjphI8Pn/9APrtj3j4z8EwK89+K1HPDaAS//0l8g2DQ0CTvGlmbbqsREhEkBrCz2NQFV7RuOCfq9mvFwS+o6yNEEyHHu8U7yPzPdHrKz2qGrP/tlVVquS4bhg0Kst+svrhPA4fWaFcTJpASwO+62pa1xQFpbLEpO5zUs0zW9sj/bKsMeoKhiNCqvzhPGPmePfTC+mJVnuDMBqVRCjoxbHqC7oFzV9X7OUEi+r5Nwvk9bkJTZJmUDjlM9CpJfyX5xoYlgOTT6KMRoLpTiW3KBZbHjM8X8wzHJeeSf7GIKD/TLmXDeg3mTBKCHxZPn1E963PfKXLMqq56BMxJG1VU5040DYN8AtjpAYCT2PeovOCv1eit4C7Zvmpz0zZ62N+JoglJQkGEInMKAxz6X2kjR/AVeTNChSXXtr4yqIpZWkDwMskTPALTfs3+oxPq44Au6vvYLrROSZtNrJT7FNNJiqvk9ELgXuh53Mv6luH4K4J3wqa4jUzk4CB1W9UUTusck+TwOeBnCve93rBI302HFwOMPA19TRMcxhqB0K9sWqv00PG8N8NLsXn9zrGR9XXTtCZf6QGB3UAtFyUmIQJBhPVOgFqpWSalQg3vws/V5FVduYRlXB+GDJcL5kvNKjcpHxuLAs+yREqtJzWAcNuSTArUvGJB2iY9Crms8u1ZAfVwXeR4qU75JR+KQ5RIhpRel9pA6OldUezimjsZmzspaTtS0zx7UmuSr6RqD0fU0VvZnkJOfVOGZSEqctFkKTG5OxrxxSusCcH/GA2Ru4uTqNpdBnNfSY8WNOL5cZSJ0ETOCi3m2M0zL+XsWdHPA1QxU8SikFKCzpeF0k2EQNkw3mNPXJt1G41l8iYkmPUdHTZyfzWETww0hMwkTqaKYwMZMWkoSLQiykJZBMcLWZsNTLhJDIpq1cpwXAhTbvMae9SLT2AL3a+lNv+/ZvmqyLdGIhO/CpnJiR7BBPB/478GJsZO8jzZ+bIVHrXwZchMmKx4kIm2X+Z5z06K9tiNQ2haq+UVUfqqoPPeuss47fAHcRuebITvD173jJtm020lK6+ImP/eiOjwemodz/7S8/on2mOLmIN933ZA/hpOPrn3flCT9mNnVu9W+P5ancoqpPUtV7qOrZqvpkVb1lm93eibkjzgAWOv+2xEnVVDYhUrtZRM5NWsq5wHYnfsJxNPkq93/7y5kdwKguWKrM7JLzEzI3VR1txXvDodOOqO+gYrU9cna4RJbD0Wk8ALMzI2KqWeK9YzU4Ykjrj7FDZwJEh6x6c6xGoRKFVY86DzM1oXYcunPO1kQrBczWEBzD5R6MHBo942GBpPyW8UpJlUy8q67HzNyYGIXhSs98O0EYz7WP63BY4osIolSVN41ITStpGdhbbcM5JQTHyqpdF1UhpAADVVt594u6WSHXnfXW/sEq3llNlyp6er6m54P5fTB/y6Aw7bOOjvlyTM/VnNlfoo6epdDjvP4hziyXOLM4zBnFEueUh/hqdTpzbsRiGHBh7zbO8Et8uTqDBb/KA8rbWVHHwdjnnoUykLa6JEApBaen65UFizvnMxPUKxtCFamVYrVGS0csrbiVemmqLWoh1LO+aV+sRnp3jFAv1HMlUivlMDI+zY6vyQ8i0SKzEmFYa8YKoEX2vdh2sTQkXFhvChO1zPkuq7EfpdwWD1UfYh/KJXAtCcGJhbK9JrIHNBUR+RlVfY2I/BobjGibevP3VNUHHukxT5pQ2YJI7R3AU4BXpb9/dRKGty0+8K4X8pgrXsOjn/haPvhXL9i03b3/+JdBlLK0Sc4nx22uXrhSl02E0mrVY6E/ZK4/ZlgXfP07XsInv+tlG/b7Ux//4UQYYgKliaqKiZfqCHGft/0SzpvfI0bHcFTifQ4TpplwRIFxMoVE8EPBjYU6lsYr5SBWpVGA1ULsRaQWdJQmqdr4wWQsUGCOYkm+m9oS6RRYTv4aVGCxMEfu0KOFIr1oCZYhOX6jEEepX6+4QSscMjSkkFqvlP26uULeG21MWQRmepUJjuDbQIOU3Z9DpMF8KlXyg/kmQdI1PpTZYtQU8zqjt8Q5Eri4fyueyHI0oTZWzxl+ifOKO5nrj1lwNQsCFxRfYVY8szKgFI8zIrUd3cOucFmLK+73s8jps5Cvq7NESSdC6DukTmG+hSP0O8+PCNWcp5rz5j/zZuIqlyZ9OrHjw8mO+EYoZGGR2xYyYarM9DHZdKbJmd+ERacJXL1FgmUBlQXQycJ25q89IFMAPpX+fuwo9r1KRJ6gqu8+kp1OpqayGZHaq4C3iciPA18Cvu/kDG97xN7OJ++owsqwx0y/SsWbIsOqYKXqNavgYV0wDnP0i5oQNrZMPucfn5Sc1p7D9aDhiFpI2fojdXx15TT291eP6pyqyiYPcYpCo6HEJbNf+5FYVrRX1KtlS6MUqzncB9xYiKWm8FBnn0fO6qsohIVgq1gHmUNJQsrMjskuv1Q0RIGSJh0iSC0QvE1MZZptBGTsGoGkwcI5XdG+1vmTCPQKC3sOweFcpJ+Yke13ExAhCjNljXeRKniCWqXKfK8AnA9NPotpJ6EtV6ye5dolBoHIYkr/nnVjKvWUEiilpsITcHiUgRTMIngR+nL0/oKuSWxCwEh34k/PV1RcFVDviF4IfZnwf7RO97abeiBUcwX9Q9FySDroaiMoTdQYgKbqkdHTlPVOPzT95+OFgSA1DbOyilDPQJhpI8YQqGfg2lec+DyVnOC416Gq70x/33wUu/8D8Bci4rDyQmJd6b6tdjqZ0V9bEak97kSO5Wix2ULl4re+slmJ5cgiCpuwVoY9ZntjVuuSpVEfL+Y8rqJndVSiUViiz6C/JRMCdaIJsdWxkR4CLFV97hjOMkg0JzvF577/xdz3z3+xKcik0RyRMQriIsX+EfrlWfxQiD2lG6SmYs7UbNKoZ034EC1qx9eCFlZ+1o2FQBIiEdNcSmMzJkWakQMAUsKjlmqSRbA2AQQHZbtalkRoGaOiWkAZkV7VRHVpygnyiV4fLOA+FwYzGWdkkyKdWQ4TJJnUUjoO+I04xcCIKGdchZNI39XM+xErsUcpgVk/svr1UjFwFZV6DoYZKnUs65gFqakQznaKFyGoMu8G3BlXqDRyDz9/RPc13nTfVrAERVDe/ZG2ZtS3Pu5VhH6K4isTX5iAT9FamRYlh/qq71waTUmRG6x/1moROX/GNJD23ZFgx1VH4+G1hEcQb/uEQbsoaCLHssA6SdDo0G1oWvZY8uN9gefTOt0BUNWtyCFfD3wT8MluOPJ22BPRX3dV/L+/3NzslSGiqeKhEMQIDnM+hHNKiJ6YTCehdsRknhi5je9hHT2rsWS57k1UnrttOMfSuJ/s/o4vH95/xOejURrtoB1/ex5cuIxcO2+CYaC4yiG1mblchQmRPvixfdYiRes4iL0cWgpuxSNVsq2nPAYKs31kYgHp1O3QNHmhYgIo8U1pLUiy21v+Q7pmhRrBZRp3UVgipjil8MGEeO0JwTHoVw1DceYPy0SVmSGAnNnvdCIfpRs6DG2SZ1AhIMy4uhEkpasZSM2CX2XWjSmlxhMJOMbqWKwH3C4WUeaJLPolSgn0iPTjIgMRZqVgKQ6Zdx3Sqx3iqk+/auN77oUw45CghJ5r8khiCsEKvWSWcvZgxE44cPtwdPpbE07c3MP8XEm+V0nA9NJzEFOUWA5d9kAJQW1hIukeS6B5RuKkm+mEIqUCbdtmD+FPgd/EaPB3St/xWeBfjkSgwFSo7BouesurrJaICrKLD/tFb3k11//no0/TuegtFlCwXR8Xvum19I4sPmCKuwi28rVMcZS4izjqO6hVdVverjW4EfiAiFwFNPkp24UUT4XKcYCOPeoVV4S00u5aDCwnw4kSY+vs6yZT+SJSjwvC2Ew2F/3W67j+J58PWBGo5brH4fGAXkq+W6r6RilSF1S1Z2W1Rz068lsbKod4pSjblX2uUxJSvsklL/07vvSyR+LG5qAnmb4s5yCZu0aYuS+XH+9Zcahy0VanfsXMYURwI/Maa1BcZZqKRQellWzJxMupVVome0VSvRaNQpwNtnB2iu8HnI+4VFUSzEfkctBByuAHGJQ1ZfKN2AFMK+mXljWfc1FyIbDCRfb3h+bAD0Vj9jp7cDgV5wpU6vGiTe7Jgl/lgF9ikBIu5mTMrBuz342ZExirMlJhjKNHZNYpZXpivAhnuEmT10irjhN/51grXL75e1+HT/VMYjc7HlpnvQh1r3Wcm7agTYQWqoS+M7OU0PpPskay1pmuNMmQ0Uvje4kdP0nzN7ctTOuFZGJ1J9f0Bdhzsk1G/R4TKu8UkZ8C/oJJAXHHFvt8If3rpX87wlSo7BZyeEt+kBLpYn6rxKlNfs4cyVn/zA55o9awCa0adm7L6mRC4xeXT2+oP3qEJokyREcdUiLhamm+iTSOnaBYGONT8p9kksckUNY6JXt3mnmqWMr+E3Ogitpn17j08hwjuDGtwIjJdJWcsBJTIl1OukaJPSWWaufhNUWGJTNZLyJloJypmxosYeAmonGcj8wNxvgk2cbBN787pxSxtQCYI17woqhiTnlRahUrbewiMe1fR8c4LQr29Yb0UpTXvB+ZECIy68eUEjjNr7LgVi2E2B+mlMhAIgNRBuIo8TgE7wSH27Fz/lic+GDC5dE/bXlvsSeN30RZH7GVOcJUOn4PFYgWmuwixEJboZSESJMEKZ25NW9Pj7QLCuNWmGlhyr4A2nEJduS9PTNpfCczDWQnGfV7KU8Fi6QFo17JUOCSzXZQ1ZcdzYGmQmW34PJbSfuwLxfIfEUTGgtNlrqmfIpYt8LIVj6NTmNhs2vM5zk3QkTZV44Yq2el6lFFRx3MT0DHH5NDaXeCorDVft0IOnPUex+5+EmfaNp98g3P4QE/f6WFli6n44w7Q0/+lJjmPith235XD2Ggxh9WmPNXCzXtJQvmpHXYwEyQmAdZER9xvj1H802BSz6OUDtC7RhVBYNeRekiWhs9S+EjqjRMyaPaI2KklGCZ+H1nbAJVdJAKfQ2KqplEMhNCVOHMwRJ9V3NHNUeVKjWeXqzQLyr2+xX2+2XOcMv4NLWuRM9NsU9PAmenOik5GndWKgbimZE+kYjDEYl8qV7GAWf7wTELlLVoSv22j11zD/7hD58HwEOedmWriQBujYk9E01mQZSFUxMaLK2wyhpP1lAktr6R0KPh+2qenVReOPRNSxG19rFIvruThZ2Yv/YQunXut4OIvFRVX3q0baZCZbeQ3rjrf7T1XVz0e69uVGR1Sl3ZEi3WRsg4uX8rAMRhq3NAfJyIMlke9yjT6jmz7YZojucYLZRWnNWEJ4fq7gDGn5WESR6zmqP7wu//53Xtr33Fc/i6n7nSnKtF10GbTmfCoWuhn+oViVaECcwspqWi/dg62Sc4PsxcRadiJKKm6VXOaGKcEotItdSDIiJJ0xJniZDjqqASZXXYS7/Z9pC0uqIIzKRIu0GqILky7hGi0eerCrODMarCcFww129nsnvuO8QwlCxVAw6OBwx8zVLdp+55RlpywC9TqedW9vGpVauBkh33A6k5za9wVnGYntRNSemSQE9sPAdjj7EWzDnPOX6JQ3HEmd6eoZU4piJyupvd0f1dh47wyPdIO0rx3//R85rP17zxOfy7Z1wJwL4v1U1eliUAS9I+J/nGMg1L03cKNY5emudFPdQDGm4WLZPQ8SZEIEWH9bLWLfixCRx7Xk6mJiCTz+pG2GNCR0S+DngA0CxVVfUtGzT9CRHZit1EgCcBL93ox6lQ2SVs6AgXIK/6vbY22CaekmbF0/1N1TLAxWmqY9KaahaXByzMDS08uS7RZKIZV8bA2y8tm72uXep75y9eNsXlcGi3SQTatzlLHdIXPNKER2fVmbWUfH7amawkSBPlk2wrlsuy6og5p0Q67UoTOlJ7W+2mcOI8l8RgyY6x8o39xggwgWQiHI0LQrCoOuetTag9Gk14q48Mx0Y2uTI2ostQO0v8dGbAWBkaLT4KQ2dJoT0fuHM4A8xQpyqAlbeaLHV0HKpmOFwN6LtERln3KCUad5h6ViSwGAbcEeYa8kgAj4Uon+GXGhbrORnjsRDjkVbMSP+oIsC6+OBvvNFMYPlR7MzRf/+Hz1vX/h9/7Tnrtn3gXcYs4Srzs6hLZsh0zxtfSl7VSwrbdhYmHEsIs62ZzI/a9hLbfexm24d6xrTZrM1UpwUu/J3XAPDFH/uZY7omR4S7mKYiIi/BiHofgNW0vwL4ELCRUPlfbE/H8r82+2EqVI4TLvpfrz0C19b2uOSPfpmZ2TG7SRo5xRRTHCX0Lqep/CfgG4BPqOpTReRsLLx4HY7Wl5IxFSrHEzlhLxuataOaZA9mx+yF2sob32opuRBWxsxgbPVB1hS2GvQrShcIqT5JPp6WEaJw4Zteyxd/YvO8mlA5XJFqoog5y7dDZo/VJrck9eXaVaqQnPHdSKDU3kcxW3mAYiSTJjRNSZPDZJ/3gNNkk0+mwayVxHyNBIIQaxCvjLK2hiVwqpo2FqpkGnRKJR5LGLbACk3aj5SmpcTs5xKaIAaXHPrdPCFN0WFgjMQz3pIfA8JKKDmjXKbv6iaXpZTArBtzZnG4odiZcyMckX1uyH63yrKWLLgx+12gUjgYIUgFDmbk6LndMj7462+c+L4Uh+w770tH1McH3vVCvuU7X2v3wInR5g+E0KXeXxP9hbbBHK4yX4qrwK+2AQNhhuY1CQNpNBerd58/Q3HYo95R7w9c9OuvB+D6n16vae02FO4SGfUdrKYaKrWI7MM4FTd10h8LThmhcp+3/ZIRDAKf/p5f2Kb18cWFv/0apJ/eiFUPhVpBpFqQEjMRJXVeEn8V0EY6iRJHhTmUB7W9QHU2TcHScp8D+1aaZD0nyqCoqTqlbBvs8MH3pU26OaMegXq8/vH46oseaUMdg68wAZGFSjJNhT4N99OEb4X1izs/lNaWnwRakyiX3SxFEiSS/mYqkEJTpJBRqFCqmbWChXuK1+acciSOBhM8kAIR8rhU2tAjiYR0vV0ql2yf20Jk3ilziZolhxX3XGDgK84dHDIaFhcoU/GtQfKT5AixUgIDV7HfL5vJC2WfGza/DyQw6wIepUrXYSCKF0foxqjvAfzNO1/Ao7/rtYBFdMVaTEvvmq+yKTQ59F0AxjYBFcs0vHEq9oy7cfvsZLNY5hTLz0cWNK4Wwg6jHHcNkfV+0bXYQxn1wMdEZD9mtroGqwL5keNxoFNCqPzLwRu5Z+f7N737Z/n7J2ycQXyiIC4ShwUuSAoXdvZ+OWCcPqeXLmsjqqBjZzkAKx49c4R4ZTCwCanwgRiF0xZWrcJhZSEyIsrqKH9u/QpaseMHW5ymqoGm/YTaIS7yue9/Md/2ZPOhuNlZMgcXueuOw1fUfiuXkt/EgdYWtZPDUXNEUNZkmsggsYx0dZp8HdrxPZmDHzFNJR9f1CG1cYVlWhenrVO40fictAJLaScDSY1zZF40DUdxSC+kEOtIXXuqUUFvpkI1IE4b2paVumQUCi5euKPRQv7p4Pn0XOA+C7dyerHCKJYcirOsRovSO6d/iAU3JCJNKHMpNYtxYFn0UrMsYxZ1QFDHPjfkLL/MsgpnuUglkVUdEVTpS2H1VdYgR4/tFJHIaMeJ1uvxwXe0WvA3f8/rUmEtacJ/m4UCNIsFIySlceTHjkM/t8uVLJsostAqpVHScybgl8zvpmeNtkz4fcBfvvSoz7GLHDZ9V4Gq/lT6+Jsi8i5gn6quj8DZBZwSQgVsMtQonLFv+WQPxQRCENyow+ldp7+poFHzviu2chaQzvIzFgpR6PVqZntjgjq8RMbBm+M4uMZEBlCPfRP5FKvsGbf+dxIB9pnv/W9c8oe/TKw8vTmLdvr8D7Q06jc955GEjm9YC5ARFCtmqgi9ZAGJVuo1Fp2ENtrzVek48lN4aHbMqs/CAepZaUJIJeakyERG2JE3rurIhjXVDkP2aQnEQWwmLDtWMtesJIHikpaWiDLdvBFOjkcFGowFuUrCNgbHQZnDlwGNgvOR2xfnqGvTHGO6b8NQsL83ZKUuOTiaoQqeM2aXuW7pTAa+Ngp9V1NH3wik08pV5v2IM8slFsOABT9k3g85wy9xSe9WbgiRc3zNYgx8ujq9YT2+qLydgQQqdanQV+QMF+mLY6SRMiUl9vFUREocEaUUR4FnpLVpQLuAD739+Xzz97yOyne0UKHJdclRYd2FBSTtVttnJAsUstk0TgodCxCw9k5tcVHd2YPTjoz37qixC5dLRC7AnOXnYMulN6rqr65p80TgF9PvNVZ76kPpt+uBRcxeUKvqQzc5zoM32HZv4IuquuEFE5GzgP/Cer6wH9vqnE4ZoTLFFFNM0cX93v7yxsy8f36VQysD/G5l4kfZgflrRz3VwPNU9eMisgBcIyLvUdVrO23eB7xDVVVEHgi8Dbh/5/fHqupt2xznN4AHA/+MieWvS5/PEJGnb0Jv/1fA/wPey875wk4NoaIRckZ7LkN70ZtNBXZl4Lon/9wJG8u9X/cGHAJjbwmAKVRWojnPmyxb1Y7znlbV76zacEpdexZXB9Y0CvXYE2ujU8n7aROJYh00+S5BmP2CUcjvhB58s+t0wwuSH6VqE9VUzKfix7bir5NjNb9HEi29pGsDz/uRUz0EYoeMuZsgVyx3nP05ka5rQknnnpNNY+dJzqtjPzJtSQuQTq6PZvMarb9Gso28NtPh8OAAqYyuX3N+S90jirbhrWVEsgaWx5rMbmHsub46w0yJwTL0nVcWV/sThcPm+mN6Rc1MUXHmYJnlus84FoxiQemihR/HHrdVC3xxfCan+RUOFEsA3FEbfUspgc9qQZnyXXqJLvoOqXHJVniGX6VS1+TDDKRiVgSHMGRMpbvrlPjQ25/PNz359YA0ZYNjJhj1dl+S+4qYc1h6NKbNMKCpm5LzUnKSbH4G/KpN7BJbf55fddSuQPsbn09V7eKUt53Q2IFQSaXTc/n0RRH5FHA+cG2nzVJnl7md9bwO1wM/rqr/CiAiD8Cy638ReDuwkVCZVdUjJh48JYQKCLEWfGE5BcPD/RPuyLzPq6+0Bz4hO6dlzbPdCI5UN2QC2U6bBYso1UrJONcakWSiyX6Tbt9CZ+Zds/0YkSN11KWXN5mrjG3fTFJuZBOG6/yez70ZQpaDnaTIJoKs49Cd+J62rTHH02Tor9kvU6I3ZpLGBNhu104wAsm8Zt+1pRlZ8e3BzL5iyZuKRdTle5HPI+W1AE30XT32TSKmJMaFmHjFCh+toFc5xruY2I8dUSNBhdhxHgV1OAkEhKGW3FydluqxhIaGpouxFmYqVY8Xq2t/e5gxBmRVFlK5xArltlhRqdAXZSC7+9L8/R8+j0f88Bta3xt2z1yd7lPRYSZ2HXMl7W+WlKltomznHYvZHJt9bjHdJwGcMl4tm/fm1lFKu9gtP4juuK/vEZFu6O4bVfWNGzUUkYuABwEf3uC37wZeCdwD+I41I3m3WHLZb23WN3D/LFAAVPVaEXmQql4nm9/3/y0i366qf71Zg42wZ4WKiFwO/CqWmPEmVd3c8x4ErR3j5fRUjrNHeMfUV7sGLUh08Gli850HHVrBkb9m4dMs8Ruli1iZb0aCrZabJMnO/s1KOa+00yRmzk2lPsqE64lzyi6abONOk3ReTfoRlCs0lORN+87FnxAaawXHWlm41qm7dt/UvpsBPhFl5lgnpLp9Nk7/bKuXjiDKx+yOxWlLGVOmpMjsz8oz5lpZngIOSBpJr1dT+EDhIwu9Ef2ipucC8+WoKSs9V4xS1Fhk3g8pxUpD5+RITxs5lot8ZeTkyUxmiZJo9A29LIRQhuqp1BndvzoCVi4BzLC/m/iHP3guD/uxN1h5YJWGhsVH0AlBn6K88r11XU1FCAMhFmoEo9h1jf1kBaickZuqZd+7YPQ/sbMoyJr9kdAWbQVRaRcjW7QB3q6q24ajisg8Vlr92aq6LptdVf8CK5j1aEy7eHz66VGqeoOI3AN4j4j8m6p+cINDfEZE/ifwx+n7D6RtfawA10Z4FvBzIjLutNm7Rbq2goh44NeBbwO+AnxURN6xxs7YIgLLybOXV0WCMd3umhF1c9zntW+wVVOabLNj3AWIJHNJyjpHMWdwuzgG1pt2VIBVb7+nSKi1bK9dCthmVxG0MyuO72ETz8X/4/V84f87uvh9Lex4jYknT8Qe3ApNGGh3ks/nkDWz2EwGTDhbG81CmHTmu8n2om3b7j1uTrujjcQ11xKApDlJI5SMey1rLnYZOypREjrdcUktZquRfAxtTzKmyDQUV8SkndhEr2qhxIWPDIqahd6Ing/0XM1CMaJIocMziYiydJbDkuEkJoGQNBccnkiVNBKASgsikbJj8nKd52CoJUNtecMclq3fLT39yAuv43jgo7/zXB7642/Awn830OJzoEbeLkDASCUFdNXMoYg090NFiP30bNRtrftYZKJSseqW6bnM4cdrn9Gjxs41lW0hIiUmUN6qqm/f8rCqHxSRe4vImap6m6rekLbfIiJ/ATwc2EioPAX4KeDZ2FP+IaxoVwU8dpNjbZdVvyG2FSoi8v9hJ3vn0RzgKPFw4HOqel0awx8DT6RjZ+xCFIoVY1IFJujSZfnEZaBb+VPB5RW7A1dJ89k+pAc7V9DL73Q2nXQ0l+6qaoLyoosu5Uuy93e1HgAZHZtgjYWFCYdBS3OfF+izt0TGC1aGNpcHzsePRUdoblBXXGFSq0hjzvxPbdXB9lyyyWtCy0mnl80q1kaby9NUK8xj004fHQFvEWGda5cXKcnc1fXhtEPu3JiuSQxw3oqClUVgpqybRFU7bW00BSLgAhFHpUbYWHVmv760wsQOFRlT0JOamEoTZ1RaNO0qtVLFvTVaTUnAi5nYsgD69xd9juOJclWpZrAIvc79i533oCnQ5dZou9371XlWEh/nhB/Sd+OYulpt7nO3zF+7BDHb028Dn9qsTomI3Af4fHLUPxjLArpdROYAl3wxc8ATgJdvsL8H3qmqj8eqOa7F0gbb8r7fBTw6ff2Aqv7v7c5pJ7PNOZim8DYRuVy2MMDtIs4Hvtz5/pW0rYGIPE1EPiYiHwvLJy+M+NJXXnnSjn2kuORXtqytM8UUU+wUaYGy1b8dCrBHAT8CfKuI/GP69+0i8nQReXpq873Av4jIP2IWnB9I1RjPBj4kIv+EJTL+H1V917qhqgZgRUROO5JTFJFXYSawa9O/Z6VtW2JbTUVVXywi/w2Tgk8F/oeIvA34bVX9/JEM8giwkeCauEXJIfVGgMH5F6gbSbMyiZl08DhnJ93vF6+EtALvrtAbZ2/srsSyqQQT5cneniOJsn1WVNuM4Tz8IOYz6Z7PhldorSPBVs9aKG5o64eLfv31R0Rjcekrr8SVMDod9n9WWT5HGjMTCsUo4sewdH6Rxk/rzHedaxNa81QT5SWt2aMt8pSuGzQ+Gp9LEpc0JYmzxpc1GnVqUUJdvwkgqAVD5lVw17eStEGhvd75d/VKUy638g2TbnbaN5d5ggVATfNJ99aXdgKqwqGVAc4Z4Wem2a/VsaR9Y0TwFeNijEPpu7oxhfWdEVBGdY1fBUlldlVwooy1aDL2gcYklrUQHE354qYNiiNOmMSOJ/7+D5/HI37o9YQ+BNdmZOXE1+a+SOcZ0faeNO9U6Jgk1/ojWaP1Qn4FTNnZTQersn1I8U66sXyTLTtS1VcDr95g+3UYn9dOMAQ+KSLvAZpVuKo+c4t9vh34d6oWGigibwY+AfzsVgfakU8lqV03ATdhcdWnA3+W4qmPBzXoV4ALOt/vCdyw5R4de3xjfz8RSpWQWHW1eaI1101fK9Mau1D+2DFdkV8WofGKrPEZNP03b8kmQjObabIQE5Jj/eiEbA4jPu1zy6ycPT8hDO64b0Fvyb7XM/DPb3gOV9z3hdz2zWfDWNqJH2vTRHu5nCip1DNilt1kulJpTVlNomjXBJKuTa40aceQxm8yaebo2Kq6k1f3UjTmL2mFSleH75jSsj2fFJHUBFYkShiNdv8QYbxSUjljj/ZlxPtIJZ7lcZ8QXUOxU7jIMBSMY0EhkcIFTkOY9RVOLZnSYVUoXYrgchIb4eKxz6XUDFyFJ+JFCeliBRxzMk7VWSaNE/vckG+88AtH9VwcKf7hrc/j4U8xp72K3ZfMgCDQZM7nCEK79ulehNZcCknYJIEErYlzwizaDeTYbdfqTjSRvWVq+z/p35FiP3BH+rwjTWcnPpVnYk6e2zBWyxeoaiXGwvdZ4HgIlY8Cl4rIxcBXMe7+J28+SKNJh65QEZukZiIX/vZr+OKP7/4w8+Tlh7RFinxnZQUNQZ79mMaWtRQ6K/TUZOMDpZ+1c37dF2htW1nzVyHMRFwqxXuf176Bz73guTs7Rwc4pTwsfPnx81bBMcvPlB09PADFqrX/ml+4kk99pl1UPeRpVzaTRnOO2USQ8k96i0o1a4I5c6HlKKEcetr4Y7qClslSK41vpBNOnIVEo8Vs0CZmskrf6WfNJKSJzNK42bAT6EVI3GCujE3JAF/Ehg/MuUT4WdZNoIN3kYiF+uaS0AB1dI1GNI5Fo030XU3AaGyyf8WjE877jOw/KTE+k4FUeImUEqnUHPweJSCEk1CT9yNvfi6P+r7XU83ZwqEe0AiYsMn1D/32fnXDxdcOXyUtgGR9IEzT7y5hJzQtJ2BJu2Oo6ptFpAfcN236tKpuFvWV8UrgEyLyfux0Hg28aLtj7URTORP4HlX94ppBRhH5DzvY/4ihqnUKELgac2n/TjfGel17167Cs0VJIkgFYc5e2kv+6Je57gd3Nwkyr9hFMX6rbOrqOOUl2op801XTRERSt+NGGk1oKZk9WGGSjDI3aS6ATgqW1JHVhIeLf+31fOEZ25vB6oVA7+BksEMeZ+i3QjH2aMxV9/2lK/nMi58DWIEngAf91JUTFsA8ptCzMNNiVQl9IyQ0C5MgKUE0IuBpo7W6E0ZsV7Dd5NHmOm8gfCcmpmSualiQG00lCw86mk5r2qIRcKncchDTMpuIL6uY6V0rbApvwqbnawpnn7PDHmhCi2eLEXOpPHHE6Hn6ScXLYcFWa6VuNZgkXJZjn1I8c27EggzZ56yfHpHSKZUKY4x4dEgxEf11ovC3f9o+d9/05NdTzUI3Xyhrtk0t+qyRrHnWcxBGXvh0Hfzde9nutOb7sSA9e9u22SMQkccAb8aSIAW4QESeskn4MQCq+kci8gHgYWmfF6rqTdsdayc+lU1jrFX1U9vtf7RICTc7S7oRLClKOw+jKPTNLOH6R0+Ut+Vh82q74ydYqxZLhP6dZhrKOSOW/ZuFRLuCFun4U0SIpTaroRz22tiWs6DpmGZMg0kvZrMkp5lt1UHs65Gt2FSoFiLFkmvDQbO2lc6P7O9YG8nVwSd+4znN5wc//cpmzHYd1YRJZRJH1JgI8rm70HKcxSKdoqZ3OgmpCA17cdel1PhKOvb5dZPTxCpY24VBEh6WI5R2yrT7XY0pR4nl72mbd3FdkmPPB/aVIwa+ou9qRrEwk1YSMGAhxDO+YtaN8WI5K/v9CrNuxJwbEdQx1JIz/FLjS1lwYyp1HIwzBHUMpOIMv4pHmXVKUFhwnlkpiWk2vDUMuTUeO4X+scCP2pcla66xJxP5K9l/1o0EzJpnTpKMPfP1xaQOSnTNggGvk77NXcBONJU9htcDT1DVTwOIyH2BPwIesrahiNxfVf+twxf2lfT3PBE5T1U/vtWB9mSeyl0BX/MLV3aKct41sVNtZYoppliLzezPHewtoVNmgQKgqp9J+TEb4bnA09g4/FiBb93qQKeGUFFaW3f3RjozS4TV43eaxp7bMcvI+hXM6HQrQDQRe99RnZMVpfHLgGUGS6ZnSavmxmfQMcdkjUXQ1oEPHQ2HiYe/0TQSLrnyDVz3nC38K06bKJeYaojnKJxGO+ucS05C2w5Zw3OV0lu0yC0/VkJapbqc+NZEAhmFfROqqW2bfF4527+pge5grVbSDiCbTTrbkgmmMSOmB6pheZak8WQtxinOx4niZt5FZgdjShctg14iZfKb9Fyg5wOFs0z5wgUO9JabEsLdfJMDxVJbt14CC26V/X6F/W618YmUEhmkiLDTnMdmiFV8UqNmZK6hwF/VEQW+ockfacV+VwAjTiY+9OfPbz4/9MffYO9PjZkzu2bhFPXVaMPZbBzMr5az8WPRMiM3fk4n0NfWnLYb2Imjfm/hYyLy28Dvp+8/hNVVWQdVfVr6eIWqDru/ici2S+lTQ6iQJp9esmfXMkH3vhPq9yOFxPTwrx1HFirpgcsJgPV8G0zgKmmJFpsOOx/XmmoiCMJEoap8vI7vYUKYpUAFm7zXP/2NwMJIMD///EnBctFvvQ4iuJFRYMQ+Df1MN99P10zKfuIR3Bgf/83n8Kjvez3Zcx1LIfSEYqRN9Jar7bfQSxFkiTa9e6y8iMjbuzb1HIK8ITqCCUiTjTa/CXQii9J1SjfLxWRq9ZqoQKzkAr1gpJMihOjwoswUlflNOr6TqMI42GsX1THvR5TOtt8ZZum7usmmz0mMIVGpBHV8uT7AWD0Dqbh3eTse4+yalZJS/LoaKvn72kqRfSnpSwmssnrjxcyc+4Wtb9oJQBNqnmclYZ25UrIPzUM9175fbmS/5fIMroJ6Xi3AolDc2KWoy92ZC7Lpe0vsLaHzX4GfBp6JXdEPYszFW+HvMGbj7bZN4NQQKplmI4KUaTZwia1XgDJSzm0X6HBkmL1JWT5PmpV0E+3Vcdg3q2VlQkPoajVdNH6T5P9Y62TMhaia1bQzSaJ5hU3H15LRfZHW+oA6D/2lr7xyUmCc3Tm2mAbhXEsuGQuacGGActH8RqEH//ay57AVHv3E10IpE471fGwXFD+CeqYjRLIA6WgljQ8kBwoUNFFi1g8TK9NuRNFErkoOX/XSEkbCJK/ThI9MkHES8LWCh+ithLNl03urmCnK0rCHTzVuZnsV3kXGtWe+P2qEzVLdZ+ArHMowlESE03srLJX9lJ8ilC4S+8LQl9xW70v5KsZgfIZfZr9bBUac5sojLjPc36DA18mCr+zeuKCEMmkYrqN5diIl1UM900bsSc/ejzgTm1Bv+qG5z3E2QJRd4/5at4jbALu/lD16qOoIeEP6tyVE5Bws2XxGRB5Eeyr7gG3ZBPfOE3UsEGAQjBFWFCnUVo+phK9GoR7tPl1LNxGva6rJdde7UUZZKHSdjdZJ62jH5flL25V0Nqk17L/SRlB51gsnlclJMAnb5iXQtvjVOk2jAzcy9mH1agSd6Xy71PeNVtAp+/qvr9pGoHzXa81MVCluFIl9s3NI0FazSNdH1DQVP1Yi2laI7Jg48nkZz1q6JrkIVJ2+JzNXN+Q472NlhAFtzY3SyYvJ7ddCUulhFUUQqF2i01dCEkirtWvIJ8dVYZUkRRmn2FkRODScwTuLEuv7GifKSl2y3Os1xbtm/ZgqOmZ8ZSzHzvJRAo6b6v0MpOKc8iDn+MNcWKxY8S0c+9zMlvcCSNoKxJvuizvnM9u2P174lu94DXKab+57Y3qMqQBcIcQyMRmLLUKK1WQq7ZRkcIuOelatKFtiLpZKGs3SFp27gJ2Yv/aQpiIijwJeClzIZMGtSzZofhnwo1h+YFcILQLbhtCeGkJFQStnteDVCP1ypIekWuNa7G5Mvh/T1NHOk37DtjpMGkvR1mvv8mD1li0SzAROEhKuQwMZ24ltnclHOzJELTO5qwV1NZBmJdURNFmYSMiTNpNCKWlY5cHJ65Xb5zFN0M4rjA7A535ma4EyAYXYc/Tf+RFWv/sbESAMHBK08amYoNLmGuTju8rMRU5pEk1jz+6HC1DNpBDnrBmmyWgtgeHEObsOWWGzGOiYGbPwTs9VDmltvmehnTWgJExEaEKKzR+jjfbisAixHEocorN6LcBS1W9CjVfoMVwtmS+HzPsxlfomauyAt+ToYSz5sh5gOS6xz404ywdcHFKKbwTHXQG5NoproriyJcB8al3mhf5BEzQSYTyfFj0l+JEQS0/otRVQY89KF3Sp849pnDsxf+0t/DbwHMyPsmU4rKq+GXiziHyvqv75kR7o1BAqO8TxyFWZYopTBSdLW/nWx70KBic+EfNuhkOqetWR7KCqfy4i3wF8LZ1YV1V9+Vb7nRpCRUGGSVNxEBXEp5oXlbMonXJ3c1U+/Jbn8vXPvbItSpVX8b4tNpT5riQmphFv3w/8m43l1n/n22xzEav/kP0ehTkcJGpb1VC6xxJIPGG2mpPGJ2P7da5Nx7He9COdY3VMSc1KO5vN0ucmpySY9pUzv3OS406hXhonfIYfWx6B5R1Iii5LhZdcO+xYmJlMtHXkN4XARpkqBwoRQtLGEAg52q7jy5pIoFQzRcVE8d/4vvJ1SZFGZubLxxW0jGZS8ZpyVeyZc2k17Hxcl8MSojNHfkqK9MkvVkUr6FUQiSrmuB/NoCqULjAKBfsHPQ70V5jxFTOuImKVHGfdmINhjjk3YiglA2rGWnOHVvSkpi8VHqEUx1ADp7vZdFpxnWP/ROPxj34FlJ5qLpkEk0Y8EQSTL6HohF/Fp+oAjQnMJ7Poommq0UHsQ7WQTKJb5FEdMe5i5i/g/SLyWqzKYxPyt1XOiYj8JuZDeSzGpvKfMOLKLXFKCBWphf7tntCzyTj2HNpTq9DXj0glHA8asGKYVPVgk1mufFgPYHhAJl4MjTRFgw7fy16gchHG+2h8BZTJ8RjMFmy8g5JMTq3AsA5tYmtNYem3JCwaYZPNVh10/TCuJpVjZiIJH1ph0iSZCTSWlKMQKM2xMQEBMPoPD081MBRfGV2LqzDH+ZqABomaOL50Yrz5/KOX1M5oYzLHlB+mgmKO9Iww+TykTnw2YRbpmuSyBR36EKNu1xRm7dDaKhISsSS7QtFokk4GdmM1Qoi+IZhEoRITIqtDW4GUnUXPbG/M7dETgmNce6N1iY7VqmRYF8ymqLLZouJgNcNCMSSqcOnMzbz/0P3ZX65yn8HNXFjexmIcUHVKDc+5EQ8oFwG4Iwr39FYd8kgd/LuJ8f7C7km+PNmvkk1gzWJIJil/mpLcKaIytKZSP0q+t6E9C7EQ1EnjezlW7MT8tceSI78x/X1oZ5uydc7JI1X1gSLyz6r6MhF5PSaUtsSpIVRC8mOElI1bgIwg1h5STWs9Dje4GKoJlVqT7V8ohpHZmwPQM6LENEtrh6U39GyVJdH+TrD0AojiammIJ43mpRUY1qbzOW+Kne3dlfgauNCZrJMw7CI74cVNbst9HY0w6aKacYSBpGNrI1RCT1pnfNZcXBIUKU+l6xvqRodZWHUrcNt2SbCM7WdXpez/jn9oIpgizVOxR+t7kbaNaY1my+8ftND1rr8sljA+zZ65ej6dRADtWwRX1w+lKk3V0hGYE3nVs6ygpSJ9Cz7xvYCqMB4WHDo4iysi83PDhjesV1hhr1vmFlipe3xh6Qw+wT25eP52Ez6+4vzendxRz3GgWOZguBUvyoJb5YBbZDHCnFSc4Qbc/tXzOO/8rblbdxPVfGn3vQlE2eCBzcW5aAWPfUkCP68QxMLTu5p36NPkb0ndEkwfM3aiqewhqOpjj2K3nCCwIiLnAbcDF2+30ykhVNS3K9F8s60QVlrRVkJYKXadVDKH1yLSJAbGWhgvFPQPRqL3bQhup9yt+uS4D+ZcDilIxyf6fnWTL0/mF5s4584KfkKQZLNVV+hkwZYFQ4SmzqzQmLm6JItI553p9nOML5ILSjWfosnUorvsS6s6NE7wDMHyVLJc7UwyzTl0kQVK7FzLdE62CGj3696Xies8bNt0Q8GzY7gRNGmy0hxi7axgHECxXBALCHMRRgVI0VKH5ONFwY0kBXOkcrlizMQytIiyqueRlONEEMLYc2js6c+NEaCXat6PQkHpAw7ltP6Qr67sx4ly1mCJg9UMDuX2ao6bq31EFc4slxjMfZpPDi/gkt4tfG3vEAC33nA+Z5331Z3czmNGNd9GZbqw/uEyjVtbWZzet2YhlgIssglMUgXOHCGY71mYYYI37pjRNSvvYYjIFpnNsFlhsIR3ish+4LXAx7E34X9td8xTQqjkiCeL8LCHS2sBJxazfpyQfR2WtG6+gt4hm7GqBU8xbP0h0mT3Wj6HFrQrrRThQrbp53yQjjCwTpjQQDJL8sSqvRnc5EMf1/hNun6SptyqTLYB1ue0HONL+cG/egHf9OTXU/fFSu5uEpHVjD10rmFnbBuWNVijnbSTd8rG75xPl/0gmym7lPndzybIOkzHnej0XKI4JIHrh7YtlvavqMCPXCOMpG79XU1eTepfPFCbViodtgTtmGzMVCmICP2ypqo9K6s95mZHeBdZKEcNWSUYSeViNWDgLU8rItwxngNgKfS5o34wUYVZN+L+vYMMZO2DdPzRNXvB5HM74Q9cY7K0kHFtfJJgkYHqxCIES7ve9QxNxdJddSHdNXwqR1USOLHQv09VDwJ/LiL/Gxio6qHt9j0lhMoUU0yxuzh8w73Yd96XTvYw9ixyqPNeh6q+7Cj3i8mH8k3p+4gdcvqcEkJFAvQOQlwWRmckJt6cnd6LEAQZ7+4K7MH/9cpmwepHSrkSTQuZ93zwr17At3z7a1q6lU52fJMXomayk9D6VcjZ3dkGnL93VrM5ggyxVWt+sGPJhJnGPnQG3FnxZbNQo7Xklfua79nPkzUElWP3pwCUSxGpXWKYbc1aFkmX1YN2WerqjlaVfCDSXc52NbrOeZivJp+zTpjRmkigNdeoS/mSr3PsmKsyE7Km8WYtz9UgVWu68yGbY2jMM13qHS1Sv3nsHkvUizbW6Dr7VQ6CpmqUNi6NQlkEyiIQeo5BYRUl58sxC+WQQ+MZogiFRHqu5kBvuUmczHkupxcrnF5ankulBf823s/X9g4xn7LsT0SIsQva+M0ahu1GY25vzoRequnddrKO1gcwh72ABKGo1TL1XTaF7Zb9i7uKpnIseLeIfC/w9lS+eEc4JYQKJMc3UC5Z0E7sCbHMSZC7e6wH/fSVCBYKq86iTuq+8Ld/ZuR4V1z6M4QH3qM1OcHEhOWq9LxJa+bKgsePaRMps004dSHQRHOpp8mMV2nn4K65oCvM8vYmhDZNttn8ZpxWtC9CPmhn4vvMzx+7QAEoVoOZeIbmnA8Dlyb4DtV/ivO1yV1tfIJRzgQz53VNeNCRQ2onGmhNjmAcaV2ButYm3jUBNsIlX7OOGVLTdQlFKyRcZXOgmWLyBNbuN1GN0rXknK5as1DI92tsEYtaJgFTWAmHOExh6AIHD83hC6Mi0b6RWd42tHDhnq8bKv2+r+m7mtOKlaa4V0AajrE5N2IgFQOpuCkUnOUrzvdmNTnevGDN/djwx/bmxq6pN19P1gprIROPNvsl32XMgS67pF3IBs/Puja7c6iTiecCc0AtIkPSkk1V922100kRKile+juBMfB54KnJdoeIvAj4cWzd/kxVvXr7Dm3VH5ONup6PSC34VUfwcRdDPqzYVDccN/RgcNt4XbvMqFv3xBhX06oWgWJZkYGgY+gfsrHFAqo5sRVvbDWavApuSuV27pgbt/H4TeZx9hkkXq5cvreao8ktaS5bR8CIJs1H2z7ak9kdDaU5bq24cSSWKWx6pBPRZagSS2nyRroCsXHK1h0/Sd43jdnVVqLYV92iW6alrFtkdG31nUCELGCan9I1ialYGDFpGr5zzTQtrrO/pns/XDuOLFCgzfSfDHG2E7Iy1YmxuhbUpXjaNKP5MtAvzSE02zMKlxsPmRP+wGCVYV0wDAX7+0N6qXYLwD16h/Eoo1jSdxXDWBLEsagDquhZjAPOzA8OcN1XzuWSe954VPd6O1jYNxMCFWgWFF3kqL2u0ABbgKjLfHmtttPs360ouVszfc592gp3cU1FVY/KH3OyNJX3AC9KFR5fjZWofKGIPAArHfy1wHnAe0Xkvqq6deaiJoqOsa30Q9831PFu6NiIpfdY4MY5nDhxEw0mecXqs/Y1eSIuqDlfnXFY+RHM3B4YL3hcrZTL0aKgSsFXzqKFSqG3pElI5jK7SWDOSBMjXy4r4wUBDy6tIxr+sR6QSBpjCcVKRxPprJ4nKOw717PNDdnVSwfA+97/Ih79Xa81bSVCMUx5HVVES2dCI5CoObKQzHkrrXrSdcB3zyuW0uTo+LqNtgr9dP06lPn5HCeEGkyYxlqqEPCdyDHf1V46Ycl58ZAjy9SlQMSO1pf/hoGdTzMBZqHhIHo1R3QliAo6duhsQLySyxGIKGURGNUFUY0h+fblOZbHRvMSoljlRzfLQjGicIFbxvuYdWNKF3BhwIIfEhBurvdxn/7NzLkRX6qX6Ivu1sJ+U0gVkcI31z//bUyDTLJNN9d7AwEUi5beJwv5fD9yyPmmWtHRjP0uIDSOJfpLRN6nqo/bbttanBShoqrv7nz9ByxTE+CJwB8np9AXRORzwMOBvz/BQ5xiiimOM57wiJfD/pNbefKo0dFqt2xz8pG1jfthZYHfkb5/J0Z/vw6pZsoscKaInE67BNuHLfa3xF7wqfwY8Cfp8/mYkMn4Stq2DiLyNKw6GeX86W1CX4D+HRAGKXtW2hoLu4FiaImOfkyz0q4WJi9jHHh6h2viyDUaCwJ+GAl9R3m4one4xo1CSmoUfM9RrAixZ0spP4yEgSP0LRzVD5UwsCQ+P1ZQ8OPI7M2Rat4T+kL0Qm8xMNrvcWPzIfQWzRQ02i/E2I4lpqzx7gq7ubYKkix6175i98xeXXzwHS8A4DGXvxo/zjG2iemudPjVYE7VlIfgVu16dDU3iTrht0CSqbETAt2YD1WpB9JoZrkGTXPOdG3za1ahydzV+EvErm30gouT7dSZCSw768FWyt18GGj7d9UkxX9O5oul5a1ILfihkH1kY69oPyJlpBoWhMoy9TUa9X4MwtJowGoRcT4y068YhYKV2liPC2eFw5woc8WI5brPvmKIk0jf1ayUfd538AE8fOELLPhV7l3eeiy3eVtYCLCxVTfaBa3PxC7WGnOXm9QsG9qWThh+DnTJZk/JfuYT6FPZC8jRXyLybuDBqrqYvr8U+NNNdvtJ4NmYALmGVqgcBn59u2MeN6EiIu8Fztngp59X1b9KbX4eM9K8Ne+2QfsNb52qvhF4I8DsWRdo47zL9tnOQ9k7uDs670P+y5UMDkfUScPv5UdGL9KFX6ooh2Pq02dxY5tZwqDAjQLloWgTVAi41ap54LVXEGdKYunQwlEsZmIjpZ7vIQrVXEGxUpsd2ttk61dq3Kig2lfiKjPJxUIoEmXJzM0jYt8Typ6Zv2KbwBc9E7xiLteCSRPYp37x+AiULj7wrhc2n7/1215l5q+Oj0OqaHYmYHDriNEZPRM+PfPH5Ex7zVIBGkd2DqIACP3UPmpr0us6xjumF9FOeYIc1EA2q2SbvZkhuwl79cAExARLQvJjOWhYRXzHmOtSxcKJ9gJSYxUcBYZnBVxlM66mQnQEQVUINYSRR3xEVwujJTpUUB8Y40vwM5FxXXC7zjJTmJ8kV6AcR88do1lukznmyzFOIp9fPos6Ov5O78NCMeQe+xeP8Q5vjnqhTcDJPramWqNPPG8B2hVCbt3xpcU2T0VCpvGhMYc1jAzR+lG/S06Vjg9vyzZ7B/fCfNgZY+CijRqq6q8Cvyoiz1DVXzvSAx03oaKqj9/qdxF5CvAfgMd1wtW+AlzQaXZPYFvOiDwRSNXaX10FfgmqXCNjl1YoxWqknvVWqXBo0Up+dbJzf4e9iDI/wC2PTBM5tApVjfZKWzWFCDEiVQVFgQzH+GWHVwXvMbVCwDvKKoAIblTYBDWqIEa0VyC1zVhh4G0SFSiXQrO6c1XEr9QsOKGecVTzjlEOq+w46WNOgOw6rk8wwsATfVq95pdfpHF0VwtlSiDMRdnMoZ/DrrOvSZ1F+whqdVY8FKtK7FC0dDOzYXMn7kRRswRXaxNNZJxS7XVUmKTcgdaBrxZltzahVdOqeiL5M7+ZDnoHfRL0YsmTdZoosyaUBVHKyheF+lBJ2AeHl2aYmx0RxyV3xra+0v7ZVcAixgDG0bNalxQSWeiN+PLyfi6cu5PrqzMB+JYd38Wd4dse9UvEfb0kSDor/+Qn86N80TB/Ukeby+HkMRV6c5X52roBEDngRZ1ORmHuEnbi89/JayQiFwBvwRbgEXhjmtS7bZ4I/GL6vQaeraofSr9dDvwqFo7wJlV91SaH+n3gIyLyF9hj+t3puJtCVX9NRB6JCZ9uDZYt9ztZ0V+XAy8EvkVVVzo/vQP4QxF5A6Z6XcoOWDFRmzRy6GheaYeBhRhnQsRjRW8pGotuVIqhmaEkKINPtXLvikt/BpaWoSwpbj1sG+vahIgqMhqDk0SKmGRpNQTn2oSIcWVtAJxHQoQ64JeEuDALdbR+vEdLjwSld2gMQfFLQ8K+Af7wkDhTIlWqc77ocWOPHzlCWVgOR68trOBoD3+yIFXE19LwPwlppZlCqmIpFKuBUDqIdu19tAkFaKKw8io3FpkR2b77SqnVgiHMuZ9+S8fLOTONEMlmlXEytRVtWDKlNkIs9JLmEjqBhpLq7TiS092EQLmsVHMm/HPRs0Yx6+bDZJla5UmTRAUjTdsmj0g7GmcP6pmIq4R4uGTc91SrBTMLI0bDslk0hOCaomEiSogOVZjpV4go41BwazHPF0dn7vZt5tu++RXt+SbhHrtmWLF7040GtO0yEUBhprP0uxWuaTRTV9n1ir5lMJBo++wKduJT2Rlq4Hmq+nERWQCuEZH3qOq1nTbvA96hqioiDwTeBtxfRDxmjvo2bEH+URF5x5p9bbiqrxCRq4B/nzY9VVU/sdXAROT3gXsD/0g7VSjbCKOT5VP5H0AfeI/YivofVPXpqvqvIvI24FrsYv/0tpFfCa5uX9yisu/1TGuKqHdhwvz7P3oej/pPr8MFM3tlU8r43mdPtNOVVTvw0jIyOwPjCg15WalIUYB3ppGEYALHSfNikLUVSctPJ1BVpq0srqCzfahr5PZDiHeJ272Fv/UOmBnA7H5LmusVyaxmL1j/UKSecYyLRLTom2CiNEa49pePv+lrLfzQrpHl4YiFACeTkATFjyP1jMeNo1HoV2qzeDZP+Wz7VCgt2o6o+NVUYbJWXJUzGNOEjDbsx+LA5YiyqBSrSiiF0E8rZ1qBVWbaD0msytKGRXcre+ZExaIyU04xSqWZwySVTLlsPrOcdBlnoVy1z6P9SRMaZUHbCpW8gBodiLhR4hEL5nTQmWR3G3pWxrOW+xKEOBdYXSmMJqcXKHqBmB6A0ahkpdej8JHSBT7lN7JgHzvqeRNwbqy2KPAtn1uO3gMT5q5StEgh5h1zZRYQ6gVCeh9zxJcDpTV55vu9Nhz5qLET68cOhI6q3gjcmD4visinMD/ytZ02S51d5jo9Pxz4nKpeByAif4wFO60TKgmzwGFV/V0ROUtELlbVL2wxvIcCDziSxEc4edFf99nit1cArzgex/26F1zJv7z26CfLb/rB15/k6hNTTHHXRdZQTgnsXFP5HhF5U+f7G5M/eB1E5CLgQcCHN/jtu4FXAvcAviNtPh/4cqfZV2gp7tfu/xJMSNwP+F2gBP4AeNQWY/8XzCx3RElKeyH6a1egktln29VLb9FyE4rVtnDWsaJYjUhQwsDRO2QRXLFvRtsrLv0ZWFklDkdGIOk9WuVU62zGAV1dBXHgHeKc1d/oaCtSJseQd8hgYOazrJEsryDDEYRAXFxq9nfzc9DrwfwsjMfowhz1fI9yXCN1jRsHJERi6XEDl1aAQrmi1H0YnzZppz9ZaBzpqrigxNK1187lmhlmBpM6NuYO9YKMstmzQNOq1Y3MvxT7rikAZtoKpmUkeo9qVvDD2JBButrMa0VQXGjb2fNkuUV1P2c8munMxc7qVS3XJhaWb1IM22z+3rKtvusZGr+OH7f+HwAJQm/JOqsHzspXV2Y6I/m/ZAy5lHJ52OGHibK/tlV/mAFWHeVhj3qLJDOCVY8WyelfO5rKBwrilfG4oHbKYtnHLDLHjic8/OWQyvvG0p4/X2uiyzFNow2acOSaORZAopaYW7UaTfa/WPuWkqcxnapA1ZpGMx1M2KUI5k5cyOZt7Pe3q+ovbNufyDzw55i/5PDa31X1L4C/EJFHY/6Vx7Ox22azUX03JrA+nvq7Qba/uWcC14rIR5gs7PVdW+10SgiV7ORztb2YdT8554NSLicTxDFEfTzy+18PQDmKDG5ZJZaeYkUobl9BllfQ/QutrXtlFa2rRMOSvcAR8R7NtSLSd2rQ1EZDMEEE6LhCeiUSPRpXrW0SOLo6BLVCUOLaCVdXVs2sNq7M9AX0bl6EUQUx4IqC+vQBfrUm9B29YAIlepsc+3cqq2fZ8f/lNSfe9DUB1YY52NVqQQsATvAi+FFAxiFlHybzl7rGD+XqaD6ObPZwYmaW5G8phjFlYCt+aKa0MkdxiRV4akOSLYkWoIgpCALQ0rVJm8EKw8Vkopm5MxD6VjPGj2y/bNYyB3LaL1qwBwrlcmS84ClXFD+KZq5MUYyDOxVXq0Ww1VAeVsbz1ncu+zC43Qq+ucxzVYBfdXa8gLF2g4UnA8Fh/GvddH6h4Z9zZWA4LhlXuzhFNL4Pi/ZSwfjOUCzowRgDZBwtGCOkxOC+t3vpBGrdcCqVoE2wRj5WZiw2k1i7WNkN7IhQcoeHEpESEyhvVdW3b9ml6gdF5N4iciZHFtg0Tj4ZTcec28HQXrqDNutwagiVqPihPWyussicIq06q1mzq87eYnf4IU+7kmveeHST5uCWIW55hIggi8umFcwMIATccoXechthsROCqe1T1/hUmp80/R6QopMyLA4pCwgx8U4pcZQWCfnlV/MVKJgWA4ThCFfVuH3z4JzZ3g8vWV/O4UYV5W0BWR3jVq2Ai9Q12i8pz5rFjwKhb8Lo4U95Ax9585aJuMcFjQYBKUIur0zFJmIViuWAjIKtcPFpuyIhgHOoF6LYUrahd6kjro74lUT/XnoTAn2PHwWTR961jmIwrSaNJ/ZTZF0dcaNAdVqJVLbSliTUitXQTH5ZmIW+p1iNRkUTU0VSAV+pZZJHY09wtVreUjC/kmYemHRNxvvt+fBjpVgV/Cii4puAgt6iMJ7PjmjT2osU/hIGNBpSN2BFoj1+suqhSOHKPmkOXokhthrMbsC3z67UETe0exh7vgn99kGJhWmUtjDIFojY+NdElVC6FCShuUtcCqRogmBSaHKTn6L2P79bmvguOerFnMq/DXxqs+x2EbkP8PkkFB4M9LCCWQeBS0XkYuCrGBvJkzc51NtE5LeA/SLyX7D8wC1ro6jq34jIhcClqvpeEZllovDDxjglhAoY1UeTuzHSybyDZOqpZ45OWymXA/3bh/gv3owuryD9PnFpGW6/A+n10OGIMBpu31GGuFRfpTRhk4SPhmA1NUJAQ0BHAfF+QssR71utpo4Twkrrivq2OygOnG7JECEQx2Pc3Cz61ZvQugbvkdvttktZwNlnMLhxiTDXo1xuKU2+5Ttfy9+88wVHdb2OFhKihUiLtAlrVYTSJ+6zNlS6+Z6dXNH+JzGF7fqU86ApBBsTLlIF6Je4saAjjwzT1Fk4m7gcyCigfQuUCH1PsVxbtFk0c1s9W1go+bBGvaNYGiPjGj9TEv7/9t48+patqu/9zFXN3vvXnvb2HW2kBwU1ovJMRLhmvPA0z2ZoDC8PZYSg5iI9CIgvGEXghGREeUR5z2TYDI2YR2JzhSRCjEE66RG4Xi56uRduc7pfs5uqWvP9Mdeqqr1/+9ecc373/M45t75j/MZv79qrqlatqlpzzTm/c85BVq+kl/56iM8c5XJGMmoCPLP1gqqf0r9/jEwqxlcPQKF/j/ljyxUT7pFAkK2XgV2mlEsJEjLvxgDZIoH+SaV3VhmvmAZaLArDYxZEWfXVmBitx98VAoWYGcxLSHfjTZlwSjlJSMJa547v/+kLuq/f9c0/a+eceDR1QaDaIkFKNU0FEPW4SRSqza2ui3IFs1haeDSJ3GEarbJS3MgHtp00DMoo0KKw2Qfsxfy1RzwT+BHgUyLy8bDtNVhcCar6DuAfAP9IRApgCPxAcJ6XIvLjwO3YZP8uVf3MvJOo6ltE5NlYAOPfAl6vqu/dqWNB+LwQOIKxwK4H3gFcemlaHgrUNlYXygmHfHjppq0cq6WZaoHngIU7TqIPnsRvDPHjETIaN8JgONxjBxtTmMvSKVNYm9+mVdX8Frd5DULI1UJEvaJlMd0uHMevb8DmpjHLksS+BwEjaYZbyRBx0OsZJbmoSM4OWb1DGR3vH2ykcKh2ZS+tNn6o1BnDp/S1OUyKypIsZklj3vTgygJ1DgmCQkqPTEqbparwOXW2fXMclroWCq+9NAgsjzpHtjmpqdlSKRQV+WnTdLKvraGD3GKGkgQ3KpHS4/OUfFzhM4crPPnJMWgs4BVNchVuOEHzlHStIBmV+F4Wnl8xX12W4IJ2VC5lQejaSj7d9GQbFYVaUlIpPNl6Cdqj6gkb18VqktQR+aIhmWVlAsbnDWNNSgnZCbReheu+lUkEtzkJ98y0yahVSozHgtqU6TRqJtKwtcQ0EOurhzKaMx2CscPwIZAYY9f5uF/Z+GuYU13yvLAXTWVv7K8/Zb5vpN3mF4Bf2Oa3PwD+YLfziMhLgN/ZTZDM4MUYw+zPw7m+KCJX7bZTR2baBc/67jcfdBc6dOhwqUEbv8q2fwe5ONuKFeB2EfnvIvJiEbl61z1grKp1FL6ItItjbIsrRlOpg6JULYvwWOtgttncVk9/wdv4yK/u7jP4lu9/Kxng776nXukDWzSEc0E0XzU+ldkGJuddZrcmtlPvQFvxLjuUffUtU5yk0yY21KOjsa3MqwrnbPVOL0fSlP5XhxSHe+et1V0IZFwFX4ppWARNRSZlnYtMkwRxzrSN9U2k3zMNYyEPGgdmCkvETF3xfyuWR8YTmEitnVAF9l3ikFFg65VJ7adJJqVpPqoWhLo2JB0V5rsahhW4CzE2E6lXw0lV1UQKGZdBCwn3d9NRLfbACdmpIbIxCloPJGfFNJhihGyMTNvMVkg3ClzhKRczsklFujam91VPudrnwScuMHgwJRmbD+foZyrKvjBedRRLUC4Ex3LSKAZSCk5par2UFsdCqkh+4c6H5z7ldZb1wQezJuavIc1ME/HYGIf4rNrkqcGXloSM1ZMKdUkoiiYWDCwSgqvC5yKka3HSlEBA6/NGf9ZsHrHzxj75VC4WQg6wN4bgyR8A3i8id++S+eT9IvIaYBBMZ/8U+E+7neuKECoxdUe6afbxcjnDTSzIreyZGSApAsNkjykbvvV73wKpkJ+ZoJPJtE9jO4GwE2q/Sez0jFCo/SwumMSmzWDi/LRZbI/nnxKA0Xw2HqPiSFZ7UEYhJWgvoVrI9jdI7BzgxkU96RIc8LFvUvowodgkpEmgXkf7e5y00hYFWdVYYnGiqpMK1vadcGKp6ak1qsq2+crS6QTTGWCpdaC+V1MQM7tJUUFRNsIRgvnOBJwOeiRnhsikqPskG021Vj26bAIuEDGy+zfMZJcI+YObaJKAc5SHeqgTVv6m5OyNKf1TgMB4NSRoLI1S3y78hrfY3HIBUKPZaqK4sTMfSzqfYXW+cMOifs6EBIYFkogtEKqqNnuRN9ORiFVvdZUi4wrn7fkoV/uoc7hJiYjgSczc3fLHu5gPLl6Eak0C0X0SKqLakAAuL9wHfBVz9O9mynoVVtvqU1iSyT8AfmXHPbhChApeydYLW9EkjmSzqutvpCES2lJ8GC1zrxjcN0Y+/NlpZ3ibxdWeVOZNMDtBfSNI5v08yxbbB9aKy1ITVoEQUJ48RbK6YpTlNCE5M8SNSjg8sPiQi4jnPvX1tgLNEptsymnukQYfiNnOwzj3TKholjQMsZhUsN4HNAs1V6ooqOKiIGYtiI4FaREB/FbjcHQOEzWcJktCjao07aUs7ZmomsSglsstAfXIRqBnteKXpkoo33+6EXRVZdrVGJJRYcIqTdAsxSVCtZDR/+om6XrO8Kqcqif0znhcARvXWFoaV2E5KgLFPhZy82FCrnqKm5jvRXOPVkKSnuPCaRaqyGhi/a3Hx4cUOTaWUrZitCaljbkIMi7QpT5uUppQD8InPTMy7Sfmw1PFk5ovJbH4F9TEiQ8ssciWRARXXeA1BcQUPbu1uVQgIi/CNJTjwH8AfmxeOpcZDDDn/78Nx0jCts2ddroyhAqEYlmB1aSKlIqOoffgiHIpxydpzSJBLDr+f/7mS+ce65nf91b6JyekH/wMvrXSj6ar+rsT1JtgmBUCe+rz7H7itmok+wj1ahNdzJXlBN3cxHvFTSbIcISIkCbHawbSdnjOM96IbE7Cy2zmGoDbP/rGc+7XrY97tQmIorS0M4lvtBORJqFW1D4qxS/k1k61FjjE1WOp+J4l7tTUJi7NEtM2ygpd7DUZZrOWma1sHa9y08ICpvO1zfstbh9HM3QT0NoIqxkBMitQakJHeC6i9tqKSaJntCzNjVSQDEsoPenZEelKiisklAVwoQhaCMJMTWtBrRKoigVzohbTkoyD9jJxaA4i508qfu5TXteYEqPQgEYDrSqkbI2xB8nE4mRGY0gcbjiu75OoBgZcZQSNpDGfJeMC7WWN4K405GjTerEhlTZa8H7gMjN/ATdjgZUfP4d9/gsWZBnTxAyAPwa+ZaedrgihEu2wLrwD6sLE4MGdWidlCZ9bbZJkzJ60leR/fBI/q5WIo8mr1mgTu2kRrtcH9eaTaZm9poTHrNYyo/lIkkydcx5mhd4soiksxsWYUAw+m7KEKkXStJ5cLypUjbHWy8xUkwYTV2D6kDhjeoGxpACfp7U5LCbO1ESnJ2zn6qSOOGf0UmflBaJAxCX1uWrBkgSNKExQU+NRC4IWn9lhAqOdiy1pCQKYFhzR5NZ+FOP9diFAI5HmHN5DluIX+zVjz+cpmoqVVYgxMoVaVxKh7IsxwyplsuRwIY9aXV9IqIMjXUFdLkJGDs09k42cu57/Ss4b3ps2F81bYGPTNkHlMa24azTJmK5+HBh73pv/KnFmRhOrhIkIGitgTspGSEX/TOmR1FkCVlUofUMvvlDoHjSRS0DoiMiR8PHNM98BUNWTO+zeb+cdU9X1EKuyI64IoXK++LbveQv//fdeBphTPilC4FrekeLaeM43vMHotIH+qWlYOc/Bc5/0WgD+6FNXUJ6nDh3m4RIQGnvAR2l6OitRFXjkDvtuiMjXq+rHAETkG7A4mR1xxQgV8aZmW41zZyr9uKK8ejWsQpUEj2hTAx3g25/3i8YKaQmSbL3asuIXJ0iS4Po9dDKpmWC79ivY0LWqtjrnm4MDNASAoLUY42ubqPw5Ppz4+2xKmG37BRZs6VL8aEwy6MPCQu3svvWm26zx8dUt+7szm+jJU83TevVxtN88Ts95xhu5/cNvmH+9LTz3Ka8LwY0eVldMgxgVSOXQ1HweOshqc0f0c6hztVlDNoaQJiGOQcwU4qwNHnMKZ4n1tUqb6PvWqrYWlqo09d/FsiRXTGsr0ZxVBdNotNnHLAARXrf6ZdSbXwVaJqEZ4odXyLLmfGlSr9DNhBvMjWJm3yRUEFWx+AxKRTIh3ays9k8/+JicxamgoUoiVhqi6jUaTGSEVe78Z8xbH/kypJeZX6kog5YVrif6w2LqofHENDqXGCkijm+STGt8k0moMxS1QW20F5FgLfD1Yqe+XzHVfTCN6j5FUexnmpaHEqr6iAvY/Tbgd0Qkpn65FvPL7IgrR6hMSrObVoIUSf1Q+X4W8v+YaQDApWFCbZmfsvWKwVfWLNCtUjSYklye4ycTc27nORqEictzfHBAujyfovHOYp6ACh8Ql04Jk5gFQbLUmNBF2fqtERqS5/htAi+n2GnzhE9ZNKawJDFzmPq6jouMSvL7vlqbKdzaCP/XdyM9o++KWAy0jsf18aXyuIUBDPr4w0uARVL/8Qdfv+241ONRVJaefyk4YFObUMSbLwSYEihIK2hOFV3omf0++i/a5pZEwiLDzEDmo3G1IMGBWxujg8Akaw9VzQ4DxVLf1D4R75tJTluTYdtMFqLGm9987b+pt81DvI60ISDoILdtpbdhKL1F/Xtw3lMu2e8+jaY/K3PtM6ZqxCQhCaUoJJmZvcRD2Qc3hmrZTHIuOT+H9rd9z1tYAss5V7TMV74tNINZLM9bLL+2QHGN2cwlVvYhjr2v7C/ev7JqhEvhUae1/2XK1BUDXPfJCCHsbv46AFb+jhCRvw98e/j6J6r6n3dqr6ofFpGvwyLwBfhLVd01nuLKECpKna02UkulUludBr+0Wy/Q3CaBeNE+FasZv17R+/AXLW7jluvtGEeD6VHVim5FLSC3l1fLEiYTm5SzFKd5o720/SZhP5fn1pGYTDIiOOeNieSa1WuM/nZS/yZZ2ggSr7g8rwWIJIkJubYwgW01lXb/ohZVra/jghYmSYIbDGziPH0G6fXQqsJvbkP8mEyQjU3ECa66Gl0YoMs9nvM001Zu/4ttHPhhlS+jAtIEKUooCvyhZdMooK5houJq1o+KQJxAvUfzhD/61JvMVBfSsWjPnPAyDveusqh47aemhagiwxKZFHZekfCMYNTfqTxSYQKLWknchtbCyfrSuq55/2G6/k0URHEyVQ/egS/BO+tnoDRrajncPFmI3Snr86a1htSn6oeFSaX4viOZKPmGCVVXWj48n5lWUg7Mgd8E81km42oz48s/en5pek5/07Uc+vgDIauDb4REaxy0NEow0JhS41hUvtY8oWrRvavW2E9Tx5lYvSEJ6oOkSRAyrvan1QuJ/YAyfU+3a3OJQER+HngGTen2fyYiz1TVV++y6zNoKj8+TUS4JCs/RojIy4BfBI6r6gNh26sxbnQF/KSq3r6XY21hdngj5sfa1O7Ou+H6q9HVPr27zyKbQ3RlkcmxRbIzI3vwb76OajEn/fJ9+DNr+PEINxggj7wR2Rjj77kX8hxZWkRPnrLzVhValNMxJUHQSJrWCSb9ZBK0m/CitB3zbQFQhe/1JrXjDfpICFD0w1H9mwVGKtJLcUmCH413FSTz0M5FVucbqyqjZsZU/q2+uiytNbXY95id2X/5b0Ac6U3X4w9Zdu15vpZbH/FTyKAfTCQV3LdmtNAsQ8qQ9HJUIKMgACpzVmsvCIWJ3zpJeGxyqSq0FZTkRpPaSSzDqLEEZ3DIiUZV1UGWpoXESY5m4otaoI9OfwFJ63iSqczJ9djMzC5tTaW9gq/LH7S+x2JuRYmM7PrdaNL0JQmkg7K0QM1hSPmSOav0WSSUPSEb27X7BMqBa0r4enAT8IumzSRj8D1YOLoja3RbbFyTkK0rDEdWmiFJTMOFRhBXYWFVM79aYxBZbtFp3zYnVsEsCHYPipYpMQbMxnELmqRg2qISnPW6T6qKXh7mrxa+G3iqqk0OIvJrwF8A2wqVy63yI6E287OBv25tezyWafMJWDnh94nIY3et/qiKW7OIZN9PLdYiRksHJo9/zI1mc46ZcIcjBEgWe/g8xd18LeVKHzepbOIK5iE/HJKW9rL7yYQkz6GX41aWa63BTGNZo4Wk6VRgHgRBMxjA5EywlthLIHHeSxKogqCgMnZLkiDOqNASIuz95iYxiLEd2KiTwvw+wRcTI/Ln+n7ENUyxaFoTh+vby6/eNxpJrXUlU1qWem1ymKlHkrzermVhxx2OcOKgn29feqDysLFhUf5qVTG1KExzGU/Mlj7ow3Bkq9uVFaQoKe/6MsnjHttKFmj/bv+LN/Kcp70B7ed13IolprRJX3u5RdmX3oRS4kAtk7P2ctNQorCMWklZTmuQdqFB2LTZXS1TY4zsjlpI/N+Og4nb2oirc9fSZmfZZ9F/EyfoOm7FWHA+mMpcUeELIXGOzePheBpiU7x97p9Sqsw0FF2FKgFNlNFXlubfr12QbSiHPnsGf/+D+OGQZGnJnjMniKS1Wa+ueho1wjgOVdVoNVFItMco+l3iGETtMY5TXNxF5l0USoOQcaHYnzTFe/KpXHo4BES211ZH6VacV+XHg6Q5nQBewbQ8fx7wW6o6DmUu78ASmnW4QnDr33rVQXehw0OEv/1Dbz3oLlxc6B7+Lh38C+AvROT/DVrKR4Gf22WfWPnxnHAgmkpwGH1FVT8h0yu164EPtr7fHbbNO8YLsbTM9JPlerUSM8lqPw2ZYwvwoFmCU1OL/UofVq4123tcBXpqLcYfWiaRG2A8Nnt9Zikx0qNHYXnJVrRJgjzwYMO46vfQSWFmrjRFFhcsSr2q8MMRyXVXg0two5CKI8Qz1D6XhR46HJnmEk1aqa1E/XgIZYk7egStKpIjK8jCAj6Y4CjL4BfJAi+/sP3zjKTXM/9PQDvljMtzYvyMVqBFaWa7fg8Zj5sU+zG9S6j/EjUdwIqJBVOGeouWliw131OS2BgCDHqmBbSRJLCxiY7G6HhsRIjxGPUevfdrTRGyzWFdlEwfeBA5dpT0lpvRr93PHz0wXZn11ke+DFlZgKJq1dJQO1firHYImAMcanq0TArzvUxajK7ENVpLNIXFPoEdK7L62sy+dor12DZG40etxSXNqno2q8KslhKPGZ7fKV9CK6hSSo/2MqSskNKCgdNhhY4qBuEcPoGF+y0vXjr0rF+fUuWWqsUVxgDT/NyX4H/3O/4FXJvTO13hHjyL90py5DCysGCO9iSBfs+uYzyGLLW/ON5Z2jDF4jW3/TDzKOxt7SYEVJozPrQtzM9ClpmZ0/uWf+bC0K6bs22bS0iqqOpvisifYD4SAV6pql/dZbdLq/KjiLyP+VLutVi9gO+at9ucbXPvTKjz/E6A1d41SlkhG6O6wBUjkEyRcQEbQ+jlZtZKWoFyeVo79gHcxsR0t9ShywNYWWhs707Ra47afmkKWUJyw3U2mZQl/sGTjclscxN3+BD0esjKMkl0+m9sgBPc0SOQpjAc4s+uWcVGJ+bD6fWRwcDoskuL6HiMS5yVC462aTAT3JHD5tReWyc5fAgtCvzZ9SCops1j0alfB2yW5gNxCwsWeVxVxmCLMm95OQ401fo6U1Bv+wMEX5H0eiYEokAF/KnTJqBEkH5uTnDMv/JHn3oTnAkFzTJLs0EYB2mZnzQKpSRpmHAPnrRJqIVbH/myxpRXVbVpona4h8BTKRyaZ2Ya8x7ZCMdMWxNcZfm+6ipV0ZQafSD1RF5Nm2Yiu2tWSHjf+FhmTWDRRNM2j/mWuY2Q7bFmADLtk4l/SUjzPy7sJQrBf5HU0J/42lTn8wRXeDav7XP4s5to5li/sc/mVUK6AZPx+RkwxsuOQx/4Mjoa4Y4dsXeuqqzM5OLCNPHBuUA1jsSHBHqJmRq9bxhfbWEyay5MA7kly2AtPKP9dJpU4RxQNOSIdJ+mPOWyCH6MEJFnAh9X1feIyD8EXiEib1fVL++w28+cz7keMqGyXfZLEXkS8Aggaik3AB8TkW/k3Mpjtg4a/pdlk222CPZWH52fwf5MWF0mDpw3oROYNZG+KkVlaUBCiVI3DG3ytGaVoWplhLMEHCS9HLc5RNc3bFW2MIDEUX3tftzSIpJnlPc/AIAbWxoKvDefzfFjRgBIzprwWFqwVVucrA83q69kdRVZWQnR4Q5cjoxz9Ngh+31hgerer5omtbBAdfq0jU2SoJOtFGQ/HJn/RYW256pa36hzhUW4waBePdasMYIfqCzxozEuS6lOn8b1+iakNjeRNCMpCmR1xeqVRPTyUPQsR6tAMyWZnjxadnWtSvMFTYrt6ZrqkbVNm6gGfRujsmo5eNU0jFHV5OdK08a52z53W5BEwTK7YlbFVGGd1jymsiW0/C5t/4gGf03N/mrlIotXGLVMJ9bv2A/Yov0IhNohYoTBWJzM02hozpFsTKiWegzuG6OZY3w4Mz9LaSLMjc+NIfWcb3gDZ566aqmS7nsA1JNkWTP27TGLbEYIWkUS2ALhutU1GkWamGCKGoyIaTtxTLIMzVJ0IccVBTocNpaH9r2LWqfIVoF/IbiEhMYe8MvAU0TkKcDLgXdhDvdnbbdDqPx4NabdAHxIVe/b7UQX3fylqp+ilR1TRO4Cnq6qD4jIe4DfEJG3YY76xwAf2tuBffOCV9hK1kl4aKV5oKLDNg0Bd6OxTTiBthofxph3SiqdoiX6RCz2QUEIqT68UB1dQg4tQmlaSTXIcBMr7yvLS9DvkWwOqdbX8WfOIrVjOoMjh9DUkfR79iKNxk3/RWA4gjxHBz3k6OEtL4cMLHOrpg6OrOBWF83x7BzpoG8v76CPK20i9SdPmfBaXkK/dr+xu9KM5JqmxEL5lXvwRYkLpiwtymaiFIf0TLuIDLdaSwvEAMlSkny5Nj35s+vIaIwcP9rcssPLsLaOjifocGgTfMi1o1GzaF+nk1qr0LKcpmZvbtqkPAg5SEZj2Ni08UzTZmLPUmRtaJpLDMbzrVVsm4kUJ/nYbja+JJrzZlfT8wpBzTrk46QXhZ3ItBlHwvaQnsWczEVzD+KKW6RxXjujpBvZgOY5MRpouCaBUnHjEk2EcjknP1tSDhyrd1WcflTK4leET554ydZr2AGaCIMHGu1YNzZNAw9jPhVDlLTGq/05OvHzvLlvMX1L/D3mVUtTEyiDjM3rF1iclMhmz96VSEfOs6ApeZsHkpkFwQVA9qCpXEoJJYEylCN+HvCvVPVXReT5O+0gIt+PsXP/BFvl/GsRebmq/oed9ruk4lRU9TMi8tvAZzHjw4t3ZX51uCzxnKe94ZILDutw7njuk3/aMiI8zBATVl5GWAvhGv8Q+PaQcTjbZZ/XAs+I2omIHAfeh2U53hYHLlRU9ZaZ728Czi1xVMt0UNvLYUrDkKhSR1NBYcFl9coWmlWqKpSWVjs66qUKjmgHGtT3qdgYtSSWfpAyOZyDQu9BcLdchw9ahOvfRLo5hs1hvQJ1q0v4mGU3Oi6HI1hdsdVd5SnvudeCER/3aKpjy1ZfYlw0EcllZUnzYt9rO7ugh1aQSYE+cBLp5XBoBbc4qFfOctUx3IOn0MIyyurGJhqooHLsqNmq88zGoShgUlhczqTYsViZeo9bXLB2o7GZwiYTEueQhQEsLyDDiWUuGI8bn0npWzRlLFUN1PEzWlVG626t/G89/k/MLBLhHKwsTTm5qzvvIrn+WhiNa5MbqnbOYK6SWivR2jxJqFuyxSQWNYpaA2hNrNFcFp/NbfKk1cebRy2uWtqHONBWEKD3pp2MWr6XGHmeZc35ah8Gje9QLaNvDAQsFxJ6949ZvGdM1UvOqzjbg09dtQDLtZLk0CEoS7vHUQtLk+ZdmU1VFDIdgGk7dq0KaZO3UJLwWYKloSwbraNS0qHHDzKchnuYONNUwfqQ0WiV6T4JwL2wuy4tmfMDwA8BL1DVr4rITZgWshPcjLnrQfbAGD5wobIvEGxCDi+QJsn0y++wnD8zw1GncwBzpKaN7VvUKg5y8jRcfdQm7UQsliRJ6hTr7Wp1Pk8pljPGqwnJWNHjPcT3SIcV5SAhP2N+G1nq1SlDTGDZ5KSJ2EsRHa+hyp3Lc9w1V+GzEO0d2pKbI1SC0FRcLVBkUoImtoo8s1b7VlLnYHW5mTxFkKXFEEw4qfOapdddC84yB4hrJkb1Icix5WtJrzpuwiOaoKrgr/A28frJxPxG0Tk76JtQHE8a+3i4D43wIDDatMmfVnqSpRA/Ee7Tc5/yutoxvZN5Q5IEPXXGfEGTAue9MdRasQtaBkEbJ7ZokpoVEG2fSERckLQFSLuC5Wz7eLzoV4mCrL6WMPnNXlMrPiU0DudvMaViNcXYxDfjIxOPH/SQokLGHnUDK3i16Um9R59ylHNBtTKgWBQW7ve4cYUcO9L0I5jjpsgJc8ahfofa1+ea91dbZkghbQRDEFRSKuViTpI4kuBHkUCgIZiGJU2C0Nof/Xgv5q9LDGvA21W1EpHHAl8H/OYu+/yRiNzeavcDwB/udqIrQ6hASLAn+IElrpNxZZN1fLHiu9maFBSZWiVqlrRWdCF9/soyk2OLpBsTO6b39QugrbxSbljgqoJkkIISaJpJCOBN6J+ypH/VYoYbO1xRBaHi0MxRHltgvJqSny3JzyyjicONCqM9LyygK4smAKpQS0JSS9Whav6hkOJ7CiIUhwe4hdyESeLQ1SUrIjUJEeb9njk8HzyJHD+KO7xqLK7xBL3vARub1RV7UccT/Nl13NISfmOT5PBqbffWtfWaRlydOQNgvpt+j2RpsfYB6ObQIqyHI6gqqo3NmhBg0dfmXNcYfKme5LrrYDzBnzptGQOAP578Brc+5hUoMHnizfU9EwUJ1HBXNBOt5UobkRw/GqLlvU06JbXGIuFZ0DBWNd09CtA4kUcNIJnjvJ8UTTAsNMJmUjTR8XkrWWTigs8hJFSMQX1Ogo8nsqXSJliwjba/ARohDQ012Um4Vpvkk9Mbdv+zjPxMYSltUoebeHyPc4JPpZ5c3ahq8pWpNn2LfqYoM1vPqaYOv9wzv8ida1M53erragmcmgouwuSqRaTwlEuJaQXO2rtxE/zs+7mRbUZlXY9lX+CZ7ztr49xiBh9qfAD4NhE5jNVJ+QgmJH54ux1U9eUi8r3At2Krl3eq6u/tdqIrQqhokliZ0cRR9c1UlYwrpPAkG+Pph9I5ysN98IorleRsw4hS59DcTFXJ+ggqRbOUtZtyemdS8jMl6WZhqURKyyMlVUW1kLF53QBXKj6xTLFWztSil1WE0aGE8YppMP1TBb6yldPocEa5IBSLNikMj+WI5qSbysqXwG1OkNVlqyES4mkAy2M1ntjL08/qRJjEgkSYkCyXUlhKWXvEjbiiSZwZ12vaz0wLW11pnKJpiC6/5iq0l1rdklGJOEdyy40mRAP7y586g5aFxSSkKTpsJdZUX2cdSIKWUq2tkWQpIg4tS5LDq+hwZPEzVUWyvIxOCtrR6Xry9LaZoYtWlcpkVJKsTWxxELRHKSqLzu/1SFZX0JWlUKM+0ExjPZZ+b9qcNSmMkSYyRQiw1DXJtOO5NXloIIzURIK2WSxNGxqs0FCSpaWhoPWEX5tma0HjpieqmLk4Or+9zgiZMIGGejQxbkPXN6xvbkR+x8QYVg+chMOHztlk40oFhXIgbNy8yPJnm5LIsR4NYOeI9Om2oPAmZHwa2G2FPcN+Ibd7V1RMrl4iv38Tv9gz9tqaPVNS2SIiO1uycV3OZCWY76KlUsBVsHDvBOmnaObqBcd+4DJz1IuqborIC4B/rapvFpGPz20o8mjgalX9H6r6buDdYfu3i8ijVPWvdjrRFSFUqp6YaciBz4TicIIrUsq+kI4GuMKjzoK9fCYMjyW4EpKxki+lJgREQOxBXL8h49iHx4i3FZxPhfEhR7GUs3JHSbI2olruo4mSrI9JSs/4UX0idz2ZKD6hTjMkqlS5VeMTFdavy03YhDxPPixq/+LfNIybp/7ECTau79MfpKCrlAuO/v3jUDJZoHJUKyE/1qSq7dI4hwbJo2KVLn1q6dJ9DuViwsYjVnCF2t8kJGi8bpnsgaGZzUTwyzlgFRJdTFyYJjCaoCsLyPXXmLZx5qz1od+HsqRaWyM9etQm3xhL4tXYXKoky8tUMWgTi4dx11+L8x49fcYCIeesJqfyjEU4hyY2QScju1fFkYFVQowCZVKi9z8IN1xtAmI4QQe5aXwtWrREEwtMx6IEARGFi2TpVv8KEGMjqlNnSI8cNm1kEmrMOwctP1ZNbyWZFhIatJN+r25jq2tLXkpRNmbecWAtxoy/aRB0se5N26/jvcWKxCzU4RhalOZsLgoTqr7i0BfPbdJN1sckkwWqnljlZGfPY13yODdmZXFkAU0c6caE5OzIri0R/FI/BGl6RscH5Kcn4ISzjxjQP12Rnxxz9qachYWEyXJClUP/VJ/+fSPcxOOGExBh4avC8GorkVBl9swj4AplspoyWQ6CfL8m+pnFxGUAEZG/jWkmLwjbtnMw/UsslnAWm+G3/3WnE+0fx67DBePJLzlx0F3o0KHDHhBzf+30d4k56m/Dkkf+XmDZPhL4b9u0vUVVPzm7UVU/gmUs3hFXhKaiAms35VYaVaHsAQumtUyWhXQopCNldDg1s1QKVW4pKybLVm8FINtoVqiaJeajiEV/KsjXPG5YUBwecOZRffI1JV/LKQeuKVHszeTVdA5bIYlpJmVfkapZSWkSTGQz4r3sw/q1js3jOekQemc9KHWZVHWOM48asHBfSX6qsoyt0NTiDtfhJooK5OueyZJjsiSkY4crIN2sEHXBbAbaSxriQICbWDxDtbpIsjGBhRyfp7DUA11ErjpMMimp+lYv3V173GIivA//w7B84a9IjhyGxUVkOKqZY9XaGomqBUaOxhagmme4pG/O/6oyJlmeb0miyZmz9BLXulcwvnYFHwqupSFNvvRyfJbgzmxS/fVXcI9/NLq8gBSlscBimpn1DTtuZOHF1X4wkakThCSUXg4aQp5Z8lCAxJHEyHHAr60heW5MqNISldaxL9EBX5gmo1napN/vh3LPRVVH/vsHTkLlcUcOQVlS3v8A6S03m4kwWwiBvlUTTAnW98nEzIlthDEV56ZMijLOScfnpqnIcMLxDz7I8OZVioHjgW86yuI9Za1xVIOEyXJqCS0FXJGzfHfPrHyrKace40hGFp6UTEBvyfA54GGykuKuSdEE1q+xl2r57oLxoYTy5gG9UxVukOATQTwUAwl+TnuvUGrLBEpdLnk/IGhDLti2zR6OY4l1/x2WfcRjfou3z7T5YSDWdV4HXqSqnwi/3YU54SssFuXp886jqu8H3t/6fifwk9t0q7/NdrA69TviihAqAIjZdX2K1dt2JjREoeoLPhOs4p2SnlXKvtXwhmCuyoTxaow6htOPW2H1i+v4EAHuUxivOsqvW2GyZKr0eFWYrDTCJNpQ1QVTl4cqC4witeMqYiZ1M0Wj0qxqNGlpKxm10JmsQrnoGB1eZOG+Clcpo8MJPoFi0eGzAYN7NqgWLRtwlTtcYX6l6EfqnZzgxinjI2YW1AFMllN8ImRDJT9b4fM+4pVkWOJGljtLs4RqIaMcJFT9Ael6gRSe4lCP7LTZz/0gq4NF42cgpGT3JGtDMzP1elTHVnArCxbtPRxR3fM15KpjMJ6Yoz9E5vtqZLVZQk0XxbIwt4XKH371l+rPt950G/Ry0o2C4TV9pFLSM2MIaeJ9PwMWSG65EZ863JqZTfSqI2Yic87MeWVpzKGFATqeGHstBGZK1dB11fsm8/TCAE6fMer6saPmu1C1CXsyIUlDqv5A+dXRqM5mTZZaaptIg88Ty9wwLkxQREJFGcor9HrgHOlVx1uO/Ql6dt2ERVniVkKKnXjM0RjJUrQd2KkhZU+LDaWbmwxu/zi3j36dveIPP//zNv6PfBn4iq/+vZu4/6kZkOEKe4aTSfOclwvCvTflVjgsZqAJk/3gASgWLf8YYu9cfhqyIVQ927ZxbVoXIpssurqdmZzDgrFni8BiEdKRzQdSURcq2xd4YLdj7U1TKYGXqurHRGQZ+KiIvFdVP9tq8yXgWap6SkRuxdJTfVPr9++IpUNmISL/UlVvE5H/NK9H2+Tx+rCI/Jiq/tuZY70AS0S5I64MoeJgsiRoYhpI7wxBMyDQKW1iVgdJIUglJngSe9iqvtWZKJagXLQXIJkIZx+9FFY/Jih8ZoIrPqC1VAjaSLxjmtp2aXHZa/5/9FGGfWJZY3WWdry+pAI+eeIlPPHlJ+qVmy7A5tXGKFOxNsOjiWln/WWKJetEOlakBPEproJiyTFZ7tc+o9iXKrOXcJwJk2VjrYkHV2bka0ZkkMqSDyZjb31IHW5SkYxK3MYYObOGv/owMQtB26A6Pt4jPzXBDUMyzjyzIlMLOeQpLktI/FX41QXcgyH+QMSYU2OPW1qijgof+R2rawKUx1c48+gFyoFpgYOvJtDLoB/S8ucp1ZFFE4D9DH9ksWbZUSnu6mMmWIL2IJXlN0sOHTLNIs/NyZ1n5oMoK+j30NwqceK9+RHOngWvpNdf13SuKGohIjJoWGExerys0F5qeeWgqXgZ/FIucZbDLgu1W7KM6iv3mvaXZfi1Nav9k+d2rLKsKc2SZ1TrGzXxwfX6wf9SNfngWjV4bj3+T/jD+9+x41hvHfwSejn9k76u11Iu2XNdAMkQfK+llYf3M4015zJYv8E+x0WWz6FYAZwJCFeapm5CpFk0usLYlqJ2fJ8CqZ1vkgU/Z3h0kr1VAd8TdtNU9iJVVPVe4N7weU1EPocl0f1sq82ftXb5IJa+aq/49+H/W85hn9uA3wsaUhQiTwdy4Ht22/mKECrqYHSMhvURhEVSYEWXxB5OV9iEn4zMvORDZlafUjvMNbHVUTmwB9Vn9ns6pH4RXAmoCSEAKW1FJNo86DXzo8VEid/FN9vraxDrczSVlX144itO8OlffAlPfMUJo3rWmpC1jbZbBUZHHVKZY3K84ppVmTbXhZoQk2Ci08T6LrF/GlZ0AoOvjdi4vs9kOSHbVBufxDS+LDFKbXF8kWSxB84y4rpJWBn3HG5cUuWOqp8iqwuU167Y2BWKKypczBu2alRpXV0yM5Iao06XTEORSWnMNyB94DTlVywV3LPd9/Fe/zvN+B1ZYXRVj3JBalPiyScskY4WcSUs3DsyUgLgeynlkQGaCOmmaSmiFdXyAJYHSFHh7r3fbtehFfzRFROY3ptpcHHBShiPCzM1Jgl6ZMXaj4xVJgsDExaqJqhWQmxQdKpvTqhOniK59hp0eRFd7tsCKBb5cg5NwJWFETMWzOqgeYKMzSHvlpdrTSM5dMjIEUuLpgEGWnesZ5IsLZoZLDLqAttuFunRc4tTmcJwZM93hZlCx9SaQ7lAXRRMXWPuLduGlvY7EZ/1YB4mPM+idsyi15wHTLuR0n6L5i91tp93jaa0byYwr7BbRL39/L0i8iutre8MyXC3QERuAZ4G/PkOR30B07EiCvyxiCjwf88eW1U/Gv6/P0TEo6r379ht1a8B3yIi3wE8MWz+fVX9rzvtF3FlCJUkaAcAHqoBENiVrrSHrcptG5mtgKK2UYTVVBQIrrJ9JiuQbTQvQDmwfVzZWm1Fk1YORRAmKlY9z9EybUkjbNCoyTClyYhvtBafTKvpEq7B59YvpFHpfWpCIymsDX2pWS610HGtvzScMvYtanM0L7B4Yf2mAcXANJ8qN6HqSmXjmpT+SSFfq9i8KqN/siSZeNzEk6yP0Cxh7cYVsvWUybIwWcpAMooFqa+zf8ozeKBAFozmqU7widB7IEMDPVgTK6jmaFbturIE9zRU4zaqhZzN42ktGO26TcvMzlYm3CpLrVH10zq+oi5/IILvJ/iexVnkyVWWWLSX2RhVMVo7qTMCEyPTwYSBcxYndeRm2/TVU+jZdWR12WrMAzEw1d/3AJIkVNccITmzSSxyrcG85iYhieJwhGwO4ehhWBiYcMtzi6PJMvAVenYd3dzEHT+Gbm7WvqH06FHTpE6eavwqIR+XpBlueblJOBpQPvjgDm/a9tDNTWRpkcmSIx3Zs+bDuxYn8lqTbwuPyMgSmhcobsf2LRebZ7PqNwJJSnsfy/A+Sngnfd7qV3jufW7HLPfi6NgDYnd3hP3+blV9/a7HE1kCfhe4TVXPbtPmOzCh8q2tzc9U1XtE5CrgvSLyl6r6gdY+ArwB+PHQbSciJUYr/tkdu6/639jemb8trgihciXjSS/tGGHb4dbrf8JW6lkK1x456O5cUZjVBOfhuSv/uHb4E4M9Hy7YE6V4b04VEckwgfLrIS5kXpsnA78C3KqqteRX1XvC//tE5PewooYfaO16G/BMLIfXl8KxHgn8soi8RFX3fYK5YoSKD6t/EraYlgAQperH5U97e7NJneIdTFakXmXVK9+w8o/ZMGpWUx5suoOwcipshVb1TCtw46Dd5EEbKcIqWhrNKHag9tNIS8tpdTOarXDUqco1DWYADau4oMW4YPoqQu3xqPpHk5iLtaey6fO4wq51vNoMjPmcEvINj8/MR1MsOYpFQZPUVos9SMd9XGGDu3m1kQDiijVCEyxmgIz8bGVMnr6QrymDe0qqvBeYcUIxSPFHevROji0IdHOI6/csqn5GW/H9BFcpZSb1eFj8kZ0vyc10J5VSLCVBI1V8L7HgSRHKQYLPBZ8KVX/R/EhgxAUP6hJ06Vhjclofm6kuTxldZXVpkrFn85qcZKyWOXd5wR63L99j5ryQxsTdcB3l0SU0FcByW7mqxKeOYiWjd3+FG5ZmWrvmmLHyYoYA75FJhS720DTF9Xro8vXmPrxzE+n1GtdWzG8WCr/ZtuBbUU963bVU9z0wN4/bPMHybPd9dd15mc0ksLgw5TOJWkj0X8bnO5m0zFp1P8NTPmM2jv6R+IxO3fW0MW25snVeqP2O0Dz755PXbDuIb3KWbdtmDzIlaBK/CnxOVd+2TZubsADEH1HVL7S2LwIu+GIWsRpVs9rHPwKe3Xbkq+qdoabKH2MVePcVV4xQARphst3djNtl/gMmCnirggfNg1z1g0AogdScjuYAb0xvavNkPUlHFV0T8IEF40qoMts3quX1hB4FStgeGTNIEBCYCa62CUtzjniemlFTtF6qsE2z5ppdAV4aIRX7m0yCAIgCLb7IYV+fO3wCZU8aYZoLVY459IPQ6p2qKBbTqcmlHelc9iEZC72TY/pfqzj5pBWKJaE41K/NXz4Rqr5jeMwyDyzeMaxTu6CeZHUVf80RRlcvMjmUBDKBUmVm1nKV1uwjnwoq1AkTNRHLpjAGn9grUOVGC08mGkyWJnw2jyekw4yksGP71O5ftu7pP+hscik8okaBzdYrqlwCQ3DZjlcq2VIfNzGhoc7h+5YSKBmadJdJSbnaZ3IoZ7ya4KoBmXNmKlsIOcoqtSShLkPyKvgtCgtAXQnO/5uuteMVlSUuHfRJ+j309BmrwtjLLanm2TX85ib+9Jm5vpWIZ7vvA+C9/nf4rvyHpt+XXq+przOZIH9zD6LHKINDvmxyQtY+u/p5bC3+4jvQfkZm32HzCQqaBBNZNO8GE3J8nq1xfDZp2dxax94PtEzXO7bZHc8EfgT4VCvC/TXATQCq+g7g9cBR4JdC6qBIHb4ac6iDzeW/oap/NHP8bB4zTFXvDxrSvuPKESo7LAtUpn/eTqCogLgwOVY2WbrW+xYnal2C6ACXiprxpAJEn0X0mVRBmwnOfRyUwebrIhMlvGgSzlVXLYy/tYWgNMf2ObU/SFoB51VM6loZKUF8yxYtFlwtUQOrmpe8DC967WgtpzUacxybEI0r0lqLS0zQTFJheMQ1x2n3O3yucli/XhgeXaJ3VhmvWD6nzet6IZYHBg96UCUd2urfDzLcwgJu0IdDy4yPL3DmkXmjBamRJTS1MVdn51FneaiSieCFWiiACS4XJpvJcmDrRXbR2NVldtUJhUg4h+JTGB1JOPPIBPGQrcPqnROSQhkfNs2r6sPaQtIsDsgaDTSM/eqdE5K1idGJS8/kUF4vFqRSqkGKS0J8TFgVy7DAH16Ayth23mVw7XFidUmfGz1ZoKlkmSTGWhsMjBIdyk9Lr4fkuQmd0dgqlub2cM6mxHnusRcCkN50A9U1hzn92CVbaGSgYkK6yoVR8PPHhVnUUNrvXO3/jIqTTH9vHv4Z1ItCDUqNTDvg2wQZbd4NFVoLnL3N9LtC2QP7aw+HUf1TdhF3qvqjwI/O2X4n8JRdTrET320fuXANrhyh0sI8obGb6ht/r/8nllfIO8BLM+kHck4dNTuzCq/z4AVWVtmfbhdJAkZltrZJER78rJmoIyMNNUdl1CDaL17tAG2v/lrfpR0E1g6wFIweHLUebbbVFOfUKM5RcIqGc2hD25QKmyt906+pSOJ4/pmxrTWWJdDUzFVVasGeUUvySVJrbePVnOSGjHx9hXTkWb8mpRqYUM7PKq4ySrnPpHHMptJci9pNUydholGjijshHStlz4SAC4QOTaBYlJqYUfWo6arFkkw5gn1qGiRidNqF+wpckbFxjbMxDEIv29BamFQ9m4RHx1KytRTvhLVbBkxWHMlYSUdK2U9CQKQyuGed4lDfCqMVGZNVSwRZD2pYhLiqRDbGyHCMLvXRo6t1vjB31fHaSU+S4JaXjHo8HoMI4lxd2TOaz6JgSY8fMwbZ8aNsPPk6Tj02tWuOt1OpSRH189fSwuv3Y84cLLOC5VzgbGd1QXOJx4kakaO2qu1/Iq7986k8xHiKiMxz/As7BzmeNw5MqIjIT2CMhBKjq70ibH81xnCogJ9U1dv3cry4ApxSoffhnkbtpXlR7OCNGWpGHYctpq24apa0+R4DIH3QhmpNKfhbNG2uKfp28EFQREEWV2feBE+85shsiz6U2SR7MRCzHqNgehMJzLMZCqYkzVjWdND2MYMgrH1a2pxnatKQRhi7wG71aZgbop9IrQ+61NwDV0G+BoP7J+R/fZLN49cyySzWKAawtoVmNFVK1QhjCwoNn4M5LI5PNNPUv8dri/1Jm2PFWKj26hhgsmy+m42rbYnus5ZGlJmfLhlbvjlNwKvlqNq4fsBk2Zm/z1scFEAuFkeUAOOrFtm8JkM8JCNPvlZZDI0ImpuknxzKkdIEkO8vmmYTSyrkKXp81ZKCDscmaNIEPbKAnDxtmaOPHkbWN/HDoZVrDoJFBgMevPUxFAvmZ8zPqtHte61nNi44ZjQSuxnNMzr7Xm2L2d9q58gOZm0Jt6IVN/ZQZnTcL5/KQw3V/cwjsDcciFAJ1LjnAU9W1XGgwyEijwd+EHgCVk74fSLy2K76Y4cOHS4pKLtrKpdXwsl9w0FpKi8Cfl5VxwCt6mLPA34rbP+SiNyBUeT+514OOqWlMPP5PO5v7ehuHUvdfB2+TsPSjrCPAVutOJBo942Bhz437nx0tEcfjU+aY0xdT1z1SWul3FL5gToOpr6GedfVOmT8UEc6Q+1rsWu2/65qSAs1fLNv3S76d8rWdUenatxXmnigSHRwwQxY5RbrI74xv1WZMFnpk914LeNDAmKMM11szHOzYxNNWVHbiL6v2rQIgcEW+tkakKjFhMKTVAtBU4maYkrtd6qJDmPINpXREQkpelqamrOxq3pS368CYXw4MW0tMKIisaBYzOoYq+iD6J32pnH1HLqak4wqfC9hspKy9KU1ECM7rN/YJxkrg/vGVH3LNTa46xSshxiWEOMiozH0e8jhVUY3rtL/7D24Xo6ORnDDNUyuXmR4PGPtRhsUNwmpkPJwz+JzPu+5ajvI2/9nf58xH89d3iu1qWtXBK1ltj/xp31jgF1+WYovGg5KqDwWKxjzJmAEvExVP4ylJ/hgq93dYduO2CJM5mE7ATPP1jszSZ+ToJKwo2igpFD7Y6LjkDBhR4d5m3Ib6ZfR5zHlB4kTpzb9m7Ibz3RhiqAQ92kdayrWTKePMU9prtqO/GAui+SC6P+IggAgqUw4+p5NSN7FVBvheHnzX9TGI/YvOnqRYI4LAWzjQ9KYFtM5AoXWxB/G3VXNueIx45hFP1Y9BnHskkbQIzQ+BGn6nxR2bB8YgEUG5aKYIJBGANcLC9+MsSvtezTbuWD+iwuCGGQrCumm9WV02NE74zn9qBQEjnyuIBlVuFItWeaxZc4+om/+IBWGxwc1gePszVeRTJRsXUlHHlco/XvWkKKiPLRgpQNWlpCyYvK3ruP0o3u1/y+aEGMgY/Rb1M+zTs3lU1Te2TFrm8zQ+c/Z1EHa33ch47Tv77Zt9kmo7MX8dWm4VC4+HjKhIiLvwzJvzuK14byHgW8GngH8dgjImXfL594aEXkh8EKA9PDh89dK5rWds/rfts3MYWxyDt9aL1P9QPvpl64WGmHiiatoCQetJ23Z+p7NcvrnaSdtH0r9Tvr57bbzRbV9VdKaCFSxbEDQkBgEEzBRy2tpB3Gln4ztHA4jLdXttHW+mcmmHYNQ9ytSngPLzRXN/m2fj2/5strXF5N6uipsCoIr0qzb5AqUrZkQnK0b1NmQ1qymICSnMhVkTZ+jwHNF45sopTmf0BKMzjSymjqburrdya/LEM3Aw2T5GutrSLboMxPk2VDJ1j3J2CMe8lMjNE0YHcvxvYykqJgc7ZGul8iZNaobjnHycT0W7vdsXO0olpuFjvhwSVGrjizF1nPaJmq0Nd12aqK2pjv1LgitAZi533EVMEewzBJA5mK/NJR2fzrz11w8ZEJFVb9zu99E5EVY+gIFPiQiHjiGaSY3tpreANyzzfHfiWXrpHfjjc3d2+4+7vX+tjSCXdvN+V6zT4BoFqsbaPPOQOtlmxUONJNKnS9pzil37RPU55xCawLfcd94iJmXu54I2pujEGiZ66J2UJufMG2lzZ5qM4Rqh+/sOWeFXVwpx/EJmlNcRbuq+Z2YPqelBUXhFrXEWouMzvgohFqT1VTcT7wmbY49JQSDsKpL3Yd+txMgRkp6pEDTYu9FSnT9bLSEep3DLZrmghAfHpNaQIrHtKUENo8LHE/CCUDIyNYtq+9kZQlYQjyMDiWsbhzjzGOWKJZgVLgpk2HsS9TCxNnneG3JpqU1mqy2rq01fjF7eHwe2ouU+QJk5n63f57Rena0Qszbvi/Qh63Q2A0HZf76j8DfAf5ERB6LrXcfAN4D/IaIvA1z1D8G+NCejth+OGcmny2ft8NeVjw7nT/uO2/FX9ukmslw1mcSJ6stk3iL5TXdeOe+7Mg+Oc9VXZuGrO22rcmz7r9r2tW/xe1xt/ak1TKrTJ2zpWHIzDirTpsPUSvFXq+i43E9jb8qJNOsfUj5zLi3tEpoBOJUnwS0dd4tY91amCg0vidpzl1fV9K6x22NL/S/LWDa/p9ao2qd27fGqn5GAitRKsvhlg7N72PxOHZMqy20bEw4gfEhao0zJmZsL3SSTZAiZAQPYxb7WS5M+62iOa/uYzq9z1xnRxjQuT6Q9gJudsxn2mynfV8wvO6hRv0+n/MywUEJlXcB7xKRT2MBOM8PWstnROS3sbTPJfDijvnVoUOHSw1Gl+/MX/NwIEJFVSfAP9zmtzcBbzrXY7ZTNMyN0N3u/rbbnovqPLNCn3I+7kELqLUSN73KneefbHaYo/rPO0W8Fp3ZFo4TV547Iq6y57Sb1++oNbS/b3sdbNOu5TCfaycXtmhxbad6OzGUC1kB6kJQrdIB7ZXuVMDe7HjuheHfMsXNbq9PF/opbc2npU22x6bW3FqxS/H6xFuQKMwcq9WPtkZQnyN81AwmqWUPiD+0s3SPF5j2hcVra42DzyEPoXT9U/DRd75k6rKf+hMnSEZGUiiWG41siqk4TwuZVfXOx1owb7+Hal7v2F/b4oqIqLdJVOoHM35Xp3WwYhuRFhwdtdtCQbw0TsQQBNn+re5DKw9R671pHPWzjubWpNMWSG0KajwPrXZbPs++iy0Kc/zevh5ozEBEppbM2bdthpoVvEJNJJgySbX7puEccybbqf5sJ3z2gvZ4zAjKKiTcrNspWwXpjPnxnNEWfDs8SG3ne2wf2WDtoNCpYwYSwLzj1j6iWlpAbR6dc9/UtdINtYWntIJDmZ3kqc1dbR8YwGf/+bQgaWN8yJKr1maz8DJse1/b1xg/75dAaSMed7/kgCq711N5eAqdK0KoANMzW5jsxUtDOW3TG0O6DpxuryW0JsvoYPSZoGlLcNFaGbaYMHbu5jgx71cdO9GKlm+fR9qGvtbx2s7IKcf2TJTylnQpAZ/7v6YngVt+7Re46/mv5PE/fcKYT/H42vRJk1AtT0ItmbY2FvwDsWyzm1jerTge6izCPJaFnZ0opnwkLRpwm9wzT0Ob/W1uSIO0xqylEdgOM8feAXuKaWhf1+yE1fpej13cJ35v+5Zaud+2+OfiGISFQFsDqu+50CQ2pbU9fK+rjYZz1TnjojbUFlI0fqra5wHc8fKf2nE4nvRTJ9Dl6ed1R8fe7Njt9xw8R0DtW5S7Kni/S5t9OtdlhitHqMzhsUtwztYV41qORuOA2hMXXxyppFEz1JZvLiZdDE5n8c2sFVebojRMGA2BbOGlbK/qvv5FJ6jyxizQdgC3aZnqZpSa2dU98PmfsYqQn37z/FXj419zws7/c1t/v+v5r6z79ug3n0BTJbnZCjt94R+8zvZ/7Yl6/HrjZt8qg8/8gh3zCa+yNjj4xNvn9+MZ//htAHz4/2kmpG/+4bfywV9/KV//ohOMjk6nhqkFSJwMo7Cj9X3m8xatcPZR2E6YbKPtnRNmBUDc1loZb1lAzE6gcwTSFr91S3hMaa8zGppATeuu42KEqZQy7X2nyhJE8oCG4NvWAe94xfbaSRs+1JKfPtHWd9O2t86xZZ/W53kaxuy9m/OObPl9izp2AdjHeipXGq4codKhQ4cOFwt7Lyf8sMOVJ1RUpswCsehUrRXMmodca79oKqOpc2513+1zMolJB2Uq2Kvd5shfmj3sA+95+ZaufeyXm9Xes/7emwF4/++/gie95w0A5P/5ELDV+dnGI//VW+vP22kpMF9DmYftVqCffdPu+3/m53dv09ZQIj746y9tvvigiUXaa7g/ZZ8tsR/RPLaXxeaeAuK2sd/v9RzNDrv83NJCYcaEuZvZp62FzQaItv0wLTNhre1V8/eN+7RNhdH81daefU+587af4pZfesvOF1i3b2Jxmo1S97e+pL2YFWcxz9/S/r4HpWEqMPlCoZ6mYt92bR6eUuWKEipSSe2crc0NwTwV04OIzExWwby1xeHdEhoxOlm8pcyoj+vhU2/d2+Q9i/f//ivqz5/6+2+0D39/9/3u/MmX7t7oMkFbyM7ica87UZt2ptL2s3VemGvWmvFnzMXsRNWawGvfktv6+5ZjbHf4GDDYFhwzz59CbUKtJ//WtinTndCKPG+1bV9rm3iQsEW4TrEHXdg1/ta6Vp+fx4QY3omptDehf4rU+bu2CJidhEjYf+oezP7W3i1+9zLFhGuz/PYFyu6aysNUVbkihIp4SDcaATL7ENa+D7AXMRbMipNIi7I5a/793M+en9DocGGI5ILHve4ESQltmqufrRyoM/dtr5rGnIlpni9m2+/boeVLIWphLb/BXOpyu33rGO32bdaXzk60MBW9DxYI2RZW7dT0UwSQ1k7lsueuf/Kyqe7d9U+nv2972S1tst2v+nxtJuYcAdO+1i3z8Tw/yey5VeoUQECd920LEWU/sBefysNTplwZQuUJ113NR954/pP/43/6BBLyG/3lBRynw/5jlrn2uNedIGllUI7pQNrzdKxrQyARbJe0UOZNVHNMSReEIAzbOdymfmtNom1hUzvcW9qHwlQOrSmExVN0sNdpaNpCKlB7q4Fd7F0vntZ6b3nH3sxc26HO2NwSXK3uzXxv3bQW00LiQMzRQGYpz/HA4s00XTMtmdY225riZ3/uJcibdmax7QldnMq2uCKEyoViJ959h0sLbSHz+NecqFPD+4RpxhNNIsSknaW4vWJtC5LW/3nJK88J7RX6THqVecwu2CrAtD3htnZop8mpTU0z/Y4a+xdfdW7P9ayGcq6QErKz1sdY6roWMDMCYYo+Hy7A2svWe6PtVgEtQYLYuaNP6C9/5iK8z95bEbSdUDu9Hl7ohEqHDg9D3PwuI4pIJdz1Y1tJJR12QWf+2hadUOlw2SIy3J748hMWaImt0GMtFlcBod6Ji0kcwbQFZla+bQ2i7Qjeq8Yyzy/T0ia2mODmOBPUae18d2M78RdfvdVU86SXnQBgdMwO89Rv+wIAv/Mtv7zHzj40+MS/eglP/YkTpqkMabI9t2rTaLI12WTbJ7bFp6XTylrtN4UmYwJbzaQXBZ35ay46odLhssFTbjvRBOXRMO8+/YvTE8oTXnkCDanWy4VmQqsnqHZgJcwXHNsJk+2c+rPNXOu/bG28XXT6Y3/uxJ4ZSv0H4NYf+TO+tHFsbzu0IMFRftf/+YpdWp4bPv6vt5/cn3LbiZq+7LPwl0/7P4Ct5knFgmFnxvtABEmAeo925q+56IRKh8sCT/6pE3tWGmLEf8TXveGETUq7MIv2mr5lHrZz6t/xynOb+L7wGmt/y79567ZtosCaHIL/+PvfUu9zLrjr/3jlOe9zofjEv9zazye97IRplsHPUvWmE27O4vOvu0T8n13w47bohEqHywa+JRg+9Za9Ty7iQ3DqDBOrodTGhtRmsC00ZVr70NJ4wu93vPIlPOotb6vb75YnazfMMrPa2Cno9XLD6p3VlOnxf/yHCyMLXDzsD/tLRG4E/h1WJdcD71TVt8+0+WEgrgLWgRep6ifCb88F3o4R039FVX/+gjt1geiESofLAp982/lPpHsxkzz+NSfqAlUxbsTFTMIhhslNrO12tPO/etk+UFU7XB7YE/trT0KnBF6qqh8TkWXgoyLyXlX9bKvNl4BnqeopEbkVq3j7TSKSAP8GeDZWNffDIvKemX0vOjqh0uGyxJNeas7q881o0OFg8cz/3WJiLjQM6KCgXtFdsxTvLlRU9V7g3vB5TUQ+B1yPFSqMbf6stcsHsTLrAN8I3KGqdwKIyG8Bz2vvexA4EKEiIk8F3gH0MUn9T1X1Q+G3VwMvwCp3/6Sq3n4Qfezw8MJec6V12F9sSelyuWBPlOJzuygRuQV4GvDnOzR7AfCH4fP1wN+0frsb+KZzOulDgIPSVN4MvFFV/1BEvjt8/19E5PHADwJPwGrUv09EHtuVFO4wi05DuTLQFiZ/+ruXiz8F9lSky/C9IvIrre/vVNV3zjYSkSXgd4HbVPXsvAOJyHdgQuVb46Z5PdtLpx5KHJRQUWAlfF4F7gmfnwf8lqqOgS+JyB2Yivc/L34XO3To8FDh8nHIz4d6j7LzWldN6LxbVV+/UzsRyTCB8uuq+u5t2jwZ+BXgVlV9MGy+G7ix1ewGmrn0wHBQQuU24HYReQsW7vUtYfv1mM0w4u6wbQtE5IXACwFuuummh6yjHTp06LAFqnuIQ9ldaRARAX4V+Jyqvm2bNjcB7wZ+RFW/0Prpw8BjROQRwFcwK88P7aH3DykeMqEiIu/DaHKzeC3wd4GXqOrvisj3Y4P6nZyDOhdUyHcCPP3pTz9wla9Dhw4PH6j6qIns0GZP09IzgR8BPiUiHw/bXgPcFI7xDuD1wFHgl0wGUarq01W1FJEfB27HOIvvUtXPnPvV7C8eMqGiqt+53W8i8u+Afxa+/g6m1sElqs516NChQwsfuE//hqu4btsGlZascQrgC9s2AlT1T9mFBKeqPwr86Da//QHwB7t1+GLC7d7kIcE9wLPC578DfDF8fg/wgyLSCyrdY4APHUD/OnTo0GE7/MmYERvz/ekA3M1fcS03o6qbF7FflwQOyqfyY8DbRSQFRgTfiKp+RkR+G+NZl8CLO+ZXhw4dLiWoqn6DPIsv8TmeOIfBW2nJvfw165xZPIDuHThkj3a/SxpPf/rT9SMf+chBd6NDhw6XAUTko6r69As8hhzmuP86nsairEz99mX9PCB8QT9xucZ2XhAOyvzVoUOHDpctVFUfweP4Ep+b2h61lC/yyYellgKdUOnQoUOH88LH+ICb9a08nH0pEZ1Q6dChQ4fzwKy20mkphk6odOjQocN5oq2tdFqKoctS3KFDhw7nicgEu4NPM2TjYcv4aqPTVDp06NDhAvAxPuBKik5LCbgiKMUisgZ8/qD7MQfHgAcOuhMz6Pq0N3R92jsuxX7t1KebVfX4xezMwwlXivnr8xfKO38oICIfudT61fVpb+j6tHdciv26FPv0cEFn/urQoUOHDvuGTqh06NChQ4d9w5UiVLZUUrtEcCn2q+vT3tD1ae+4FPt1KfbpYYErwlHfoUOHDh0uDVwpmkqHDh06dLgE0AmVDh06dOiwb7jshYqIPFdEPi8id4jIqw6wH3eJyKdE5OMi8pGw7YiIvFdEvhj+H36I+/AuEblPRD7d2rZtH0Tk1WHcPi8iz7mIffoZEflKGKuPi8h3X+Q+3Sgi/01EPicinxGRfxa2H/RYbdevAxsvEemLyIdE5BOhT28M2w9srHbo04E+Vx0CVPWy/cPqMv8V8EggBz4BPP6A+nIXcGxm25uBV4XPrwJ+4SHuw7cDXw98erc+AI8P49UDHhHGMblIffoZ4GVz2l6sPl0LfH34vIyVfH38JTBW2/XrwMYLK3W7FD5nwJ8D33yQY7VDnw70uer+7O9y11S+EbhDVe9U1QnwW8DzDrhPbTwP+LXw+deA/+2hPJmqfgA4ucc+PA/4LVUdq+qXgDuw8bwYfdoOF6tP96rqx8LnNeBzwPUc/Fht16/t8JD3Sw3r4WsW/pQDHKsd+rQdLsr962C43IXK9cDftL7fzc4v4UMJBf5YRD4qIi8M265W1XvBJgzgqgPo13Z9OOix+3ER+WQwj0XTyUXvk4jcAjwNW+1eMmM10y84wPESkUREPg7cB7xXVQ98rLbpE1wiz9XDGZe7UJlXrvOgONLPVNWvB24FXiwi335A/dgrDnLsfhl4FPBU4F7grQfRJxFZAn4XuE21VWlpTtM52y5mvw50vFS1UtWnAjcA3ygiT9yh+UH26ZJ4rh7uuNyFyt3Aja3vNwD3HERHVPWe8P8+4Pcw9fprInItQPh/3wF0bbs+HNjYqerXwqTggX9LY4q4aH0SkQybuH9dVd8dNh/4WM3r16UwXqEfp4E/AZ7LJTBWs326VMbp4Y7LXah8GHiMiDxCRHLgB4H3XOxOiMiiiCzHz8B3AZ8OfXl+aPZ84P+72H3boQ/vAX5QRHoi8gjgMcCHLkaH4mQU8D3YWF20PomIAL8KfE5V39b66UDHart+HeR4ichxETkUPg+A7wT+kgMcq+36dNDPVYeAg2YKXOgf8N0YS+avgNceUB8eibFLPgF8JvYDOAr8F+CL4f+Rh7gfv4mp/QW2OnvBTn0AXhvG7fPArRexT/8e+BTwSeyFv/Yi9+lbMfPHJ4GPh7/vvgTGart+Hdh4AU8G/iKc+9PA63d7tg+wTwf6XHV/9telaenQoUOHDvuGy9381aFDhw4dLiF0QqVDhw4dOuwbOqHSoUOHDh32DZ1Q6dChQ4cO+4ZOqHTo0KFDh31DJ1Q6dOjQocO+oRMqHTp06NBh39AJlQ5XHETkGSGpYD9kO/jMLvmqOnTosE/ogh87XJEQkX8O9IEBcLeq/osD7lKHDg8LdEKlwxWJkAvuw8AI+BZVrQ64Sx06PCzQmb86XKk4AixhFRT7B9yXDh0eNug0lQ5XJETkPVgl0EdgiQV//IC71KHDwwLpQXegQ4f9hoj8I6BU1d8QkQT4MxH5O6r6Xw+6bx06XOnoNJUOHTp06LBv6HwqHTp06NBh39AJlQ4dOnTosG/ohEqHDh06dNg3dEKlQ4cOHTrsGzqh0qFDhw4d9g2dUOnQoUOHDvuGTqh06NChQ4d9w/8PH63c3vmQ7GAAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACJyklEQVR4nO2deZwsV1n3v8+p7pm5S0LAgAQSCEtCCDskCEQhISQ3F31BcQFFRF4UFVkSgkDClkAWwpILoohRREQEQYKCviEJIYCoLFnYwxIIaiQY9mz3znTXed4/zlKnqqu7q2d6puf2rd/91J3u6lPnnNrOsz+PqCotWrRo0aLFJDCznkCLFi1atNj70BKPFi1atGgxMVri0aJFixYtJkZLPFq0aNGixcRoiUeLFi1atJgYLfFo0aJFixYToyUeLVq0aNFiYrTEo8VEEJFvi8iKiBxY2f85EVEROVRE/tq3uUVEfigil4rIEb7dGSLytyP6T48N2+eT358pIl8VkZtF5H9F5F9EZL/kWBWRJ1T6fKPf/9v++0Ei8kER+U6Y85hz/nkR+aSI/FhEvisifxHGHNL+t0Xkk0N++5iI7PHn9X0RuVBEDho1fosWmxEt8WixGlwH/Hr4IiIPALZU2rxWVbcDBwM3An89Qf+vVdXtyfYgP85jgHOAX1fV/YD7Au+tHPt14OnJ3DrArwLfTNpY4MPALzecz+2As4C7+DEPBl43wflU8Rx/be4NbAdev4a+WrSYCVri0WI1eCfwW8n3pwN/U9dQVW8D/g64/xTGPRr4D1W92vf9Q1V9h6renLT5EHCMiNzefz8J+ALw3WRO/6uqbwE+22RQVf07Vf2wqt6mqj8C/gI4Zq0no6o/Bv4RePBa+2rRYqPREo8Wq8GngP1F5L4ikgFPBmpVUSKyHXgqcPUUxv00sENEzhSRY0RksabNHuCDwFP8999iCGFbAx4NfHmtnYjITwFPAq5d84xatNhgtMSjxWoRpI8TgK8C/1P5/YUi8mPcwrgd+O0J+n6hty+E7R0AqvqvuMX2ocC/AD8QkfM9AUvxN8BvicjtgMfguPupQEROwElar1hDN38sIj8Bvg8cCDx3GnNr0WIj0RKPFqvFO4HfwBGFOs7+9ap6gKreWVWfoKrfrDYQkdMTo/hba44NW7RhqOpFqvp/gDsAT/Tj/07ar6p+Ergj8DLgn1V1d9OTEpGfS+b05cpvj8Cp4H5FVb8+rv0IPE9Vbwc8ELg9zobSosVehc6sJ9Bi74Sq/qeIXAc8HnjmKvs4B2cAX82xFrhMRD5KvT3lb3HSwXET9vuvOEmpBBF5CE4d9n9V9bJx7RuO9UUROQv4UxF5qLYprlvsRWgljxZrwTOBx6rqrRsxmIg8UUSeIiK3F4eH49RSn6pp/sc4ldonhvS1BASbyaL/Pmzc++O8s56rqh9qPl1ZSrch7d4B3Al4wpDfW7TYlGiJR4tVQ1W/qapXrEPXL6rEeXzf7/8R8LvAN4CbcNLF61T1XTVz+6GqXjaCm98N3OI/f9V/H4ZTcWqwt02gonqU7zNu3m24Os8VHKF7+Zj+WrTYVJBWUm7RokWLFpOilTxatGjRosXEaIlHixYtWrSYGC3xaNGiRYsWE6MlHi1atGjRYmLMRZzHgQceqIceemhp3zeuuo6SK4AqiDTvNHEkOPxh9+TrV36r2XF1Y6ROCSLF9/SzH6fF3oFvXH3d6Aar8EMZeF7HoH1eVocrr7zy+6p6x2n2+ftPP0CPPWYLT3nWDRMsMns35sLb6qijjtIrrli9x+iOpaeitnId1BafxbjvUi+oiZFyWyNlwmAV1A6OUR2nCcSgeT6w+9L87yfrp8VI7Nj2W+MbrRVDnrnSczLm+Rj53AKX2vc1msoJ5lfHtmnaV1PEMcWU36EapOcpRlCr9cfUvKOXrPxduYnIlap61OQzroeIPPCYo5c+v3uPctUXl7uq2p9W35sZc0E8bmd+Sh+x+PiB/RfvfufEfe3Y8rS4+IsxkCVpkyqSQoSdkACoopMc48fUXr9YHDxBiy/VpERoSqguKKMWoWkvPi1WjybEYjVoco/TsSXLmjFlgz+OHqTyboh/j9Uql/bePVXi8cu/sJ+e8nsH8KFLbuV+91ngt57z3X1C+phr4jEKVcKyY9tvDXKCgYgEAmKmYCJKiUYgCn6fGOMIVJNxqsQnHFPpX62F3BZcbZ5PRwKaAVriMz0MEI8JF/A66XciiCneqxHjxPH8MxvbjSMeI3DJnr+dGvEQkQeeeOzWz1/07rvyve/3efxvfGefkT7mwuaBCGT+YcqbLYI7tjxtUDLJzPAF3NrhC/YkqDkmfYlGwlr30nqic/GtzTONn7jwG34wg2QMEAtd41qwKgxbAIYQshPMrxYqRI+WoKwO4bpFIlJRy45bzGuf2er9rFHDiZHmC386n64MMncBY+YKuGObtJsQT/r57Z8/5fcOAOCOB3Z43GO28vxnHdAD5l76mA/JIztQH7ndpwYK3Hyeo73+SE6lVvqAQmXlPwPDCcVqCEpqVK+5/h/+0V+O72ONOLH7lIl061PHGjjH1er1W4xHSSLx92gcIRlAuLepinWgiVR3jO5z1BxGPcdZVhA6/95dfNPbpyJ5pFJHwPe+32fnr3+Hq780/9LHfEgeeGKx0gOcgezE7lMqxuUya31J7z2l7zu2P33QptFEheR/Dwv+SbdPsoMHwlLtYwjB3giiMYBZqatGOCCMRWVxqqpgWmKyepQkkig5TEhERhCNoknF4D3seaiOOc6xJTisQC0TuGZ1W4JU6ggI0sfJvzf/0sfcSB6PWNgJOGnixIXfGLooBm57Nd5JJcLAjBb7KeOE7MnuwyyIyGqJR4O5tgRkuhhmYG+kck1VjaNsK+lvKdFIDN919joxAp1OQSgGGkjJSeWSW/9mzZJHndQRsK9IH3MjeWCcTjTq9iuoShqrwTwQiyoCEV0v75uhGKIfH9pmLzDozzOGEeNghxoplaT3rqnEOcS+Edx0B8dwxGFA3awaJf2hxGUVqJM6AvYV6WPuIszFyGRGuRaAWxw2lFtXW97GtZkQJ5hf3XiCuA/iUvs+Ls3/HrVav6jXoeaeqlWneq5sTe69WoU8h9w6d/aA4PySbBO5yA+BiDzwllstjzp6y9A2p/7+Abzxz39MXRr+ecF8rLAiSKeDLHSRhYVybAbTkTpa7J1oCcjG4NL8751aaRKbQpWBqNlKxKRCoCKjiCcgyTGoOpujMW7LMmc8X1iYxun+4jN+ff+RDe54YIcjDlsAuN80BtyMmA/iAfEhcXENOdrvoXneEo4JMY+2gpaAbAzCs9NYAmmKivSREo2B717joN6tXXs9J5VMF7K0OF4btbQkMMdqq7kQqQ578N358BXzZ4+YFS6175u7BTc4BrRpXNYX4dlRW28HGYj5GIU6F99xBvqQGih2YQZ/nwJyzemNsYXbObfTzQXxgIK7nEfOeRZIr+NeTUgqC1BLRDYOU5dAAgIBqOvfu+dG24YnJJJl6BQXcwvYMdkv934/1tGYqdpKRA4QkX8Qka+KyDUi8kgRuYOIXCoi3/B/bz+un8YZb1usChtuTN8ARBflFlPHpfZ9w+0YCcYSlyZOFQGZKWyenQ7S9Z+7HWTLkstA0eu7bQpQ7Nh/804+Zm3zeBPwYVU9AngQcA3wEuAyVT0MuMx/b9FicrQed5sCJeZjrdy/SbynTEU9VY0mN4KIN5Z3OoXxfAroo/TUjtzGSSZ7O2amthKR/YFHA78NoKorwIqIPBE41jd7B/Ax4MUj++p0MAvD3eZa7P2YyA7TgGi0aqv1xUC25ezJA3nJSqjcs5IXlfvgDOOBCIBzjCF3hKLTcYTDCGihqiKJ+5Dt25wX1o/Xfn4WJW/VVjPDPYHvAW8XkatF5C9FZBvw06p6A4D/e6e6g0XkWSJyhYhcsWJ3Y/bbPlGiwBaTY5aqq6kQjjXEjbRYHU4wv1pWEdbly6oEGaaeU9J1REE63UJ6SOI2JMuc1GEKSUTEOIlDxEkd4ZgpQnEEZNQ278RjlgbzDvBQ4Lmq+mkReRMTqKhU9QLgAoDbde+kADvv/Gwu+u5b1mOuLdaASWp+rAvaLLwzwdCUJiaRDJK/If9czHuVShpSJg6qFtQMJiYVcSxxIDBVTMltN1elNya1k52D1E+jMEvicT1wvap+2n//Bxzx+F8ROUhVbxCRg4AbJ+l0512fy0X/8+YpT7VFwEAq7wZtm+yfpL+RbYdIFS3R2FiUCj4ZKRVj8h+apSoxxhOQMiEQa1DRSFiipBEIRl1S0yku5nmrtpod8VDV74rIf4vIfVT1a8DxwFf89nTgNf7vP43tTBiIKm+xvhhlg1jNQj2OoKS/T4OAtVg7diw9tfT94j3vqm0nnW5RWA1cGpGcgtDXEBG16urOpC63pazXvj6HpaSyim1LE0i+T8lgbhXycc5iUxlp82LWcR7PBd4lIgvAt4Bn4ITO94rIM4H/AhroOBKOQ5Wdd30uQCuBrDPqCMg0F+txfbWEYeNRJRjjfjMLCwNF1pQeorYoQObTqAtZOb1JkFJMjQrKCGINZJQ9sKqI9XgKQ/o04Gwe49vMM2ZKPFT1c0BdauTjJ+4szaLZYsPQLuD7BgYIQ1o3IyDkl/K/R8N3blFVn3fOILKAqoK3bUi3gywuOsKxshLLJku3445JC7KlNo5siLSRuuumLr3Z9PyDchV6Y4jRvLtlzLUj/M6DnzfrKbRosdejRDjE+CC8jktGGrbgJks5+C9ky8VqOYHpliXMtq3Ili3I4qIjKp5YyELX7VvougW/zn5RyZYLFHEcMRmiGS2VrAE5MnbT+U1rBcxebTVdVKsAtmjRYtUYkDZCEF6WldVB4KSI4BobVE8lt+jysZK2S3NRdTuF5DCMcASk+0uG8ukTiyosjoCMwrzrQOZa8oBW+mjRYjWolTY6HRdrkRkXXxFjMLw0sbSILPptoesIhC8NK91OJTrc+L6yQlIIv2VeakiD/KqoqdUxIIlUMUUJJMfQ09GbnaKNZTNiLiSPwx54CBdd8SagJRYtWkwVwZidZS5PVCp1xDbBpuDjNnKvLupliHp1lc85VTo2/Ry0BqkKKv0+zJY5Iw2DRcjH8N7zbvOYC+LRokWLFhsJq9JAsmglj70KF13/x0AhgYTvLVq0aIaoskqljmDvGJVcMEgBnY5bNrPMGcqNjE9KOMwo3gTVdl7aiX/XAa3NYw6JR0BLNFq0mAw7lp5aBOuJKcVnRMJRVVtV1U0BnU5Z1VRHOKbh4DLsuND3OhGQXDN6Onr5tA1MyiJyCPA3wJ1xNOkCVX1Tpc2xuGDp6/yuC1X1VRNPesqYW+LRokVTHH72LvfBx5GpAfEK62+cdsrsJrZBKBENGPSqMt6InRqpq2i6b1iburZV4qJatoXUeHyNHmtEVt8JYb077ug2jdAHTlXVq0RkP+BKEblUVb9SafevqvoLq5nremGfIx7RoJ48mG0k+r6Lw8/ZNfr3s3bx9ZfNLwEpeVXFeI0kn1RqDK/LTjupaqlO2kj/1hGMurHSAMBIREaNb8p/1wiLkOvovrSBt5XPHB6yiN8sItcAd8WladrU2GeIx85Dnj/rKbTYpLBd91ezoOoAEEzPfT3s3F2I/+nrp88hIfHutnQ7vnhSop4aJRmMwqRExUgMJGykzsqGELKqV1YkWg2SME6APoYeo/PpWSeZPElE/jLZfYHPCD4AETkUeAjw6ZqfHykinwe+A7xQVb+8mnlPE/sM8RhA3YPWYp+D7YBdVP9ZQRTJBbPiXn6Zd39LMTEuIwbnVVKgD2AttcnriIGpEJBq26paKsaLJMSgTh21jm68Vs14ycMRjwtV9RXj+hOR7cD7gZNV9abKz1cBd1fVW0Tk8cA/AoetZt7TxNwHCUIrdbSYHsapufYm7NjytFlPYa+FIljMyK1pehIR6eIIx7tU9cKBsVRvUtVb/Of/B3RF5MBpns9qsE8Qj4g6kVakDSzcR3Hv1+7CLlnsott0S44uWbSraAfnpu+3VH192Lm7OOzc+SAismUJ2bIECwvQdaorOlm9WgjWJnWkCGnUq7mnqjXKh34fs3TVGuCnV0Wyr4YVzUZuTSLMRUSAtwHXqOr5Q9rc2bdDRB6OW7d/MJUTWQPmWm1VkjjGqKh2Hvy81r13H8Jhr9kFxqmqtOsWFMnU2TuMU185xjHo/D0B0UofCb7xkr3PHiILXUcwxnk7TYphKq84cGr8DoTAL+xmxO+qDGT0jQWmxhXYmJ6a2mKwzdRW43AM8DTgiyLyOb/vdOBuAKr6VuBXgD8QkT6wG3iK6ux17nNHPHbe7WT3YRXXdudBf8hFN/zpdCfUYio4/KxdRcCu/7tW47XtKphkbVJQK4gNPrvll18Ft7CF0IbKI3bv1+7i2hftRQQkM9DtgqkYftUOvj9NJY5Yf3zEwtlEahjWZmS/I34L5zMlyalJepImI6nqJxkTiq6qfwL8SfPZbQzmjnisCqqDtZBbzDXUgHbUSRlhnxWkZ5C+FE76qf02fBVAtLw47K1J8EZJHJMutHXZbIcRgbpaIGnbUb/XSTV1MRwpAZyWui12J+Rj7vm8p2Tft2weLfY6HH7OrgH1UPrbanDv89bPXnGv82vV1i3mDLkaetoZubVZdfcyXPRfb3Sqq2HBTKr1fz123vnZrpIZcNH33jpyrFE1tNsKe2vHvc/bFbmbEIsBLvo7qIwOP6sgBOOC+aKR24BdULSjLrYjqKFygb4geeKiGx4j9ePiNVqZxLgQp/rWOKd7vvF8vnXyC1ZxxhsLCQWTUqzWoJxKHXXSxjgbSPX3gbKzDeYQxq2q3aYsdYBTW9mxua1a4rHX4aL/euPI3wNxSdvtPOgPawnJRd99y6rmEAhLS0Qmx73e4Lh3QcgXFQ1VRcO65tVK1RiM+7x6VyQEX3vFKaX9NnnStavYrqJdbxS3/iXvCSanUFmJon4Ri/YNm6xrgR8xgPFDz9yM2Qw7tjwNc4cDBmMlVmOHTRf+UaqlURgXuV6Nyxo1zxG/XfRfb0TkTZPNrQaWJnEe8425JB7jUEdcUkP5zjv+/lTrHbdYHfKttljgczA9d08k94t6qmJv8KbarhZ/u158sYL0PIHIBXIpG8JTQhEkFBs+++NEvTFd2auYzcXFIjCvTuJomjMqRTWSe5JAvbpaH9XAwSbErUpo/Hlc9O3pqSud2mpMhPkY4rK3Y+bEQ0Qy4Argf1T1F0TkDsDfA4cC3wZ+TVV/tBFz2XnnZ7dR5zPGPf/4DcgUVuBgD1GZjWHv0D99A9/+w1NnMHKLjcC0vK2mDRF5EnAecCeKSCVV1f2nPdZmII3PB65Jvr8EuExVDwMu8983FonUMSqA8FL7vri1mB7yrZZ8q8Vuy2FrDgvW+/6rVyX5huLTi3ScTSRfgHwRqpmybdelIAmbLqjPnOukDum7zfQECWqr8OZreZPkr3jVWWojUQN2NEO6KWC2b4PF7uAPw9KHDFNDNXHNHYdqDq00k28oSzusLnmdVCSDJWqnKXW4YQWrZuQ2I5vHa4EnqOrtVHV/Vd1vPQgHzJh4iMjBwM8DaeKwJwLv8J/fAfziBk6onHa601wwa4nIdPCt552KLlh0wSJdi2RhVaYceyEhwK/Y7IIjDv2tbsuX/LZFne0k2jnULfYJ0TCBiOQuzkOsOJWWUmx2+BaIjRrv/ms2uQS7fat7xvO8vD8svHWoEpCwoJuiVnmtympUrfFqm7RfQEW8ilLK0eZp27otnc8UEyIGuHoeo7dxBvV1wv+q6jXjm60ds5Y83gi8iHLq+5/2aYpDuuI7zWBeU8Moj6wWg7jnG+fH1fXuf/XaWU+hxTohVBIctc1I8rhCRP5eRH5dRJ4UtvUYaGbEQ0R+AbhRVa9c5fHPEpErROSK733ve2uez867Pre8I6l8FqPWG6CVPtYOyRTJFNOxzhitOI8oS2QztOPUTzbZghdV2PLF8JuFjhYaYCvQM07iWPGqK6+ycmooBj/nOOkiSBpB2tBC8lDfv3YVXXQTvcffnrvRl68RLrrufDQL7mL+oqY1L+pqZ0iVuxeXiTczLh9WyImV5sVKjw2/ZYNqpYF+ce7Q+E0zQY0pxuhkRY2Ruq2TcdG3Xh+3aSOkJxmptpqN8Lk/cBtwIvB//LYuRaRmaTA/BniCTzG8BOwvIn8L/K+IHKSqN4jIQcCNdQf7nPgXABx11FHTuU2mInIPq5o2Bi0BWT00K1Q+JrPYPK1wF+IqXIyFdrWowUFhjyhUW5XHIi+8qiQXpAem7+0cUNg5vGdV6XBNCIpSECJ85cHQ1gBGkY4iZnNnLZBcXULElZWaH03ZcyzW20j2pTaJgDTPVDWlevouRcKlA79plXCFv6KOm/fvpVbeTUkyRXz4C2eNOPO1w0WYTyW31VShqs/YqLFmRjxU9TTgNABfo/eFqvqbIvI64OnAa/zff5rVHOuw8/AXA3DR18+b8Uz2Ltz7tUUMBsC1Lz5loM0933g+Y+rrtGixKdDIVXcGxMPbkd+MY84V+CTwfFW9ftpjzdxVtwavAd4rIs8E/guYjdGgGjB47z8qSSItEVkbDnvNrlIW2nvuOt+pfBYtxme5NUaxQSrINMbyYRQyJ3WkiQM0Sh3u3pUkkdxJHIAzkvfxBvJBAaXqWRX2ReM4MHRdEEV8Vl7xEtQDPvhKMm/4/9zPv3qSy7QqHH/sOel0APjIx08faKeZoFuXMLcZ2FMjfQykS6csKXipI6q/wKn14s0gtlWRQSW5ZVCyN8UxtRKGAYwfMzGqiyqaK5LnjYuHrwUWGZ9+ZDbpSd4O/B3Fuvmbft8JaSMRqRacqkKAG1T18GENNgXxUNWPAR/zn38AHL/Rc7jof97s3HLrFJVtwOBUMG7htV2FJUunmxftgvbDaFxY1Hi7iGj5BVWpLPgF0RArSN932y8iyYMX1eBkfNsK8SCorCj/DdNQ79xjMkvWtSwt9sZfmFnBL7526wIsdpF+H1nJCw+s1FZRc6yKt0mEds445RJMQkEwhql/RQeJUbX/ND27JLYPIRIt9WoxsQpkfOQTL13rlRmLJnEeM/K2uqOqvj35/tcicnJNu2+q6kNGdSQiV4/6vV0VW7TYQBxz6YvXtf9U6mixfsjV0Nds5DYjb6vvi8hvikjmt9+kvnDULzfoa2SbTSF5bBbUFYPaecjznRHQalmkbjERrn3RKTExYZ00/61TXsChf/56TKeIO7C5YHNTsr0CznAa4z78rlwKjywNnGgwjlMK5JN+oZIakDoqgYClYEE8sxy8qoIklIVNYyEpyRSTOW8xgK7JWehUYio2AKM0J9K3oD10aQFQ5zCSeaNzXdXN2GciERiT5P/yN8ooGj23KqonQyLVFWNoxwyOEdon6ilMkD4kSn62Uxj3L794fYlzQKOU7LPxtvq/uNofISry3/y+ElT1W+M6GtemlTzWiJ2HvzjaP1pMhnu/dpczpONtHvsIdn7i+VPt73GPOYfjjz1npNTRSiTThXqbx6htFrRDVf9LVZ+gqnf02y+q6n9W24nIESJykYj8i4jcS0T+WkR+LCKfEZH7NhmrlTzG4KL/fhM7Dz3F+cJbUya3rQQyGRKDtwouihtfA0NAO44l7fecF4vtGbRnoqE7dhO+qxRcbJAsbCKNVNOH2GR/iNmoMZaH32DQXZdk6GjnyFx6dzJifEqWWTJj6XhDeSezLGR9ljrO8PLcq54KwJsf+q7Gl68Oj3tMhShUn8mE/Q0E5LKPOeP5RV9x33ccdUa5bU1G2wFJQLztIeyzoMYUxvKqzaLGaB5zMRqiHSNKGVW2VsSnwnfvoCbtSgb7DYL69CQj28zG2+qewJuAR+Ce2P8ATqmRIi4AXgdsBz4KvBh4Bi4m5E9oYHduJY8GGMiL0yZPXBXCgqsZaNcZyLXjYze6TtVjc4PtZdheBssZsmyQFQM941Kx9wVZMciywSwLZsX4Tdz3ZRf4Z1aKnFXSp4jRiASF4elGkgDBGJiYBAUCxDgPr75ylQldOhWTWYxRup2cjrF0jKWb5Sx1+uzfXeaQrT+e+nUdbpQev4BJv6F7UpVwhCC+YDj3C7l2jFNDdQyaZfG7dgyaJVvXb50M7Rps12A7gu363/0xtpthO66tXTDkXYPtCnbRf19028f/5UUTXbe1oK9CT83IbUbFoP4OeC9wEHAX4H3Au2va7aeqH1LVdwM9VX2POnwIuH2TgVri0WJDsJ7V+/ZmvP6aHbz+mh0bOubjHnNOlFhOut/6eybNI3RMdPkMEyOKqr5TVft++1uo1aClQSpVnfFCk4FatVVDXHTdvqOTXy/EynsdLRdQCvtCPY0Qj7Hi6omL9dx1iFROor2LzofEbARpoqKKkqokQXJsnTqLxPhc+asGyHxUeaZkHeukjsxJHACZWDpi6ZicRdNn/85utmY1sRUTopA6GFgiLrv8NI4/7tzEjbZ8Xo979NnlBcCrliQz3kFEhmStldHOIxU1V6qSUlM+Jl5TU6i1Qq2W4npL4aTQccby1DV6FmorJ4xuHrW1L2UBcLmIvAR4D+6JeDLwLzWH/KmIbFfVW1T1LUk/9wY+0mTMlni02DCEgNygvhIo7BM9QXqZIxyJZ5MkwX1pKhKsDHhKFUGByfFe5SSV/bWBgCT7YGAxrqYkiSpvn5IE4whHJ3PEo2ssXeOIx0LmVVhiMeL2dyUnW6tZVQqC6v66D8GuEQkI6XkVY374y2ez4yGvdPmjjFM1sdIvCG0tFVVnW+qUA/hibEe4JtW4Db8vEjx/kPr4jUgwQluTEA2/32aUPK00A9vZ+EU814zemNz7G6y2upJyFNLvJb8pUIpOVdU/r+tEVa8FTm4yYEs8WqwL0mzCba6v8XjnNx7B0w771IaPe+LDX7WJ+Oe9B857f4yr7gZeWVW9h4gY4JGq+m+r6UNErlLVhzZt3xKPFhuCYBiH4GXl1SgxWSFF5LdHYOyqZV/jPlvaFaWGKJGkKquq5EF5X2k/yf60/2DwN/5zTNToUqVk3lje8VLGQqcf1VYLJmfBq6zc1mOrWWarWaEbQt/XiorUke6vSh3OIcBfqI6L1ZCQVPCLZ8dDT7rfS50HVUWSEFU0xnX4rvHeb9XYjGFrqKQxIxTqqEyS61z5bLzDRWifzab4liJj1VYb7VajqlZEXg88cpVdTETtWuLRYqpo65esHh//9uE85tCvx+/2uy6tkLnz14cdMharie/Y8bBXOsJbLRTVIiJXQ38M1dLZeFtdIiK/DFyoOrFbaJ1tZChab6sWG4JvnvoCTB+fkJBYSyPb7bbOrYLpUUgDWrjOBgy402r5u8kp3HLD92DzSKv+VfaZpG0pf1WQNKLOPejYy5t2FOn6+A4f29HNchdV7relrM9S1mNLtsLWbIUl6bPVrLBftps7dW7ibt0fruq6Xnb5aVBNRDgKNVHcJYNzTT+a5q8yBg1R5UlciIYKnFkR06GpPUa1PodYnAuF1BFcn41Eg3jxOUgcUlx/X+9jI6FjAgRdkOBMiMcLcO65yyJyk4jc3CAJIiKyP3C+iNwhMb6PRCt5tFgzmkgbh5+zC2pKZrco4wffOZiu5+m2myXASSBrkT5aTB9NvK1mFGG+3yTtReT3gFcBuykUwQrcc9yxLfFosSY0Ihxn7wJx0kaEglnBSRs4KaK/xXtkJRHi8VGu8ZYaKNZUqSc+4DlV9baqfK6uBUHaACLXa7tuy5cU66sFsmQx3ZxOp+xlteADAwGWsh7bOstsyXpsNStsNctsM8vsb3ZzgNnNHbJl7mCGKwKaEpCqvSNNPDxQI6tUpKksvcS8U4lLrpqaDAsmeD95TnucBKSKULjaunkFySaV8qSwgwTPNgEbvLL8vvB9oxHSk4xsM6NYYhG5PXAYrsien4t+YkjzFwL3U9XvTzpOSzxabAwSQ3ZQHZk0VkMoKvpR7APv1jvOnXZI7EYjlBay5G8w1ALa8URjAewWi11UWHITNgs53cU+iws9Fjs5C50+i51+VFUBbOssszXrsV+2xxvK/SYrbDU9tglsFSeaLcpkItqAgbx6egkBAWLK8h1HnzmY1DC5DpKmQg8R5aWO3X7tmIQwDRKQWnXVQLbLMagQkhjfMSPFe24NfTsmPckMbB4i8jvA84GDgc/h0pT8B/DYIYd8E1e2dmK0xKNFi70E01Rf7Tj6zKn0s69C2VyuugmeDxwNfEpVjxORI4BRN/s04N9F5NPActipqs8bN1BLPFqsG0J8x+Fnu9QkdSnR0/fL5BTJ8iAaqGOTERJF4K6rr2soLFjx6I3fh77/iXEcwC5AvqjYJcVuyTGLOZ1FJ3l0u30Wuk5FtdDps6XTSwzkTvLYkvXYnu3xKqsVr7LawzazwjbJWZSMrkzf5zScX510Et1kc39hgzTgXXM1ZeuTyn3x+EyKQD6vAtMa9+dYrTUmTKToq8K8h+eipNYyNVJH+O7bXf2WUxpekelgM7rqeuxR1T0igogsqupXReQ+I9r/OS4x4heZsAZjSzxatNiLENx3A1pD+myQW9mUaivgehE5APhH4FIR+RHwnRHt+6r6gtUM1BKPFmvCpfZ9jYzmYhPjeB/HlqXvXkhFkrBraoboyykbs4ftH0g9EiczhisMUscC5ItuV76k2CULSznZorNxhOJOC90+C1nOYpbaOrzk4U86BAYumh7bvLF8q1lhm/TZKsKSZJh1UOCPsoeIKgQ7k7We70yDOWOOEjTHF7oqSyAxRUvi3lz6PQ1OTGwoMUCwDhoOLNtgCjuURAP6mKzo64bgjjsKM/K2+iX/8QwRuRy4HfDhEYdcLiLPAj5EWW011ne8JR4tWuzFqEoiMF4aae0da8e0vK1E5BDgb4A748j3Bar6piFtjwY+BTxZVf+h5rcDVfWiYnz9uIg8AXgALvdVHX7D/z0tnTqtq26LjcawPFZmBcRLHiYnrSALUKQRSVBKPphCKFJa1Ly/dbn8avuo2adSeFb1t6jzqgJ0ycKilzq6OQvdPl0veSx1+nRNzmKnz4LxqUlCGpLMueqmto7gZeUCBZUl6UzsYTVVVFa5i69uRlxOfOSrkVydqy5E6aNU9MkGt98gdRS/p6lLatfhqgt14qJL9LhqNNWpw8VljlNLNVJb9YFTVfUqEdkPuFJELlXVr5R6EsmA84CLh/TzOuC3a/Z/BVf4qdbbSlXv0WSSdZhZhLmIHCIil4vINSLyZRF5vt9/BxG5VES+4f/eflZzbLF23O+0XbOewj4H+93DS1uL6SNXQ3/M1iRlu6reoKpX+c83A9cAd61p+lzg/cCNQ7r6KVX9dk3/1wI/1fC0JsIsJY9aioujnpep6mt8XvqX4EokttikGJc1t3szZCve1gHRppB6VqX2CS2Y1EHuk8IWoqaGt6tKHSXxptz/wP6QemShCAJUHwgoXUtnsR8DATuZpWvcb5lxaUmMKEa0VLdji3E1O7Zmy1HqWJIeS6bPkli6CF0x62LvmAgikMHFV5zR+JBL/uPlnHDMWZi+oqZIVYIBm7nzEaOorbjB1dXsqJ1T8nuQCo1EqcOlZ5/kJKeLsZLHhEYPETkUeAjw6cr+uwK/hJMejh5y+JYRXW+bbCbNMDPioao3ADf4zzeLSKC4TwSO9c3eAXyMOSQeOz/xfAAuenStenOvxhFn7ooBf23ytNkjTbC446gzJgvOa1GLCQzmTxKRv0x2X6CqF1Tbish2nGRxsqpWc1G9EXixquYy/N59RETOBl6WJkQUkTNxrrhTx6aweVQo7k97woKq3iAidxpyzLOAZwHc7W5326CZtpgUIQVJtlJ4TgUOXyveVu4ACknA+nUu2Eek3DZWGByGxPOq1C7Zp1mhN3dSh2IX1EkcCxbT9dJFN8dkijGWLLNkYmsLJRnRQurIemzNnANLavNYkh5L0veFoGawkFctuX5Buvizr5y4q0v/7WWc8KizkkwBinaNS9kekiNmFOlOqJE6xqZtT6YeJRB/72bmbWXIm7nqXqiqrxjVTkS6OMLxLlW9sKbJUcB7POE4EHi8iPRV9R+TNqcCfwlcKyKf8/seBFwB/E7NmCPrdgRV2ijMnHhUKe4IylqCp94XABx11FEzisdZO4697IXx88eOf/0MZ7J23Ov159PZLW1xoU0KJ4H8xth2eyPud9ouvnzuBgYKTpDIeBTELXhvA65R1dpa16lRW0T+GvjnCuFAVW8Ffl1E7gncz+/+sqp+a8jQbxgxLWV4OpOImRKPIRT3f0XkIC91HMRwA9FejX6D3Dh7K8wyeIabbNlJHaavCQcpMRdfCUHCGJKoMG2HbycVm0Yp/qPKsSZlYzXx1rFd14ldULSraNciXYvpuA3AZBrTrRvRWs2Pwdk7tmQ9tndW2C/bw35mD4CXOFbokrNQSeLVU0uHPl1Z/9dxEptGU1z67y8b2Hf8Y8/1tq0kpqNO0EovpCn/qHXPCJTucyo5biSaZdVtxEYdAzwN+GIiMZwO3A1AVd86ybw8sRhGMNJ2x03Sbx1mRjxGUNwPAk8HXuP//tMMprfuuPTYXRx72QtLD+CjL/sjAD5x/OtmNa1V4bDXOI+q7h6hcyt09hQBgaanpeSHAaKUKgHGILBKu/DbWONqaGcYMLJW3TptBpop2gl/vTtuVx3RyCymo4ixGF8tMDOFobzjDeSZN5gb1NUnNzYGBoZUJEv+QnTF1yz3F8OqkIvQQ+mi2A0KKasWmJpGwalaeEIR1FfAeLdcq46ACElAoU9xMmoof2/v+4pdXPOqjZE+mqmtxvejqp9kAt2lqv5207ZN4Bn4PwAe7Xd9DPhzVe2NO3aWrG+guI8Vkc/57fE4onGCiHwDOMF/b9GixRRRdeOdF5fe+7x6Y1zDQ/2tkduGzGTN+DPgYcBb/PYwv28sZultNYriHr+Rc5kV+rP0M5wiFn7k/nZvg85uxfQrRs4kkR0woE6KbbJBtVNJ6kifljQdRnp8xYiaqqa0E/apa+OlDvGqKclcNUAxijGKyQrpopMVtTo6WU5Hkt+MZSnrs7WzwrbOMts6yyyaHl3p0/UqqsznnMvVkIuQI/RUnNTRKKpx78Jll5/mVFc5JcljQOrwaUuidGGHpGpPUvqHvko/C/H+bgiaBAnOJiX7I3C2jpv99/2AI1X100MOOVpVH5R8/6iIfL7JWPOxeu2FOPqi4TmHHnnJSzZwJmvDkS9rgwBbbC4cftb6P5OqMn5b91nU4s+AW5LvtzJakshF5F7hize4NypeP3Nvq30Z/dwp4YPLpxEd6zu+GbH4Y/e3u9vZN2xWcIG2K1hva6gWcKraIUr2CihLHFVO06eoCH1rZ9B9U4267x0vaXjbBsYFtUmmiHEbeMkjsxi/LxjIAbodVxkw1ib30gfgKgZmPbZlK2zJeiwZ54rbTQzjJmGb80p0o9kE/mnrkZ33so866SO46boagg6l++x/l+Ax4b8bxNuCxL0joeZ6Io1qRRrdKGHeqpDbMQbz2VAPSeM8VNWKjPTE+CNccsRv4Z7KuwPPaDJQSzxmgAf988tZmFFOnmnhAafuckbx/Wc9kxYtBnHYubv4xmnrZzyfYm6raeNbIvI8Cmnj2YzwvlLVy0TkMOA+uAl/VVWXh7VP0RKPGcEisfSKRI5q79N9L/0AshXPWYpLYW4XJKYyDykkJAfj05PExIidothSKOxTSsmeekqlwYPJ/nh8R91nQ+zEBQEqeO8qyQrJQ8RLHEKUPFKpw4iSedsHQCZK16ddX/CSx4LxKdl9AsQtmQsE7A7U03XeOVbKbHGGDlR2nTdc9tHTeOwJzudFVKP7qlBv/5Bgy/LPivgAwpCORr1Ua4PUmjwXbozimVhfyNTTk0wJvw/8MfAyP4PL8MHUdfAJF3cAh+LowfEiwrCYkxRzRTyO/MczAPjKL54x03lUce/3nuVS/ngDbLfBVT/6otP57M5z1n9yE+A+r9pF5sIW2MsFpxb7AO593i76+xWE/NvPfuGI1pOhWXqSjecMVPVG4CkTHPIhYA9tJcG9B7k15Dg7RzCtzUhHuipky9DZoyU9c3+LYLuQL7jkguC5Q/VpSkJ6EnX7865LfQ4UUkU16C+Ugk2D/KQcq+HGUd9GC07UULJvRPcQL3U4Pfqgc4+A87ZKYjm6mYvRCPEcIfkhQMfkLJg+3Zgc0ZZsHKOQK1hR7GTv7V6Fj176Eo478bxSihIglg5OoUmgoCiI9fYqpAgKTGxbaSnatL91t30kiTxHttkgiMiLVPW1IvLmupFH1CQ/WFUfuJox54J4fPGHN3DY+86iO8OSCCnuc+GrnLfFGIPa3oT7vKr1qmqxd+PQt78WOtMj0uPUVhvMC17j/14x4XEXiciJqnrJpAPOBfEIyK3BbGK7QXDh6+eZT3ERUnZ4PbAQ929GmL5LNQI+glxBM6Hvk0EHicN2Cy+qYMcQBRv12F6iWCwkj2jvSKPOTSF5BMnCdRC8rbTkWRUkjbJtRGNyxWALSaWOAYjzfgs2jywc4/cBMfW6obCHZCgmkR6sGnIxzrOK4pxCRoEcQ+69iXJVcpSeV/RvRJqSFBtRB/3yS1xi7ONOPM/tiBHowXuquBm1JYal8KwLaWk0+YziEmlS9Gm7iuTiMgh0pvtOhUDAzQJV/ZD/+44JD/0U8AERMUAPb45S1bGuMHNFPALu909n8OUnnrHh4x72vrO8IXY6/T3on1/O53/h1SPbvPDzTx762+sf9PdrnsMRZ+yqdZVt0WJfhlqDjstNN5sgwcOBF1IYwN1UVIclOnwD8Ejgi6mLbxPMDfEIpx28Y2aJVF0V5qUKWCHHoOqiiqWSYM9IsX+zIUwpvA9OuhDsAvSX3L58MYmzSN+r3HtGBbWignbdcWGfhAjiquTR0aLPKHlo4esf7ncidVR9/6up3EvnJSAhR5WXSKK9I40iF1uSNupg/UlbH0WeIseQq5CLoUfGgub0MGQoPVF6WLozcM/ZCKmjCYaus+KMUtGuYf1zIk76DXYPMeXP7r4CRlzRsfgiTmm+SZej2swA7wPeikvP3iTY7xvAlyYlHDBHxKOK+37gTACu+aVXzngm64MXff5X/afh3M8LP//kVUkfR5zR2jdatBiJTWYwT9BX1Ua5qTxuAD4mIhcBMb5jn3PVdTaFJsE764Nv/OpgauqAe73nHOduZAXrdbxBwgizDVJHZppLHwYbOd51QSWvlPXxG33/WyjbCgxKCAmcDrroM18Au1jYLJy5QEr+/6lHTWqzGJqVVV2Ecrx24twlNY0fCG2lkDqCtBqiyt3mpMIgeYxDjpB7981cDVYNPc1iTqtMLRkdMlUyLHtwF8OI0tWcHpaeZxQXZZN4fqwDgu0D4Lgd55V/jF5yMhhF7iU5scQqlXhPvlBbQ6z7LP3AUjmbkhGwPreaTCuwpolDzGyIx4dE5NnABygTgx8OaX+d3xb81hhzRTzqcMSFr+KrTxpZyGtdcejbX4t0c8wUr/Rzr3oqW9Yh0CLaN1q0aDESTZjUWcR54MpYgEs7UkwF7lnXWFXPXO1Ac0I8fLSnaryhs5I+hkEtqGezxXPRUfLwHj6IeI8eG6POh2HZdpxHkO8jr5xvtha7SdJVKnWoIXpWyTAeJYjz1embikTRqZcgBqOOSTi4EJ2ssVCQeO7PffceVGktCKNON51WFkq8r0yS2yqNKs+8jaMKi8QAseg5pcW+nmYYVTK1GLVR8sC6axD/4qTGIHXMkVd3Y1x+sZNCjj3pvNrfS+Vmo3ju7Rv4rZqBIJEunX3E2TwkBzKdMAxuBJqorWaAtOrgKIjIGap6xlrazAnx2Jy4+1++DlmjhHDfD5w5t3abFi32XlQ9M2owI+IiIvcHjgSW4lRU/6bS7HdE5KZR3eAi1c8Y1mA+iIc6Dyc1g/lmZqmyClAbJCO/Q5JYg+S7MYoVUJ9ndZjdo6cGg5CpYmNlusLukXv26y0P/duJ5vnVM04piukkc43n4eMzwP0V6/XL/aRNJQ9Vemy1HofYENxBfBFLp2zDBLRSIVCi9BanqRReOXUed5VrKeI98yRx4qrxdAvPk5VE4lChrwbjAw/qPLCi7cO4+7JoeiXpwxhLV3LytioCH/vwizn2pPNcdHm8GURPqxjXM8xlPHre+c9p2+o7NC2NxCaVPETklcCxOOLx/4CdwCeBKvH4C2C/Md39xagf54N4bEIc+tbXz/zqPvXTvwvAu35m5DMQccSZu9oKL/sY7HcP3zTuunsVBvLB17XZmKlU8CvAg4CrVfUZIvLTOLfdEtZi6wiYH+KhYK1gss1l81UF+mZA6iiKxXiduzpuVYxF1Hliqdav5Mu2Q1eskzq8Z0+A9V4/fbtGfVnNRfz6y06JhXZCzirJnfQREfJQpbrnih1E8ccpRZU5knZa/S4oRUxMcbpS5AWTpJPoteNsI+LjTmLdjhDyXgPnsafkahB198J1KzGDQV+Nkx5CH5U0rlYNNusP6tdTqUMzcjX01LAihhXN6Xkpcll7c+1xNQwhMjxuldxV1fgdUQYiGYJ9JB6feG1NE03iPGaE3b6GR19E9gduZIixfK2YH+LRokWLFhsFC2O9HGbjtHOFiByAUzldiasq+Jn1GKglHuuAe/zJG9or26LFHGOE8DpTqOqz/ce3isiHgf1V9QvrMdamXeJE5CTgTbhQoL9U1deMaq8qTuz1GfZmrrpSkH6Qmf0+ATLvOhoKQZk0kE0RNQMpwqtYsR36aKlsbXAbjd9XkZO6CaMUMo0HlZLpF/sQL8prsi98T180byfXRMNUl1a7pPLSIW2q808M5iF5YtFJuXEIHoxqERWsOhWVVe/+nOYvMiBW42fSYLVUdWX6kHf8/mS3ONfdnnboac4e7bKgOXvUusJQWtbB7EuqK5fo0N2MmPSw8nsIAiwlQ0xVnal6NDhuhOJgwxJhrgWbkHiIyENr9t0L+E9V7df8dkfgdxnMhfV/x421KYmHr271p8AJwPXAZ0Xkg6r6ldnObDzuuet8mPI7f893n8O3fv10HnnJS9z32023/xYtWkwIKw3UVhszlQreAjwU+AKOXN7ff/4pEfn9mtTr/wT8K/ARmuXCitiUxAN4OHCtqn4LQETeAzwR2PTEA0ikjsQT1eCT+EkMbAOcUTdTJCOmmI4c9hBuaU/exaAlaSNIHH1rsIgvVjS92gVfe/kp7u8r3N8jztjljN6VIWJa9YDE+B3PC2L67HRfqQ/qpYvqYIWhnDHcpRQGTgWsUk3uYkMQXxrNF66hl0CMJIFm4cCcWunDWIMx3p1XlWXbJTPKHh9EWLpOBrA9153kWOMKRC1KF7MPucCJglpFxKcTsYmUWiNxCMl3iMbx8L5VjeZTFT7GEYfZEI9vA89U1S8DiMiRuGjzVwMXAlXisVVVX8wqsFmfyrsC/518v97vixCRZ4nIFSJyRX7zrUM7CgkSNwL3fu2udev7sPedtW59w/hiT/d7ya64tZgv2O8ePusp7H2oU5dVt9ngiEA4ALy25iGBEa/BP4vI41cz0GaVPOoYhNLtUNULgAsAFu9xcO2tmkVqc8lB8mT6nguSIFIk3KYKkBF1vGLFl1HV6M4rmZL56mc/vtXlBtl/0RUSH1ZH2aV2d4Fsk02+fvfXXn7KANEwfdy5pJfYSx21l30wHrDgHEM31fETt81Vw7v6YhV8iVPN8WxTIX3gd1WlD+MNUIq7H7k1hWASYMBYdX+9G28milFlwF03QZ4UfskRrB8rNz2szelJj61i2SLdDS8QNQtU7R5i3QMifYmStuSKxiBRCokitZOEZyYNHkxKEE9nrhUNwpA2M8DXReTPgPf470/2+xZxxZ6qeD5wuoisJL/v1cWgrgcOSb4fDHxnRnMZiSPO3FWIxhPlpNx70Eob849ZBgsed+J5mys4qwlmK12MwtOBZwMn467qJ3HFoXrAcdXGqjouynwoxhIPEXkO8C5V/dFqB1kFPgscJiL3AP4Hl2PlNybpYBZSh/F5ylM9vBqcQjYoXFMdvXH71XguJZRVFRf6Jpk6jyB/TG6ULYsr/GSPk0Byz/mkKdxDGduOWLpZc/vX116RpCZpAMmpfYFCoZ6A0rVouEA0ZtgCywmFhKEaDZni8rM7blaKgELEFwiKB/oiTliMhACwIGn4yRgDtpTVsOxJFS9Ep/C2ImlekUJSScONbaIk4n7rkZucnD45yhI5W2Sx4YXZuxHtHsZJ6iIKXvrQ3N1z6/PKhCDQYBMpBe4FO1ja8RzDOxp9SFUfh6sQWMUtQ457AvBo//VjqvrPTcZrote4M87b6b0icpKMS/c6BXiXsucAF+MKu7831eO1mC1aSaTFtBBrmu9tSAz4w7aNlkxUNQduE5HG/pgi8hqc6uorfnu+3zcWYyUPVX2ZiLwcOBF4BvAnIvJe4G2q+s2mk5wUqvr/cIm9Gh6Q+Hyn3krrDa/jF3EeRFG3H2IHMlzCRuPmk+piseLIt7cVuBKahUuIWkUyLfnP7ZEuvX4WE/aJKJ2sKGgUJI+AK3ee3fxcknlD4WFVSyyGvRyJ1wuUvaxWg8K7RspsZRAiQkp2o4gFTY0rnjsNXl1xr9FC+hCKftXtC8kpVRUTU/xbrBEstkiQaMonZuPF68SElSFVft9mLJo+Pc3iFpImBnQz54bf0w57UHIr7BHLHrEsSc5Wydkq3fmL/xjzfER7hhKLQRmcXU8EL514D76wxfVAiHc+/bxWKONddWeDPcAXReRSIHoSqerzhrR/PPBgVSeLi8g7gKuBl4wbqJFF1de3/a7f+sDtgX8Qkdc2OX7WOPqi09el3/udtvk58I30Nmuxd6P1upoATbytZqMl+xfg5cAncOlJwjYKBySfG0stTWwez8MZYb6Py874R6raExGDK57+oqaDrSdchLn3UPJ3TQS2Lqys67imRyyXGhV6gYNPvYos0UukFAltcV5AJrTxh/jv5IV+Ps+FfMVgOi5IIpRR7Wcak/SZJLZj0oJYIYajii+/xntbVSSTgEZxGRXPqioPmH6X5Bj1kpnY5Je0zGzYFSQOS7wRGgf1iSYJ+xN7SLDd+B+st6MYVdQo1ksl1opLmW+E3CiZCpmP/dBMyNXSt5a+MXSMZcHk9NXQse5+dEzO7rzLYtZn2fRZNh3yzMT0+ZlYutYHABtY0YzMSy8ZSlf6bJMeW80y+8ky+5nuXNlA0nT7Lq2+JAkOy/bCGPfhpQz1BaLEEj0AJXdSfJRIQxGpKUkLTdKTzEIuUdV3iMgCEDiBr6lqnZdVwLnA1SJyOW7KjwZOazJWE2+rA4Enqep/ViZpReQXmgwyj3jAqbvm1ruqivu9eNfe5w3TYlXYSK+rx57wmoTj2svgVc1j22wwRORY4B24YEEBDhGRp6vqJ+raq+q7ReRjwNG+/YtV9btNxmpi8xhaTUlVr2kyyLrD6zZd0SVK6c739NZPP2x6jjNWb68oh0l7bsp4jscknLdvG20hNthCCskkHIMAeeLhY5S8Y5ze3jiPFJtpkm680ERO9b3Uyl8SzqsQBGrVyuLblKLJveQUQlFi9G/CYapQ5DMKtiHcdXN2JS0Ur+r3m6RAVC6Ft5tJvK3UPSchVXvgRmN+MfESiNVoS1JxUkhVAgEX1Z+JJTNKZiyZcXaKjimi/EPE/568y1LWo585ZjATVxSqawvL1h51XEnPp20HnORhltnP7GF/s4f9zAr7mRW2SrbX20EGpI4onQuaSVmi9eqgatR5kERiyVkJ0gdOss8TiX8KmFZiRBE5BFeo6c44cnSBqr6p0uaJuAhxizMbnKyqnxzS5RuAE1X1a/7Yw4F3Aw+r9HmEqn41yYV1vf97FxG5i6peNW7umzXOo0WLFjPCt64/iHsefMOsp7HJkehMh6EZcekDp6rqVSKyH3CliFxayeN3GfBBVVUReSDwXuCIIf11A+EAUNWvi9RyFi8AnkW9S68Cjx038fkhHt7TRq1BxaKZ4xLXK8gzenQkEkYswQoDNo8o4npuWo3jjGJcR8JxOY5cvc4Wgne0ei8hcnXZeTPHeWuugxzVBhjs0jCLMGZqr0jbQfJbOld/vSS5XvGepWVFUy86G661JLnDNGZVjhJXsCmJFJ54fvzojeN14WE8VUFFfXSz+wy+jThJRIzSFxPtTK58rfN0M8ZJIB0vgYRYm8xLHgsmj15ZHZNzW77gPIfUcLMt9CA9zejZTmzblZxF02M/s4f9sj0ckN3KfrKH/c0yW80yS7KHLkJXDF0MmQgdMjIxjXNj/cjexk/sRLnx1oSPXvoSjtvhXXWTdwD/3JcSJAQ7hndtrBZiilkagn3MFnaPkPMseGNNBVN6v1T1BuAG//lmEbkGl4rpK0mbND5j25iRrxCRtwHv9N+fSo3BXFWf5T/uVNU96W8islRtX4fNmttqU+NBz9/8XlYp7vHmOuaiRYvhuPi6I7n4uiNnPY1Ni0CkRm1+iX9SyMHnt2cN7VPkUOAhwKdrfvslEfkqzptqVLr0PwC+DDyPIn7j90e0//eG+wYwN5KHWom+3s7/23Mv6yR6mJ6PKBeXTNV2KLiRRIIQ67yVjnyZIziRuwrByr59sBcEDlxDVlFTZI4NkkiIaZFcinoFpYshrt9cpsdpeaRDBakrOHil9o5SYO+I/gYi0MM1ILUNFXaguD/ouIPkYhP7Rjg+SCFGE4NMMU8J98AW/UoYU9xNiRYUCfdCnWePsQNu/iELcmYsncySZZa+t1d1MieJ2MxLHWLZnTttQk/LJYOtiosDUYl1WTomZ9H02WpW2N7Zww/NNm6X3cb+2R62yjJL0mNBcowoC+S+dkifDA0pvbzXFmQIXREMQoaQo/TUcpsqN9sOP7BbR9yxKaN8a6KXVfEQaOn5itJ4He8d7CGJd5XJ3XoQvCGnthw097a6cJTdOLYV2Q68H2fPuGlgONUPAB8QkUfj7B+Pq52W6jJwvt9GjXdnnISzRUQeUkyX/YFGD8DcEI/NjPu/aO/1zHrEU98AB7cC6r6K933zYfzqvcaFCeyDaKK2aqjW8jaJ9+PSQF04skvVT4jIvUTkQFX9fk1fxwBnAHenXNzpnpWmO4DfxuUNTAnNzUCjwLj5IB4qLtpTvOeM92RyauvpK/4lh84eLXTvIpErjhHVFe8rycuSBV44KCQNolcSvkm0h6Qct8+HFTPwxtaVOSohVHrN2O96y6fedWpp3/1ftMuJ7l5F/sU3nFJ77ANO9Sq+IfaQaBZKvK2irjtkQw0RxMn+6I2WXgJNO8JJIV76DDaL2DY+J8Ukgn5cEz15zMYj6rz5fMZjJCs9WzHi3yg2c9l3OzaPkkauzuaRSsJ9NdzWX8SIxaopVYVMMyYbn6usY3KWsh5b+lvZni2zPdvOftkeZ/MwPee1JX0yLFmI+/FiVSaWLnn5r69smAE5HXIMe2yHXA0r2mGPrr8Hl+SKZuIlxopxLPGmCvujrTHtJPHAInfPpJEiAFyC1CrJs7HWeQfJda39uAfsbcA1qlorLYjIvYFveoP5Q3Gs6A+GdPk24BScnWOoAUtV3wG8Q0R+WVXfv5q5zwfx2EA85Nm79kpL0X1evSumG1ktYqAgU3sHW7TY13EM8DRcSpHP+X2nA3cDUNW3Ar8M/JaI9IDdwJN91o86/ERVL2o6uKq+X0R+HrgfsJTsf9W4Y+eDeAQ9p+coXS2MwKFMf5kzua/d7f3JQRGfHVcFtOMDXVPpw1akjIquv/Sbl17COaXxFGLFx5W4amvDvKyC5GHyQjpYDaoSR4qYWXcEUonkQScnjgaJfQjKpxElrcx7RAVpLbGnRO+p1LutYgeJ9VO815V65X/q2ZVG9QdJJHKpib0J3HcRV/s8SI6l8wE0SCjWscfWR6H3c2cHyX1NkF4n47a+4+xVJUob8XsidYQsyZmxLGQ5S1mfpazHts4K27JltmQ9lkyPRdPzNg5XEz1FV/peMsmL2JJESjFJxJvFkCf2lvWGhKzTirtu4iQRSe+34LIIVJ+3YLgOXfh3LpqzhLLX1bROaUpqKx+vMXKRUtXzgKYZJC8XkdfhqgYuJ33Uxm2IyFtxNo7jcBlEfgX4TJOB5oN4tGiEI093i/dXzmkugRy706Uv+/4DuiNfvAe8oOyB9sXz1ybltJhvHH/cuZ4p2Dtl2CZqqxllgP8Z//eoZJ8yPG7jUar6QBH5gqqeKSJvwBGesZgf4pEH/34faW6LCnHX/trLpjbM1W85hYf+/i7EQrbs9co9yBeIkkO+KLDknXgSrnbgc/C0SrxAgq0j6P9Lv6VeTcEbqPLuxQc2ZPvNi22tSF+W1eh7P//GQYJScnsOnGbqXQPla0cisKTcn4FaCUWKjsRq7LfoUwakF7xkh5WShBgyH1OpWRJtLeClHCW36jx+Mv+MGEM/V3r9jE5m2d3rBAYbaw25lWgPCRkS3G12kkdmXAxJJ7N0jWWh02dLp8fWTo8FbwvpmpwF04/SR4qusXQkT2wjeZQ+jKiXQCzG59ECl913Q+ElEPH3IIW7NcGVMdj93Pf4bKc2LPXFI5MObGI/XPtcmYo9cdpQ1eMmPCTEeNwmInfB2VLu0eTA+SEeLRrjgae4BfsLu2YrHext8TItWkQ0cNXdSIjIC0b9PswYD3xIRA4AXgdchSOJf9FkzLkhHjGPkc9eq0GPuh5IuA5RkJ5iesWTlPcMKyKwWOjfAwOcxnQU7CUlqaQaSzFwFlL8VqstDV4qIdI25PthcgnkYxe5pMn3/6Nd8XzDGEOmxRcmUVml/dRIUSFsQylLO9FTLf1uSmYU52uS2JBKNo/0ZEK/BtfQRCV74dHmpT0pDRAGlyixIOKi/w3YzLi+gFzceGIUkxUrj1pBcycpu0aJPcefEzGPmTvWZJZOJ6cbNmPpZLmTPLKcBZPHnFohCr4jlgXTZzHru7+m76PW+1HiyMSyaHosSQ8jGu0u6wJx72mamyzeq1yRrDy2UvwegvBcnFXi8RYlDwHvKBZuiRiKXFfTwhRsHlPExOVkfWb0y1T1x8D7ReSfgSVV/UmT4+eGeLSYHEECCRgmidzvtF2td1WLqSHaO/ZixCjyTQJVPXMVx1hv43ik/75MYmQfh/kgHoFTyx0nJwbHzeXCdb/ZKDX9RAh1ujXzDj89MH3nHSJ9JespajIXa5IVzFFg5GzHc0NBOKpKEKnefuREigbRLlKxecRIai3/PnGFvzCnEdyUMpmh/PNvKrd94Cm7SuceOw3DS7EvzWUU9qVSSjhIFGd7qF5fPOdL8puq78c/Q0ZdFL8/puR5VRnbxRgkhquSp1ZxmBolz/DSDc6u0hNMXzA932+eSEsZaKZoxx/bcVuvo+zOFDEWMS7qPevkUSLpZN6LSopMv13jPbU6TvpYynpeAilqjoQo9iXTG4h8nzY0czV44uVRb9dwaY3Lly7UM7funhi0kDJCf/FdSsRDIeadcxLIFKnW5pI8VotLROSXcZHwE814PohHi6nggd5jakCTtA41hx78HD9WqkZY37WqxYxx/LHnuA97qYdVis1aDGoVeAEu2WJfRPbg+S9V3X/cgXNBPJxXkb9Vfa+rXsdbF712siITqF0Q/uPvTuXYk84DI2R7FLNY6F6heGc0o6ycr7Nr1KHuYa2ze6Qc8ZDjJpE6smWGe6nI8OjyiSHleZUcmmokM/eUhwYU51lnOyFRM/hxIoOaiioWFyfksxmn5x2uZZDkQv30YFNKJTyQKPnF+XmdvBr/DOCOM313jY1XGBhfUBAD1oDtCtp1f22Gk0K8XSVeHwO9jrKyoLCYIx2L6Tj7iPg6I8FGstTpsxQ8tbI8Rq93xLIlW6HfyVi2LuJ8vaDBpmFx0of4feG+VCVj67JMi3X1y1XDvdGyXdG4tUAEjL/OkrvYLM3c36kgVC0ceZJTGmsdoaoT20oCZkI8fBDL/wFWgG8Cz/BGG0TkNOCZOHPn81T14lnMscX6YW+N0m+xejzuMefsNax4U8yDt5WIXKaqx4/bV4dZSR6XAqepal9EzsPVzH2xiBwJPAUXKn8X4CMicriqjuUXTM9lI1VjPDtq+PbvvXA9zyFyPLYjfPpv3L0TWzAcJtfo4QPEWuemn9goqpLDCO+jgd+TNiWOfcxDPcDFV7tO9wXx3Ifsptzul163NokjjcAP0fkDNg8/n1K0fs31SrnVaGMqdzG4I7GhxD78jwO2qMTLB+s5WM95BqkjRDqnXm6R0w12MuNsXtrx9jLrnt1sWcm85JGtBMkWlydrwUsdXX9squu3xSWzC0K+BfpLGXZRybtKninaUaRj2dOxZAs5uxf6LC10uTXLWej06XrvrAWTs7XTpa8ZW0wn1lefKpKsCJIrpu8vYpDGrbuBpcwKIt4Wpd5bSqJ9CgoJEIgeV652uRT3xUt4UyphPtb+F9tsHIIEcR9cSdkP+u//B/hEtbGv2bEVOFBEbk/xpO+PW3vHYib8n6peoqpBOP8ULrMjwBOB96jqsqpeB1wLPHy14xz6p9OvY3H0M0ZmOm7RokUFj3vMObOewtQRbB6jto2Eqp7pPa4OBB6qqqeq6qm48rMH1xzye7jkiUf4v2H7J+BPm4y5GWwe/xf4e//5rjhiEnC93zcAX1TlWQCd293eeaoEHWQOdh2Nr6neNEgccV65Ok8Rzw6avOCQrI8TSEMJ3EGD3lKNbRJS+jOAOo+f1BllQNqosaFo8kF0ijaOZNxSzErIbeWlnYLbHtNX1bMMuObVp3Dfl+8quVbGKnXh2oXnJomHSecGhd5c+kVes3CceC44xiDkzvvOtVPfpuCKbbeozS0KpqdkK4pZ8bEZfY3XRI1gFwTbkeK4WM9E43lpBnlX6G8VelsgX3LHOW8tsF0lX1L6S5b+UofeUr/kmdXxUesr1tUR6XXW13tB+orkaeBOYW+K9iypvBSCK9qa4TIrp+53vgsRsNZLI2lxptz9NjVuOUjj49psPO6GMwcErACHVhv5OulvEpHnquqbVzPQuhEPEfkIrqh7FS9V1X/ybV6KexzeFQ6raV97C1T1AuACgKW7HrLut+moZ56/qXScLZrhAafualjapsV6YB6lDqjlsWrbzADvBD4jIh/ArZ2/BPzNsMaq+mYReRSOwKT1P4YeE7BuxENVaytdBYjI04FfAI5P/IuvBw5Jmh0MfGfcWGKdp4p08NltJeYUWi8MkwwCF6om4XpCzMWy0tsi3hU9cEtSkjxcJ8mDN+IJrJ1D1dOo2i61ZwiUcjdJvd0j/T4NqePqt5zijOYk9iH/OcQ2hJ1FpcBK43gSyfy8NFGNpl+42Xkzhe+OSy/sDoEpMF6qiDEyED3rTN9LCMvqYnpSrrN6zfuK5OqjoIO4U7S1HVOqwS5WMT1bSCm5EtzInKQhaGbQjhQ2NPVSR/Ic2a7Q32LobjX0l8RVt/TSTt4V+tuE3nZDf7thpWfoL+SsdF3FwyyzLHQzcuvqiuzJ3dLwoZ9bFVNaC2eXKs6tlDHAaLQVxfZeBImR6NFe4rNYV7i56G3l82PF3G4CmXVS49TSdTWxecwAqnq2iFwE/Jzf9QxVvXpYexF5J3Av4HMU9T+UEQQnYFbeVicBLwYeo6q3JT99EPg7ETkfZ7Q5jIbpgdcTRz2zmZ3j+GPPgWkGIbVo0WJzQsvEb1ibGWErcJOqvl1E7igi9/A25DocBRw5aYAgzM7m8Se40LNLfaW2T6nq76vql0Xkvbii7X3gD5t4WmEh2wPahcKffn0WcRNqWAzr3mrkeAKHGjhe24VsJXBgfp6iZa+jikeRVgOqknaSfB8KKTcpeWVJZbxQuY/IHBbH6oQ5q8bg6recwkP/YBfkcNWfFf0++Dm7sL5kb7x2gYsMLhaS2EGCx5tx1zeVPEzuJI7urcrCTdbZn3DPRt4V8kUpYm58e9MrpIYgFYCTJky/LCHESyOQehFFe0SwfxEkUvc5Eyk/n1r+nUSicP0LeAkkre0djovSa8dgehmdZSVfKGwqaty5rmwXzAqYvqGfg1005AuWPLOYjiXPDdYaVIXd2bQCIhxSaWrwx5Aht+b3kIrBSpQsg72h+uirAB0pvN9yxajEujsh7mMq2KSSh4i8EkcQ7gO8HRdp9re4olN1+BLOvHDDpGPNhHio6r1H/HY2cPa0xjrilbv46plTNPC2WDcc/YzzYVsruc0LHvfos5mHaPI6ONXzmDazIS6/BDwElyEXVf2OiIwKBDwQ+IqIfIZy8agnjBtoM3hbrRmijqO3VW+aKd48UVj8iaVzmxtkZf9BFsb0bKzHnPWct03wtnI2ECFL/CCifl8S7pXC80i9frdOKinaNHg5h9g8IGFkowcPMQ9QOs/1QCpxBGQrRYR1Z4/S2R10/y4eAhxH2d/idPz5gptcvkhhxQxSU6hn3XP3o3NLP46jRqINoaiXopjcSwxBP0/xm5NIPAcdStXFBlK6F1FyiN5WWuj7RbzUmF7kmoc12AbA1xapHyN4JknupCLbM2SmnDcqXzBkezIkz7zka+hvU7QnaNeQdyy2b2JNkW5nSpJHsM0knlWDz6yLyai9BoktC4A+Lu9YnU3OuDoo4TnOepTsIi7GZjoPc6PEiLMhHiu+1rkCiMi2Me3PWO1Ac0E8NgNOfOSrW3tHixYeJ/zs2fOdRWCTqq2A94rInwMHiMjv4kIhhtbnUNWPi8jdgcNU9SMispWGWebmgniIem8ar6e2HWI091px9DPOd+UBblGWvr+C9By70f0JXPrv5QqFjvNzFzXU95DEa8ZGvTWOS4pR1VKSMuK+SjxCdb/zlqrjWNNJJccWXwdsKkHiCBJIvHZe5VzNgLse+OzbXcxMcFAIUseWG1fY81NdFn/iJAfJle6tht62jN52E88j1I8v5ZNSIocfuF+zkheSQ5Wbt3bA5hBR3Vdif3VARVPqI0gdNkwMF+wzSnKUhBv3x8uQ9rEOuM3JcuskkcSOYpaNk6oUkMyfq7h4kK46KWzB4IU7ev21Gwech5yP50iud8nTMMCW35fidyeVRG8s8K9J0ocBm0qQ6t4/DTU8/KXRDtgpCVRN1FazgKq+XkROAG7C2T1eoaqXDmvvCcyzgDvgvK7uCrwV2LTpSaYL6xYa2xPyRZCQxmFKZ5etQHe3dYuODnnhc8XscTops8egHeNSpYB3OTWYjne5NBKTwEWEB9Eb+13yvEAoipXfZgVhjISImn4o+oNBQ3zYF4hPLNcaVD7WGbVngbBIZCtK16uatnxvhexWd32lb9FuhlnuYvpdf0yG3VM+Przc2bJG9RE44iO9PPEKqFzEWvVJUClKXAQHmqQLfeW4+NloaSEtpxSvUXuF/sIxw+YMYK0jLsGYHIkViMkdc+PdiE0/I1sR+iGgsCvkS0pOh55Anq2xWEUgWivFdVZMPU+rlWtXrfJVQ0DKpZjLnJHk6o3m6tPIKBgXaJkniUrXdn4Mvmt1bTYYInIK8L5RBKOCP8Rl8fg0gKp+Q0Tu1OTAeRYs1x0nPvLVAOw4+swZz6RFixYbCi3sHkO32Ugm+wMXi8i/isgfishPj2m/rKrREisiqew+EnMheYh17pjaUfq5M6LmiwP1ZFbXd2D0ehbxAV/OyF3m/MyeFcfNei6HnnGlND13qSLQ8RJJZoqU1KqOG0xFeS+ZaCYxoMyNK5iOV39lPkhqmOQhhcrLSRiJMb5oUkgmBjSkVenBZ/9qZJLOdUVI/yK5ku3OMct9d51WvNqqlyMrfborfYxXI3ZudY+yM2wnxtlQetaq44IB+tZ5V1RcbkeyUv4+ekVK6acojQQuHwall/R5yYp9wxweVGRQdRZOq04CqRjoAQbcf/vuGTYrOZ3dXZZv6dDbJvS2OQmkv90lFrUmI8/Wzlea5X7xzoggom46QY1Yla7Sz/78VaQkfZAWgYpqKufKK6qu8FdfY+oWE99ZQTqmKN2wVmxSm4fPb3WmiDwQeDLwcRG5fkTQ9sdF5HRgi1d3PRv4UJOxWsljBB7+220SxBYtJsUJjzpr1lNYd4jq2G3GuBH4LvADYJQa6iXA94Av4pIl/j/gZSPaR8yJ5KF0d1ufDNF4g+/0PJ86t1mWvnsrgLdVZGXdrXqdeuLGKaLQ18IgbfCRbAa6WeSApG+9xBLYVp9WPhMX9JU5aSWMbTsGkwU300GXxaK0bWEvCSmqffd+zhTGefA65ek4GawZwZ7cU6SfO0kBBrhT6eVkP94NQOZdpEvBaOJtS1k21J4QuVsYTHRXcy0K/XoiNWQSpQ+x1pVCrjlOEn1+IxfrYai6CddAUskkPd9eTtbLMXt6dG/q0N/epbe9w/LtDHty59CRr7hl4doXrd7mZfb0kD3eNdqAGOOkAox75tL515lXwvPqv2pIwx4kyeD1HN63ihgQXarDNbBKliuST+cBj6n3x7TZaIjIH+AkjjsC/wD8rqp+ZcQhW4C/UtW/8Mdnft9tI44B5oR4rAce8ZvnN7o6rb2jRYsC+4LUAWxatRVwd+BkVf1cw/aXAY8DbvHftwCXAI8ad+BcEA9RMMsWyVzBHJMElK2pXwvb/3uZ7o92Q557PazzZokpxIzxuuTEE8sMcrlqBbBJio1C8qCXl2wegoVMkL63jZhC8giSiEa7R9njqpA6nPul9ek3pFoFp+LVoqYo5/kf7z517RdvLUi8ZoCCS82cuOf02jmoLXvpWHU/ppy2yaDbgU4GWSE1hH7HliuObU1MExKlDt9fqeCXMYVuv8KZajJuCUM4WJVEgjENVypveylJWrHD4lrJSh/p5XT39Onc0iHbvQDaxfr0HmuFuSXU1HXirVp3rzQLUviQ6x4ks/i7+vTr7nnV+Cxr8XyMSHsC7tkWBPUJKKcCbSBZbCBxEZE7+I+vrXx3U1H94ZBDl1T1lqTdLT7WYyzmgnhMG4/6tTfAwvTUXi1atJhDbC7J40pK7jIlKHDPIcfdKiIPVdWrAETkYcDuJgPOB/FQV87SisH0lWzFe0T5a/iIp76BT72rGTf96Ce+DhYN2R7L9utudh4+kVlRMN4YlhM5nuBRUpU6UjhPEC995I5zApxvfkUHD3h7ifqkbsFuUkgiLgbEFMGGpuCqQxyJWqBbeF2Fa+XGwXtrJV5Ym4ReBjuM6Vlvt/AGpkQPruAD+pI32DivG3LPOucW8h7YHNEFNDzuwVsuliwOA9d4SKU2injNGfSUqtgWXB7wmj7T38OYI9Tw0X4S+h/XXzi/tI9wiJWypKaK9PvIrTmLvdy7mLpAiE+/c3JvuxMf8SowBrPc8xWZvJSu1p1DX6CjRYxLkOZSRNtcIiXmQZIKcuIIiUMSadwWzzq4AEttKsGNwWZLT6Kq91jloScD7xORUPriIJzNZCzmg3hQiOmd23LMsrjMoVvM8JdtBExf2XLjMmZ3r9Q3ECOEB9QlUE84EqNdQUDyQRfLmuCvSKRiNG1BTKRiWC8CEgPhEDQXZwgXBsfzY4WXaSBocYb4zDvcwnXCMWdBrtGoHd2byRwB0cr9DcTAOx9I38Ke5bhP/H5HAPzCVecSWxe4lwYGyqC6MJ1HdJJIVYPDgvtqDOel4426JTME/lWJVBU1Bvl4fgbUO3dImFMgIit9Fn60Z80OE2a5h7ltpVCLVp5v6efuPRHnai5+XvE6BGYpqgb9Ofj+Q47t6j0r7pPv01ae8yRafRoQxqutZvU6icgTgEf7rx9T1X8e1lZVPysiR+Ci0QX4qqo2UvrPDfGYBo496TxY3AzuRvs2jttxHtA+nC02MZTxjOlsvK1eAxxNUZ31+SJyjKqeNuKwoykqCT5ERGZbSXBj4eoBmN25y2wrgr3NkO3Xpb80GTEQC4s39ch+5DzVIrcbU17UPBGJyigicF4VzrKQPoY8WQPpGRKVFkRJRMVXSwysYjQqi1NP+AO0aiQO3Qo+ZYM3xudaywXPFNEV0zqVnfi5+syo+Rb3+H7kEy91ifiAUOcCnOQhWxeQPX2k13dqLHASitHC+B3ah0qD6XUoVS0suOlUidIIddLMQJtyW1VAZUACSYPshvaVzDvO0x8rWGfYzwvJA4C+jelgVgvp5dDr+2BZ6iUlWzaCl6VrKauu1BQSiCT5ulJJrnoNEmkVKKnxpuaK3sBVd0Y2kccDD1ZVCyAi7wCuBmqJx15XSXAWOP7Yc7jsY6cP/U0zA91NtnjOCMcfdy6XXT6KUdlcOG7HefvOg7xJceLDX7VPhRw3snnMDgcAwbvqdmPa7nWVBKcLVbLdPSRXtGMQVcyKpXtTD7OcFWkpxkAsdH+0Qnazy7CXBoTFhHZhSBnk6EtSyQguvuSWO+6e1UkzVaQRrSHVybC5eNtBMLan9hqVUNFttrDBBbZrwKck0UzIFwsWUroG282iFNLf2iFbzpGeRg5eO6Zwz83EccV4jh3c/UxSzTSpW5JKjlJnfB0jvUVbSVUSrNQG8R/cfcyTyZlkHpNq1YN9C+OPtwNuudJfvZ+uLOfInh4sr8DiQslGFP8aKexzVN6ZINGFqoGqkOfehmGijS9N+Eg2aJOMdU6qktm0JetN5Kqb4FzgahG5HPekPZohUofHqisJ7kO8Qj0e95hzZj2FTYmoBmrRYgx2HHXGrKew4XC5s8ZsDaiHiBwiIpeLyDUi8mUReX5Nm6eKyBf89u8i8qBh/anqu4FHABf67ZGq+p4RUwiVBC8WkQ+GbezEmRvJg1Jd6eit0rdkWqRxPuFRZ8UaHHFx9Jyp6eWYm3OXVr0anBYwJqhM7aAkUdVJ17rllhqM8JYZxjlZCg8jawddOlO9sHibiFEXdGgDK1vYR2Ypjh+34zzsFm/b2CNoNwNV8qWOk0QANU5CKpLmObdes5IXbtP+/Hu3WyLLDJLlGPFOJH0bpTVVimuTJDeM36sI3HFwQ63CDL9X1WehqJkiJamn5MUTvbrK/cbb25C7jfaFcZLuhPd+573/CA7YVuRz6mSwfSu66HOfq0LflqTt1BaidohkUE3B4r3l1BRLlqiiOdGGE1F9XxKJvVp/ftXQ8d5WDe9NHzhVVa/y5WKvFJFLKylFrgMeo6o/EpGdwAXAz9R1JiLHAJ9T1Q+KyG8CLxKRN6nqfw4Z/4xGs6zBXEgeQmJE0yQ5mXUZa7HK0BS7qmR7+nRuWsbsXnZG1qrvffrCWUa+YOrdAsM26vfySUgt4Rh5TDAm53ncYrbYME9btAub9K17oXs5ZqXvt9wvvhWD5AxgcrfZriFf6pBv7UbCAcSSsKZvyZZzsuUcs+wJR2XuH73sJfS3drBbOtjFLnaxW0SGN1FjhPtinNpE09gEU7MF1DAR8bnMbam2hntmiVv1HGIW2bp5JRquoRvFM4RfvMPnqvpVejmXfOYV469LAnPbiuu/m2G3LmC3LTr38eBCHj53TEGgw4LuDefBjbp0XeM5Fu+G7OlHAhCvqX+WxVYzDtiSCgsvEUwNOmZr0oXqDSFAT1VvBq7BFWRK2/y7qv7If/0UcPCILv8MuM1LJ38E/CcjjN+q+nHgq8B+frvG7xuLmRIPEXmhiKiIHJjsO01ErhWRr4nIjmmPeeIjX+3iB1pMDSc9+BVxa7HvYOfhL571FGaGlNiP2oAnicgVyfasoX2KHAo8BF+YaQieCVw04ve+N34/EfhjVX0TjigMG/PXgM8Avwr8GvBpEfmVEf1HzExtJSKHACcA/5XsOxJ4CnA/4C7AR0TkcFUdb8Xz7nlRBVBoY+qhrr5DyGibqjtKInBigJsoE+owslxndB93fOWYyF1ZCjVJU3VD4MTyvJxfyKuzyEbMPcEwQrHjIa+Mny+++syGkypgVmyJO4z1OPJyLiNXs8GW1RC2/iJcfsmLeewJr0Fynxsrz9xxWcHRFhOodwHVmralCnapikQHVZIDVQZTJwc1vtpkzeRHOWFE9cyQ3+NxRXuX5QmmZs1dcOops2fFvXv+3Ynq04G5CHSkeOfCO2tMEcSJKQzmJbdpL7bkuQuS9dmSo8osZCSQpBYINmbybWKDaIqg2WiAC1V1LFclItuB9+OSGt40pM1xOOLxsyO6ullETgN+E3i0z5I7qn7iS4GjVfVGP8YdgY/gMvKOxCxtHruAFwH/lOx7IvAeVV0GrhORa3ElEv9jZE9KIfaGUpxRiTy48IcypNLvD6bwTtJPlF7wFOMS29V5zoR+Ri3MabGfuv5iCc6KbrjJnFJUFzI/T8EAFaKywTA9G/XggXCYnlPzkBBNp6Yrq3c+/PlXj+zbes8sFrtu4coq98Ymi07d9azUHC8xFWlcj3jbmB18ftQYYn4V30csYhRuS0y+iLsvik+34+YabVIpcRvyXIXa9P6b+16Twjw9n8YQ8aoo41RW3SxmOAAwu51KdEANquoj/L3KLmH83JxtQQgWsoEx48c8j0lD42/hndUQaS5oV+oLdK0FTVRTTe1RIl0c4XiXql44pM0Dgb8EdqrqD0Z092TgN4Bnqup3ReRuwOtGtDeBcHj8gIYaqZkQDx8+/z+q+nkpc0t3xen0Aq6nov9L+ngWrnA7S93brdNMWwCc9KCXF18mkL7WKoVMC8cfd67jdlu0mBIStdTa+nEL4Ntwtoba6nOeAFwIPE1Vvz6my5uBN6lqLiKHA0cA7x7R/sMicnHS5smMVotFrBvxEJGP4PyHq3gpcDpwYt1hNftqb5GqXoDzOuB2W+8S2zg1RoXLcfMp7+vbspFOZGg0NoxQMQ2TOuoMnMPQRCoJv9d6+EzQdtQcrHUp55sSiBpOrlAdrnKxVo2xB+ILbEm4V1HlpvVlZEdAkgh67ZoYHyLBeAuFqqQyn4hUTZj2Ha6zem7ZJBJIVdWVPGMqiYG81GGSj0ySp1kBXD6ygeOGXG+teH/FY/25xXdgtVy5N5T3t3WLOYTzXsoGnsOB0rOq7j7mqWbaSwq5RVZytJMV9yZIGvHYivSRzCs+0z1iQbVJvcmGwjL++Wt2TY8BngZ8UUQ+5/edDtzNdaFvBV4B/BTwFr+O9VX1qCH9fQL4ORG5Pa5WxxU4gvDU+inqH4nIk3CqMAEuUNUPNJn4uhGPYTVzReQBwD2AIHUcDFwlIg/HSRqHJM0PBr4z0EmLDcFJD3r5oN55lUilEKiXRE58xKtgDbWzd973NC665tzSvuOPPWcq82/RooqxiREb0A5V/SQjTLO+ze8Av9N4Wqq3icgzgTer6msTolQ0Erk38NOq+m9eVXah3/9oEbmXqn5z3EAb7m2lql9U1Tup6qGqeiiOYDxUVb8LfBB4iogsisg9gMNwngDj+zWm4DbqEFxV87zwO/c6W+1mUXdL6Cdxm21s2K5KHRU3w6Fo0iYdY5h76LC2kyBxea7dl7j8lvZXtnG1nKvEJEA8tykrrlSq8UWLpG8Lo3k6hvf/Dxz0zvu8ZPi5eddVV0jLoJlxdpDUVpHaqPx4UScPpXuauu6msUXSC8XBKOvGo06/+G47BruY+Wh579IaHp/gYl69hBLS7ptCyklvYWryq3uuvI0wuGwP3MsJoantKHEYUCNoJ0MXMuyS2/ItHfItHexiB7vQQRc62KUOurRQ2uz2JXTLQsFMJDm9CMbyTqde6qiib11J3GrsyFow4tmfsau7iMgjcZLGv/h9WU27N+JUXFXc5n8bi00VJKiqXxaR9wJfwQXP/GEjTysov9yhv9Q/PL2hmTdoVnzc/SSKz8YQiyUPHVjKqoy6Puu+VxE4/BoVxkC7ujmMa9MEdXMYd+51fVSOk9A2Ici1CJ5t/SEBj3XHjfN48cdc9tH6DA3HP/bcaIx26e79Zeh5p4rEKC4hrUuVoTDhvPzz4uNsSmrRzNVdkRxQMLlL4KmdhAgkcw41uE3uVU9BlVU5L0TQWuM3hVqsct1E/bmt+ASGmXHXYFIJLc/BZiWVYHH/3R87xNakxhNR6y64+oqXJWcCEaSOOCQxIOryzBfelukcIqH3v6/0oTMd6rHZ6nkkOBmXjuQDfj29J3B5TbtDVfUL1Z2qeoV3GR6LmRMPL32k388G2twY+wB2POSVG2ZI33nf01y0OmCXFrzEmeS+atFiAgjDpeqizcbDB/h9PPn+LeB5NU2XRnSzpclYMyceU4Eq+KR3MXEaCccb/gZupU4aGYaqSmkY579Wvfq4MerarXWcYViFy+YkfQiF9DFAQFJVl7WVdCEJR5kaukeMt3Ddja790mL9ZNIuPDfsXGWzYg6V/mOsTZrGxj9XasRx8oGzrpUki6SGLso8J3XYSFVOaoJrrpaLJqmWi3yl/fvfgvQBhf5dLIW6KqSoz62rDz/hs3XRtc4DdMdDXonk1mWmDteq5r2J80kN6yaIG8X84k3JBE00LlEKTOvI41Vwomh01x88DxF/zv1x4kJDjMk04SY6naGaQETeqKoni8iH6kZW1SdUdn1WRH5XVf+i0s8zcSVtx2I+iIdQEI248IQftfIXZFidgfSBH6Y+GqYiGqVaaYp0jGmqpyad0yTtq4tE3dxriHRKQAIu+cwr2PGwVw621Up2VK1RUYxDP48ed2a5h+YGtRl2oVg0pa+uhKoIdqlLvjXNo+TH9XETimD8Q+YCTNWl4Ujuoe3gH7bhCOopscSAR4GyV1aqFk3VgeoJXvozZdVjWLC1WK/r++pbdGF1Kp2Lrz6TE445q4hFqUKVOuOxC9yrEsyg2nM2k1J1Tq+iDHaeSOy9S5cUKYcHxzLG3f8p2iLGx8VsqN7qnf7v6xu2Pxn4gIg8lYJYHAUsAL/UpIP5IB4t9mpE4/mU3Td23vOF0+2wRYuAUfnyAjaQdqjqlf7vx32UOKr6vRHt/xd4lI9av7/f/S+q+tGmY84H8fC+5kCs2UCnwhEHT6H0exWjOIk6yaKpuqbGU2fg92r/wySgcW1S19ph59NURTau7TAJpXrMEImpTvpIMwRX1QJpehKsDp43cNE3XsvOQ09x+0wGi4suTqBjsFu6sV/Jc2Q5dzyrj2LWjsAyyO4eWd/C1gXskreTeCO25M6qrh1D7tU0pmdLC4n6mARJNDK1KiZS7rtGWgvnnT62prqv0i6kORliSLcdAZuRdQz0jbvW/dxJZgOtm2Hnkacj25egW0P9m3L6wekgvAahqmM4377GWighZsNdU/8cpQElQW1VUfNhGqipG0KoFXDK2Fi1lQCvBJ6Dm54RkT7OXfdVw45T1cupN6iPxVwQj5DRU3LntVGXYkJy6t36mtow6hboSVRVdS581fmERTMlMk36riNo66HSWk3b9DrV2SjSPqseSsl6IDZZoJt6gy12sVsXXB8dV3b14s++kpMe/ArsUmfgfNQI/f2XkG2W7NYVsttWEOtekXypg1glu9VlkLXbFuh7tZZ2pJx7y8/L5d8KEY9SLH6ZlL2rEhfXePlqAutcsS5Kuiex5X6kDyJaUscNqLC6hny/JUzHYHb3QHvu2uaT2wN2HvYi6Ha8u7QW5xXooRHQosCXpOeZeJDFcgC5d/FNz1HDfxXCYQSNJW2JNheR4nqVrl8m5Yu3FjRyx91QtdXJuIDDo1X1OgDvafVnInKKqu6a9oBzQTzA6zTz3KebDuxK8aAodmjOpoHEh3UpsFVLSRIHfhvotMYOUF1Eq8Qi7a8qrVT7TcdMzzNZtEt2gSnqekuYhLjVnOOomiaA4xbz5Jjwd5T0ZbzyfbnHxT5osBpXIn0bFyLTKxbNoE+3Pv9VSJiZ3dZ3BtyOcXVibllGfIXKUL2SuEgNMimS1LRAfHxRYmAuJdkbck0KR4KU8BYceWxqXZkBu5CV4kCUYhzNhHzbAnax64jkcs9JIGtAKYpf/bX0DEBg6FTE5dWyWjLo28y4lB+5EhNNhtuNJmn0/WAmuf/iCHiQ7kzPlp6RkGdsmghlAUa22VDawW8BJ6jq98MOVf2Wr+lxCS6X4FQx05TsLVpsNIYFJ7YosPPI08e3uccL9m2bkjbcNg7dlHAEeLvHqKy6q8Z8SB5eGlVxQUUlCQIc5yNSm5cIKFcHHOZVJQLiXSyb2glGqZBCUFOdBDHK62sCCSKK7WnfE/ZRwgRqq7G5rSoqhVppIvY1ROIbck4XfavscLLjYa8seWypiI8e95x2qt6s6xunNlN8caOuewbC8ZLmZRIp0vtX51odX/PmasYREq9AwaUH7l5dyQGnvpUYSR+9s9RzzkbIty/C1gWyW/bEuZ/0wJfx4S8M1r0ZqOGhriJlkJ40Uelq5jMIV/JbKeLdcCtdhXdYC2kqqLmqQZRRLe3VeOnz5rywpJRpOHp1TS3CfMgzOTusrPK3VWM+iEeASQiBJH7g2IH0BsBQ1Q8wSIB8TyPLlNalR7dDtKwd8X7plT4H+h5hE6hBowe6qaF/3DFD0Cgpon/xSwSuOk6YkwHFFG1SY3lYVHT0mDossnjUXKsuw9Vrn9is6p+XBHW3LY1pKPU7fEq1KLnvaumcQjxKljPg4op4dY5X+/QP2ELnpuWhdVFSXHRdkQD2pAe+rBjPEiPi4/QksWlUbDbl43y7cDreA7rONhWvkaFUyjaqoFN3fJGBOa0dm87m8SARualmvzA6IHDVmC/i0aJFi6nhpAe9PNZI2Xnk6c4pJfz2gJcWuaKmuijvHdhsNg/VoVE264b5Ih6pWiAa3bQo8FRt7v8OcMrVtunvo25RNtifiA5nUCTznKJGg3wcv+6FzDwHXkklP3AOFckHGkgk49RadS631SaTLCIV5rZUIbFuThlFlbq6l7aBmkyrHDkjrhvE4lCu4eDcBo5NPKoitPi9pKYcxdyvNYHfMIO79Yr4iuNIakTv779IdutKVF+d+IhXIX0bp6NbFvwcU6+4uvxTUuL+JbEBxJxbVAzg6qQgayS6OUfvrChByMC1ST21Si7Tfg2oy++1ZoQ5jWyzqdRaU8dcEY9qWdAgAjvdbk37NVbMa7xYDmtnFLVSrDXT4B2q5xkcehqea1R7NHzwV123o2FfJXtNXPC1IGbRDdW12Xnk6Vz0lXPG9j103hVPr3jdKsStSjhihcDw3Pn5FrU+0hKwru+RFSiHzcn3tarF0B9Xx0hIyN5rnKeZMXlxHkD/gK0uDiaoGfu+umPo2piiimBiX0qjy0v2Bk8cwPNOseKnO9+QwEUzKb3XLtMwZXd8v7/kzRamHvqa9jq+nh6MewnmhnhoJvFFjX70gn8abenJLXGAozi89RLHS26l3k4zissd11eyIKitcGZhgW3IyYbFMp55XTxG2r3qVAnIwHwkOZ8a3XbarmqoPukBL3U5mzpmMGCsznaVSHGRiCY14gfOMyvaB8JhOxJjG6L+H2LQW3EC4piFGrvbqOuZ2jSGE0D/V5Njkv5H9a3BAB3jKQRdCmmHk/iUjinbFKoJJg2YREJUL03EuI5Rz6OWCYkziBenNkD80q9GsAMSZkJAprTgN1FbzSir7oZhfoiHJxbxbyrKQilHjiKOa6ozoo170ZKXt27hHKseSn6/5FOvKP204+gziy/pg5l6jYww8kekao9hXOowFZFJiBC1ts0B1KqAGqKR+qhmf3SMiKEyNQtYaOvrbsQxoeD8KyrCGMiHlBbqAU+9qtpKpHZBrKbtLh8T/xvoe/Ac/F9koE/3Q0JU0ufFJrc6ISYl1S6U6q2LHXyu1UC+mEVjexEbEwhZef4qUl5cpfSn1H6Ur0PpXKKqa1B60kCMIQYZOokmZAYIpz8lRqdVW80P8WjRImDHw14JTG2ZaNGiBq3aaj6IhzhVgVJwdiX7R1RhBc7Kcy9QSRPBINcnlMX/IZLGWlU3Jz7iVQOqopIqqg51uuu6udRJH+N0/kECGeZKnMwv/T7JdRhoX1EfDZWOUsR5mgHpQxe7TuoY5qY7ROqIkdvIUJVPyTAuiXHYTaZeJ17lzoc4RgzlxKNkUfRb1CNP+i0dr0UKE/8OhCJpzp7gf7K48mskz4+PD9GuiedrkjQs1RQiha0Hnyqoxr6iRfswp3HnG+wmGi554pKfvudKoX3Q5L0ttZsWrDaoYT7dITcb5oJ4qID1uYuc8bKyINlggHM62hAo5dQZrlmpjkCAVF66afCyiZH3xEe8qqS6GiqOV7/XGZYT7xfn209ZjdNE3TVsf50hX3W6DgeVGg1xSuMMkwmxc5X8kj6ywf7CuJJ8LvpK+ksISP24lNOmp8eSLI7JPFMVTEwbIqPve52RvpSCPRCqdN7x5MI8046T+QTGKhivDfFaB7uh+mSHpp/kFqte04Rxi2lWTIU5GEUkhqFk3ylfg9rmNSout19GP0OrgOhkKup5xPykJ/Evc7nug/8TgqPCC+65LtvxL4j3EglFZmIbkzyQXropbatdO5M5nvgIl/AyEJE02CwuTibZMnGLYjeLG6EOe7eyyke1dHJeMIQrrpFMSgtSUrM71HrvmDifoVvN3GvPp2NcHe+uKW+dIVtaa14ETF2bIEkwcK9i3fHK7+GeR6kg/T3Z0mcl1BMv9VPpz4Zys35uJM9duNdhTtVnoLQvnTthPuEaJM9yJEx+M8WzXkfs4lz9vYjnFJ6j9HGpY0TCu9YR7IIpxkofqUnW0iFM0tgI8VGM0ZA+V4XwDo3a5hxzIXlEOGaxDFv+rfArN8V+wr0uF94pXAwLdde4MWvjFcYgSCCXfMYRkKCzd/OsjucXh+Aa6ucuaZLF9PPAfKX+cwVpgsUBdRIkaVqkVq1Vdpsc8cIGQ3Dq6hkH8Zxn6oYZkKVzKMbRmlT89RX9Bs+p+M1zuyZR+SSIxus0gywVaSFIGqmjxriSt6McBUbFhaTj18UolSQRKQpGhX1aqUpoyuk/hnpreSlarJP8tVKvPKRMXxWqBCqqctPxk3HS46atoqqDaoN6HvNNQOZG8ojV0tLnxnOIxWa8xFB+6Qcw5OEr+6mPfzBSTnJgAa18DxIIwMVXnuk+VD11sgzbddXv7ILxfzOXUTQzfnNcOImUEDj1ga10bYbMNXLgUuJeA2da4qYTiSOVAEpSR0XySD2h1CScsl/MwgKsJplfOnbYjOd4OwXXO1JNUpEuS9IGyfjh2pjK/R+1QEXpxBRzXoda6QPPVzV4LiUcYV4wXMoM0kvSV0E4GHhfJLdc9rHTyxmD098nXTtHMTvhfkm4T0PG2QjCAZ542NHbfNOO2REPEXmuiHxNRL4sIq9N9p8mItf633ZM2Glp8YnEJIjtHcF2jVt4u8ZxS3FxGLUYJOJ+3RWrHJomp6vur/Y77GG/+MoznSoqy9CFjtv83AsiGM6vePkjsUgXcTO4wNeqflKki7tIJExxC/0lqp3aRT0zaCerWezL7rPUXP+q+2dQF9quqd3q+ijds9LzUFY9pdcgEo70WQr33zMh6fNSZ5cq5bpa61vWpMxGOsaw9qMWsypxSGp0pwTqsstP47LLTysFCLr2Sbp3f80uv7iSRHFgzJSRq/wtzXtQxVp3bzaMcIQ5jVVbzTf1mInaypc+fCLwQFVdFpE7+f1HAk8B7gfcBfiIiByuqmsrNNCiRYsW08QmK0M7C8zK5vEHwGtUdRlAVW/0+58IvMfvv05ErgUeDvzHagcaUF1EXW/hiiqK47JViuCnoBtOjinc/2p04VGvnHiINGU+fPsTH/lqP47n5kN51KqOvXSClNoIEu03he6+sNdUvYfi96quOFFxDKhzUqRZUBtCrD+/MfrpkJNIk+Cv+Dec7xi2InWSSF21S0bjYZ5oVYki2AqkRoqMUfDJ98kL89VjEsmlaS6zFHXn45Hu/+hlL4mfP/KJlybHSzF2IsEce9J5DcevkcirHmTVtquVMqZlh1ALdtzDN9/UY1bE43Dg50TkbGAP8EJV/SxwV+BTSbvr/b4BiMizgGcBLC4dMPKlr0WFiLh9uJKi/YRoDHQlAzrXNNFb6gqJN+hGg60ykUG9lmiUjMHJ/MPinhEnlxpBo9E/EJvq+6pS/7APIxqjEBbm6u7EASGmBA+nUnWxTsesLtimuI51yQ4jYrr2lPCXbRux/4HJ1p5YsX8YcTBDPm8ExhGO5Bqk+1LjeB1SolGHkj1n3HMyyaI/4nlcNaal2lIaVCdsiceqICIfAe5c89NL/bi3Bx4BHA2819fbrbuztXdAVS8ALgDY73YHezFidZ4WpSyfRtCuOL/2UhvXr3juszopDf8NOPV4zlmJRGRY7EDJpz/EPSQuwQMLpV8MSp4yUllYg8dMlDwS76RKHe1QvrdUZ7p0koOeaKGvUrOGt6DWAD3AhZaJRjG+lvfZ4rwHLm9KhGD8Oz1k/i4/k9bOZ69B5dxqPbQSjCMcj3v02URDe1bDNKx2sa5j7uq+T2Os1aCJO+580471Ix6q+rhhv4nIHwAXqqoCnxERCxyIkzQOSZoeDHyn8aBreHjKxlmcAbZ2Aa071i9atrKoarFYi3cDduquuk6SRdITg2qeLqBkxCxFvAfNQcd4gSchNCYlBoOqHzd8IgVYX2e65pzrPGjGejXBwMtWip8JfTS9f3VFt+qgNOCERxxeM5/18JpaFSZUia0mwnoc4Yh9G3HOJ0Mi5jcEGz3uPhLLMQqzUlv9I/BY4GMicjiwAHwf+CDwdyJyPs5gfhjwmXWbxVDx3nNQOpjKWUUS1VTY5/8LdCEk3AvEJBARcQ3EVlREUiEoCUGwldQaksShpKlDimjnmvNJM8JKeX/t6dddlwHPsWSu4XPd5ZTkQ2ynZZvDsHlXUZ3varyKGo5Vu9iuh6Sx1todYzCWaFRtNR4TEY7uGgjHKNVU08V5FgTLWsjH2TymZfTanJgV8fgr4K9E5Eu4+rpP91LIl0XkvcBXcJl2/nBdPa1GuQWOFI8Hue2CdkhM5yGxXocnHBo47jqDe5AIiFJHHZc7mBa82qA8T7wzwFCM05OnNpwQTBZgpKxKI5Fwqqq29LjqHFeBkRmN12MtWa8FfpRhfdSYQxZ9qHlGxs19lYTjcY85x7trN2o+Gae+mQkHtGorZkQ8VHUF+M0hv50NnL2xMxqYRPFxDc+mijgCkr5d1hlY1Oig8boSjbzmZG6x/8F+gppt1Nxdw9JRxUdTtEsTOApDkh2SqsaGzGcISvYbiOkyyunpR5zDBGPF4zbSnjFsrBDdbTXmmGp87DjU3PumRKMW1Wu9FpXOZrFrjEOrtmpRwqQiM1XjcfJZBxewQExcZl+iCgeKhdim3Nx6Pp/pwp4Uo2q6eNZxuAPFqMZgbCBlijopqc4APAYlgrdR6qnVwF/POMW6AlZhf3XOw/bVYE1EY9S1GnYvJnIj3kTEIoFai7Zqqxa1aEhERqZgqCEAqTQykOLdJNx5E2PvKjCK6x7mRTSRBGTK7cdJFKmaayjRspW2FMesdp5D224CwpHOzah1zg1Jjqk6B4pSDqrQT0U1uiYiUTvP9EvlWQ6xGuHzvKENEmyJx1ikL0ENxqm1pIYIKBV1lucSB+twTDzbEfNYXWdNOflRvw2vmV3jWj0syeIwz7dprktNbAMbQFyCm3h0zsgoVeWrlj+97KOnrf+kKjjhZ8+GToXRqRKLUTbFptioRIcTYzreViJyCPA3uLAGC1ygqm+qtDkCeDvwUOClqvr6NQ88BbTEowlWocqKqqjgqltRbcUF1y8OtV3UjFfl6ie1iwyVCtYibTSBpaj1UBqoED0Gomdqml92+Wkcf9y5g23WMt2mBGFaOaqG9FMEp/o/PmYlEIsqkTjhZ2drGpzIUy49Zh4ISCNvq0bn2QdOVdWrRGQ/4EoRuVRVv5K0+SHwPOAXVzfZ9UFLPCZB+gBPGP1aikIvHUNpkRwnIUxTghgmFYwiHE1tFGm7yCnL4AJ4/LHn+I6cdHHZx04fOnbAZZcXfURCogwa65vMeZhdYD0kjBGGcdO3Jc69Kl1c+smXDhxWt28jcMIxZ3n33IIBEhIpPCz2o9K+7OXGZrWK2jE2jQbnqKo3ADf4zzeLyDW4rBpfSdrcCNwoIj+/hilPHfs28RjH0WywYW+1hKHcCWV1TtUraQiaSBqph5ZYzxUPCXiE8iI/DE2IRSAwdW1LhOTYcxDKsTl1+cBEtQiSHPb+rycR8f0H1Z3xEsesiMFqIEGTaJ0TCDmIARtL0ZafC7GVmiGbTZKYFI1cdRXgSSLyl8neC3x2jAGIyKHAQ4BPT2eS64t9l3ik8RyNFs5VuO0OS+dRJ7SkD+Ior5p0n6Ve5VU3z8oiWfU2CsGHoyQJyStGwgEDdsFRNiEK00Z1zBOOOQsBLv23lzkJJeXsdXQZ3YH68U2IyCibSGrQVmJK8yBhXPpvL2swwCZBuIxBbZoa7YXx1f5miWlJPNrAYO5woaq+YlwjEdkOvB84WVVvWuv0NgLzQzzWohetHjtk0R/mWVV1uR3Vx8RG8DrOONk3zu4RF/0h40fJIS++16qzom1BGkkU08RqCVG6IFfnfPxx57pzzWTgeoJTrx3/2HNpjBFeTwBpEstg+yllpt2LcOm/v8xJg1Y9sSi85Jx0KqSBtKLJX61IIOuNdVKPqbUoo20e2oy4ICJdHOF4l6peuPbZbQzmh3jAxASkFKQ3bLGHsQt+bD+UuiQLSkPX73EutaJaqlVdHSslGLPwxtnsqCOAxx97Tn1BKRh730r3K3xM0ttECWMvUk2NQpWgH//YcwdcrdP3K8067T7rQH6zSd3iRxKhmtRCU4Uq4+M4xk9ARAR4G3CNqp4/jaltFOaGeKxOreSPZcixVS697uFOVBVjs+U2qbUQ7BXDmoT3rCTllMdI+28JR3MMSDiJ7WiUhJeqo9zfZOEK6i+z90oaTRAkNbXeDb3k1Zc09M+2Y3Cc1FLySBzLqBV9D31vU1THnhJU7VjJQptJPccATwO+KCKf8/tOB+7m+3iriNwZuALYH7AicjJw5KzVW/NBPEpqoQbUPnlIYwzBMBfWBgt+0ItHFVBikwjpJVyDwrVxqKoptWHUBcelhCJ35Cq8nB/5+MbbGeYZl11eqK7iglUlFAFDJNd5JhhVXPbR05z0VlnR62qphyBZsRWWq2IbCj+W1Iip41aw1VUlxvT9jrumRj0+caP+N3fiLkMb5NrnZn4E8PVRHanqJxlD1lT1u7gM45sK0pA6bmrst//BetQjnwuM5kSqtoexXkgjCEdYTOqidoNxVrRQVwzUSa8+69Xo7tSrqTL+LIzRLRiwgaRS3fHHnlMmGvswIT/+uHPLz7qpISA1qtwqYW5qW3vs8a8p5VqLfVW1Sr7N5R857UpVParZ2QxCROT23NEewUPYJvvXtvlP/RogfF0/v5e7lQ3HXBCP/fc/WI/6mec0DmwbpUYamqnVYxI10I6jz4wGWe0YtFP0XVtSFkcYYuxDsq9Fi70NpWDOirRdTU0D01WxpoQ+9PvY418DwOUfXRvxAHiYPEa/w3XcX35m4Ldc+3yWy7mFn2xT1dvWMs5mxvwQj6OfM7lPfgPJAqafE6hFi30JKRFJMwRstNdegIismXiMkj72BakD5oR4HHXUUbr/7X6lcfuWGLRose9iGsQD6qWPfUXqgHkxmNMShBYtWmwsruIT5vbc0d6qN0Xp43q+yUHcna/r5+eacMCmSEDdokWLvRk7HvZKdjzslbOexoZDVfUe3JfruAZwUscN/Bff4AvbZjy1DcHcSB4tWrSYDS6+8sxZT2FmSKWP73PDPiN1QEs8WrRo0WLVUFV9mDyGa/kSu7mVW/jJPiF1QKu2atGiRYs14So+Yfr0OIi7M+9G8hRz4W0lIt8D/nPW86jgQOD7s55EBe2cmmMzzqudUzOMm9PdVfWOGzWZecVcEI/NCBG5YhrugNNEO6fm2IzzaufUDJtxTvOIVm3VokWLFi0mRks8WrRo0aLFxGiJx/qhttTkjNHOqTk247zaOTXDZpzT3KG1ebRo0aJFi4nRSh4tWrRo0WJitMSjRYsWLVpMjJZ4TAki8m0R+aKIfE5ErvD77iAil4rIN/zf26/zHP5KRG4UkS8l+4bOQUROE5FrReRrIrJjA+d0hoj8j79WnxORx2/wnA4RkctF5BoR+bKIPN/vn9m1GjGnmV0rEVkSkc+IyOf9nM70+2d5nYbNaabP1D4JVW23KWzAt4EDK/teC7zEf34JcN46z+HRwEOBL42bA3Ak8HlgEbgH8E0g26A5nQG8sKbtRs3pIOCh/vN+uFKhR87yWo2Y08yuFa5M03b/uQt8GnjEjK/TsDnN9JnaF7dW8lhfPBF4h//8DuAX13MwVf0E8MOGc3gi8B5VXVbV64BrgYdv0JyGYaPmdIOqXuU/3wxcA9yVGV6rEXMaho2Yk6rqLf5r12/KbK/TsDkNw4Y8U/siWuIxPShwiYhcKSLP8vt+WlVvALc4AHeawbyGzeGuwH8n7a5n9GI1bTxHRL7g1VpB7bHhcxKRQ4GH4DjYTXGtKnOCGV4rEclE5HPAjcClqjrz6zRkTrBJnql9BS3xmB6OUdWHAjuBPxSRR896QmNQVyJzo/y2/wy4F/Bg4AbgDbOYk4hsB94PnKyqN41qWrNvXeZVM6eZXitVzVX1wcDBwMNF5P4jms9yTpvimdqX0BKPKUFVv+P/3gh8ACca/6+IHATg/944g6kNm8P1wCFJu4OB72zEhFT1f/0CYIG/oFAjbNicRKSLW6TfpaoX+t0zvVZ1c9oM18rP48fAx4CT2CTPVDqnzXKd9iW0xGMKEJFtIrJf+AycCHwJ+CDwdN/s6cA/zWB6w+bwQeApIrIoIvcADgM+sxETCguPxy/hrtWGzUlEBHgbcI2qnp/8NLNrNWxOs7xWInJHETnAf94CPA74KrO9TrVzmvUztU9i1hb7ediAe+I8Oj4PfBl4qd//U8BlwDf83zus8zzejRPZeziO65mj5gC8FOd98jVg5wbO6Z3AF4Ev4F7ugzZ4Tj+LU118Afic3x4/y2s1Yk4zu1bAA4Gr/dhfAl4x7rme4Zxm+kzti1ubnqRFixYtWkyMVm3VokWLFi0mRks8WrRo0aLFxGiJR4sWLVq0mBgt8WjRokWLFhOjJR4tWrRo0WJitMSjRYsWLVpMjJZ4tGjRokWLidESjxZzBxE52ifIW/LR/18ek5OpRYsWE6INEmwxlxCRs4AlYAtwvaqeO+MptWgxV2iJR4u5hIgsAJ8F9gCPUtV8xlNq0WKu0KqtWswr7gBsx1XlW5rxXFq0mDu0kkeLuYSIfBB4D6706EGq+pwZT6lFi7lCZ9YTaNFi2hCR3wL6qvp3IpIB/y4ij1XVj856bi1azAtayaNFixYtWkyM1ubRokWLFi0mRks8WrRo0aLFxGiJR4sWLVq0mBgt8WjRokWLFhOjJR4tWrRo0WJitMSjRYsWLVpMjJZ4tGjRokWLifH/AZ+2L8W2Lyu0AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADBQ0lEQVR4nOy9eZwtV1nv/X3Wqtp7d/cZkhDmKQEJCAovCCjEyyBDErxXLk4oDhEHRLnKPKpXFJE5keuMI+AIAopeEggoIKIok3JlHgKGEEICyRm6e++qWs/7x7NW1ardu4dzTvfpPif79zn79N5Vq6pWTetZz/R7RFWZY4455phjju2A2+0OzDHHHHPMcfpgLlTmmGOOOebYNsyFyhxzzDHHHNuGuVCZY4455phj2zAXKnPMMcccc2wb5kJljjnmmGOObcNcqMwxxxxzzLFtmAuVOXYMIvJ9IvI+ETkqItfG7z8thj8WkYmIHMk+j43bXSkiKyJyWERuEJH3isgTRcRl+/5jEfmVLfYj7S8/1m/EdQMReYWIXBWXf05ELp3adiIiZ0/t88MioiJyztTygYh8XESuOoFLN8ccpyzmQmWOHYGIPB14JfAy4FbALYEnAucDg9jspaq6L/v8ZbaL/6Gq+4E7Ai8Gng38wQl06X9MHet/xeXPBe4L3B/YDzwU+NDUtp8Dvj87t28EFtY5zjOBa0+gn3PMcUpjLlTm2HaIyEHgl4GfVtW/UtXDaviQqv6Aqo63ui9VvVFV3ww8FrhYRL5hm7t7P+BNqnp17OOVqvqaqTavBX44+30xMN0GETkX+EHgRdvcxznmOGUwFypz7AQeAAyBv9muHarqvwJXAf9tu/YZ8S/A06JZ7htFRNZpc0BEvl5EPCbg/mRGu18HngesbHMf55jjlMFcqMyxEzgbuE5V67Qg+kVuiL6NB8XFz4jLbhCR67aw36uBs46zT3+dHesGEfmJuPxFwEuAHwDeD3xRRC6esX3SVh4BfBz4Yr5SRB4DFKr6puPs3xxznBaYC5U5dgLXA2eLSJEWqOoDVfWMuC49dy9X1TPi5+wZ+5nGbYGvbtRARC7LnPE/kK36n9mxzlDV34v9alT1N1X1fOAM4IXAH4rI10/t+rXA44AfYcr0JSJLwEuBn9nCOcwxx2mNuVCZYyfwz8AYePR27VBE7ocJlfds1E5VL8qc8X96LMdQ1RVV/U3ga8Ddp9Z9HnPYPwp449SmdwHOAf5RRK6J628tItdMR4fNMcfpjmLzJnPMcWxQ1RtE5JeA34o+isuBZeCewNKx7EtEDgAPwiLJ/kRVP5Kt9iIyyn4HVZ0c4/6fAnwYeB9QYWaw/ayNAAP4MeBMVT2aa2HA/wNun/1+IPAbwH2ArxxLf+aY41THXKjMsSNQ1ZeKyBeBZ2HmoqPAZ7HQ4PdiZqSN8LciUgMB+ChwCfA7U22eEz8J/wR86wb7a7LfV6jqYzCn+iuArwMU+CTwXar62Rnn9JlZO46+o2vSbxH5KibgrpnVfo45TmfIvEjXHHPMMccc24W5T2WOOeaYY45tw1yozDHHHHPMsW2YC5U55phjjjm2DXOhMsccc8wxx7bhtIj+GvgFXSgP7nY35tiTmMW6Msf249QJ+Dk0/vJ1qnrz7dznEy8+Qx9y/gLf94Qv3eQfuNMi+uvg6Fb6wNv/8OYNdxIzKaPm2HXM78vJwW6OI8d47Ms//bIPqOp9t+vwInLP8+83+veVVeWDHxmXOT3RTRGnhaZy3DgNBOqm2I5BdScHZncM+w4b3K9j2c+J4gSvh663/algjA4br5bpd2rWO7befdzK+7gH39nv/PZ9//7UnzyDv33bUZ78hDMqbuLq8U1XqGzHw5leDid78mEHZvdr1qC21WVwfAP4dggmf+L7WHdAPxZsNvhvdi3X6cOW+rYdgud4r8H0s5QJmCRMWsvH9N+8rWT7yfeZC6z13ifZW++aiNzzkQ9Z5IH3W+Au55Y86nFXc/HPSHFT1lZOH6Gy0Yuy1Ydw1gxKQ38fYZ0XYqNjTPdtVl/dBoOObPcUdqqvSShOD3zTyxJyYboRNrgnawbQU2GWnrDeeW1ynzc9563udwa2dD2P5X6sA5l+5oMt02DvSctZkPaX2rvue+9VCd1xW2GjyszJfnruNuvrSRQ6SUsBuPnZBQ9/8OJNXls5lV7lOeaYY449AxG555GjgQferysC+rSfPINf+90bmOKGu0nh9Dnx9WYnPfV62t4bZrcN2lffe/vYxKic4DJ5vd6MH7rlQbuZv07NyKb7CbO1l7S9TP09Hmxl2/x6rqNpzZwBb3WGvhVs1by3HdhAEzkhTeFYzGHrTQM304radutsv0X09yu4pukdX322Oqzt1xpNx3XfNe/cLFObm9rHrHd7Kz6dbUKupSQkbeUpP3nT1VZOf6GS0DNbZSat9cxZCSLdB8D7Y/cpbORgXreP2n3ClAku9SsJrrx/IuCdCR0nswXMsTpEj8Ms0w4+bqrtVkyBW+3XseJYjrWewJg+n43a5jhem8AW+7ztQiTNa9ZMqrJdb/aMeNbcL83NXe3CbNI1PaFKcGt9Mxtih4VL7kuZxtOfeAYXff9N17dyegiVoDDOGM9F1s7apyHOnmqZ8ZRuZUCdtb9114W+FpRmd9NaT67dTA/CqW1POwhdG++7tk2gffvy6zDdx42E47Qg3MjnQzxcFGIqYoNoJpDXCJmN9pUwcyCQ2QPbrLYbaYjrHP+4BUh+XsfjAzleHOtutnC9r/innz/+/uwQLrr78zZvNC0ApzUZDdsmXGZpKQk3dW1lV4WKiDwV+HFsXvQR4PHAIvCXWNGjK4HvVdWvbbijENBDh+27c0hRxNl6NiBng6RqQNIAm9p53w3qmwkkWDtATybdNrmGkR37sq/8Dhce/FE7ThR8kh83bT/LYT71wqgGaC0PLgqSDdATLmmAd2vPMRdm+TZNfs6Zo36WBuKjIHFu04G5h3UHhNnN150przfb3eT4a4TEtEDM121xn+thTejt9PHX3XCrB7CGV7zn546hV3sXl330Vzdcf9F5z7YvPRN2FCJNgLq2caJp1t/JFrGRlpJwU9ZWds1RLyK3BX4WuK+qfgOmLH8fVh/jHap6F+Ad9OtlzDHHHHPsNv7n47//wIYNbn52wd3uMgC4x0np0R7Cbpu/CmBBRCpMQ7kaeC7wkLj+1cA7scJO60KbhrC8bLN+78E7mmuvxw0GaJyxrDdDEe9BHOIEGQxaX4UURTcTT6alOPu77L9eedwnfPmNf3jc2x4PLjz4o/ZllmkNTFtK/pdWU3P2SSathND09xFcN6OP0Gkf1LTmxewZuWxkqsqdv7m2xjFqP8eCbH+iOluL6GlQM46zjkms3dc2GUb2ornqZOOyT74EgIvOfVp3z6vaTM1NQCcTtK470/OJQUbDzW/eaCQwN3+dPKjqF0Xk5cAXsOp7b1PVt4nILVX1S7HNl0TkFrO2F5EnAE8AGLGINk0nOFZWAAiTjSvLXhFevz0ns4cxS4i1ggZAHSoKKvb0i5jJrjUdsr4+m0yHyVQ25f8RgGbKr+JAMkGjU3+7Yx3ju7iB9W+WqWkm1vPLMCX0NhiXZgqfWSa06WbHYD47XUxaO4HLPndJ+/3Cs34CnUygrglVPTuK8jjRaEO1iVUrbOPxTiXsmlARkTOBRwPnAjcArxeRH9zq9qr6KuBVAAfkLEXcug/NTUF4HAtyQXPhWT/RaSNBAe0nQzoHmvle8rDnJmQajm0jAHVm157hy7n8P1+4bt8e+S2/PHvFJoOuFrZ+jeM+bMFXMUuQpRiILQikdSPdNtwoO9yM9poJ8re/ey5EjgeXf/X3eIT7nh3Zt4XCbPxs7J28/5OL3TR/PRz4nKp+BUBE3gg8EPiyiNw6aim3Bq7dbEdSFBS3vGUc6Bp0ZdVU3aBo03DhmT+OVhVvPfLqnT2jUxCXf/X3er8vuuVPrTVZzXJ8SyaIQtOPZMsDAYJy2SdevOX+vO1f/ve66x75gBesWTZtSuoEiNhb7VgbFjuNuE0obSRvAwJVu1OfmRuR7WMTgZILp82E3FwT2R48svw+0mTTDQbIcGgm7utOfN9KIGwa33zTFCu7KVS+AHyLiCxi5q+HAe8HjgIXAy+Of/9m0z05gcEgaiolsjBCmgBVhS6v7NgJnI647Mu/3ft90e2f3B8oQ6bJ5C9V0zc97ATe9s+/MHP5I87/lc6cllJ3Ap2gUUDXH8jDIAkTbfchbeKe2j+RvgksT9zLkQlg8y/NaDMlVOZCZOcgTkBK3MEDUJZ93+IJoEapNjFvbabJnK7YTZ/K+0Tkr4APAjXwIcyctQ94nYj8GCZ4tk1/vejmTwQstHeOOeY4PfEI/1gTJjuIgNLMzV8zsavRX6r6i8AvTi0eY1rL1jFtqilLGDhYWkCWFqGukbppEyQvusuzuOxTLz2hvt9UcCKRbicLKfrp4Q96YZvX02ob0GkcM6CFI8YpWNPAGlPZhgmWCVlAg7qUWLuxrwT2tr/kolv99MxzntZm9woeWX6fRXNGSFEigxIZDWFxwaI4twmmp5+4UBGR2wOvAW6FPUWvUtWZL52I3A/4F+CxqvpXcdmVwGEsfKTezjoxx4vdDinePrgY4qqNJTp5bwyoZQGDEurGHqw9RJs9x/YiDdAPf/Cvbvk+v/1dlqn98AdZ8IAJI5nBE7fJ/nKfyjoCBUxoqdubwuSic57KZVdeat9v97Prt7vlTwF7R7g8cvC43m+3MELKEtm3BIWHouibLbcBjSrVJvsKWztWDTxdVT8oIvuBD4jIFar60byRiHjgJcBbZ+zjoaq6DZ6i7cHpI1QSNYgrTKhMKgt5LbzZtodFS9M9FyynN5KgOBaoE1rmdacz2Xs2xbTGvIFg2au46NyndT96tD8RmVnpops/cddNyRcsdRVfpYj+1EFp1orhYO092CZ6nGabzF8xfSKlUBwWkY8BtwU+OtX0Z4A3APc79t6eXJw+1PdNRsWSHqjBwEwRgDTamTG2i3dpjtMG73jn83j7u56HVAGpZwwH00mds9YRI7vS5jPodfY0ekmxzmb4MZl4PZ645KfcDaR8K/G+NXPJcGDvv58a2nLapG1AUGg2+cS7/p0i8v7s84T19iki5wD3Bt43tfy2wGOAWRJcgbeJyAc22vfJxOmhqShd8p1In/erbaNmAtuMI2uOmzSueG+Xnf6IB/4KMCMEeKZg2clenRzk0XsX3eEp/VByEegV0dobMBYNTADmOVRBzWLRNtzeGzQV+7huG+CNqrp+nHyEiOzDNJGnqOqhqdW/BjxbVRtZex7nq+rVMUn8ChH5uKq+e/Mz2DmcHkJljjnmuEnhwrN3d1LeqFBtEKYOW2fpF5ESEyh/qqpvnNHkvsBfRIFyNvAoEalV9a9V9WoAVb1WRN4E3B+YC5UThtBFdmRq+rozTA09p+Qcc8xCrrVAp7kAm2sm03xn0RqzFx30s3DZF34NiA77PLcjq+2ju01DElm2pSz6vHUQTV10Wlbh+1RCJ4gGodnkIdAtqK9ikuIPgI+p6sxEL1U9N2v/x8Dfqepfi8gS4KIvZgl4JLAOJcXJw+khVJCeDXVTWo49pL7PcepgWsjkeMT5ucDpnr9TPbHxsqv+DwAX3fZn+iuCtqbkC/ZdfNLYKi667c9AiKUrCheDcYq1SY0pUMK7NYSw24EAWxAqW8L5wA8BHxGRD8dlzwPuAKCqG0VC3BJ4U9RgCuDPVPXyrR1253B6CBWhJyh6tzrZV0NWoMd5Lvvsy09mD+c4zXG6MwVf9sVfB6ZyV5oG3SbH90a46NZP6n4k4ZGEhcsES8xRomk6oZKWJ9LTbUKDo5pOOppC2MQ8BqCq7+EYPHKq+iPZ988C99rqticLp4dQgTVMsG3ocB0pZeOLMBcmc8xxAoiTNG0ao5OPzOCPcN9z8ohb87yTZNLKC845Z+99KtI1zaK9DQgIzSbBszfVkKDTRqhorDZoD322wrljIjScY4451kdKeLzwwOPRKFx2HN73835SdGfOdFA3MfTZdWYv7YSNbhPnV0JQ2YImchqEBB4HThuhMsccc8xxsrCNPpXTDqePUAnQ3kYHGkxzufxj69fumGOOOY4Plx/6I4BtrVey3r6K29y61VJS4MA0LjrnqWbuSlVMJVI0xe22XKhti2jUU+nGw2c4jXLLjwWnjVBpS746IGxcCGqOOebYHlwRXt8Kg1woHIt/ZTPBVF/9pU3313KWnfNUM3vlfpeEbRQsYQshxXOfyukCEShumrbMOeY42VhPIGzFcT+9rXiPFJFipQmE8erMtrkgm8YV4fV9/rK2Auj2aioBodkk+ku3EP11OuK00c+09Ba3Puf1mmOOk4LNNIyN1vfWicMNR7jFRePvKiNlfVEe834vPPij6FdvsByaxAfYZJxf05xgx4kaR4Xf8BPmjvqTDxE5A/h94Bswh8iPAp8A/hI4B7gS+F5V/domOzL/yYd3PZl0jjnmOAa4hQXLik85J9D5Qby36LItZu7nQuiyz76ci+70jHgQafNZ1G/PQB/Uba6pzIXKruCVwOWq+t0iMgAWsWzSd6jqi0XkOcBzgGfvZifn2Pt4+ccuYCRVz3n61K9/2y72aA6YbQbbTuf+Rsctzrnjju1fkU0d8XOhcpIhIgeABwE/AqCqE2AiIo8GHhKbvRp4J5sIlbvc/TZc/v65lnJTwm98/Nva76U0wGhNm5d/7AKe8fWzahrNcTKRhMi0cHEDq3cieQ5JKiFQ18ekpdg2Fc3hqltQ+C7xMfpUpNke30qtjoluXElyKxn1pyN2U1O5E/AV4I9E5F7AB4AnA7eMhWtQ1S9FSuc55uClH72IfT45b/sv7KKzUtGLMqbB4QkcDiNe+fGH8+S7vX1H+vNnn/5mADwBJwEf432+884f2pHjnerINRTxHsSZQEl+0Kw6Y56tD51pS+tMaBwLnHDZR381HuZFx7ePDAFHmJu/ZmI3hUoB3Af4GVV9n4i8EjN1bQmxIM0TAO5whzvsTA/n2NNw0s06R2KDjZfQ2rpNg4Hf/cSDqeKs8n/d7e+35div/dS3sJ55/q2fuzsAF5w7Xbzv9IZM1YDXoOtqGuZDmSoKBmsFijj80qJxjNX1MSUU1p/+7I5Rx2yFpuWmmvy4m9FfVwFXqWqqcvZXmJD5sojcGiD+vXbWxqr6KlW9r6re9+Y3v/lJ6fAcu4tSGkZSseTG7PerLLkxnmDLnS1fdGOW3Lj9veTGO9af/W6F/W6FkataLeWmhN6ALWuHkhQiLEXZW29mL2ccYikqqy1dbJxiiMPv24c/8yAMSqQsLfdkjyCo0GzyualqKrsmVFT1GuC/ROSucdHDsLrMbwYujssuBv5mF7o3xx7DKz/+8N3uAgCv/tQDee2nvmVLbf/+yrtu3miOUxKNOiotNvzMfSq7g58B/jRGfn0WeDwm6F4nIj8GfAHY+VCROU4JDF3VagVGPe4ZuYpSGva7FbzYrDdpDUtuwCTSaSyHAQB/+Mlv7SWu/eRd37WlY5u5S7HatZiWFE1tjrCGVd1F48ffX3lXvu2cT5zoqZ+ayExfZhrzSFvy1yhVeqHETYNWNeI97uCS1UwBKwbmHeKHRpixvLylw+8ka3JANs1DualqKrsqVFT1w1ipzGk87CR3ZY6ThO96708D8IYH/taWt7FIL3O+NyqtKSX5UVwUJm3egEBJw1nuiCWiqQf2t4Ilx+9+4sEbCpY/+/Q3M5IJMARozV1ppgrgCK1AA6u10dAJt9NZsLTZ7RrQ4DqhQfSpRIgzIZKWiZNe/ggADVbFMfpmZlWWlNEQN5VtvxsIbCVP5aaJ3dZU5riJ4jc+/m2saslyM+R/f8ObN2wHphkMpYraAtGXUrftKvXtOtQG9gNulSWZ0OAopaFSz0QLKvWs6oDDjYUhv+ijj+K5d38Lr//MNwFwwK1wNAyjI9ZekQN+FUdgIHXroM2FSdKeko/HhI5vgwXedeV5PPicT27T1dtb6AmWFLA1w8fSai6yNoQYiEW34u9ZtCpxnSwt4BdGNDfc0K1aWEAWRoi4k0LHn+7vRtgsOux0xVyozHFSca8DV3HL8sbeC/kbH/+2DaOySmlYdJOeEJmGF6WUGk9gooWZphBGKJ6GJZkwwTOSmlJqVrWklH18enxLAN74mXszy8VYRiFi6Q2+l/A2kgkO7ZlBGhwlDQNpOKoDnCoDOQk1R3YZydTUhg0nxmDoaS/tb+mivdrw8Fyg5IIhRZUF7do4we/bZ+t8NKOJoHUNTrj8uldt9yn2cKpFf4nIdwIvAW6BXXCrl6t6YLuPNRcqc5xUHCyWuVV5I4eaESMtWxPWenCinOGXWxNXMil5UVz8HjC/RqMOhFabMMERoqAxgdAgXFufyXIYcnV1Bncdfqk1Y6WZ5aGw0Jtllpl2ArQaS9JCUNcXLOogy1tJ+7gpYJrscVqgJBOYuADBoVWFBN8JDp0q/Z2WJaRL6sSiwiSaz2Kl150WJm03VE61PJWXAv9DVT+20we6aepnc+w5POc/vnvNsld/6oG70JOdw3s/f6fd7sIc2wSrp7LxZ48RSn75ZAgUmAuVOU4ybqwXzUwlikNpcFw1OQuA5/+/R7ft/vCT3wrAGX6ZkasYSNPTUuyv+TRsf51/I2kVR8OQa+oD/Fd9Fp+Y3JpDYcRHVm/PVZObsejGfN3wy62WUmmBS/uK/honodWQcvS0lNiPHCk4IJnG8rob7/v8ubzv8+ee2EXc48ijrnTaNxL9Km1iZF2jkwodj+0zmRhFSwj9HJb0ydAmUMYa9fVXrjspvGLQVX7c6LPHNJX3i8hfisj3i8h3ps9OHGhu/prjpOJ/f8Ob+dvP3tMGbxfakOBrKzPtPuvfv4fzFq7BAYtu3CY7NupYpaRST6OCF20FQvrdZHkBI1dxOCwAZno66JdZDkNuVdzYM0W1jvZs+ySUKi1oVFqfSCm1hQ9PWcsbddHvYmunTV2V+k3NfKcbrgiv5xH+sQDR3JWoWLp5bBcJFqDJ1iWHvHOt815y576bEjCq1Nd+ZcfOZRa2RNOyl5wqcABYBh6ZLVPgjdt9oLlQmWNXMJKKCs/RZilmwk/4ar3Uri+lZhAz6EsavGjMDbAXuVFzlKYXu1J6fo+qKRjJpCcspjWKtC5pPpUWUThIr02nWZk2FBBSmEET/SmroWyPnxz40OWrtOzJUeC87/Pn8s13/NwJX8dTDpkDH2b4XKYFincmUFqhNCVQnOs79U8SLKP+1PGpqOrjT9ax5kJljpOOVS0ZSNPL8zi7OMzhZsQdR9dRSsMZfplBFCxeAqgN0I4QHe4mUJJ5KqhrzWNOps1ks6eMjUrMfo6/M4HiRVuiyFlI0WuWhFmwqoNWQE20YCB1T6NpYsJlg7AkRn6ZfCwPvONnj+9CnkLo5afMQlZbXpyDorCclemiezm/WG7+ynC8ZY2PBVsKKd5DQkVEbgf8OnA+pqG8B3iyql613ceaC5U5TjqCOpo4YCduroE0nDf6EmCmq5GYH8UxrV2YgBkITNbZ/zQPV4rWmqQoryg8kh8lRPOVJ7QkkU0UXKSIVw00MaQ4GbKStlTF3BeHRXwF3EzBkjLwVylvGtFgU1qJLVIkjsWzTGKJtbjNtE/Z9iHY96SpeAdlaTam1Z3jd1sPAdmchmVv0bT8EfBndAwlPxiXPWK6oYgc2mRfAnxJVc+btXLuqJ9jx/EI9z3t7PF3P/HgXe7NHDclPHLwOB45eNy27zflqWz02UuaCnBzVf0jVa3j54+B9Zh4P6OqBzb47AeOrneguaYyx45hvUicMkZPeZRmKpfDizKSCQNpYtRU0iACo1j5u8JHTYDWHEZ0ps/KcgeYaNHzx6TjpfWl1K3GkrQYMO3Caehl66d9dPsz53yKUsu1kICsdewjOHVrfDynG9qEyOiwn4ncOZ+0EJf5UKBbBh2tS9JkJhN0ZdX2s0FBrwvP/HEu/9rvn+gptWjUUW9i/tpLPhXgOhH5QeDP4+/vB65fp+13bWF/67aZaypznFQsRlp6LwFHaAfvkas4wy9zljvCfrfa80E0WT1wjzKSmiU37gQKJkxSaDHYSz/JGWOjsJh2wqfw4Zykcqxlm2uwGkrGWrIcBlOfYdsm3xekqLHu1coJLFMk2WalaE9FXHjg8Vx4oO8PXk+g9HwryZeSBIXPCndNhxV787ckJz5liQwGuLJYY2qTokQGJW5pEYALFn5oe06ULVLfbyH6S0RuLyL/ICIfE5H/FJEnb9D2fiLSiMh3Z8suFJFPiMinY/n19fCjwPcC18TPd8dla6Cqmzr5NmpzWmsqD7nopQC887JnHfc+Nop730kW1FMd09ctv1aVFlxTHeQMv8yqluz3K5Q0M8NuU5Z8+53O9JA7SpO/o3Xka0ejkTQQoO981y6vpdKC1VD2BIAFAwirWq7pV8711VinqMRH/01Dg2PJjVuBFRBQh48amu1jb8WcnghyYXLhgcdz+aE/6q1PBbx6FC3QFyhl0WXIF0UXkyvSfU9/k1DyDs44AMvLSDAWaXGCLC4iZWE8YEFNm9lG6BZ8Klu8uzXwdFX9oIjsBz4gIleoaq/Cm4h4jGblrVPLfhPzi1wF/JuIvHl6WwBV/QLwHVvpkIjcDbgUS8f5WeAXgP8JfBK4eLMkytNSqDz0gpfYA1Yc/2xwK0lUj3DfMxcsM7DZtfv3ZavU2eC48+DLjKK5yEJ6JX7vBEaYirTKBYat7+qFT+erQJ9RNpmzUtt0rKNR85h28ltkVzSFpTBhMRNcSdPazZNT3xOoYsRao4KL9vUlN46h0Z0m5daJSjtVcOHBmRNdAC7YdzE6Nge6OFlb6RG6SK9ZocNx/ZrvTbCwbOfAR+2l8Lgzz0CPLqOTCTIcIoPS9i9i25TbO9TpNtG0xNLpqXz6YRH5GHBbrLZUjp8B3gDcL1t2f+DTSWsQkb8AHj1jW0TkTsArgW/B5N0/A09dR+N4FfAyYB/w98CzsbIk/x34DTZhkT8thUoLVbQ8/cwMpzJ+6C7/0mbL37w4xEjq1sTVG6AjUkKhfZc2l6RbL230Va6NQBQgKau9zWfxve3TsnEoaZBWcORZ8FWIUWMpwz7tC8ueB/CqFkkWtagBdStoEmux1YJRGuT0I5lMVRmbppf1lwTKzPBgaM1dPYGS242m81IixxdNY1pKE3nCRkMTUEeOIoMSrWurFpm2HazVNk8EtQrVJkIlajLfKSK5M+dVqjqToExEzgHuDbxvavltgccA30ZfqNwW+K/s91XAN6/TnT/DtJrHxN/fh/lXZrXfr6p/G4/9AlX9i7j8b0Xkl9bZf4vTSqg8+H+8jFDImpO6749dwvv/4Gnt77u8+FIAPvWcp57wMefaimEz7SQJkv1+BVg4CT2aYydwwb6LbbC+iUN1Cxn1NjF5o6r+7832JyL7ME3kKao6HdL7a8CzVbWRvmCepQqtp/6Kqr42+/0nIvK/1mmbRyBcMrVubVGiKey6UIl2wfcDX1TV/y4iZwF/CZwDXAl8r6p+bbP9PPSRL4FhnEEuRfutwspZtuzeT7qUD/1mX4ic9yuX8smfP3HBMsex4WbFEUYyoZQmsgd3GkquUeRIyY4t23DWblr7CAhOtNcmJUqG1l8i0dcSzW2hWMs0zFQWftxH2qZJJjcUn3OBRSqXEP1BHjW/TKDNy2mQvcWNfhyQwaCf6Q6ghVVvrGsY2PgjPrIQ9zLhu+89P0raV+5HcQLOmw8sLQtqWkoI1jZqSLK0aGavwYDLvvBrO3buge1LbhSREhMof6qqs2hT7gv8RRQoZwOPEpEa00xun7W7HXD11L7Pil//ITry/wJ78h4L/N91uvSbIrJPVY+oaltNT0S+Dnj7Zuez60IFeDLwMYybBuA5wDtU9cXxIjwHs+ltjkbRgd3oUAgSwDUQ4vh0nyeahsI5LVvGlrGmXsQcLbZyTZZi1Fde6GoS1j5+eWJibs7KQ31zIZIERhroPQoCjZqvZVULxqHEoa2ASI76XJCkDOlkOuuc/BK30dYhD1PCRgIOwcV2idxyoh5PivpKRJOFhTJHp32zTQPTTuKChR8yH4X3uH1LnXBIYb7TRI8xKbG3dJIFYaTw4VzQpMiu3HfS7jBFfZUmTJIgSaYwsL+zzGs7hEY9Vdg4pHgrNerFJMUfAB9T1WmtAABVPTdr/8fA36nqX4tIAdxFRM4FvoiZtKaTcj5Al8IL8JP5roEXzDje767Tj08DT9nsnHZVqETqgG8HXggk+9SjgYfE768G3skmQuWTn7yG+5wviIJfCTQjRyxpgR8rZQ0rhbSX9T4P/gQffvtdATj/imfzT494yZp9rmfSmq4XcVM3fW1VyCaB4iVkVRVnw4RB2dMW0qC/qmVPiKTvrd8jywtJWkwds90Thq5u1+cvfsBR0x8oktBJ+wxqWlA+S3XqwFlfgji8s2MtOotJM42laeu6jKSCTOPZi7jwzB/vorJyTP+e9nnkgkG1EwKFX5sRn7SPhCQkgk75VRwUHi09UgcTSqmQV1Balc9JXxjtIIJuLjS2mKdyPvBDwEdE5MNx2fOAOwCo6u+su3/VOpqw3oqZrP5QVf9zqs25YmycD1DVf9pKh2ZBRD6oqvfZStvd1lR+DXgWsD9bdssYEYGqfklEbjFrQxF5AvAEgOHwDGNEEFAvqE/aCviJmnCplGYgSAPXrS5y6wd+kdX6+GzDN3VBcrxoaUoiT9Z0VFZCE4VK/tKmEOKkmRhbcUYgGYVHo0IdvEVoqe+F7RqVvULoNKJ6xmyzbYeFKoNpQBauHCnt10SYiTnkEZwGShr2s9omWJYZZctEfSco8Xu+hr07sK+fN7KOhtIuS4mIuXAoyylSyCxZsVeEa0qgAHiHlvE+VXW3PhFJ7gIdsCKbmr+20itVfQ+zfSPrtf+Rqd9vAd6yyTZBRF4OPGCrx5mBLfdx14SKiPx34FpV/YCIPORYt48RFK8C2H/wdqqloE4I3ih3JIB6CF7as0zjVhVshiqneEjnqYIrwuv5y0/fj4lYMuHhsEDITFlOQhsVFTI/SJNlnafosKSxjEPRaQ0qjDNTWh1rmUCK2EqMwYaVZtBqCblQ6fJX1ob7eiy6q3TBZqnRb9Nuq5ppMw4v1RoyyqRFbYU2fdeRtJRc85gWJrNCfqETFk7MXDitlajSFrPPt5tVlx6gqhBVdGFgfdApweNS1chgx6pPTo36WROSHLq3uL/eJiLfhQUOHM/At57/ZQ12U1M5H/gOEXkUMAIOiMifAF8WkVtHLeXWwLU73pF1TGBzzHGy8JbPfQOPOvf/7XY3ALjw7Cfsdhd2BA9+1EuPYb69MSxPZVvMXycLTwOWgFpEVmHrNepF5ABwSXL6q+pXN2q/a0JFVZ8LPBcgairPUNUfFJGXARcDL45//2bTnUnUSLCILwX7TyGU8C9/+nTu96OX4Gpl8P1fpgmR2iObaZ5/xbM5e8E40m4cjxg3BU1wlL4hqPDPj3zx9pz4aYZpH9Os9WBVGK+anMVXJvtZ8BOcKLV6quCic7urbTJtlsrp7asYypk0k7RuEgqKrFJjg1DGaK+gXcIiU7bw3IQR8oizRLUfNZ0mZsQ3qh2lfuanyYMAhq5i5Ko2+msQ81QQcDRtXk46/kb+pd2ClEWfJXiWdpL/zinoU8a80KmH3pkJoZmhobTfp30p0tWfr2ukKdFBjOxsMv9LOrbGv9GvctFdnsVln3opD/72lxJK2darvJXor71kB4kkkMcEEflJ4JeBFeyUBTutO2203W77VGbhxcDrROTHgC/QUTWvCxVzwucTh/e+7unrtp82e21FTb3fZc+j8PawzgVMH+sJliRQfuEjj+FQfXvef90dODIecN5Z1zHwNZOmYLUpcKI4UYokPBDqKGzS8qDS0o2HbJaY2gQVChfafTgJBNf0TFp5XZUuKbIzueXmqlIChWtas1c6VimNCUFC3/yVDSEpQ98o7htGruJm/nB7bp5uQMoFyls/d3cuOHdNMvRJxUW3fhJSFF14L6zvO/Gu840kB34a5Ge1hyhwQhf5Ne0fEbHti6Jz7MfIrtavoor6GKqc7lkeMFD4mX4WzYJ1ThRbomnZS1IFEJEzgbtgliEAVPXdG2zyDOAeqnrdsRxnTwgVVX0nFuWFql7PJjQA07jbnW/Je97wjA3b/NsfWnDZ+Vf0A8kskqf7fv3qIkEF7wLeBTR+r5u9N5vcq0jC5IJ3PYUH3OxzgOPKozfja0cXUBW+vLKPqvGsVCVN4/A+ULqmFdqqQuEbCgmIKJOm6AmRNClI650ohQu4YAJo4Btc9Le47MVPUeS5MOgPDJaH4kUpXEMpDaULFNM5KG3xr9mRRuNQMqYLAhm6iv1upecfytGoY7CX6qtMR3jlSIO+ywtk5VxeM9rncAL4tVFj0AkpJ+AcmqhViiltCWzE9q6LBMsxGFhAwdSorg50vSJhx4gmOOqwSfLjHvKpiMiPY+kbtwM+jNG1/DOWpb8ePoOVID4m7AmhcjLxT494SStYRPpRPF9ZsXK2adBIznwTLHts2rHHsFFEXKWez994JqrCcFBz3eGl1gQ5KBpCECbqmTTRtCHgg0NVaIIQgkOiMCm8Ocu9C2ZOiveqfcE9uGCCpq4H7frcNNZFoCYHvkaNJ8SywdNO+tBrPy1M8hwYoKV7SX+DOpbDsKX277azEOsqJnTuycJd04P/tAaTm8Vm5Yrk4cXJlDY9hVftqOzz/Tj62gygqYgXoDFfpbU85ImR2bHf9X/7hLIizzyGCzAbyraFFJ8sPBmjePkXVX1oJI38pU22eS7wXhF5H9BWQlPVn91oo5ucUPnWtz+LbdOB51iD+1/+PA6OVk55ssTdwis//nAAnny3TROXtx0X3fpJJ/2Ypyq2K6T4JGJVVVfFSDaHqvpxEbnrJtv8LkYo+RFgtlo+Azc5oQJdAluunsq6JhFb513YUobsTRmP+acnAQfb3yt1yVuuugfffIvPszIuzeEdzYiFNzOS92ENw7kqVHVngimLxsxcaJwcR00SgeDaUF0zlXUJjUV0sjtRcPawJ6qWpLUkDWZaQwkqjLWgUqUSZ2YwmpYcEojmsXoNhf3QWfZ4ypNZdGPTxNS3Rci8WGgxGnNwguPvD389d1r4CrCL0WDr5aAkU9c0i/C0w30981JnY8Yia/KQ4Cl24jRYBzoWqiktSJ1DCiAENAiS1jdrzV47gSbIKWX+Aq4SkTOAvwauEJGvMUXpMgO1qj5tkzZrcJNzFLzn4S9t7fLpk8KJVWXNByL1hguUvpk76dfB97z3pwBYLCccmQw5NB5xZDzklkuHuW6yhAa7npNMWAQVqtpTN54Q3FTgj+KcmbuGRc2oqBmWNYOipvRNm7WenPfJt5KQ/CyFC60jv57KLciFiMP8KOnTmdU8R5shh6oRh+pRmx8zDSeBUhqGrmrNZXnOjf0tWA6Djr5fpU3mBLjPvs9zp8G13GV4zfHfiBOBy4aD6VyQRKuS/57Vbnp9b/+ZEEpCpMhyYeJHnTMz1zRCsBHLy+yRa6q/l33qpbPOcluQB4ys99lLmoqqPkZVb1DV52P1Uf4Aq5GyEf5BRJ4gIrcWkbPSZ7Nj3SQ1lXwAevfDXgaYsDHTWH+G8Z6H79yDebrBiXLt4X2sfu4A4WYVZ519mMIFbpiYg76uBQ2OSkGcCQ0XNRa75J3vxDtttZMk1JM2Mn3M9Dd35reRZNolKaYIModSYI57hznzg7heJn3iEMsn1CEKAYCSxoobB9vfyFUx49YSNj2BxUge6ZJWQifIKi1i0mdotadFN259LyO3tmDZjmNa6/AzRu5pTSbXIDKhodHv0W03a/8d+0XPuJLaiqCFs/DhLJNfqsZ+p8CvnN4l7vuyT+zs5O9Uif4SkfsBZ6vqZWmZqr5LRL4D+EaMG2w9JB6x52bLTsmQ4h3HeoJiLkCODXf8g5cilb3o33wvMz2pCuHMisHShGFRc8N4ZJnxPlBVvkuqbjoNI7g08bS3MJm4cnNXEiiF65zmuaO9ziKqZtGo5IKlE0AxvDVG35vGkOWlAIWzyK8UWhxU2hoqJQ0hkltW6iljca6DvjbT2FTNlFRCuQ0jVhi4BtSqVa6GLmJsRMU/Xvl1/LdzPn2cd6ePR3zrC9vvV7zn5zbfIJbqpfAwjgIuaNQUcmHTFxQqnRahwdbJtAM/tcvhunVJmOBcFDoNSAziWK2RMMO8nwTKNkV3bQaTY5sda0+Yv14G/MiM5R/FGEnWjf7KiSyPBTdJoTLH9uNLy/v54nVngApLZ65Q+Iaj4wFHxwPTPHywiBln2kh63yQb7JsgMddtyowlFu3V0ziicEjmrSIJh3XQjwLTnlaStKFU8hcCZRbNlcKLoastH3A0M3wwCYtuwqIb46NZrIyEksmXk0xkkyzhMq9auV+2t/ztlpBMUIOyF9IrkFGsuF7CoUr0Z8xClNlrBEhaN33s+FddJlBEYlSYIuNqtkDZBTTqehOZWdguavwTxM1U9crphar6aRG52U4c8CbnU5ljjps6HnH+r6xZdtG5x+yPvcljlg+254/dA+YvNq6It7QTB5xrKltEyhifMxR3EK+tVvHF686gWSlYOLiKE2VSFWbuSk50b/w5yQEPtDlAEFl11OxQaVkv0isuCyq95MFxA6VrWCyqdcOYpzWSZNKazk8p2mx5ZehrXDSF5XkqQSUWDLP+TCdDltKw6CbArEJjgp/KR8lLH6MFXqxMwFLcx8qXzmUonVnM3eqTm96Xhz+oM3Wl6sftnHkjQ78IDAfoKGPvToSQRMqWRJsS9yVgGkUb3cVUbgr9ddDPV8kjurIkR832oSJICOZbydcn66Wq+V5qo8LfaX8KdNryRtgbMoW3i8gLgZ/PiSRjWeC/34kDzoXKMWJePhjO/ZMXmbAoFSkD59z6Oq47sg+/zwTKkeUhTeMItUOcIl4JjeCcRgd9aMOHnetoVrwL7W+f+UxqdTi0ZxbzYmwH46ZgUhddtJd00V555FcSINMwMxoU0jB0dUvFsugnbZteMqT0a6ykpMcU+VVK08uOT9sm7i80UEo6hyTsLAnSq5m/znDL3MrXnOmGJ36zcqi2I90jH/AC3vbPv9Ctq2dwciWURTvIT/tH2sE/CY9pZ/wawWKRXclkpmWkVAnxe57smHOCJad93Zm/dFAgTXwuIo3L5R/+5WO+LMeDoK5N4F0PeySk+OnA7wOfzuq13AurtvvjszYQkQ3rpqjqBzdaPxcqJxFPeP/F7YD0+/f9493tzHHinNe8uOULvP2tvoqXwDU3HmBhWNEEYbWyR8r70GooZdEwmRQmVGJkl4sO90TNAlC60GomKew7CYUUuTX0VkarcIHFomK1KVipyl7EV75NIaF17tu62CYKmRRmXEZa+yL6P5Iw8CmPZWre2flGTNMZSRV9J5kWIkmgGFFmWjeI7Tx9/0BDYORqznArHHRlT0NJCNect6G28ohvfeEaS74EegJlpg/EO8vxkKh1+E4gaJY3kjviuwMkwaJrl+d1WOi0EcVqG6lzFgWWRZC1iqgI0iiurq2UZ9reWX0V26aBGBDw1g9tliC+jVgnknqvQVWPAt8vIncC7hEX/6eqfnaDzV6x0S7ZmNplLlS2is3YeI8VF//rj0VG27qdQf/Wff5k2/a/k9Da3vpDqyNWxiVN7RiUdaRTgaJoemwbhW/QEgZljKRqw4Np802mw4ZzLaNqfBcK7AJ1cK3AGLgGys4BD7BYTIwvLNY8yYkiW4d9MoElsxpC1YWhxUgtq3NvJJKhFSBraFti+LDPTGW23kKFSxcYZJFgI5m0Ws6qlu0+ltyYm7llDroa13H+HedNmj3i5QLlkff/Zd72r/8bgMuuvJSLbvezsLJqpYMHZecoT0jWvFnaTLrZM9iMVQTxGp3vvg0BVsEEiov+B2chxioQIhuxX60haic6KAijklBYkqUbN22/0nmcLGyNpXhPaCoARCGykSDJ2z70RI41FyrHgO0SLJvVtt7L0InHL1a4InB0eWgCoIizdh9wibYpMzV5CRQ+MCpspp7njuSCpGUljssAENNKBjEhMc9iTu0HrulCjVEGrm5ZiGeZvSxRMbR/07JKPQRoRPAYyaVDbbl6M29lPpRBrOboo09mWqD4ZNbKzFyQmIlDS7XvCYyk5o7FYW7tFyhlI9/qZjdoI58JXejtrCCqwpsZbFIZ1fxwiBa+I3SEmf6MmetEWu3CBEfk9vJiXQyRVy8JFKxvooqI0IyihiVCWBqYsHFCGDiCF7QUfOEoju5CPg9bNX+dpM7sEESkBH4KeFBc9E7gd1V1w4s+j/46Dlww+oEd2e+Pv/9HdmS/24UHvO05u92FOTATWLjmvG3Z1wX3fT4X3Pf527KvmxJSvuWGn93u5Injt4FvAn4rfr4pLtsQc03lGOEGAwAuWPph3nr0Nce07avu+2oe/2+Pb3970chD1TAJe/dWPPTvnx6djgWDg+PWwZ78JmXRMPBNzyqSfCIpv6QJrtVKWoqV6VyTnKuLfm7JwNUUruFINWIQafGdBAbOtILkT7GckoD3a9mGkxksaSl5cbAE4wALrcM+mbBSGWOPUlKv0X7WQ+5XaTDuL9S0t5HU0bei7HeTqKXs0HOQFL9G1zrXE5oAVWXU8Y3CeIyEEvWDNmKrl3PS87e00QemsXhBtDP5qfeZqUvAx31FzanVeJRWK1EPoSjwVUDjPpuRQx1Uiw4/cozPLHjvX65fO2nHsJXkx73hqAdARL4F86Ucjr/3A3dX1fdtsNn9VPVe2e+/F5F/3+xYu1mj/vbAa4BbYY/2q1T1lZFb5i+Bc4Arge9V1a/tVj9nYqN6E5vgj+73R/zQ+37cBloVEOOXKqRhHAq+570/xesfuOlk4KThW976XBaiv1hVLHpLlEHR4JzVLvGuExSSOcyBVqjU0tV9H/m6FR7tJwvvhY43C2Dgaoa+jtt2mre1r1ohkS/PHevT62YV2krhwMl3YpUjrUhXhW8TGK0CZMFQ+haAJDRsX9ply6f10SjQKCy5ug09vpkbMxJhKG7nBAqAwBX/9PNc8E2/2Fr63ddWoK6hCVx0h6fYwjhpss4GCBNrXxZddFa7zyx0OBMmEB3wJW0YsBYx+k1MWCSnm2u6+6QxoTLEYlpaROFSCsHb8npBCAVUS4Jrdm/QzrkB121zkvqyRfw2kEd1HZ2xbBqNiNxZVT8DEJ39zQbtgd3VVGrg6ar6wSg1PyAiV2CUAu9Q1ReLyHOA5wDP3mA/JxdyYhbDB7ztOZxzwLX8U6nUrUc4Uplz9mH/8DTe8dBLjmm/r/3Ut7QRRgNpePSdPnxC/Xzo3z89DrhDmhjSC8YYXBZNW1QrCY20XkStSFY2kzc/R3SMizLydUvamAugkDnNXebYTgLYi7KQCZVUmdHaRI0i1jDp8Xhl2kcSJMkR7zOBlIQI0JbYchLYF3m4PIHlsDbMt1E3VRK4xku+vqsuOXIVSzJhJBUDGkYilCJ4hErrYxIsm0WCJVzxTz/ffpdJjUw2HRc6qMJ4Esv5DtDF4VoeL+d6vpS2Equ3THhrk4RNagNCFvUlJnjUC6Ew1uIkSLQQmlJoBuZraQbQDKFY2fppbDcSA8RG2GM+FcnzVFQ1iGz6sD0TI5X8LDYluCPw+I032d0a9V8CvhS/HxaRjwG3BR4NPCQ2ezXmHNozQuWtK6/lgqUfBuDCA4/n8kN/dMz7WK4HFC4w8lXkqfKE+PJ9dXxsTtrf/cSDAVicknWv/dS38EN3+Zdj7ts0RkXVRrkMipph6RkWNT7mhMzi40pRWrnDPY+6ykv+JsysTT+jeFbhml4iZBuB05YE7t7koELpjG9rmocrFyi5VtNkETupwFbIts/7DF2CY16kK1G4NG2ipAmdUmJCZeuwFw4HM8eVEmhQSq0pxc8MJ94KpApZEmF/3YX3/HmzCTjpwofFWVSXKi2DZorkykfFJsB4jHOWL6LDskceOS1QjG6FjjASuvYuCh3bOLY14REKR4gCJAyidjI07UY9VIsQhhBKqHckH3xrOIW4vxI+KyI/S+cT+Wk2iQZT1XeIyF2Au2In83FVHW+0DewRR72InAPcG3gfcMsocJLgucU62zxBRN4vIu//yle+ctL62h7/BExgy3XJal0waQpqtXog6W/uUzgWJDr1oI5DzQmGo0Lr5yh900ZSVY2niCUASmf08wPftAKkiLP/LiqrZuDjx9WMfMXA1ZTOtgcz/U1CwUpT9kxeSWAkfiWjiXdMQkGtnlo941C0n7SsDp6GTjNoVOIg39cm8nDQBqHBGIgTFX363rWxbT2h/Uyva6LvJQmNSotWoLTbSYj9MYGzqp6j6jkcHIdDwxGtWd44uGZDtKG18fRyLaVFYiAuPJRF35zrXUsYedl/vbIvXILC0RXkxqO4QytrOb1UW4GSjqMu+0R3CkLrIwlDTxg4Eyg+CpZSqBcd9dAESr1gmkkoQQsIhX1H2MVxe2OKlj1E05LwROCBwBeBq4BvBp6w0QYi4oELsEn+w4AnicimfD67LlREZB/wBuApqnpoq9up6qtU9b6qet+b3/zmO9fBbcT9LnvelttuJdIqVQlcDy//2AVbPh6Y2e0R73wqF737yce03Ry7h+2KApuFi87bMwaCDfF1Lzs2U/F2YGv1VPaOpqKq16rq96nqLVT1lqr6OFW9dpPN/hZzR9wM2J99NsSuhhzFOOg3AH+qqm+Mi78sIrdW1S+JyK2BzU78pOOtR1/DhQc2NS22uPtfP59B2VA6WmqRZMIZFdKaiFKN9iOTrdNzVJF6vfttSX83NItb3scsJB9IwPrbBHO0O5/MTxa11kZw9Vh9TcvJI9pGvmo1M8tyt20nsehV7pcpMi0mZCaxnGspL6TlUEJy8sfAhyAh+kVShcc+T1dCiuxK8BJigkQHJ8poyjGfzF2pdkr67lAG0eEPdswSWlr8kibLvp+RqQ/4YxyMkmBJ/pUr3jtDO4FW49CUpOgwLSV4xDnLUUk1UZK2MRra8qqKmawFhAZWx0gwU60lM0bGYtFWG0Fp96XRpyKqMcExmsCyU9WYTd+zKqXvCsGbldPMakoo19yqkwdlc01kD2gqIvIsVX2piPw6M3q0Sb3526nqPY/1mLsZ/SVY9bGPqWo+1XgzcDHw4vj3b3ahe5vi8kN/xIVnzqTO6eEef/P89ntAEO18BQB1HKyDCqtR2JRx4L7fZc/j3y761Zn7fdFHHwVYpE4bmZSZbcbh2G3yOX9WMjul7PWVyva3bzi2pK8YJtzENrkPJSUorjZFe35nDK1dOsegwsA3awRKQNrosHzWN41CXUyIDD2/S0IpoUcKmYpeTdOvhCmBkjvt02e/W2n37bUbxRx9n1CiXkn+l5Qc2dGyaBRQNaMoUMrs1EqEUhzlcQaDTAuXdTFj9zoqadn2k8krmb28Az/M1jlYHSfytradqEbXTHdSolFIuGjyIhMm0WFvDWlNYGBRYyJmQvKVtdckVAoIMUhNOoq2k45TJPrrY/Hv+49j28tE5JGq+rZj2Wg3NZXzgR8CPpIRnT0PEyavE5EfA74AbB83yjbj8q/9/obrz/2TF7G4H+O6igNn6RtK32WAT7JZ+Epdtg9qXnY3xy985DEALHpYbobs96t4lCPNqBUoy82Aoatnbr8RkqDL+5QG9MXBhHFVxAxzoamLHk9XFXSN437cFFSNx4lyKBMSjTqqxjNuYtb6VF7KBL+uXylvW8SM98I1LPiqDQWGFBDQtNpJTv6YU64gTU+wpHWLbswoEkQuuXHL23U0Rn8Nphz/OfVKSdO2SRFlI2koRXHAIEZ8OVxPKynF4XCUcmKMC7lJbI2AmSFQRNXono0KIS3tnPYJOdHjaIis1ujioHPAe0EL3+aZSMreV0Wlo0pW6Zz1RF8LgkV6pXV0gWNiJTpx8W8YKKFQXGNO+8/+7MnPU1mvivJeg6r+bfz76uPY/F+AN4mIAyqi/qmqBzbaaDejv97D+m62h53Mvmw37v7Xz4/CYdAG1Uwj1Uy30MTorG88TTAH9WYUEMvNkEVvgRirWnB9tZ/lpow11Qcs+eObwuWaU0Jyqo8x05p3gUldoEGMjQMb5NXZOo35A+kcggrL1WCq6uJsTOev5JxeXRvTplLuClikVuEahm3CZMPIVV0odBSyHmWYhQinMOO8cmPSTpLGseTGjKQyHjDXmbG8BKtqmdG9eAL7Xb9fDkvj8JgwKTFtpMDvbG4KU2HHcfC//D+6eioX3fU5aOER7/pMxBAFULxXYWoEFUGqGo3acjKphYFrC3fpVBVGlai5OIkkklmIscMc9UkbieslZPvJuyDrvFgnCRocusk7upXkx/Xy9abaPBp4QVxfY/7n98R1VwKHsdewVtX7rnOc84BnYPl/7UOnqhuRQ74CeADwkTwceTPs3TTu0wDDxaqtEQKdVWDc2GVPZXCbED9ZQtV4MvvWrISBER9iJppl9ayEAV9cOchyPWC1KRjXtu07H/byY+rvrAE/H9D/7aJf5X6XPa8jnm3jQoklwj1NcG2dlJzjq1HpaTYpuz75X/IEyNSm4wLrWIML1/RIOJPGMYwJhXkOSulqOhJI+zuLmn7kKuPfchUOYxxecl3k5CiarhoRlpi0ZiyPxu8wyq7TSBxlighD8QguGwCHUuy4MJmFXJi0yPwsa9iLp7Ln1/CFNQ0yrtBBTIx0Qihj5n16jjLtJJm7tIjEka7TWixkWFq/ifF+xW19jPgaAApSCVIKYbB7qoKyuaayxd7NzNdT1Y9mbd4BvFlVVUTuCbwOuFu2/qGqet0mx3k98DsYDf5WE5U+Bfy/YxEoMBcq24qvf9MvAf138URx1zf+Mp/4zuNjYD3vr17AZNlmklf+8IlH8jzsH54GJ8qeO8dJx5Z9LXNsHdvkqN8gX++jWZsj2SZLW9vzGtSqeqxUHV8C3ikilwHtLGvKB74Gc6GyTUgCBbpZmnOhnbGnWXrSSsCyz5vgULUch1xLUJX2yTnntS/myh+yEOMj9aD1AXwlZpAfrYdct7rEcjVgUnuq4Fleyeg2tojklM/7MW16OuPbP8WNb7lLRzMTkbSWlPmetpVs+7xGSuIAS879Wfk5LmXGx/WlayzPJZql8vonyXSVtJGcpt6J9hiFLZ2x0/ZGMmkz3UupKSMv14DktNeeK2KQzRrMtCWUeBxCQFvTlo8Od7f7kfvAWuFy0dc/F1StYuI03DozoxQdBlDVyMrEzF77om8ld8G4vqmr7UcZGYdLWse8+VTMrwLmqFdvbZpB1FZK01bUx3wYv4tODRV0k4z6eC2+U0Ry5+urVPVVs5pP5etNr3sM8CIsb+/bp47yNrEX7XfX2zfwtyLy08Cb6AuIr25wBp+LnwEpKmgLmAuVbUSvPG5mylJV6sahsYhRMgvlZqJZScyqwmS5H8VVq2ccQ3OPyiBGjZUsVwNW64Kq9nasKMjEbT3mcpZAmeUHsUJ93XlOX4NpTAuXEDnPCI46Ofa1L8DS96DOwoU3mZzNyo6fFUIMlvFu1Ra7wllAK1Cmi2d1x7AILftuJq1k2vJxoPUIQyn3jCBZDxd93TMt8RGsgNY0p1fyoeRCJPF65aay6LF2dZy6q7YCqRmYcz4JF4vgMkGhzji8miz8TQv6JrH4O5QmcNRBvaCEYYBSd5WvcSsZ9TFP5Y2quqmpYbN8PVV9E+Y0fxDmX0lJauer6tUicgvgChH5uKq+e8YhLo5/n9nrItxp3f6r/tJ66zbCXKhsI/KHTERZPTqgHFnIyqSStlQumFFzegDOBYpzAYLDD/qzyHFTcKQeUkhgtSlYjRFWK1VJ3ZgWFJKDPMTiSFvABe96CpZ7omuEiBOFb7uq/Z18K1UWoSaibepDA1k9k6i9TAm3KgYE+Fh0y4m2NvtUN6XVYuj8MnXweJd+K6lyVGg6/03SWmDQi+YqpWlrrCDgaSINi4MAq1LSRGbd3Pk+IgoepeMGE2UkoQ0DtpLFQil+zwsU01gevX4J4fggXvbJlwBw4T1+riWMJCvnS2gAb4W3aosecypt9BcQKzkad1frNylSzkknOCDLQXGdEMFBM7L2HRMmNkHbVanCtsUMr5OvN/uwqu8WkTuLyNmqep2qXh2XXysibwLuD6wRKqp67jH05/mq+vzjbTMXKtuIJFQ+Hn0g57zmJaaJBAAhaN/EkwbiaaQ2IkpRNj01e7VJKX0WPVY1ntW6pAmJHoINo6s2w3R4L8ze379d9KuZD0ljWeBMkGCVGdO2sk6f8n3XdJFno1hoK+WN1OpwKgyLug0bruK1SE5zo71vqGJIbjKL4WoqtUe9TRRV1iQtVlq0uSumtayN9BpIY858V3NAJgxFW2NaKQ6UU0Kw5Pkls5AECsDl//lCLrzXL7TfEx7hvofiTueAF6RqIoux6znZwcb+pJ2ozwRKEiJJm4mCo81JiSaveiEKEQEttB3Mj4PNaBshmwu1LfRvg3y9vM3XAZ+Jjvr7YKao60VkCXDRF7MEPBL45Q2O9Q3A3ckco6r6mhlNf1xENmI3EeD7gOfPWjkXKtuEjz3mF9csc2Vj2oJY/RFVIb1vytqBNmkugc50ZqG6XZvXP/C3efR7/ldvME513zVWzcuF0KZ237y/a0J3o8aSaSlAW/1S/+obrayvtxlvEmrtuJ2lNaTzma5Bn65JQjK3TRpPcB33V/LD1OpmZt8nrQJH9zI7YxzwoWA5O7ecobgVPMDhMGoFTe6nSetT2eCB1BBgyVeM1QL4R6IEtYz+5TDBi5yUkOHjQaU1f/2u1/M//9t3dQuzLPrLPvHiNdtc/u8vWLPsivB6Ljr3aci4Mh/IpEZHA8KwsNryTRS44vATIRR2v+1RiCHBwcxenZnMPs0o+liGShh2pi4tFVwyvdl2d/z9lwHw+R9/5po+7hi2T1NZL1/vDgCq+jvAdwE/LCIVsAI8NgqYW2ImMbCx/M9U9fJZBxGRX8Q4vO4OvAW4CHgPFs48jd9jczqW31tvxd574k8T3OnPZ2fCHy/Oe8MLuNUZh3AoB7fO4jLHHHPsBHR7NJVN8vVSm5cAL5mx/LPAvTY/CgDfHdt+SFUfHwXSzOzt4/WlJMyFyg5ijWkrOvdUbMaeR4XBDKc3XYRYjpQ4OWl8O5Pv9tH/67boU5l2yudmsPVc/UEt2ieELgjBjm1mvdZ/kc5nKsIrL/qV9pey8QPS+lp6fYual0MZ+JpJsCx/75VKHVXTaTbjGdU0S2laOvyN6quMogPfvltm/chVVOrbPJfDYWD7I5AcQqsao9FUWBQloNGR7/aMSSxpT//3PX/TW/6oh31Pz7y1FVz2uUu46E7PgLJAGpB6FRgRBh43CYg3aiLRaPbygoTISOyNAUGS6p5cdNH8ZVqnoBJNX62GIh3nl3Yj8jm/Y3lZVz7xGcd2QY4DW8lT2WNYiTVUahE5gHEqruukPxGcNkLloX//dEaFveyXPeiVu9qXO/35r9qLso7AELRlMO2ZpySLIFMQZ4NzMi81weFc0wqU5WrApLGEw6r25k+JIcoa+bnyPn32+7fGkrwR9f7n/sImRvVqyUAnWcJ1F9FmbB8bR2wlAZPMX3lIcZ4IuVEpgHTMWh2hKXEbPM6pzDAOQuNazrBUpTHVXCldQwmsUsRseGEkVfSpWNSaUdaXGYV9IGhWhIzQFukKdnYQTWN7RbDMwlve8Xrg2IQKwGWffTkX3fU5KSwQWZ7AcBGpA6iQfOquETSGETuSKUy7LHvpmGH82MxgUlgIMl6RkKLPOv+LUb0oNHJyE+wDXQnl9bCbgQRr8X4ROQMzW30AOAL8604c6LQQKh+98Wq+Ofv9kHc845izybcd0kWn5DknquB86LLSQ+drsDD/6IReKRgsVYxi/fdUwwRoBcmk8W0IseW7SKsN5djqjGrW4P3WB/8aj4j0a9c98YGIHM3OMe6fLszYtUsy35CaH0PEBpG8Rr05mIRGOzqYoMIgCk+ns4VKEiYpUmxWVr61C1HTcVTxehfSmPagio+kk237GBwwkrrNcymjc96LmkAJJU1G+thoIIjEdqmUsVARqGJAQHLi73XBcrzI/TAXnfds3NEJzf6BEUOGELUPqyEjZRQC6YJE/0SkYgPATWL0l4JfzaLJAPUas/KjvzE5KqOAOef3XsaVP7Gz/pWkfZ0qUNWfjl9/R0QuBw6o6n/sxLFOC6EC3UCa2HR3GxoEbcy8A/2BPswYVNbUXmgcw9I0r1ygVMGSG5vg2nwU6Jz/ELUdOi0oVJsPYpc96JVc9O4n97i/rnjIpYA5ZL/udb+Cc0fM9CBKuVBZGG+MygmRniXQ5brkdeuD+NbMFNS3Wk0Tr810eHXV+C5Rckb+yrQm1KN1IfTadhUiHSlLJZUrNu3DdeawHulkFEhILCkQ2uTOhtraquWsDDLmi0qFBjiqoeX+GojgqNbktyTyyJzGZS+Zyo4Hl33yJVx0p2egQ496hzQBghFM+gBaCnVbvKuLBIM4UAeMRNKYXyhWaJmOgwcaITSgZRd2bCHHJ3mUP4WESowam152Z+DzqjqTfVZEbg78BGv5wn50o2OdNkJljp3Dnf/yhdtKPTPHHDuNc177YspR3frshoPjr6Y5E0G2YP7a3kOeIH4LuA/wH9gc9Bvi95uJyBPXobf/G+Afgbezdb6w00uo5GG233TZz1FHp+2///e14ZA7hTv+wUvxC2a3n2WKEtGthfmmcN7GsVKVrEbnap6BXzf95MPo10RSaK9CODxgcL3nk8976qaH3MgXpSo0jaQD2LIgqKqZqHyIvNixHTH5Mpr1vAuoQIMlL0qmaaSkySo7n0Q4qaq9RNFZeTRJO2k1k9wuh2tzXfKaK6mQl0v1UWICY6Uep44j6trEyTIW3UqmMHPql20+ixdlVUrTbKKz37ars2TJJi4LbXEuB21AgI/sxYDl40ix52hejgXJz6IDjxYFLiebjD6RNl8lL74Vb51AO4yJAEV7OyOzcdJeognMW6ix+tm5XzuCzYTG3hIqVwI/pqr/CSAid8ey618AvBGYJVQWVfWYSQNPC6Giaslx1EZfsjwZzKQL2Wmc86qXgYdQx6ceph6s6ISf8dBP91eKQNM4qiBMat+at6bzPdo9a3e80Dg02N/B9SdWm6M7gPS+t34aNcGS55t0fen6mvuO6rjaieJcaIVOLmRmmcSgM6m5nlBSghMmwfe4xNrvKgRxrQ+myIRM0M5p3zjzs7hMQCUTWJ6zkvjFVrVs684nv8ugpdy3qLGULGmRZinfpTOJJXMYdCawRPnSaGgFy6mIyz7x4q4ksZZWX8WZY95PunsbCvO3tPXPksCQrtpjemck5SGpOfHNZ6dxWXxLoj+zWjFTuHh7l4y2aJvGhe3LUzlZuFsSKACq+lERubeqflbWl8J/JyKPUtW3HMuB9qxQEZELgVdigYa/r6prM7IiggpfPbIYS/ZaNcHQmM+hXqfY1XbjnN9+Ofj40E9FdHVCJPd8xCXTA2e2aQhiL0NWy0Ja2dENuh3HWH8/zgfqhRN/8pOPJoebejmbKl5n0RnCQNpL0q7LBIvEj2Xl99v12NejzyPRtHhnRcGSRpjCtKfDkCGVOHZGHxMLgzk1FckjOE1CJFLkx7BjxCK3ggj5kxTUdV5laB35LhJWegltxcdEUNlS5dPSaPUQ0lXWJDRPns3xU5UR4d51m/d72SdfYjxj+xeQ2pz2fiXggcILYRCrPQoZP1gSJEbp4qtIie87uhZ10CxEUspCOu3FOdNmBLTQqAEpk4FHCkWK7ak/LCptNNpGbfYQPikivw38Rfz92LhsiOXvzsKTgeeJyCRrs3eLdG0EEfHAbwKPAK4C/k1E3jxVY6BDI4xXB9RNY2aWeDPHy+Ua89NO4NzfeIWJPsEKVKVDioUFpyAXWx5nVnm3chmUDchN7c0M1rhOmMgMATOlGaR1CugtjJD0nD9+CVf+yPHR38+6hmlZqB2uCN0sE4kkhF148TTEaZuDkwRJ/j2ZMfsCoWM4lqht+LwWS24OyzWVqYiwVOArsR4XqQZLpHnxokznsEwzICdTWK6l5OWEoaOASedjuovSiIJaqIZVqkz1ViBIprHEAIBaGwssaLWYtZrLdpjH7lLu2zFq/Ms+/TIuuO/z0dKjCH7cRNOVII0zxhgnaCFROxFjKxZtI8KSoGlKaU1gvoIQ6V20SGY1aYVOKKSjexk6ixYrb7KaysXATwNPwUac92BFuyrgobM2UNXNsupnYlOhIiL/CyM6+9rxHOA4cX/g0zFjFBH5C+DRZDUGelChXi5oCo/40A7kevQkRoJ5bTXvNJImzRyIOSjEWETpoil76zuWYxNQ8Qt5ZFd3yDURY13z7qdTwvjEtbWz/26BwZHA1Y+NFSVF0UY45zWOzz3O4QZN1zdRnFOKool9NhoZ50zLGPimJyByKnzoC5VpoZEX9hq4lBvSCY+0XVoOREGxNsx4WpCkIl9AR82SsR+n/SU0uPbGWFhyEfNSiDksjlI9XgIjrNwxCiHVricQKRmtVr12pq+AGlccQkPTLk9ChjU9mS10tipwdrrWikxqe9hLjzrfPcg2u2hDjttosGKt5tLObdKAHmJ+pMaP6/6atpet8/Fgp5Yg2BbESfrfqurDsWqO0zgyY1na9juAB8Wf71TVv9vseFt54m6FaQqvE5ELZQMD3DbitsB/Zb+vistaiMgTROT9IvL+5si612THcc5vzrpHexPf+LRLd7sLc8xxekC7XJX1PntFgKlqAyyLyMFj2U5EXoyZwD4aP0+OyzbEppqKqv68iPwCxoD5eOA3ROR1wB+o6meOpZPHgFmCq+/ytmI0rwIY3e726o56U2+9J5QxuXCwPfbT9XDub7yCjjk1mwXl/gPpCPQUsDyP1E57qof2pmIZprSTab9Ev+nabaUM7PuAEZN+49Mu5SOXPHXr5/inL8J5YXiosZlj6rIKYVwAyrl/CldeLJbZHDW1ppFeRJiqZUSrT4W5jP7eu4DzRkmf26CrEPM3styR9JtmSotZk/C4dl3SToDeMh/WklMmDQZMyymk6Ygmk3ZEv1zxSKrWZJY79ZNJLC3zxMTKaDpLvhYnypI0ONW2nr35XqLW1jNBNvipm99qKkirnbiY7f+1sMrZfnFXo8hSKeOL7v48wtlL7XIJGmvRS0yUjJoGgsbILtWu9LBoXCbS5hdrJCxQZ9p9G0kWopbTYAElUQvaFiibhxTvLaxipJVXAG0Gs6r+7AbbPAr4/1TNuC0irwY+BDxnowNtyacSGTGvAa7BaiqfCfxVrKX8rK3s4xhxFXD77PftgKvX7V98KK2vWOa2o2Mz3UlIijyhLwuS/6Q1e3XLNZnBkJ5gEMm3ndpXLlh0nXb5sta6EH0brBFVW4YGuOqxFZ993PM4909e1DHGKnzuf3pu9R7hlm+Bay6ouPKH7Xm78ysuYXygQRZqimHMlG8cK41w1CuhMSHsysBoVFH4pg01BiLtTL+AGfQTKnOduY0KQ3ttp01sOf9Y8ruk7YrMRzNwddtm4Oo2FDn3wQxjNr4TjRFf2jOXDV3VCpSRq1ohM5GKgdSUNDTqIr1+6AILFAYEnIDXQBmFDEAZo8WSLyYhcYwl5N8PuiFNpImxdVMmspNZZvjQEdzBBdQ7QmGvgYuDv48CBhFcIV0EWNElSlrVSAhezQeVGLEdJpCk0xJUaTnCEh3/to0IW9FE9oimEvF/4+dYcQaQqkNuSdPZik/lZzEnz3UYq+UzVbUSEQd8CtgJofJvwF1E5Fzgixh3/+PWbe0gLDbdYJ1G0HhTv/HNv8hHvuOXdqCbEYppIJo91GlVPsjHj8mbNOpnjdNgLdKdR9a0ay+99r1tpwVOfOkO32eVfR88vvryoXH4Lw+488svgVvTXlcpAhTKNRd053DOq17GlU94Jp95+tPs96tfQlPnFwSaQ2Ur9HW54Oj1Q+RAZQXNct9SjOoKTZdu7TLBk8JDbRzq844xY1nKjWnzZLJItWmhM/BNz+GfnPuFa+L3wDgU5pNBGbui9c0MnWXbNxh1S1vLRRyN9AuWJe4xT3e/TXPpQo8T8u9+hgCx8ORZjnzZM6HJl131f7jwG3+OZv8Cfhxohh5Xq2X4FJkvMsu0D4XEol1CPTJ/S/CxtHBGl28CiF4tlhT9pQXglLBNwaCtiWujNttzqG2Bqr5aRAbAeXHRJ1R1s4zQFwEfEpF/wE7nQcBzNzvWVjSVs4HvVNXPT3UyiMh/38L2xwxVrWOAwFuxuKo/zGOs18AH3L7u+mgTa4qosP/M5Z3oYos2rDANtNPWp/jwadKe1jSaEhC50MnMXGuEE7lmk8xO2Q7M1tYmWopTDt87RoL99su58qe2xuR6i8uNZ/+6e8XTzPJNTABYYESzWiAxAeW8v3oBn/xuK+p05cUWcXbun7yo2+ko2Kwy2DURD3xtQHVWt1872NRlanNhpE32TLNPm0/Yco3aoW8DH2yfqjG0OdDykLVh2aKEeB3zcGQnSqGh1WQKda1QCa6hUtfWcgkScGLhyVYJUgni2pyWSj1OSiotWvPYkhtb2LE2NG5MSYiUL6GNH0uRYulvbhrraS0KSCqWnEx9ufBZK1hSgbGTics/0pFWftvDXgyquDrQFObA1yJWiowO+1Q1MqRSxFl4cfs9CZi0vFSaoUIREyLLALLNeSqbWdf3kKYiIg8BXo0lQQpwexG5eJ3SwwCo6p+LyDuB+8Vtnq2q12x2rK34VNatr6yqH9ts++NFTLjZUtKNCIwWJu0gmwaFEIRBOZPWZps6mfVh1gOUOLCWxYoNteGMMzSNrnnHRZk+rhtsc0OWZhu29OGzBBZmwkIFnRxf9oMEQc49Spj4nqBK/SoWazSAL2e/aZ/7wW6Cc8c/fGnXXwCn+GVPfVDMVi5qLMvxYrSCRk0QmeCI2fwuE7xgphNJBcBcprmE1hekoghKEwd+EVqiy42SZkM0x9UYH3KtSkEM4E9aS1QVy+gfCQhNW2gs4NXMNk6UgdRU6luz2KqWZhaTxpiRo6Y00M7kNiKYEGnvt/XNI4QoXELiN5uKCEtiKhcuu52t//fveA7f9ogXE4qYbZ8SHSVl2gvNoC9MNE6ypjPxzTymneaSQ+x5dcX2jPRb0VT2GF4BPFJVPwEgIucBfw5803RDEbmbqn484wtLVfpuIyK3UdUPbnSgPZmnshN40Dueybsf9rJt29/dnn8p3GzbdnfScc5vx9oTW9RY5phjjhy5+WAd7C2hUyaBAqCqnxSR9XIungY8gdnhxwp820YHOi2EiohyYGHcs48n23gTI4x27Njpwcmjv3IoNKOUxCX94IH1grySf6ZIz63GoPuosWQO/i7vMc3Ys+iyXgeTGqd216OpKvlA1sP7Xvs0znvDCyxyS8GXDaF2MSFTu/MQEJdpLxtAopMeZ9/dsqNZCnC4BK/oQmMMz43Rm/evWYxvc7Y8tGa49BdLMKTL+pfMFzPLwZ+WpciuRBuTHP11yBz4UWuoxTHCEhaL5DAOZgKzv3aQlPviNVACSPwbkWj3jZrfDP5N1B48itNAJY4yJlum5WWMaU1kC20ui6b9KqX4Tc1fewF/f4UFdzz4US+lXvS9LPnkOwm5HyVpKMVan0qrzbjM9OUV8QFXBIpyy7yIG2Mrjvq9hfeLyB8Ar42/fwCrq7IGqvqE+PUiVV3N14nIpo7Z00KoeBc4c2G5l+CWsFyXbYTPdkNCJkiSOjzb+tQmZNHMNn2tQQzPNTO/xJoRUbjkh5jha+lNoGTqbwomKLTt6zm/FbWWn+60lnN+8xV2PmdOKEdd3ZdpdNn8RirZW7YOrvyJZ3L3513K5Ixorigs09ktO4oVh4qnOqOx869l3WwqLULrP1GX+WIw23mPGia2Exdaun6gXxel6ASlc9rykeWO/cpZ4mbhQlup0oRNTZ1qt7jaioJFUxUaOhMYEokoG3A2+AfMqe8ilX7AtVFhAKXGEGUaGmchyl6VkTSUqb/AgE64OIQyCalNOMTCNeed3Aiw9ZAlP4YoMILvKFqIgiSta/0phdWxB/OlmHBRZNjgfUC8MhjUlEXDsNgec7goXfXJ9bC3hM5PAU8CfhZ7+t+NMRdvhPdizMabLevhNBEqyr7CMr1T/kFQ1zpbR75mMa7fNghI9nxKE0ucKr1w5l6diKntc6wZh0NXi6VzCJpw6Zz22v3ISffyYwizBVjqT9OtPOc3X9G9KNkYpEGiL8N8M6kMcK+7R0oWPmOP03+++KkzDtjh//uZS6lv2b2UokAlbY6CCpQ3epphrApYaKeRZcEO0l5cG0RohYegQeM5aOenARBPiBU1ic55iZpOIu5Mmk1wkWU5dNpvJT7TYJw5711gEuvFFC4wcfZ9pSkpo1N/6OqW8gVow5CHMdQ4hSAnn4qb8gInHrH9utqSVE5cHUOOAwMCFVCiUZMRlqm6ui14Uub9Xq3XomJEk/YcmDCZTrWWOs63UvZ8sMldGEZhUgbTmH2gHNV4HyiLhoVBRekbBn6bfKynXvTXGLgkfjaEiNwKSzZfEJF7053KAWBxs+1PC6ECtMWhHMrINRRSWyVCWUuvsV3o6mQLrqYd/CU6lNVBLxkx88Tr1GAvU03spKJDPBMiPV98njgZpC9kUkeSqSzfr67zfda5fXVAdaDGDxvq5YLBtRYOHG630jv28JqCegk+8QsbC5T7X3wJHBAWvwyrZ9uAUBwR6n1QLyihUDOJVVAsm7O22h9PQzPTRtLeEurYwGEmNBHEayscNTm1c4udEAWOXSsJnYAJqi11f+GTRiTgAppxsVVhLQ/ZwHWJm4kVeeDrGEGWaGHs+9Al6ntlwU16OS0JDdIKHYobbD0NISTtJzByNQNtTHtpVdwoaMQRtIsGG1KA9M1hu62tPOBxr8AXgmsUVymudHZvguJqi/qTaGJM3F9BaUOE/Ypxe4GPmi+wQCtUkplzVhXR48JWzF97SFMRkfOB5wN3pF9w604zml8A/AiWH5gLocPApjXJTwuh0gTHV1cXejkFKSO6cCnfYJsFSwA3tkFPsvBCUZCKXuLW9JRlcKMwOWiz614SvXQCY1rDsXbT/pKugQU2ydTsSTb1Jfb2Ne3jidqXXFtSHhoQLQxUS7SswFZTRRifM+bKH9ow0bYPhdFX4MO/8VS+4VmXMvgaNCO6EOyYCb14NRy6s3RWvLqzqac+t4ltkUMqDAIShY+E6McyPv3uPCWeAxoFjtnHNGouDiMrFBUa6Wj6U1iyU/PXpUg0oK37krjLBpENOYjEUsuKi1Fi6fvEFe3zWTkXGQSUYcrQTzT9KA3C4bBAg4tkltpm5lfBBM3E1YyoGWhgKBYlFjRMJU02BDW+sb2ksSQ27tY9GO+tBHANbRJsyuOUJmotcS6VuMMs3NdRrRQt91fdOJyzfKJt6etWzF97C38APBXzo2zoWFLVVwOvFpHvUtU3HOuBTguhMsepi3s/6VJY2rzdHDuPlS+dy8KtP3fSj/stP/CKPWUqOk1xo6pediwbqOobROTbgXsAo2z5L2+03WkhVJogfHV5kYFvGJY1I19TqGtNDDvxxH78l57K3X/+0m5mlDvl4+RYp3zMSXvZd5XCVfDVe0w1iFM0o52h1RzaNI3cjJU7TtLxM02n3XY9f8q0U3+WppL9nhxUBoeEldvVMGpay1qef7IVrJxtpq20fTIjuAaksmivdK7NEI7cEVzVaSbSRNPilJVPYy6PClAKNNrS9QgYi7SpJz0m6N6z4RVpDZbdyavGapLBIWLJgsnamCwyqQCYU3p1XGZxkEFnrg2NxKz8jjnASWBZSkppWl+MJ7QVLUtZjEmTTZvjUkmBI7DEmFUKltzEnPZq2fkjQpc0GbWmShv2ORsrxpsmV+8MHvD9r7AowOjqSDQtSQN1QGiw2+EjK7G3n6l2vQro/qixTKzYlxZCWC6oakcYOYpBjOw7mUW69pD5C/gHEXkZVuVxnBZulHMiIr+D+VAeirGpfDfwr5sd6LQQKiE4Dh9asJDBIjCuCgaFOeX2lZOWcmO7IVW0rEQBkFTiNCCqx5jSpHNAIzA+wwYHNzEqiW6HNlj2LFyZ+SuXI7Ywb2iDah7a3LpYZrWf2tV0W03huNm+qn0gizVhtUCBz//4+qHI6yF3zjclnSBUGN4Ak4PWAfW0L27nu7LIHwnGFzW9XxUxYZ6oOqJPK0WIxRPruMRcNF3FfWmI4aeOmKBoHQ3RzJUG9RCd9sksBv2aL0NqcCYEkjM/v6mWRGkVJ2v1TIK9hon0MgmlgasZupp9xYQaz7gpe0SbB4vlHpHlohu3yZTLOmiJKwfS2Hcxuv3QkmICYZVFN6CUk1PMbhZcDX4SrBYKmesxKCj4CV3ocIoQ891714YRe/CrtCWK6wWPlo5mwVHtr7a1ttJWzF/b5b7ZJnxz/HvfbJmycc7JA1X1niLyH6r6SyLyCkwobYjTQqjQCM1ySQNUTpmsFvgyMBpW6NJRFsqqLSG7nXC1zbDbmX+AwWFlcEQ5eitHPaKvEcTvablLgShTz7oVMOova5us96BK1iqbRYnLXtLpbTOtJvflmPYla7dRKK4a8annPHWdTmwOFQgjaDTmHww6/5HxNikEMfYBsRmsn3SRda0GN+1bys7BVabNBOLg00hbnEmC+UlagUI2OIgRFYL9lSLgfHcBxAXq2iMx3Dj5lfJ6MQBjV1C4QOkbmuAofMNSadGHqQbMdIXKug057oTUwBXUviKoo4gVTSvnKF2gCabpDF1N6WpGMTs/UcCkSpSl1FGoTBhJzUgqYIwTixQrJTDWimHMg9sNE1ixEtpnIGkqKRJQiP6UxF7caJs9n/xoEqCMvLtJuACUhyEMhGbkmUwcWoY179pxYyuayh6Cqj70ODZLOSrLInIb4Hrg3M02Oi2EijTgj/p2dh0mjjAMhCAcXLQopdVm+0+1ddBnyVflUXvoXR2FRjbO20bxh7PBT5puULVQ5KzNFtBz9DNDcDRdH3paT9YuDaqt2W3GftI6PcEJbbEKKzen096ma5DX0glcFaShq9qbghni79SXNXk5KhAUNzH+KHzMWYmC32xXtFT7ucmwvZyFooWjdorUzlTSMsAk0olEjYaYVOfLmETpOqLKVPZYRFmeDBj4hsJ3IcWbFSar1bHaRFW2KanVMXANC37SblOpZ6iesmhAC5Zj+HNiR67Es0rAecu5cQQmOAYaqESoNJnFtikp8BjhJxY2Hlxmxk1Ipq3MtNtpMbFttA27uuPWS9YCB8iqvWcEQQtP2K5hQGe8a3sQIvK0jdar6kYhxn8rImcALwM+iN2h39vsmKeFUEGNX0udzUBDI2glNLWwvH9A6RpWd+BU6wVTt9OAPjysjL5mtumVs4fdgw9rXgrN8k2S+Sea/HtExBth2lSW0FPKUsRMdnxJy6fNS7lAk2ywdlnbEwzz/9BvPZV7POdSmqEJh14UdH4yk+lINju+CZu+cJNs4FGsTdJCUuZ1nvtn5ysmXNIxpH/dVEFrM6fZgGSVLt1KFCqlooOAqiPECDjri+IK4xmrU30ZLJlyNVa+LIumNZflfGMmTJpWoIRGwMMkFNTqqINjVZRJ8Ix81YYjA6alxL+p7DEQo84cq1paJJnCcmhYFWMHKF1Nl7+yfeahrcLVUzlIsS59K1C8bCgIJF3i9Bxnz4I1oDOhNSf+/PawDT4VEbk98BqsGGIAXqWqr5xq82jgBXF9DTxFVd8T110IvBIj3v19VZ0uonVcJYEjC/07VPUG4A0i8nfASFVv3Gzb00OozDHHHNuGQ1ffAYADt/nCLvdk7yKFOm8DauDpqvpBEdkPfCDWqcpLp78DeHOsa3VP4HXA3WKZ4N8EHoGRPv6biLw531ZVf+l4OhVZ6F8BPCD+HpM5+DfC6SFUtJuxmE012jFq4cjKcOdoWjJ/SrEKwxuV8Rkl//T6p3Ofn7q0617mjE5aQhjQmoB65pcZs/d8+97xp7SJFImW+pXP9ENBq7W0s7iQfAzTJxZ9EalbSXNy8MnnHb8/JaE8Es8zziybYXeeG52zJE0pN4FARtVCL4+hNbGpUaj3to3VAHs7p9ufG3frLOBCkFq6+zgxZztBu8qfTsEH40VzCo0zdmjBqmCKmdOCCnXUUIpolgLrexWz8ZNZzNeBgW+og2tpYZKprJQQ/SimtlXqW1+NJ3CwWGmjw8D4xUausix8bQgiLBLrwdAwPFHb5nGgHjr8xG5YKCXes6SyR20zf2anzLydtp9UFun5Z1oNdieUsG3QVFT1S8CX4vfDIvIxLJs9Fwx5vfSlbM/3Bz6tqp8FEJG/AB6db3uCeJuIfBfwRlXdwtkYTg+h4qBe0liMR2HUjZQahJXJemScx4d7POdSGyiqONaO7aH9p9c/HYD7/8glMJJ2UIO+udjVMYop+QvSi5KPcdmX3gCbmWt6qn723WzIsVk0FYnrb5t8JK2/Qrr12dcOCp/8uRMXKGCmCNHYT2ASFfRk9khCzRZOCb1o5nBV117oBAvSXdv0HSzSTiIlTevs1+x4Wb2bfPyRKKRbE02kVpdgWdws27JmKcAgmOPYmaks1Jk9UeM9CDFyrDFRkvwvKTfTSi8L3gcK31B4c7g3cfmwqFsK/iOVTZhGvuLMgdUNmoSirVp5fbXUUsPcangjZ/mjLKrVb0FoCSobhVVsYC8jZX5AufqLtwHgNrddt+jqCUMLMzO2zvf2wnd3oSsxTHtzFLJaRcTE3/jOx32lgl3tsWQq2vIEkI69YZtj3afIOcC9gffNWPcYrGjWLYBvj4tvC/xX1uwquiiv7cDTMCFWi8gq8WFW1QMbbbQrQiXGS/8PYAJ8Bnh8tN0hIs8FfgxzMf+sqr51s/2pg3AgkgIJ+EHT3nFxSlVv3wzsHs/pNJD0UB38/FpDbbGqNCNZOzqrUUtIMO0mH+hDctTPQhrwQ/YiZY7qXLNoTe2ZbyTPe2kHuKTVSP+lzYVYCjr4+C9uj0Cxc1CKlThYexgcEtNWoHXat8743gif9T9qWXnKSRIQPgZJNAPanJLykGkZzSDbnfbPe3r227ZJgmuK5aCrj2OaiwaHltKGHuecbaGOMdKtBNT2b86cHGJxuUmcqPuyoSyaVuCsjEtulBGF7zSdUVFzw3Ch1XhGRU0hgdWmoI5ULuNQ8LViiaGr+brRl1l0YwaRc2y/m+BVaSRE4kqhzJxQn73q1tzpdl/a8J6eENIEJ13/VqUGaRSn0tZRybWOni8wEyg52kCQeJxtQ2CrRbq+U0R+P1v6KlV91XRTEdkHvAHzlxxasyvVNwFvEpEHYf6VhzP7jLasUWwGVT0uf8xuaSpXAM+NFR5fgpWofLaI3B0rHXwP4DbA20XkPFXdMDRFAlBFE0dhU4i27KzSveTbBBe5KdNEd3xgShJE7cB39Fj4StsZV/DSUlIkdV99ZLf3qU12fnGfyfyTXsCmpDV7JTNL27HUPh6mKeg/gsn0NR3Rlca9pOnsgNng/b//NB742FdQL3TaQcpFaB2rMeExlLRCpCltZtvmzjTdb03qlXaDjavtPKQxk1so6M+IpRNMuRDtMT9r+6cTwjnSADcRGMdSt4vd8t4AqALBODy1sJBleiHL9rymUsoAzcRR+cKiyjIW6DHm/Hc+sOJKjk4GLa1L4UNb9iGZyibBs1hULBYTvATOLI5SqeeL7kxuX17PQGrOcCtGdCk1N3PGsFxt2xA1G36s7YvUJrk6uklhA6hGdmLpwu2nn8tM60ym8GQFSMEa240tRn+9caNChwCxrskbgD9V1Q3zQFT13SJyZxE5G9NMbp+tvh3QUytPJPpLRN6hqg/bbNk0dkWoqOrbsp//gmVqgtkD/yI6hT4nIp/G7Ib/fJK7OMccc+wwHvjYV+wh5rFjxJS/b902m0BEBOPl+th6A7yIfB3wmeiovw9W5eB64AbgLiJyLvBFbEL+uKnNk7ZxV6ws8Jvj7/+B0d/POt4Iy6Q/W0TOpBPhB7DJ/obYCz6VHwX+Mn6/LSZkEq6Ky9ZARJ6AVSejOONMZOwsMYoAgykHAVBPtscE5ipzyDdDoR6Z1qJTNU6MckQpVrVnqnFVQBQm+8yjbGYp7dXbThpGPYolVHOTS9pPTcw2lnZbSRoL3Qyq9Zn4TiNJs/LkK2iTzHJNB9sG4GO/tH1mrxzv/cun937f/0cuaa+jnWPUMku7Dum8qwVa1cElUyBTGlU+8/XABMojSrVfZgZCpBBudfG8c80n7k+SCTG/SNnXpFmKKqy6XgBFMsvSiD0bE7OnaeEJoxDZdTEyy0xzabWd2gqkBefJp8fqA03taHyXiKnR35KIPpO/e7UqGJU1i+WEQgJLxQHGoWCfn3DdYD+lq7ld+dU2YfK88lpKCfgdzvALRUpsVVAjAG0DMOIz7WqQytokglYlu4eZVTEv2JXf21BM3fcTxFZ8KlvE+cAPAR8RkQ/HZc8D7gCgqr8DfBfwwyJSASvAY6PjvBaR/wW8FXty/1BV/zPfeYr+EpG3AfdR1cPx9/OB16/Tp58EnoIJkA/QPemHsGizDbFjQkVE3o7FXk/j51T1b2Kbn8NC6v40bTaj/cxbF+2SrwIY3e72Kk33FjeFh4FF3KDQ1Ns3HxocssEllOYTcRWUy33jarESkMa6bQKmv74UIt1EdFCml2mslkFemTO4WnJM9klnAtKYVFmp7TcowRudSCjjwOatT4lfS705YskionKBIiEzNU1d/Y++cGcEyiz86x8/jfv+mAkWUW3NTMWK0jSWGS0NlMt0gjRLkG6j6HI/kmIF5AWKsbEr55QfvXbE/SprzCt5Nn/P/JVs/A66wqyCi0IjlBqjEWMFSwWpBVd1A2dTO8v2D9ZGB3ajNTMBoZJ/jYdJA6wSatcTKqn+DQoanJncasfqoOFoMaAKntI1BIT95Ziri4MUEhjvT3xjFTfzR1iSSY+Cf7vRS/pF2msrSqS8T5Mt6UyPKYqR/r0LLpqRI4NEcMZ6nZz17URru2RkfKc2bbNZE8s32VDUqepLgJess+4twFs2PxJ3wHzYCRPgnHX2+UrglSLyM6r661vYdw87JlRU9eEbrReRi4H/DjwsC1fb1EY4+2DxgXOYwfrGgmbkCIvmsdYmvv3bgMXrGlbOsrfBT+zBTwIkYXj9hDD0NkA2iqsDUkd7uLOaEaFwqMP6KYLUSnm0aWdtabYuwTPZJ+0A6Mdq/pnaBjKX06oMoIlCxU+sT37Z1lVLcbbmOltzL2EMes7x3aD19pVV8YNshhqUYixUMfve1YqLvqpm2BFLpoGoEyqCn9ig3pSWQJdYDpKNPVUQTOcaQlcAKhcsrsKKQzVd22TCV+Lxcocw1q4ZilHRlF3UkdQSzyv+PiqoF9wEmgUhTGzEDIOkvSQqIGmFjTms1SYjhTmFmkZIRcnink2oVA5pjK6/VgiNcEhGLaXMpC7wLjAqKq4f7mPoawppuGGwSOU8o23NFuzw4G9/KRz0a9gS0jmnwmp5qoBdV0V0hm8lvh9tdFcK+FBaonedmiycCLYyouyAO/JE8FrgX0XkTdglfQyWdLkuVPXXReSBmPDJa7BsuN1uRX9dCDwbeLCqLmer3gz8mYhcgqled2ELrJgQX9LaOJ5cJWjwkfupC9fcDrhJwDWuG5QbmOz3ZuoC7vPES7nF9Uepz1pCvbTCxK02iBrflBYOGTjzzLtYs6RRihV7+jUW9JBK8auB0tnx1MPgSMBVNvDUuLhP026ayuq6F6tqmcpecBOlWIV6QdZkH0v8m1IsknVnFxKr7RpVaqHCZWcaFLUgA1db3ZPg7WaWK9pGb6WBNg360miruQSBIjqDixXthKiDZiA0g84sIh40CZ1MSPhVWkHQmlCk0/QAWoew75Y3YxNcoTRNK7VrNR7B6vLE0PK6gpRRXi9103Cpk+QUwkDb4xAUrV0cOF1HjS1pKk9Le0OQVqMZ+xhxBlS1UbwEFa6bLDHyFuf9leEBfHnjjtzn87/75dkIRTv4B08rHFqm4sxklWtruabZ7gd6UWL55GkWm/gJIWnFpwhU9YUichnw3+Kix6vqhzbaRkReC9wZ+DBdDRZlE2G0Wz6V3wCGwBXmp+JfVPWJqvqfIvI6LHmnBp60WeRXgl+NBbNS6wBuxUWTkG7bs+QqpTyqNKVEc5TipiZzcuNRfFGgQ49brW0KnMxhapxSznu09Lhx07Kz2saxcJS3yoV+orgmmtME/GrAVSEzCShEM5ovBFc73ERbX00bndTEQTMOeq6xa9QmSaZBNb4sH7nk5Jm+cgyOBDPrRGeAOtMSbLZv5zm6IZgWWMeoIC/tII+qRRTFWaurpRUyOcWLhXQr9TD5pUyQt3k/2QDURijRLWvJKKOpLvcDpIHQTWhpRlpNpYkEiZKZZuL2ZfR7dbQk+XORtKqufrsG32ovsVP97VJfY96MEd4r9dj3dj3xgfGkRFVYGowZ+ZrD+0bsD6s0OzTDqBdN9WiFLZk5LJ1rmxxE61NsJxHtZCK7D0pfw1ZshEvyOdNaThjTx1qnzR7DInBIVf9IRG4uIueq6uc2aH9f4O7HkvgIuxf99XUbrHsh8MKdOO6dfu0SPvuUDSPsNsQ9n3opN9vG/swxx00JD/zeV6DF+qlYpxROMU1FRH4RExJ3Bf4IKIE/wQIF1sP/w/zix5SktBeiv04YEsCPo/ocY/y1wGZnhRIG0DnyTwx+3OAnjsFRs9XnuP/Fl+AK0MNHcEUBwxLqBpoQKw3F/jqPeAeFR52D0qOFIwzMCymqSB3w0VSW/DOhFNy4wWWO/+TPUS80A4d6MdoLzOmcnMz1gs3I2zuuUVtJlyyb3P7HLmkprgY3DkaH0mjUwqApHXgheIsWglh/w4n5QaSb5UqjbaCDMUBHU2D0ZXWmlehzGgvBG2FkKLKs+nXyUdpZs4Y8f7E3wLQ+mui3cTXomDaCLZ9p57kyoZQ2YdNnLEu5xsk4bRsDOCRqWskH47p73u4/5j0l02dIoX2x06F2hDpwo4xoglANKm6sF9nvVqnc9kRNPuSil8L+vnairiOL7FGx0H8m22uetUuloztlxn4nlgaNpsWgoFEz7CL4ThzRrbVxm70ldB6DZet/EEBVr45cYxvhbOCjIvKv9At7fcdGG50WQsVsx9GkHCM9mlTMadx/+I4HD3jcK5AayoMOt1JTOsGvOiYHis7Z25i9ZPErDTQNjMewsgLe228wrzpEG4iDShCxt16cIItDcM6clCHEJESPFvEESm8qfhWQqkGaEE1EQjMq2rBlvxJwdRrZlGahoBkad9X0deiFEu+Ccz6Hq6JpL3ZSgiK1RqoW80cZP1QalLTzTecmxKZLfJUQzWiSzI8gIfTMWWZuEcLQ9alCskEhMejaj1mmFl2zHkwIBi+9olKtvyPzw5gJz6RUMvi2QQCJOUBssiRNHDylM+VJI2sc0eq15T6TCfa2F/EipJOP2eihcTTB0aglTB6qRxwuRqzq9lEcaZEJgSxSq/d+TpkXATNLTu9rSgi1kXxNt41EVmJ1FvWX3tXtwJYIJfeWUJnEPBd7rES2UsT7+cdzoNNCqIjGLPf4IDULtI5QiWVqU+bynV9+CZ95xvGZwPZdU+NWJ7hxFQeQJepF34a3Ll1TMbzqEBoCrKzaQOPjUxzM9yHibFl6aZwzn4sqMp5A4ZGiMOFSeNNinKCl7UfqgDQNMrG+5JpOiiJykwY/tjbqrfqdH5uPxVfSVly0fsVZV6DNov+mn7iUD/zeyddWUph05xI0bUW8CRQ/bmLWtZgfyZtGY5qp9AeiDOrUclqSkMoG/c53IzTTTuGozeSz5DBwnf8mRZu1bbRtl7Z3E7HStsVU3xKtiEvhv1GbqpVQd0LCAgpo85BClKnTAqSNJgtJQzPNJ7VN9WQstLl3klGb0baKpapwQ7XIvqguvfCeGyZ5bwmrZ/lOQ5Tu3KDtQpcbNCUs0jXtQabWpW3jujyEWBogBkNsG2fmKWb+Al4nIr8LnCEiP4HlB25YG0VV3yUidwTuoqpvF5FF2gy29XFaCBWgDR30MYek1VpquwrNQNoks2OFq6A8XDP64iEbxOoGVBleowwGBSqCG1fIjUfQI0ehCejYXkjx/XugIqa9tAIm9qkJQAV1beRVgwHiBG3M6S6TgG8UN2lMsFQ1VJXtv/b40ptD2gtuXCPjBqlrGEqrgaRQYRcSwSJtKK5mdcHBTHn/+urj9z8dD1oHfTvoSRvl5FSRJrS0HQTQQby2QY13y8mawcWCGQKh9LZ9JiyANgACwNWhJSaURmPSSl/A6GoUaCK9AIt2m4hOwJmTnGnzaxoQPdAork7alwUX1KLdbD6GQOeh8+0svz1eOp9IDyRQL3aDa40QnMYclihI4gVKxcUUiwbzElhtSg7VC5vftC3gQd/xMtjvOtNjLtNS36eFSYZpLWbW8lmaS69Nu9Gx938WtmL+2ktQ1ZeLyCOwBMa7Av9bVa/YaJsofJ4AnIVFgd0W+B1g79G07ARyn4Cb2EsY2hllZAY+zkiW0fUTBv/1NVgdw8LIBpi6Rq45DFVtz2/TEMZjtOkb4zUj5hMXTV1lmq05JN4C1ThgehcHzQZqh1udIBMLL0ssrNSN9aWqoCyhUGR5gk8aVB3MxBMULQqb4dcFxZg2Wz/l2DRlFCxYDfaUdLYbcPXUWxrNUqZhdBF0EAfxcW0DezLhpRrncRstolZRK+I6gdLLK4oahjQWLt4tz9q1bI+Kqxvz75TOEgvTgKja9T/NxlN/GhMUbeGwoutnGuXEmR/FkmIVV9hfsGXpUG2BV2zy1JbPjQOrJcfaxCE3K7nCjucwU5v5LNQiwtRyXmrnaWrHuCo4tDTEbWOyUhvODq3pr103Zf5KZr/UtpcUMq2dwFrBMevYmQ9rW7AVTWUPCR0ReSrw+s0EyRSehNFkvQ9AVT8lIrfYbKPTIhBjjjnmmOOkQju/yrqfPSRUMN6ut4rIP4rIk0TkllvYZqyqbRa+iER9eWOcFppKPrPReLM1Ou8B8xs0UMTfd/+5S7dEQXL+d78c9cLBj3weHY+RxWgOEIHxmPor122hd4l7wmXGdixkCcyJn2awZWGx+SFAVZtGAkiu/STHfwhoVZtG0jTIJN5756AobP/JLKfKYMHTVD6amByuATfRlioGOk1oF2o12fF7UW32vfMVaOSxN7OXjKP21pjpTqqAhL6mUi0UxrcWAmYz0jV5DKm4kyVPJjth/73RzAdmGiCISMd8q4ofN50mlaZqUb0QMa1DSP6glJARPyLQBDwOTflMWVBFM/Dtm+qrbmZexDo+eaG3ZPKVELWTqK03C7bPxmM8eU674AanMAyUZdMqBofGo5bh+Hjx4G9/KWHgCENnmmDUCKeZBxIsbydqUV7b18UsokLK1elpMUwN3tJbtXMD+ynmU4kcYL8UK0c+FniXiFy1CfPJu0TkecBCNJ39NPC3mx3rtBAqAj26kTbbObPZJmr4rVIZ3eenLiVZlOvrr7cvR5fNhAVrzFybQgMaHOKC1crWGfupa3upfXRqZk781gTjvfldwEws6fug7HwAiwswGNigsTpB6obyq0JResKwQMWKikhQM+NEX0SP+2sXXhjzIWQ295jMGAbefCoB4zYb18i4QksfAxocrmqgsmg4ChMgwQvFkU5or39gC+NOUWaotgJCVAmDwlgQUhKrw8xxU+Ux07YamQ6i9IkCKwo/ByFlykcPdWsm09AOpD5dD4GF66Da56iHGdliNHlZIqu2Gf/1sPMrudrkmquhOAL1kh3VHbFw5GakMULM/I2DssY5qzoZVJg020TCWqsFs2TVPttLn/lXWq6vghkCTaOwiaUjkoBJmBYm+f5zH852hRSn+33q4VrgGozleDNT1nOw2lYfwUgm3wL8/oZbcJoIlRwCUHeKQVqmYeoh3ALUCwc/+GVaF4MGtpbfv94O4/YZ94QmQeAkRhMFNIYYI0blIj6lutOGJ2sISJrxeo+IQ+sxWtXoyioyGppw8R404G40H4sfDWhGBztb+8RmrM1AIntyJGvcpffFqFXEnOExq1oLsZyjKATFCb5qkNUaHLja2AvS6GHBEC5ypynqnfllNhpQcoGiGrUb7HvV2O9UXbABQmMsDlEjtCi0qW2DQNRQ0KipKL08o8SMYBMe7UWwJWaFYjmYZrloUWTJd1Mv2LauMa635FNJ11FXBBnYQD44HLnV4uAeBkYFUx20iqkojKuCQWHPVzmYtNFgx4swcDHwQGMo91QD6QRn8nf5Jmb/Z369tvZQvF6h7HKAWj9VysmBtY5/zT7bhDUh5eu02SsQkZ/CNJSbA38F/ERey34dLGDMx78X9+HjsuWNNjo9hIpm43QK5pmaoCahkh6+b3zGpXzk5bNNYN/0hEspV5WDH7qW+jOf24H+rhVOGhzQmDDJhI+oRO0rml+cmWLE+86M4h06HhNWY6CABhivIkeXcUuLyHAAo1hasW4obxyjzqGlReQk2pdQjGgGsoWgQfjW73o5fjWghfGLJSH1rrc865gvx397zMuRRimX6zgblU6TUyi/tmpaSQy7rZdKqgMDhtcetZDj2syA5pgXdGRmPjdpuiitJJTbWuZRiGQaSRIK7Ww2aoiW19IPWTaK+9oqaKZQ2XaQidpMu11c7KaCBERItrJWyGt3LQFjr24EXwVc7akWXCz4pri6y6tJDL4pAEOdUQrVo04QudoEdb0QNZyYKEgMMx4fHVCXgXJQc2C0ShOO3+X60Ee+BB9DvkMhuKBrBtmUH9RRCXWBEZa/k80KI0JImo8YoWgsK5Ci4dRLJ1jSrvPbfzId9XsLd8SqSn74GLZ5B1Zh8kj8vQC8DXjgRhudHkIFSLVGIM16ICWHAfbuzlC/18OZ//416k9/dke6OhMxScSEScxJSaYyMI2DaC4T6bSUNFOLs2PxHk2MyHVFOLpshK1l2ebMuBWLEgsLJc1CgQTFHxlT7i9pzrJHolzehTdGxGzw3rS0NIMd33zRuM0q40BrRo56JFRL+xkcNoaB8stHcKtVKxh0aWCDU9HNhFOWvWTCo2fCaHOHOk0yKx5vbacFSwNmmpF2WSt8NBNYIh1bbltPPR472ECY/GxrzCrS5eSoK5AoVMqQDabOyhj7qJ2lgdkIOiNNfmNmqLC/4w+TicDQ+qOVo4k20EldUPgTI8oaXnuUsDAgDNwaJu88vLi9dkG70T/mDlk0HK0Z0cdEUFcroq6fPAptxFweZpwLr+3MU9lUE9kDQkdEzopfXzr1GwBV/eoGm49U9UjW9kjMVdkQp49Q2Qbc70cvackJ5+jwoEe/rGdOWJPIN9X23X/zzJPTsTnm2E3sAaGxBXyAta6mBAXutMG2R0XkPqr6QQAR+SasSNiGOC2EiqjRMAD9yyd0FBeu87OkSei9nnwpAINDVvQqXY3B4UDzkY+fvBOYhoborM98KyJIWaKTic3EG6ODEe+j30SjSUy6hEsnyMLIMvRVLcGyqqAswAtSNTD09jer4WImn1jzwsnMwHNplNHVR627pac6c0gzsobnf/fLAfinv3rGpqd6/ne/3JzwtdKMfKRhMXdEMn+E0kw4E+/xqzbrDoVQLUrLI7Ug+ymWK/yNK8hqjRsUNMMY8JAS7lL+SJo3OO1pDxZdljSULC8maRZbcMy2+8ltr0mbbDUhLIseWl8L0MvDmT5W4q5rBvFZUPPHtXT8bXSYWn6St9l5coC3dP7eotZSPRlpogalYmaw2JnVuoC64MPf/oJNz3ka/+0xL8eVVvbBrVbIxLXal/m71k5KuqqfZpJsNT7f+a2s2FmXeCq1Rs0WK7BLq/C3+9SY3yOq/Sz+E8SpQtOiqueewOZPAV4vIqmm1a0xv8yGOC2ECoG2ngl0vpP2Qc0sDUa+N3s3g8PK6Poxg09+iV3K/wPMhJWECt61pispS2Q4QGtzxmtVx5Dk1C6LGksmhZR82SS+MbVs/GARUmUdkLEZ1wdfW6U85AgDTzPy7QtYHq4pr1+2JMyg6CjyQV35RVDFLYzwNxygOWOJ+uCA5qA9Vud/zyv4p9c/fWvnrFAvxkg0VSTTGBNNfDMQS+xrlKASo4Ws3dHbDqhHQ/xkiYOfWo7XQbr7LiBEG7y3hL+u7kr29ntoI7hEzYgPRlg4XRozRy8SqTOdraGOcVN/e46/ZA6jc/ZP7dOvNh1lT0NnnqvjLiMdkAVcyBpzT4jcYZKy9J0aJQzaGwTDRue6AR70HS8DLxRHazSyTbSBDqoxvDr2X7WLbgysmbxIOu/Ih4ezCUy6rl19IqFeLAhDR1NKZurSVsgkn+t06e/jhbC5+WuvGTxE5DuAB8Wf71TVv9uovar+m4jcDcvAF+DjqlpttA2cJkJFIBauks5ZH8y+Guhs6tJEmopUgEmTlqMsXlsx/PiXqL949a4LFNNMskz8ojBH+8II6gZZXrZclIxtNznwSS9q/J0c920EmYhl43vXf+jF4a+ru0x9gOHQBtiVFfToikVRZQECzeHD1u7IEbjuq4gTBgsLhPO/3gSEGBknwD//2TrCJVKx1AvmeI0Ls3LH2mobrjFNSsVqnEhJW4ipGQofeNVTufeTLqVeKikPjdEF33KDIXHgFLHzUI1kjJZNDvZ89CKNJBJ+psF+WgPZ8EZOCRS3zvJ8E+h8N1P+m+TXcZMQaVYEyWbuompxAkkL0HhuUei6xkoNF1HTS7k5qXY7QYxKxttLUdWejz3mF7d2rlNwtVJ+dZmwNCQMPDLwSN1E6pvQ3k9VRaqomdQNRC0c6J5v59BRGaM6o/ApHBo58fyRMXLjEcq6gaVFJrc5SL3gCYPIepAsFomRYLu0B2VzzXUPaCoJIvJi4H50pdufLCLnq+pzN9n0fnSVH+8tdt9es9EGuypUROQZwMuAm6vqdXHZc7HY6Ab4WVV966Y7Siq+t1laawEL3SCUquuZdOkozotVZd9/rVJefQPhazds+zkmuOHIZpBBCTFRUbzvorWgFSbTfGEsjNCzDtAsDii+cK3lppQFUhZdbor3qIb2d3fg5AjRbmCLyZOW0+E7Aeac5beooiurMDGHvo7HsY+m3WhVtea2FBJt6z06mTD8x/9k4fa34fDdb0aar33zD13C+17b5xJ76CNfAgeLdkYdfFeLvU1UjJOBYsU0C9dgDueYUJckYxO/hAKO3qZkuOTxKw0i0jE2Z2K0pXdRNQ6szDwj0NdYktZwrDQ/06aW6e2nfird7DsFYnRObOuDm9SR58zR0vfG0FoJ2j37YiHEbf5WGljjqdS10CzAeETkM1JIte2ByeQ4hwYBt9qZDsPAWelsKS1irdIusTUOzFbmIOCOemTSxMTfGlzMQxoU7f0SjfQ7Tqj2lzSjgoEq+snPIYcOM3BCsTSk3jegXiqssJuXtqyBTL8fxws9NcxfGR4F/H+qNtiIyKuBDwHrCpVTrfIjInJ74BHAF7Jldwe+D7gHVk747SJy3mbVH9PDSrQdJ/tqbvbyY23raZRHpCVSLG+sKG5cRReH6N3vjB9XyFcP0VzzZRCHi6G4OpmgQXH7lmygrupupr7ZuXqPDMrW9+EH0XwUf+tkYtnxTmxZHt3lPSwtUJ25gBZCMZ5MMR7Hg3iH4Fgzu1174ad+u5Y1WYcFLAxg/4Lxh6maZjSZ2IsO4OIgG0Lbf0JAxxNoGrRpCCuryFeuZ/GLC6zecsHyX9a7NjGZUH13TyByWNXGpyUpqZE4ux5EE5lCKJ2Flsbr8O+vfCrf9IRLbYB1KXLIGf9X4tlqo7Y6DTYPNW4HcgBngsU6lXV8nQGl5zvI27rufrRrchdKZjLDaccZlzQWldn3M17DlHHeCWU7rotJgynvh9b/qAxuFOpFiYzGcVKm8SIfJ1Ldn+bMRcLA0ZSu1RrS+VhINN0EKFoM3NIAVwfcuMYdHre5QRYB5qLPK7TXanLAUy0W+FudyYHRAFkZ23O7UlFOaly9YH2IWf3bFk4MW/Op7D2cAaRor4NbaH9clR+3yW11XLgUeBZ9ef5o4C9UdRzLXH4aIzSb4zTAt/zAK3a7C3PsIL7xGZfudhdOLnQLn72DFwEfEpE/jlrKB4Bf3WSbVPnxmLArmkp0GH1RVf9d+jPn2wL/kv2+Ki6btY8nYLTMDIdnUB5pYoSHUO2zaWtrLgGkVlwdOn6paCt3k0BYHKAijM8eEopF/O32M7rVWcjqpI2vl8Y4thJtPXWDO++OyLii+X+f2OBkHVKUyGDQ8nElbQSwCK6iWGO6SpFcONcm/kmlMBqSrpkuL9PWZ4FIn4+ZtDJnfTvbdVOzXye2bazdYmYGb3Z51dYGLpOiqzA5lY8hIZg24735YiYV3jlk/z78jSssLk8obr6P5VuZdvbNP3wJ73uNmcHUWbRSnkeSssVdrfjVBjeJ9yzOtJuFghDn+qOvjFm9xQhXK//4Jos0u/+PXELRQLHc0Ixibk/QtdpBngyZPQ8yvRzW+ENE1SLHWifw2m3ML5KZ26Y5cGb5WJzEXUj/3sV2EoA8nDuaCK04ld3TPF8xBau0QSvTXaigOArNMJnGBFVZTyHaEN/49Etb34UWwuTMgWlAMc8kxFrxbeRW8pdlkJGZV11TMijMFCZNs9aJH49jlTKFekG48a77GB5aYOELR2wbVfyhFbwIxaAglF1E5HbAGBo2vlCyh6SKqv65iLwT85EI8GxVvWaTzfZW5UcReTuzpdzPAc8DHjlrsxnLZt4ZVX0V8CqAg0u30fLQuB0E/eqwdWCGQfQDOKvA53DdwNgoWkZLQeGoF8yUUi05cIv41WFLh95GJYVo25803HjePqpFh7/3Azjjk0fxV11H/cWre/10ZWEDdzJ/JfjojA8NDOOJp+SvZMN3DsoS9d76IaA3O2hOShH84QUjnUy+kaqGlVV0ecXMY0Vh1PjOdQLNLl5fuLk4UFZWq6U3eKYw3DSYxUgchZhQqtGZPTQ/z2BgDlfvCUtDmqWBFYsKNghAV6tleN0KK7dZMjt7rfgq4FciDY2LdCaNWuZ/Ci3FTJnlIfNLJWFy/ve8gsk+84eUR0PbVgULS838M9NPVPI1tGSReeSVrK2b0kuczAXKmsFPslBlmBXxlcJl+0l/ZJGL0poIgegL84goSp8MVHP7TrrVkgsWW14tJO6vtC1IpMGRAKE+fgOGSozIS3T8ibA0WvDsemorxOwaxH6YtZ9GQeoSP3ZI7a2GUB68ED/NIEZyajxfZW07QCa1lYVQ7SZWJwrNTI0btNkrEJHzgQ+r6ptF5AeBZ4nIK1X18xts9vzjOdaOCZX12C9F5BuBc4GkpdwO+KCI3B/TTG6fNb8dcPWanUwfSwS3PGmjSGRSo4XxQdVukIUfmvBoH2IfM66d/TXqiuhgLMSihwbRYRqjaFo6jUqZHLAY+XpBuPa++5D77KNYuSOLX2kob5xQfG0Zue4GG4jPOIAumrPH3bjcDSJ+xkOu2jkqC99F9IhQHxii3qGF0OwrTQgA9VJp51AFFr5wIyyvmMCpaxMePrvVqe54iIb3xGtVSydk8tyKni8hdGGhYhUptXAwLLsQ0XQf6tC+4K6ySKSQyVULD6XNlvfLNW5cd/kasZqlFh3pZbpXk7OGa4MSSPvq6s2nex4GtJnY5ZGaNOp2FC6mzUjT9Hi8iBFgbUhrnBiYvyn0tRSJju6kEHrpCxbiYUVaQdaVKZZuMJw+J0ecYMTjTj8yrhN8LV3R1GCuvnt2Q6z8KTWtL6qNADsO3OvJl6LDdJxEsZJf23Qe6R2KQQWZ8Mx5ulJ4eRgIUinFqrOclzjJwEMz8panVHT+DVdpW3soDAt0VNgzGO+TihjZ6HZhDwmNLeC3gXuJyL2AZwJ/iDncH7zeBrHy4y0x7QbgX1X12s0OdNLNX6r6ETJ2TBG5Erivql4nIm8G/kxELsEc9XcB/nUr+w2LA0vim2ARJMk0MQots3Dbh9bc0KnnRhGubRKlLRMopItx9zY7Si9OSByG6cUVqBaFw7ctKM/0lDcfsrB/ATeuqPcPqfeXqIPBQoFfqe1hnyT6+tCFAmemKy0Lwqg0jQvwyxXQoN7RLBaEsjCT35KjGTlC4an234zySBRsV19vGkwTugJguZc5hUBIps1kM14RM5HllQxxMTnNdRLCQjzTzbDB2R1epVyZUHqHv8U+xmcNTAuMGJ85NLNko104r0ifeyxFaKX72Whbnjd3lE72SzcgjVymfZiW2pS0g0AeSRRP0jTZGCDhqqZNCO0512ttNbkN4aIwTBOG5GxOm7VOee3oSqA1ZbXXXrP2olYcTCw2Nu1fp5NTc8G0JijDfherNqA7J/ZoODOFNUNMsBwtuPKJmyeu5gilCamkjbbvRh5x151293z3tBjae1gtufhMQLPgojk04Fdq6qWSyf7uIQkFTPYJ6goG14+QqiEsWfSXqwJu3BiFT7wv2wHZgqaylwglgTrWqH808H9U9Q9E5OKNNhCR78Wic9+J3Z1fF5FnqupfbbTdnspTUdX/FJHXAR8FauBJm0V+zXFq4mHf9iIY7VLhljm2Dfd82qV7LsnvZEB0c5/KHsPhmK7xg8CDIuNwuck2PwfcL2knInJz4O0Yy/G62HWhoqrnTP1+IfDCY9qHE8ZnjVqbcHG0Mse6iGWG+24WK40aK2/0saiXnvMuzaYSxQVY8rlRbUusdU9bzwLozZgRzNZbCNWCJxQL+LH5eOpRnF3rALdUmlOyUlzV4FYb/OEVM+n46HxvgmlTpaNesAG4ODS2DHgRYEQYekLh8BM7weCF1TMdq2c4/C0KDhRiZrij4zZPhtB0JrCEpKWk2a13/cCBZD5Is+KUkd5OiqONP4Z+Wi6Ba2f6xZEJbhJwZw+7GZwX3DjgJtEhn/JJoo9BRQgjTzMqOh9BVlQsmU4ectFLKc608xl+raFYNhPI+KyB1edw5odJ5q9QuJj02PdB6NByWkK043ekpJ0m0Sbxtc9LMjtNLUu+GJFOG5H+Nj0yxej363Yy7fjJvqf9J7OXTGkBiuUPKaApfyVe09bXFOu8RPdr8LR5QceKal8yP9Fe71zSzMpkl0z7nNUmBTqIWmKrNOCHjmLoaIbm+2xryzjrQzMURrdcwC83hIGjXnSAx1UFxUqxbhj4cSFe503b7B08Fngc8GOqeo2I3AHTQjaCmzJ3Xc8WIoZ3XahsB7QQJmf41swhoaRYUXzuZM+eab/a8Qj1bPzJFOamhEqB0T/4GMUCTE/PejHw0YbdeFi+uTOHYzTD+Mooy5shHVNsKE0YrixQHG3a5LDiaAUhUC96qn0e9eCqBYojBW5S20MbzBRlPgu1CB7BuJ0GwqE7LTD62oCFLx61QlNVYz6dFA2WeJWmBkdNtufkgE7rmr6fpW0fArECelspsVnoHi+prZ+DGyuqfYXVRYmswxIdrD3TRDB/TSh9a1LJr68E5d1/80we9OiX4QC/amY0gHrBrxnE/Gowtty6y9tozw9ALL9CnUN8NsAnM2g6tPrOdJYST5XoP0rXSGMAQ/R/tCbW/qC5JrM+Ezqp4iHQzYibmGvjAHVGZdNYH5MPpSVEzXwVKfnP9p0N+s7ygRBsJFDMr3YMaEpzlvtlSzDOfTe988qtqtIJtR6FkpveKDMhqZnnQula01NbcE+68xof9LgF17JmpHd/st/1tzlBbMX8taX9WL7ea7CgpgC8SlVfOdXmB4Bnx59HgJ9S1X+P664EDmNPQq2q913nUIeBV6pqIyLnAXcD/nyT7l0uIm/N2j0WuGyzczo9hIqHyT5LbgplnLksCX4slMvaOkSTU7QZypoHua0S6ab8JRjn1IZkdOkBm3pxwAb32tMSAtos3NYHT5u4Zw5Hh58UVnq1UsqjQ4rVwPigp15Ig0aJP7PAj0M7+06RWaHokgBFTcMaHxSqxYJ6tN9oSRpY+uKgo4lP+P/bO/MoS676vn9+Ve919yyStbEFkLXHCMJmsRgwGAIYcZKjwB8JJxhIIqEYg0GyEWsiwAQEQpqG48QQsZyDfSCEHKRETuyw2IDiYNAWCUkICS1DkKUgsAVImpnuV1W//HF/99atelWv38y86dfTfb/nzHS9qlu3fnWr6v723xWhWnSvg9fyvE9AVq1208oIWSmcnyWTIJEjYoynZixt3wyCyxgv3BosFaY1FlWUvCeRxO8kbR9t55m8D6j45p9e4NZhAfYeN3Auh30VUiiDh2vNRweZSa0DK5fuu9faqR3DwnrrpYKj5ypCCE5uhA+DFFY0US1qrdKgeQmgC3kdwRY03Nas5DWXDCqpizC6ReekLgJa1uuy6MCWCDBNqFxw6+RUuX8fLOx2MdKIIn+G077sMVZNP9U0CLXFTJByVRGMtoZGRoO5BOEtDhSwsQ7jHo0LQKnuXnwlhXKJ2mqAewUffqSQVabZrNR9qtWBm5mfo6JZALQL08VmF8Dvq+r1InIEcJ2IfLW1gNbdwAtU9QERORMX9fqs6PgLfUWSCbgK+HURORq3Tsq1OCbx6n7y9QIReSXwPNxTuExVr1jrhjYHU8mg2N78XfoqrZUv0VJHHwUtJJ5TO6QY75z3MfZuZ9ygTUirnf+YvGRYmWlsWH/ULpPZayymCSmICqOdQraauaqy1u9ouzOjZYWQr9YmhGykgaEGGuzjrRZg73FZyKgulrYx2LtEPnLOz2y1QipldIQraxHqRtkEmO+tyFcqBntysqyuz+RzWkK2cyvnwucZOOd6RrXoNBRvOgjZ7O3JNQqhzVYtxNii9LJ9zVlv9YicPY8Stv1UycwcVC3k6DAj31O44IuVEjIJkX+aCYKrBSaBFuclD+YhH0IeXpBasm5oOv418CVm1FanjMOOfU5DlFcSuo2YXHDIV4JaYUQVyCqT0HMXiSZFhVRV0GhddKAGDdHlhfhFrFz4cP0O1SWKvPCk9n5no4hJ7C/EaS3ZImSFNAS5rj79dxEc9V19xt+T/a2iGavWRgjvupjVVtR9az4yTPOeaxwEZuGoV9X7gPts+0ERuRWXm/e9qM23olO+jYuK3V+Iqu4RkbOBP1TVi0Xkhs6GIqcAj1LV/62qlwOX2/7ni8jJqnrnpAttDqYiTiqX6DeZi2oBIV+BwUr9gpcL4yp+YCpeOq5sAnFd1Dbrxkk0mYff12FBUHEvvGZR5Kad5z+Umy8+32Ulu/nMmRYsZDKusuwkWV/WxJiROBNd1TDhuWtUAtViTcvK0cLqke7Dz1cyshHmk3F9xIzRJ4/qwOX8yJELQcLNVl0Umpp0Wg2y2lQlmNZQMPzZPie1L5k2UrhrVdZntloFM17zmbgHkO8dobmrnqxR8l+xJKwe4Z4vOHNfgS1hW8LKUUMX/bNal+hRk/gVoLJhtXHMRmolUiRoFRo9Y6jfByCYnMTMkO69y9DSrdjpGIVpe1bO3UXGVYEBuYPGMEdVmIiyUeU0jWEUsSSgkiEDqTUj/KQpjUTHUO8qd8+0HBIm8aBxm7Z8MAtXBR+OafbFdmdSk8L444BgEguCnEafSPS9tE3IAVrvazD2+Fvz32FeXy9fNUbp988wmjiODFwDrxSReF33yyzHbgwicgLwNOA7E/o7m6YJSoGviIgC/7Gvb9e9/BpOMznb9vU9+Y/icgnb2GPH/vEE+jYHU9kseMKFy+mBJCQcBtiP9VQuV9UL1+xPZCfwJdySv7/oafNCHEN4XrT7uap6r4g8EviqiHxfVa/qOP08XPHIKyzK9iTg6z3knKCq3x27HdVrjfFNxKaZwzTHchoIqnBQ8/NaSvIVcRtSSyztmOkpXzETUEuS6xNOOvujKdmOOfN9ktigPv+mS84HrOxFq6/wIhsNlS8wrASzR0NLiRH1U+VYFV4zxVUEc5pKbR6RCqrKR0sRTDdq5w73DGrzhvqyGQQTUrkAWTlk8eeLLP5dERbxGuypAk3FUk6eC9lK6XwHqp2LOAWTXJygJzB8SAO9VQ6rx2bkK85E6NZrz8lX1K234xMUYzE56i4rXGZ/MN1MWAU0lrx91n4YZ/PLeGndRV3hfEoZOFWzNl36hM5yaLkZpZLvGSGrFv22bYBf2CvkSQ6bRUB8npWr9uAeVLmYu2VzvHabYU5+G0+lllWt33xFuP1d53ffdM84uCWLrV9798Sb22Lzl9Z/g9mxbGkedGghVbNN22/Z9HvV13VjW9MULAszgDCuWY+3mbIvkSGOoXzOzE1dbZ4MfAo4U1X/1u9X1Xvt7/0icgWuVuIYU1HVbwLfjH7fBby5h6SlCeRum3w3m4WpiCVfKRBPfhYKjDjHfXihWpOuRv2EfRkukiprmtbGXsr2h9DhYBzb9uYUobZ1277T/41jJnncV2TmisMoG1FR/kP1l/OmOzPVh/c//ljNNIaNky+n0uxPKLL6d6g1pUQ27bq+U8wgNXNR0ZpllAtDd1yEHfcX5OYbqRYEHeTkmbgFqNq1uEo/mzgTUvzGxmu0POu1uyyU25nVpDRHtZl4xiLIOiCVmanKugaZW8QrehYtgSEkWHrTWjTpSeSfaphTcw3PyJ+LuFUsvfkyXx06X5cJQp4XiVV8cMy9w54ThTK78OmaYAG0qp8j4Cp6d727U+J7H6wZ0OnvWnbMxTOYLtlAmvuzEWHtnMCo43YxbbEZss1YWtdSgWJb3bfHzCoLV6wdojzFeIorXfFp4FZV3dXT5nicX+M1qnp7tH8HLuz3Qdt+KfAHrXM/qqrnicifdlHUU8frGhF5vap+stXX2bhClBOxaZiKDuoJMlulll5y8zcsut/i11XxiIa5V5rx/Kj1ofgJp/GC9zCdTmZjklpto6+bjHbC8EFqs7yfays/2UkISYaIocYfJQSpW/x9tD/M6EOuIvrjiSdmwH7sXAHIqBSI17okam/HfEi2CwmFlZWchcwmvaGP2rMs+TJ2nseSt0KlDPa0otYilItRUMXAwmUHjpAykr0aE4tdKzNmIhZdVjUk6JorZ0U0JjZeWeHupV5QzO47Kq8T1jLR+hnGcJUArGy8+bWykTJYUafZjTCtKHOh8uaDCsvr+vDZvI74cqsg1s/HXye+B/88femWA8WzX30pC0dnFNug3BYJFq1JP2Yc/rpimq5rYM3jHJZhJFB1Maseussl1z6zdWXcEswHeIMdWEtTmZJLPxd4DXBT5Dh/F3A8gKp+ArgQOBb4Iyuf5EOHHwVcYfsGwOdV9X+2+v8T+3vJNMQYzrN+X03NRM7AiSCvWOvkTcFU1DMNCBFUfnEiqSx0dwmTAKnNEtCQgOLInHiC7YSfTOM+/P6+9n4z7tdX/RB74aMJ4KZLnRT4hAuXbfJyOTZhIojLxJjpQTw9Rr+Pp2+Hzsa/4w8/MCWLmBmD7RsbGmnt8xK7ODMYQjDF7DtKKBcy8hU3qVS5S9AbWD6P2FoqUrkq03nuIsikqBDLPfrNZ7yPL1/znnC5YlHq6Deb28Oqhl30hpu3iTUTt/aIEhhRCI6IinHGEXfVoJ4ks5GQleqWOy6cSpIHDcaCEobesS8NbTrcwzYJY5Wv4tYHEhf5pZkGzcbRYYzFnkmIU6s0CE7+mgDDh3xf9bPR3AIxCvdu+WW2n/j2ZW75cK2BTAv/zTX2tZhFeF8jDcRHn5WLVj5mJA0NJggtLT9GZ3SVCZYu6tHlblWVMHjIqi/PqohDpeNRi21MwVNU9a9Yg52r6jnAOR377wKessa519nfb1pGPKr6kzXO+THwHPPhPMl2/w9V/ctJ53lsDqaSQblkJoZCYGgvbabke53UV+xwL1hZCdmKW9/cS/bObKMM9kgtuRZMxVSahBAm8sa+drO29hJpB0GiiyebOFz6GCVbdR9diMOPrtlIPdEOoT7+oDsQmufdH612TRKNEwlmHqGeOIvFun25CJoL2bZaw0GFYoTLlVA/obgJcuEhV/spW61YeMBVIBijy4fHmkYQNLKYPqk3Y1qxcfLL7AK1TT5oHf63Yx5OWKn9c7rd3VxW2oJwI1djSyoNprRqoY7E8ow+Nk95811gKl6DHABmSssKp9FVi5nLy6nU+cQqdyM6cBWZfR5LueRyVrLShC8f0q6gJeEYWoezHwj8Imue0TYGuutdiyPRPD9cUPd+DJRyGwwecpGJAeYbCv1G/sX4u/GMPt8rVIvu2y52tGg6SAg9TC3GjK51MDDz2nuAN2EsV0QKXFjxH0w6V1W/Tr8zvxebgqlsVvz99y+7jbUq9GxRPP+sj9TM4tHpVZ4l/PIEa+Glv/Z+p8mdvH3NtpsKU4UUbwCu4kxZz8XV8LobwCK/Pi4i56vq8qwvuDm+RKmlHBWFgbp8g0wpRk7k1IUqJLOXlZOInbMFK6WhFDtcsmG+V2BfLcWGy0Tbsemi4SCvWu9aW3Np0d2Gl/Ji05OX1qohFEeaelUKg1/kzpxX0tC8/HVVx2leC3GTzvY999J5jxppKy2zQ+X7b0XpBVOi5RhROV/JYK+y8BAuT2XEGMptNEqExBoIUCegxvfhx8c0EZ97GPxxkZ8oWMMynLYbO4DFaSGa4YIajvCLUNWZ3cOHHSHeFBbOG9b3HzudyyFgGe5+ITMyoQz+ByFbyvD+oHxVXaZ9ZOocrCj5qAw17nzuRjBH5lBsd42lgsWfuwcz2Odofc4/u5Rv/ec6GALcujXueVQU2zKO9MOZ2UP1fsb4fojG0MZYyvrd8KgW3For3hTd0Ny91tmhnTSc+BJpyiW1Mz3ToMXMAj7SbmKbDcFTeC3wkjjjXlXvsjVVvoJbgXem2DRMpf4grQZWbrWXBmVoEppnhNkmhGli5oissnpYWeRYrf82nIVehSfan0XHaTGZPhtwB7KiNg34D6HcXrmPDiBTip0VVSFI4UJBPVORov4oNZr4AmJzG839Yx9ddC999xAmsoZdyZr7ZxNN0r74YLtNzBCCWaRy5jKphKLMKHYM2feIRVewc4dzSFcDN1EGhtwOm/X7onuQ6H6F+vpxlFwjY9voDBHN/n0oCQwmMKFWUNZoJy7Z1Hx5cYSdZ6phmL0pyDvOo0KUngaxG628mZeaMeQjDc9hLCDBkFnyqffNqVWZcOY158fy6wr9+iucf/d/XfFWnvKWZXY2b41fnLwjRLAN9ygrhaALrUYR824LLQKMfqli+POMfJ8wOsIJhKhQLihZYaa6zJmxnOPdohSrjmu0kBXinpmADjVE3h00WgJnb5v5Y9hVwkVVf2KhzDPHJmEq6l44Lynl9oa1J8h44rNtyeKvzb14VS5UQ/s41ZVEkQKkkBBJAjTswUaGX+8pIM6R8W3aL1sjuqql5XinczzpBuRKJYrk4jQ13OSbrUR0RlJ3cNyXdf99/p84HyaWfqfys8SIJ2EbUp/TkIF7ZhHjCYzNS7WZaWjiJPzR9mGoleaXwe3yEfms/8Bo4ufkh8WcvypjpwetpDI7/lgIK5b3YdfJVqKOO1AN3PWCYOIFgPgZU4+RL0jqVmh0AkPmIxej82KnOwJFJfV70wil1c73MGgEaF2BYRAxfsOzf2sXHCs8+PjMsuRzd1yNydlz81GWnWhpHv69HzxYfwCBOS8o5YK6VSBH9ZpGjjk4wSkbSeN+NNxLCwLVUMe+14OCMkX014bA6gEeO2BsEqYCLJXN311t1tgXGEyGM6HhJszSF9qrxL3gpYxNzFJIrdG0Pl77Zgl/4snET7axlE19LkCxBOV2pdrWiofM3WykWS2dagWaqVs1z1eNNZNCoKmQMLlJKY2P3RMZM6WGSY2a3nYE3VikTzTG/qPPbFGocskW8VuJ7jU6z+e8SInl5OBSsmKhYI0JImgsMfw8FDjLOM2NqKx2TlOkPaqVIEFdXtE0peNDGLef+7sEn+j6wfFctgSUaLzjZL/mxZoX7hJovJMeaGhQmkGWW6kTCzTICth7NGHMykX2D+17zWD1KBdB0A5f1yiXR3OLylPHXDVzgpQvkBq0GCw6spCg7ZZLSrVYwcCZw2fGVBq21Qlt5o+niMgvOvYLk5McDxhzYyoi8ru4iIQCF672Ntv/TlwpghJ4s6p+eboOo+2OSa33d3tChehrNQnS1HG1bG+txJKfJGIONtOaJiDmNPAZw3X5eOvaTwreJOIZSzxp4j6M0bFFY3IGu5QAeVMCJXdZ5/4jc2XRmy+3xtJsR6lzKVwdqSDFxgywjK7ttT1jUOGeWhKjtp5NVtjwDWHlWDW/g5DviybtzGz/wMDMYGOlMaJrdIVNxzb55gGCZB1HhPVO0l4jMOYWzGK51bmKwl67Jm5/zeAzitp2Js16Gv3l/Zi03o2Jpkiaz6BxLxHKaJ5tmOViB4862kc763sY6zum118/Mr1qe3z8PWfugo2q0BHxjfFRELuQ5urMWbF5V6AYKpQRk8q1oWmutWjntDhcfCqqB1PZ7cAwF6Zi8c9nAU9W1RWrW4OInA68Cngibjnhr4nIaWn1x4SEhA0FZW1N5fAwj80c89JU3gB8SFVXAKLVxc4CvmD77xaRO3C1bP566p57pMReSGu7T8sRjSRfDb4T1eaCSo4GCVEqWSFOo/EJl1WtAaiaX78VteVRDWH1KHPOh9oo4slpJjDGknXWs1aIR2xaiM8rnTlMB+r8BRFNXgPJRmJSt9ZSawXZqgQNLbP1w3q1f9NWEBgtOJFSh4JKFpLWxKLynJnRi5mRtBv15Yd8DH3aa/uY7ztunrWOmbmr2K7o0JlgspWWKXQSYsE/0o56x6j1Xo5pUu3mtXId2vRqTT0aTqNJZIaLVzlt1NhrfyteC8tdIqNPYkTd2FVDDZpxsbPq9nEELcciwewakoGqmbAY1zh84rA/1rgdiZcw6BiPA8H0VYq3HObFVE7DLRjzAWAf8FZVvQa3jsC3o3b32L61Ma15s8PENLXpUwhfX/1u6vj5atm7lVAN1EKXIz+GJfkFM4B32kb2bc1hdGTTjyJV84uITWadc2rXRNH+HTEYkPDRalbVzLGyGUqginww4QOvXDZ7NnJMJ0z8EbNsZ0IrWOa8C4qoFpVqYHGmFp4qhZAXWYNxCPU9I+P3GDPCxv1OMgn5Pjva+yz0agHKbUq1UIV3aPCzbKyWVJfTfwwd15mm/aTXtGt+mxg+2343aDGtiAmGfZljDH6phlAM0gcsjJxA4gWDalHJ9kkkiJjDPNfaPBtekPbzqveLfXfiH3j0/EObzqiuWOqK/s0A05i/NoZLZf1xyJiKiHwNt0RmG++26x4NPBt4BvBFS8jp+gw6H42InAucC5Afe1QPER09dG23r6od+yZRM9ZW64gtC1+WTFAVtFQyEdSkeqcR2GJirevnewQZ5bW9WaDaVtbXq8QFF3TZ5Dtom6S9xP6Zuo26zHq/5GymIawz7tsHB+hAqBZNGjUNBsvpyEbUTCaaT7J9GSqV6zeWXH0knlYUmoXw3Viji6Ptgm8rGr8wljGtfYJES5OINZVqCMWOCl3QKO/BBRPEme8NX03cZ9f1DgJ9EU7718n4rk6lptVOCkGXqtqfEWvQi80eNFPK7UpJLRCNOcvj7ZbvL5Rcy6IXJj4vfk/XusFZT/DK2prKFtVkDhlTUdUX9x0TkTfg1hlQ4GoRqYDjcJrJ46OmjwPu7en/Mtyymiye+Lj66R2IettmLl1M5kAgxlxMcxGrHeLqDrrJ2TnNfT0pGZsQ81VBrQaUmhNybLLyDKw9AUxgIh2kuu4iiT6ca1Jg52Rpx/0EoAAW3uwnHTGzmRQSFnDycPkqrkZVtViNMYNqQakWyrH+pBKyfeKSPyvH2GItRtrPNEJ8H3GEWOw4L5fqdtU2m0SjsQYYHVVSFEK2KuT7pHHd4OyPmZ7d13gl6H5MfKYzmLMmmdTqRoToPf/b//MBKdmqe76l16z92JqWq13CT/u9inlGRv39NAZpws2H/uPvaMKLcFDwEk1CG/Myf/1X4EXAN0TkNFz1y58CVwKfF5FdOEf9qcDVU/WYdT3gGbxI0743SnNG7oNonTSpgojXDoRKNZgJGlFVcZhxKc3JvqWJtGmJI3ACcm1G6JTiPv5WJJn4iTGYueq+xkxpGeHEQEcOqKLYipIhy9xtZwW27QpKNswTfjJuS7i52iF1JqnShXkPH3J9Nu6rY9L2OR06sAKGQ23cSyO6zt97xBzCWIpCJi6fYuhqVYWwXVp0QDB3+ki34IfpiWYL16F5vDEBy4RXLRZO+tAldPQxYRu34ogoARdYeMAqVuRRfbRcYegHwi4SaXjh/cssSbnz+tp5/2t+kG3GFTTfGTOASqdYo362lzxcMC+m8hngMyJyMy4B53WmtdwiIl/Erc9cAG9MkV8JCQkbDRIsDxOwRTWZuTAVVV0Ffqvn2AeAD+x/r5PEsh4VeH+0kEkmMe+Yt/2S1Y3bNv+mJ9d17P0ZIaLcS1uVW91PIylLIjPP2Ip6XTQ2cmkIoqlmzmGajWpHOOYLafQlGq2bosHvMTbaXVJ25GwlV1eiXRW1fJ6qgmzVrp/5m4okVK3pETP7qT8uNj4CulSxOpBGzk1uprFQosO0LhfFpc75PtSQ5BpuI9aUPGKxJpjLvE3IBmPg9ad6jNFaywwRfpnlhpRRHlA8hjputmz7kRr0dpmOove1s5+wgzE0TJw2br4+WbWo6ELl3pMSln6S8/33nN84/8R/fyn53gwtlOrIotYQgurm/2jj9zghzXtaE75f0fB4DilS9FcvNkdGfRtjz3pKZtJhWPZRXK4bbUaZeGbizTSBaag7RwkO+/GZAvtotZdpqdmV20EsxH1WrYONf3USmMT3YfSGzGMZJ6+myU30PjrM+0PqkFWpr+fvyUKaqyjAIL7ncE+Z1VprPw/L9G8kB/ouvDksGlPPcIJPRl1xwioyM1VDmkUFPYNsj1voPELMHGNm2T4Wxq29T4IZSAUYOBPR2CQfM5lIGAhdKr3mspjxxNFxMdb0xURj7VfyrBaUcodd1BjE7t95a08HDuUxhZlmNRJSei66v/PyBGYhYgJLZ98z5jK2aNyabbYgNhlT6Zqdpz3VJqsxyVGCM9JPhOGw1wS8XyJM1ll9vpdsfaiuScrtazQ+vnCdDmkuNtpHTKJ5L9FmBrvf2Kw0+8R3LnPLRedz0vKuWqiu+Wb4LQW1BhH1LZUxyyg3YPiQNKTWky/ZRR5rPtF9NHJ8o4m0XYgRaPh/xuCfWYdmA64Ap49E04E2Js34fnqZSec1O/qQnu2wzzF/zeIZv8l/6nhp90+oJ8imphqVA4oYTKhm0GI0Y6HSMP6+RLT7agHlkov0U6v4DbD73At6TnQ49UPL6JFaM5RJOMg5Xuadrq7qVO2JbdaHlI2GTcRUDvIJjmUTQnC8+glUXShwkJAjJ3dDIzBS7jr/9xqXOO0Dy4BzEMeXDZcUQMQSxaruSdCw+19PlhYn4ZaLzg/0nfiHlwYa7npzk/mcfMmuUB7lzre6eznlw8vc8XZ3/mkfXA5t22YQ334tnHrRcjCzSFYzEB9GLT56aJpJqD3ReAbumbvHWppJX39thnIgE6OY+toQXqyjyBIZ2E7r3hsVs8tmH+3gBG9y62Qs8T3ZvZSLii6oc7gPtKEl7379ZIYSuluqatOW9dv5aXYIG31Yi4Fo7/OLrzPjGf7wWU9l3bGJmEpCQkLCOmFGywlvRmw9ptL3oH0IrnQIILEvYhQbnuvzvOnm7papKcbt766l+V99vZPyr/tkve9JF7h9N3+kKfUfStz9u/30dmkbXksBuP1dM6IzmG6kzjURbQQitPNOptJcvHkuMiv5/qbvpKNPb6qK/Std/op4X/udMpp8aK3GffUhOL+cmUoG0X5LEgoJomYKbISZS6S1SG2O9fRUC2buslD1abWTQF6GVfo2eqK+mw3X+B1Dak3Eayydmsl6T+BaQbVGYGryqRzukMkv1pTPV7smHG/28B9jWR9r+yumRcxMPNaTmWwU/OCd3fd86kXLdeTUIPK3mI8llAeJEaIH/G8OjoF05R21/V8+FC7u3l83J8oGJ/wNPpJeAadFb2BcihUrqRkSzv8SR1cFphyRH5hJewXErDX5twJD9geaKYwyWyQvvhmmMxt2Md74cK8TfsJJhwrK2prKFlVVNg9TaZeM6EOfNGj7Qwa8/d59zttmS2fCVIiZzWkfXK59LZlAZvWnhrW0HfwIh2JS8ZLymITdfy0VLDlOxifqPgk+nGz/eeYUMy3VhuATggczdcEAxshC8qaHZx5dGpH1ve24PQDc+or39N7XJMTl67UQFymZdTD6jmuPbY913t4xobH2bM8S0/hUtiZP2RxM5R8c+2iu/Rdv54RPuKVPd//2/jmxT/jsh8P27te9faa0JRw8YjPbaR9YBnHVb8vKKhpHbdsFHqFDozlAdCkuk9oFs5tpCBNDlXs7o7+NVStwmy2TU5vQ1vldpq0nXPG+CYRMD/GVHmpO34/9mnh7BmqCRqraNGn/8F+9DfmX79ifi/ZccxpH/dbEpmAqHvvLTMJ5iZEcNoj9Ur/ynmWqoYuWK7dXY4pqNjJ/l+DKsdjE3pubY5hUD2sSQ2kniE7Uivt8Q21T2yQaYqbV8pH88Jz984fAgWsoAQrZ3gxdyYJvRjMNdbwCzVOHA09gIo2/9pwjxnHIUVVQruVTWSPkeJNiUzGVhISE6XDuta8D4LIzPjtnSg5TJPNXLxJTSThs8f331VrLqRcth2V9y0UNUvzgYVeuZd8jbcladYEWXUnxbayplcQNg7+i58S2NjGh853m27jlrPd2Hn/JN86nUuGOux7ND8/eOD4/n5d1ykd2UQ1sgGyBOfVJrLkr9SK+UGfnzNvhkI+0krZJC9ZJO2kjmb86kZhKwmGFUy5eBuCOtzWjxrxj/0lvW2a0s1ktePUI53sJZWR85Vz65/ZOs1Tbwd5mDmvECDTL4Einieop//3fUpTTLSt+ykn/b6p26407LuhOfD151y5XR66wVR0Fx2DiatttJgK2PIT/YWV5gB8eRALwwUKrCk3mr04kppJw2OCUj+xirZn75ovHQ5RP/dByxAjUvfWxD7lP4IzP6Tu2BvY31+PGf/T+NdtUxp32FcP96jvGPMxed/7eOLM56aO78HXbdKFqLBPs6+p5bnwgfqJDhpT82IvEVBI2PaqBuqRVBVcGpy/Edz9mgVbT3edewAmf/Ej9ez+Zyf7gL16465D1vd445ma/laGSd+ZvbUzMJvpLRB4P/DFuldwKuExVP9Zq82rARxM9BLxBVW+0Yy8DPobLivqUqn7ooIk6SCSmknDYoM+sshamrUN2wscvGfeLqLhPParv1leF4FAykoQNhqmiv6ZiOgXw+6p6vYgcAVwnIl9V1e9Fbe4GXqCqD4jImbgVb58lIjnwH4CX4FbNvUZErmydu+6YUQR/QkJCwv7h6b+9PG8SDhhaqfOrTPg3DVNR1ftU9XrbfhC4FXhsq823VPUB+/lt3DLrAM8E7lDVu2yNqi8AZ83oFg8Yc9FUROSpwCeAJRyn/h1VvdqOvRM4G7c00ptV9cvzoDFh62H3G+bn+N2q0MyZJUV17ZUUNxKmCilWgFeKyKeivZep6mVdzUXkBOBpwHcm9Ho28Oe2/VjgR9Gxe4BnTSbq0GNe5q+Lgfep6p+LyMvt92+IyOnAq4An4tao/5qInJaWFE5I2Hy4/hOHi/+kA9Ms0uVwuapeuFYjEdkJfAk4T1V/0dPmhTim8jy/q4uyaYg6lJgXU1HgSNv+JeBe2z4L+IKqrgB3i8gdOBXvr9efxISEhIRuaFWhTJZ1dTqmg4gMcQzlc6p6eU+bJwOfAs5U1b+13fcAj4+aPY56Lp0b5sVUzgO+LCKX4Pw6z7H9j8XZDD3uoWVf9BCRc4FzAY4//vhDRmhCQkLCGFSnyENZm6mIiACfBm5V1c6wPhE5HrgceI2q3h4dugY4VUROBP4GZ+X551NQf0hxyJiKiHwNFybXxruBfwicr6pfEpF/ihvUF7Mf6pzZJS8DOOOMM+au8iUkJGwdqFZraiI6nY/oucBrgJtE5Abb9y7geOvjE8CFwLHAHzkeRKGqZ6hqISJvAr6MCyn+jKresv93M1scMqaiqi/uOyYifwy8xX7+F5xaBxtUnUtISEiIcNX9+iMeyd/rbVBqwYM8AHB7byNAVf+KNVJpVfUc4JyeY38G/NlaBK8n5hVSfC/wAtt+EfAD274SeJWILJpKdypw9RzoS0hISOjDN1bYx8Pd/nQA7uFOHsMvo6p71pGuDYF5+VReD3xMRAbAPsw3oqq3iMgXge/hQo3fmCK/EhISNhJUVX9VXsDd3MqTOiJ4Sy24j//LQ/x8xxzImztkSrvfhsYZZ5yh11577bzJSEhIOAwgItep6hkH2YcczSOqX+Fp7JAjG8d+qLcBwu164zqtbbyxkDLqExISEvYTqqon8gTu5tbGfq+l/IDvbkktBRJTSUhISDggXM9VWdu3spV9KR6JqSQkJCQcANraStJSHBJTSUhISDhAxNpK0lIcUun7hISEhAOEjwS7g5vZy8NbNuIrRtJUEhISEg4C13NVVjBKWophU4QUi8iDwG3zpqMDxwE/nTcRLSSapkOiaXpsRLom0fTLqvqI9SRmK2GzmL9uO9i480MBEbl2o9GVaJoOiabpsRHp2og0bRUk81dCQkJCwsyQmEpCQkJCwsywWZhK5/KcGwAbka5E03RINE2PjUjXRqRpS2BTOOoTEhISEjYGNoumkpCQkJCwAZCYSkJCQkLCzHDYMxUReZmI3CYid4jIO+ZIx24RuUlEbhCRa23fMSLyVRH5gf09+hDT8BkRuV9Ebo729dIgIu+0cbtNRH5zHWl6r4j8jY3VDSLy8nWm6fEi8nURuVVEbhGRt9j+eY9VH11zGy8RWRKRq0XkRqPpfbZ/bmM1gaa5vlcJBlU9bP/h1mW+EzgJWABuBE6fEy27geNa+y4G3mHb7wA+fIhpeD7wdODmtWgATrfxWgROtHHM14mm9wJv7Wi7XjQ9Bni6bR+BW/L19A0wVn10zW28cEvd7rTtIfAd4NnzHKsJNM31vUr/3L/DXVN5JnCHqt6lqqvAF4Cz5kxTjLOAz9r2Z4F/cigvpqpXAX83JQ1nAV9Q1RVVvRu4Azee60FTH9aLpvtU9XrbfhC4FXgs8x+rPrr6cMjpUoeH7OfQ/ilzHKsJNPVhXZ5fgsPhzlQeC/wo+n0Pkz/CQwkFviIi14nIubbvUap6H7gJA3jkHOjqo2HeY/cmEfmumce86WTdaRKRE4Cn4aTdDTNWLbpgjuMlIrmI3ADcD3xVVec+Vj00wQZ5r7YyDnem0rVc57xipJ+rqk8HzgTeKCLPnxMd02KeY/dx4GTgqcB9wKXzoElEdgJfAs5TjVZa6mjasW896ZrreKlqqapPBR4HPFNEnjSh+Txp2hDv1VbH4c5U7gEeH/1+HHDvPAhR1Xvt7/3AFTj1+sci8hgA+3v/HEjro2FuY6eqP7ZJoQI+SW2KWDeaRGSIm7g/p6qX2+65j1UXXRthvIyOnwHfAF7GBhirNk0bZZy2Og53pnINcKqInCgiC8CrgCvXmwgR2SEiR/ht4KXAzUbL66zZ64D/tt60TaDhSuBVIrIoIicCpwJXrwdBfjIyvAI3VutGk4gI8GngVlXdFR2a61j10TXP8RKRR4jIUba9DXgx8H3mOFZ9NM37vUowzDtS4GD/AS/HRcncCbx7TjSchIsuuRG4xdMBHAv8BfAD+3vMIabjP+HU/hFOOjt7Eg3Au23cbgPOXEea/gS4Cfgu7oN/zDrT9Dyc+eO7wA327+UbYKz66JrbeAFPBv6PXftm4MK13u050jTX9yr9c/9SmZaEhISEhJnhcDd/JSQkJCRsICSmkpCQkJAwMySmkpCQkJAwMySmkpCQkJAwMySmkpCQkJAwMySmkpCQkJAwMySmkpCQkJAwMySmkrDpICLPsKKCS1bt4JY16lUlJCTMCCn5MWFTQkT+HbAEbAPuUdWL5kxSQsKWQGIqCZsSVgvuGmAf8BxVLedMUkLClkAyfyVsVhwD7MStoLg0Z1oSErYMkqaSsCkhIlfiVgI9EVdY8E1zJikhYUtgMG8CEhJmDRF5LVCo6udFJAe+JSIvUtW/nDdtCQmbHUlTSUhISEiYGZJPJSEhISFhZkhMJSEhISFhZkhMJSEhISFhZkhMJSEhISFhZkhMJSEhISFhZkhMJSEhISFhZkhMJSEhISFhZvj/BARg1r2gOr4AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 0 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"for name, ds in ddict.items():\n", | |
" plt.figure()\n", | |
" ds.isel(time=0).interp(lev=1000).dissic.plot(robust=True)\n", | |
" plt.title(ds.attrs['source_id'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "heated-tolerance", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [conda env:notebook] *", | |
"language": "python", | |
"name": "conda-env-notebook-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment