This document is kept around for historical purposes. Instead, please look at
- https://lean-lang.org/lean4/doc/quickstart.html, and/or
- https://leanprover-community.github.io/get_started.html#regular-install
This document is kept around for historical purposes. Instead, please look at
| import tactic | |
| import tactic.find | |
| import init.function | |
| import algebra.group | |
| import group_theory.subgroup | |
| open function | |
| section five_lemma |
| import tactic | |
| import tactic.find | |
| import init.function | |
| import algebra.group | |
| import group_theory.subgroup | |
| open function | |
| section five_lemma |
| import data.nat.prime | |
| import algebra.group_power | |
| import tactic.ring | |
| universes u v | |
| namespace nat | |
| class Prime := | |
| (p : ℕ) (pp : nat.prime p) |
| import data.nat.prime | |
| import algebra.group_power | |
| import tactic.ring | |
| import linear_algebra.multivariate_polynomial | |
| import ring_theory.localization | |
| universes u v w u₁ | |
| -- ### FOR_MATHLIB | |
| -- everything in this section should move to other files |
| -- Written by Johan Commelin; golfed by Kenny Lau | |
| import tactic.interactive | |
| universe u | |
| namespace eckmann_hilton | |
| variables (X : Type u) | |
| local notation a `<`m`>` b := @has_mul.mul X m a b |
| #!/bin/python3 | |
| ### Read a replacement script from stdin | |
| ### Read a filename from commandline args | |
| ### Output to stdout | |
| ### Replacement script has the following form | |
| # ----eofmarker | |
| # line:col:line:col |
| import category_theory.examples.topological_spaces | |
| import order.lattice order.galois_connection | |
| import category_theory.tactics.obviously | |
| universes u v | |
| open category_theory | |
| open category_theory.examples | |
| namespace open_set |
| -- Big thanks to Simon Hudon for dictating this file to me | |
| -- and explaining what's going on! | |
| import category_theory.concrete_category | |
| namespace string | |
| def camel_case (s : string) : string := | |
| (join $ split (λ c, c = '_') s) ++ "'" | |
| -- TODO make first char uppercase of each elem in list |
| import data.real.basic | |
| structure complex := | |
| (re : ℝ) | |
| (im : ℝ) | |
| -- type ℝ as \R | |
| -- type ℂ as \com or \Com | |
| notation `ℂ` := complex |