Skip to content

Instantly share code, notes, and snippets.

@jdfreder
Created February 28, 2016 22:12
Show Gist options
  • Save jdfreder/c8b8907c017065fc9758 to your computer and use it in GitHub Desktop.
Save jdfreder/c8b8907c017065fc9758 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook simulates a simplified version of the game of roulette. The goal is to understand the various ways in which risk attitudes and value functions might make the game attractive to an individual."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy\n",
"import matplotlib.pyplot as plt\n",
"from ipywidgets import interact, interactive, fixed,FloatSlider,IntSlider\n",
"\n",
"\n",
"%matplotlib inline\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def roulette_spin():\n",
" npockets=[18,18,2] # black, red, green\n",
" roll=numpy.random.random_integers(0,numpy.sum(npockets)-1)\n",
" if roll<npockets[0]:\n",
" color=0\n",
" elif roll<numpy.sum(npockets[:2]):\n",
" color=0\n",
" else:\n",
" color=2\n",
" return roll,color"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Expected value of $1 bet = p(outcome)*u(outcome) = $-0.05\n",
"Mean outcome over 100 bets (on $1.00 bet): $-6.13 (range: $-100.00 - $215.00)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAFjCAYAAADPf8HRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2YZHV55//3Z0DG5wnMhukEhFFESIgKRAmJiba6KuJG\n3KwxkmxUNAlrRM3DGtBkl3E3VyImksS4yqLIgonPJor5GUDENqsuDwoIIg9DjCNMnEYDGgfjODD3\n749zGoqmn6b61FR19ft1XXVNnVPfb537W9VV99znfOucVBWSJEmSpG6sGXYAkiRJkjROLLIkSZIk\nqUMWWZIkSZLUIYssSZIkSeqQRZYkSZIkdcgiS5IkSZI6NPAiK8lxSW5McnOSU+dp89Ykm5Nck+So\nnvXnJJlOcu0cfV6d5IYk1yV50yDHIEkaX33kqSNnPbYmyVVJLuhZt2+Si5PclOSiJOsGPQ5J0ugY\naJGVZA3wNuA5wBHAiUkOn9XmucAhVXUocDLwjp6Hz237zn7eSeDngcdX1eOBPx3IACRJY63PPHXW\nrKd5LfCVWetOAy6pqsOAS4HXDyB8SdKIGvSRrGOAzVW1pap2Au8HTpjV5gTgfICquhxYl2RDu/xZ\n4M45nveVwJuq6u623bcGFL8kabwtK08lORA4HnjXHH3Oa++fB7xgMOFLkkbRoIusA4Bbe5Zva9ct\n1GbrHG1mexzw1CSXJfl0kictO1JJ0mq03Dz1Z8DrgJrVZ/+qmgaoqm3A/l0FLEkafSv1xBd7A/tW\n1bHA7wEfHHI8kqRVJsnzgOmqugZIe5vP7CJMkjTG9h7w828FDupZPrBdN7vNoxZpM9utwN8AVNWV\nSXYlWV9V/9LbKIlJTZJGUFUtVJDsScvJUy8Enp/keOAhwCOSnF9VLwGmk2yoqukkE8Dt8wVgrpKk\n0bScXDXoI1lXAo9NcnCSfYAXAxfManMB8BKAJMcC356ZYtGaa+/gR4FntH0eBzxodoE1o6rG4nb6\n6acPPQbH41hW2m2cxjNOYxkxfeepqnpDVR1UVY9p+11aTYE10+dl7f2XAh9bKIhhvyf+HTtex+t4\nHe/9b8s10CNZVXVPklOAi2kKunOq6oYkJzcP19lV9Ykkxye5BbgLOGmmf5L3ApPA+iRfB06vqnNp\nzjr47iTXATtok58kSbtjuXlqAWcAH0zycmAL8KJBjUGSNHoGPV2QqroQOGzWuv89a/mUefr+8jzr\ndwK/2lWMkqTVazl5qufxzwCf6Vm+A/j3HYYpSVpBVuqJL1adycnJYYfQqXEaj2MZXeM0nnEai1av\n1fZ37HjHm+PVQtLFnMNRlaTGeXyStBIloUbnxBdDZ66SpNGz3FzlkSxJkiRJ6pBFliRJkiR1yCJL\nkiRJkjpkkSVJkiRJHbLIkiRJkqQOWWRJkiRJUocssiRJkiSpQxZZkiRJktQhiyxJkiRJ6pBFliRJ\nkiR1yCJLkiRJkjpkkSVJkiRJHbLIkiRJkqQOWWRJkiRJUocssiRJkiSpQxZZY25iYiNJ+r5NTGwc\n9hAkSZKkFSVVNewYBiZJjfP4liIJsJzXIKz211BSt5JQVRl2HKPCXCVJo2e5ucojWZIkSZLUIYss\nSZIkSeqQRZYkSZIkdcgiS5IkSZI6ZJElSZIkSR2yyNJAeQp5SZIkrTaewn3MDfsU7sPevqTR4ync\n789cJUmjx1O4S5IkSdIIsciSJEmSpA5ZZEmSJElShyyyJEmSJKlDAy+ykhyX5MYkNyc5dZ42b02y\nOck1SY7qWX9Okukk187T73eT7Eqy36DilySNtz7y1JHturVJLk9ydZLrk/xRT/vTk9yW5Kr2dtye\nGo8kafj2HuSTJ1kDvA14JvDPwJVJPlZVN/a0eS5wSFUdmuSngHcAx7YPnwv8JXD+HM99IPAsYMsg\nxyBJGl995qmzgGOrakeSp1fV95LsBXwuyVOq6nNt1zOr6sw9PKSRc/vtt/Pd7363r74Pf/jD2bBh\nQ8cRSdLgDbTIAo4BNlfVFoAk7wdOAG7saXMCbRFVVZcnWZdkQ1VNV9Vnkxw8z3P/GfA64ILBhS9J\nGnPLzVPfa9uspZkdcmdPv1V/mvrvf//7bNz4WPba64f76n/33bdz++3/zCMe8YiOI5OkwRp0kXUA\ncGvP8m00CW2hNlvbddPzPWmS5wO3VtV1zXWYJEnqy7LyVHsk7IvAIcBZVfWVnnanJPlV4AvA71bV\nd7oOftTdfffd3H33Lv7t3/6xr/5r167nBz/4QcdRSdLgDbrI6lyShwBvoJkqeO/q+dpv2rTp3vuT\nk5NMTk4OKjRJ0hympqaYmpoadhgDUVW7gKOSPBK4OMnTquozwNuB/1FVleQPgTOBV8z3POYqSRqu\nrnNVBnmV+STHApuq6rh2+TSgquqMnjZnAZ+uqg+0yzcCT6uq6Xb5YODjVfWEdvkngEuA79EUVwfS\n7FU8pqpun7X9GuT4VoLmSN9yXoOwnNdw2NuXNHqSUFUjMQ2hizzV0+6/Ad+rqrfMWn+/PDZHDGOb\nq7Zv385++02wc+f2vvqvXbuerVtvZv369R1HJkkLW26uGvTZBa8EHpvk4CT7AC/mgb+hugB4Cdyb\n7L49K3GFniNVVfXlqpqoqsdU1aNppnYcNbvAkiRpCfrOU0n+XZJ17fqH0MywuKZdnujp/wvAlwc7\nDEnSKBnodMGquifJKcDFNAXdOVV1Q5KTm4fr7Kr6RJLjk9wC3AWcNNM/yXuBSWB9kq8Dp1fVubM3\ngz8uliT1YZl56keA89Icsl8DvKeqPtU+9ub2VO+7gK8BJ+/BYUmShmyg0wWHbZynYCzVsKfrDXv7\nkkbPKE0XHAXjnKucLihppRr16YKSJEmStKpYZEmSJElShyyyJEmSJKlDFlmSJEmS1CGLLEmSJEnq\nkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmSJEmS1CGL\nLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmS\nJEmS1CGLLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmS\nJKlDFlmSJEmS1CGLLEmSJEnq0MCLrCTHJbkxyc1JTp2nzVuTbE5yTZKjetafk2Q6ybWz2r85yQ1t\n+48keeSgxyFJGk995Kkj23Vrk1ye5Ook1yf5o572+ya5OMlNSS5Ksm5PjUeSNHwDLbKSrAHeBjwH\nOAI4Mcnhs9o8Fzikqg4FTgbe0fPwuW3f2S4GjqiqI4HNwOsHEL4kacz1mafOAqiqHcDTq+oo4AnA\nM5I8pe12GnBJVR0GXIp5SpJWlUEfyToG2FxVW6pqJ/B+4IRZbU4AzgeoqsuBdUk2tMufBe6c/aRV\ndUlV7WoXLwMOHFD8kqTxttw89b22zVqanHpnT5/z2vvnAS8Y2AgkSSNn0EXWAcCtPcu3tesWarN1\njjYLeTnw931FJ0la7ZaVp5KsSXI1sA2YqqqvtG32r6ppgKraBuw/gNglSSNqRZ/4IsnvAzur6r3D\njkWStPpU1a52uuCBwFOTPG2+pnswLEnSkO094OffChzUs3xgu252m0ct0uYBkrwMOB54xkLtNm3a\ndO/9yclJJicnF3tqSVKHpqammJqaGnYY8+kkT1XVvyb5/4AnAZ8BppNsqKrpJBPA7QsFYa6SpOHq\nOlelanA715LsBdwEPBP4BnAFcGJV3dDT5njgVVX1vCTHAn9eVcf2PL4R+HhVPb5n3XHAW4CnVtW/\nLLD9GuT4VoIkLG8HaljOazjs7UsaPUmoqgw7Dlhenkry72hmU3wnyUOAi4A3VtWnkpwB3FFVZ7Rn\nLNy3qk6bJ4axzVXbt29nv/0m2Llze1/9165dz9atN7N+/fqOI5OkhS03Vw30SFZV3ZPkFJqzAa4B\nzqmqG5Kc3DxcZ1fVJ5Icn+QW4C7gpJn+Sd4LTALrk3wdOL2qzgX+EtgH+GTzn3guq6rfHORYJEnj\nZ5l56keA89IkojXAe6rqU+1jZwAfTPJyYAvwoj05LknScA30SNawDXvv4MTERqant/Tdf8OGg9m2\n7WvLimHYR5KGvX1Jo2eUjmSNgmHnqkHySJaklWqkj2Stdk2B1X/inJ72/yCSJEnSSrOizy4oSZIk\nSaPGIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmSJEmS1CGLLEmSJEnq\nkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmSJEmS1CGL\nLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmS\nJEmS1CGLLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA4NvMhKclySG5PcnOTU\nedq8NcnmJNckOapn/TlJppNcO6v9vkkuTnJTkouSrBv0OCRJ46mPPHVku+7AJJcmuT7JdUle09P+\n9CS3JbmqvR23p8YjSRq+gRZZSdYAbwOeAxwBnJjk8FltngscUlWHAicD7+h5+Ny272ynAZdU1WHA\npcDrBxC+JGnM9Zmnzmofuhv4nao6Avhp4FWz+p5ZVUe3twsHPRZJ0ugY9JGsY4DNVbWlqnYC7wdO\nmNXmBOB8gKq6HFiXZEO7/Fngzjme9wTgvPb+ecALBhC7JGn89Z2nqmpbVV3Trt8O3AAc0NMvA49e\nkjSSBl1kHQDc2rN8G/dPQHO12TpHm9n2r6ppgKraBuy/zDglSatTJ3kqyUbgSODyntWntNML3+W0\ndklaXcblxBc17AAkSatTkocDHwZe2x7RAng78JiqOhLYBpw5rPgkSXve3gN+/q3AQT3LB7brZrd5\n1CJtZptup2pMJ5kAbp+v4aZNm+69Pzk5yeTk5OJRS5I6MzU1xdTU1LDDmM+y8lSSvWkKrPdU1cdm\nGlTVN3vavxP4+EJBmKskabi6zlWpGtxBoCR7ATcBzwS+AVwBnFhVN/S0OR54VVU9L8mxwJ9X1bE9\nj28EPl5Vj+9ZdwZwR1Wd0Z4Jat+qOm2O7dcgx7eYJCzvIFtYbvzDjmHY25c0epJQVSPxe6Xl5qkk\n5wPfqqrfmfW8E+10dpL8NvDkqvrleWIYaq4apO3bt7PffhPs3Ll98cZzWLt2PVu33sz69es7jkyS\nFrbcXDXQI1lVdU+SU4CLaaYmnlNVNyQ5uXm4zq6qTyQ5PsktwF3ASTP9k7wXmATWJ/k6cHpVnQuc\nAXwwycuBLcCLBjkOSdJ46jNPvQwgyVOAXwGuS3I1zR6lN7RnEnxze6r3XcDXaM5KKElaJQZ6JGvY\nhr13cBSO4gw7hmFvX9LoGaUjWaNg2LlqkDySJWmlWm6uGpcTX0iSJEnSSLDI0libmNhIkr5vExMb\nhz0ESZIkrTCDPrugNFTT01tYznTF6WlnNEmSJGn3eCRLkiRJkjpkkSVJkiRJHbLIkiRJkqQOWWRJ\nkiRJUocssiRJkiSpQxZZkiRJktQhiyxJkiRJ6pBFliRJkiR1aNEiK8n6PRGIJEn9MldJkkbJUo5k\nXZbkQ0mOT5KBRyRJ0u4zV0mSRsZSiqzHAWcDvwpsTvJHSR432LAkSdot5ipJ0shYtMiqxier6kTg\n14GXAlck+UySnx54hJIkLcJcJUkaJXsv1qCd5/6fafYOTgOvBi4AjgQ+BDx6kAFKkrQYc5UkaZQs\nWmQB/w94D/CCqrqtZ/0Xkpw1mLAkSdot5ipJ0shYSpF1WFXVXA9U1RkdxyNJUj/MVZKkkbGUE19c\nnOSHZhaS7JvkogHGJEnS7jJXSZJGxlKKrB+uqm/PLFTVncD+gwtJkqTdZq6SJI2MpRRZ9yQ5aGYh\nycHAnFMyJEkaEnOVJGlkLOU3Wb8PfDbJZ4AAPwf8xkCjkiRp95irJEkjY9Eiq6ouTHI0cGy76req\n6luDDUuSpKUzV0mSRslSjmQBrAXuaNv/eBKq6h8GF5YkSbvNXCVJGglLuRjxGcAvAdcDu9rVBZi4\nJEkjwVwlSRolSzmS9QKa64/sGHQwkiT1yVwlSRoZSzm74FeBBw06EEmSlsFcJUkaGUs5kvU94Jok\nnwLu3UNYVa8ZWFSSJO0ec5UkaWQspci6oL1JkjSqzFVj6sd+7Ci++c1b++q7YcPBbNv2tW4DkqQl\nSNXi12pM8hDgoKq6afAhdSdJLWV8A9w+y7sWZlhu/MOOYbVvX9IDtWf9ywCe11w1YrZv385++02w\nc+f2vvqvXbueHTvuoP/vcb/DJfVnublq0d9kJfl54Brgwnb5yCRL3luY5LgkNya5Ocmp87R5a5LN\nSa5JcuRifZM8OckVSa5u/33SUuORJI2f5eSqfvNUkgOTXJrk+iTXJXlNT/t9k1yc5KYkFyVZt/xR\nSpJWiqWc+GITcAzwbYCqugZ4zFKePMka4G3Ac4AjgBOTHD6rzXOBQ6rqUOBk4Kwl9H0z8AdVdRRw\nOvAnS4lHkjS2NtFHrlpOngLuBn6nqo4Afhp4VU/f04BLquow4FLg9csanSRpRVlKkbWzqr4za92u\nOVs+0DHA5qraUlU7gfcDJ8xqcwJwPkBVXQ6sS7Jhkb7fAGb2Cv4QsHWJ8UiSxlO/uarvPFVV29pi\njqraDtwAHNDT57z2/nk0p5iXJK0SSznxxfVJfhnYK8mhwGuAzy/x+Q8Aen+tehtNQluszQGL9D0N\n+FyStwABfmaJ8UiSxlO/uaqfPLW1XTc9syLJRuBI4LJ21f5VNQ1QVduS7L/kkUiSVrylFFmvBn6f\n5pS47wMuAv7nAGNayg/MzgFeXVUfTfJC4N3As+ZquGnTpnvvT05OMjk52UGIkqSlmpqaYmpqatCb\n2dO56l5JHg58GHhtVd01T7MFz75grpKk4eo6Vy3p7IJ9P3lyLLCpqo5rl08DqqrO6GlzFvDpqvpA\nu3wj8DTg0fP1TfKvVfXInuf4TlU94EfFwz5j0yic2W7YMaz27Ut6oEGdXbAfy8lTVTWdZG/g74C/\nr6q/6OlzAzDZtplo+//YPDF4dsF5eHZBScOy3Fy16JGsJJ9mjm+3qnrGEp7/SuCxSQ6m+R3Vi4ET\nZ7W5AHgV8IE22X27TUrfmqPvi9s+m5M8rao+k+SZwM1LiEWSNKaWkav6zlPtY+8GvtJbYPX0eRlw\nBvBS4GNLH40kaaVbynTB/9pz/8HAf6I5o9KiquqeJKcAF9OcZOOcqrohycnNw3V2VX0iyfFJbgHu\nAk5aoO+N7VOfDPyvJPsA3wd+YynxSJLGVl+5qs889TKAJE8BfgW4LsnVNEXeG6rqQpri6oNJXg5s\nAV7U1UAlSaOvr+mCSa6oqtk/DB45w56CMQpT1YYdw2rfvqQH2lPTBc1Vw+d0QUkr1Z6YLrhfz+Ia\n4Ce57/TpkiQNnblKkjRKljJd8Is0u5BCM/Xin4BXDDIoSZJ2k7lKkjQyFi2yqurReyIQSZL6Za6S\nJI2SpUwX/IWFHq+qv+kuHEmSdp+5SpI0SpYyXfAVwM8Al7bLTwc+D3yTZmqGiUuSNGzmKknSyFhK\nkfUg4Mer6hsASX4E+D9VddJAI5MkaenMVZKkkbFmCW0eNZO0WtPAQQOKR5KkfpirJEkjYylHsj6V\n5CLgfe3yLwGXDC4kSZJ2m7lKkjQylnQx4iT/EXhqu/gPVfW3A42qI8O+wOMoXAh32DGs9u1LeqBB\nXYzYXDV6VvLFiCcmNjI9vaWvvhs2HMy2bV/rq6+k0TDwixG3rgK+W1WXJHlokkdU1Xf73agkSQNg\nrlJnmgKrvwJterrzfQiSVphFf5OV5NeBDwP/u111APDRQQYlSdLuMFdJkkbJUk588SrgKcC/AlTV\nZmD/QQYlSdJuMldJkkbGUoqsHVX1g5mFJHuzvB+5SJLUNXOVJGlkLKXI+kySNwAPSfIs4EPAxwcb\nliRJu8VcJUkaGYueXTDJGuAVwLOBABcB71oJp0Ia9hmbRuHMdsOOYbVvX9IDDeLsguaq0bSSzy64\nvPxh7pBWuoGeXTDJXsD5VfUrwDv73YgkSYNirpIkjZoFpwtW1T3AwUn22UPxSJK0W8xVkqRRs5Tr\nZH0V+FySC4C7ZlZW1ZkDi0qSpN1jrtIc1rbT/iRpz5r3SFaS97R3nw/8Xdv2ET03SZKGylylhe2g\n+V1VPzdJ6t9CR7J+MsmPAl8H/nIPxSNJ0u4wV0mSRs5CRdZZwKeARwNf6Fk/c7qdxwwwLkmSlsJc\npRHU/zTFDRsOZtu2r3UbjqQ9bimncH9HVb1yD8XTqWGfFncUTh8+7BhW+/YlPdCATuFurhpBo3AK\n95XYd1z/HqSVZLm5atGLEa/UpCVJWj3MVZKkUbJokSVJkiRJWjqLLEmSJEnqkEWWJEmSJHXIIkuS\nJEmSOmSRJUmSJEkdssiSJEmSpA4NvMhKclySG5PcnOTUedq8NcnmJNckOXIpfZO8OskNSa5L8qZB\nj0OSNJ76yFNH9aw/J8l0kmtntT89yW1Jrmpvxw16HJKk0THQIivJGuBtwHOAI4ATkxw+q81zgUOq\n6lDgZOCsxfommQR+Hnh8VT0e+NNBjkOSNJ76zFPv6Hn43LbvXM6sqqPb24XdRy9JGlWDPpJ1DLC5\nqrZU1U7g/cAJs9qcAJwPUFWXA+uSbFik7yuBN1XV3W2/bw14HJKk8bScPEVVfRa4c57nzmBCliSN\nukEXWQcAt/Ys39auW0qbhfo+DnhqksuSfDrJkzqNWpK0WvSTp7bO0WYup7TTC9+VZN3ywpQkrSSj\neOKLpez52xvYt6qOBX4P+OBgQ5Ikabe8HXhMVR0JbAPOHHI8kqQ9aO8BP/9W4KCe5QPbdbPbPGqO\nNvss0Pc24G8AqurKJLuSrK+qf5kdwKZNm+69Pzk5yeTkZD/jkCT1aWpqiqmpqWGHMZ/l5Kl5VdU3\nexbfCXx8ofbmKkkarq5zVaqqsyd7wJMnewE3Ac8EvgFcAZxYVTf0tDkeeFVVPS/JscCfV9WxC/VN\ncjLwo1V1epLHAZ+sqoPn2H4NcnyLSQIsZ/thufEPO4bVvn1JD5SEqhqJ3ystJ0/1PL4R+Hh7IqaZ\ndRNVta29/9vAk6vql+eJYai5apC2b9/OfvtNsHPn9r76r127nh077qD/7/Hl5IDh9R3XvwdpJVlu\nrhrokayquifJKcDFNFMTz+kpkqqqzq6qTyQ5PsktwF3ASQv1bZ/63cC7k1wH7ABeMshxSJLG03Ly\nFECS9wKTwPokXwdOr6pzgTe3lyTZBXyN5qyEkqRVYqBHsoZt2HsHR+EoyrBjWO3bl/RAo3QkaxQM\nO1cNkkey+us7rn8P0kqy3Fw1iie+kCRJkqQVyyJLkiRJkjpkkSVJkiRJHbLIkiRJkqQOWWRJkiRJ\nUocssiRJkiSpQxZZkiRJY2BiYiNJ+rpNTGwcdvjSWLHIkkbccpKmiVOSVo/p6S001+fa/VvTV1JX\n9h52AJIWdl/S7Le/13yVJEnakyyyJEmSRsZaEneOSSudRZYkSdLI2EH/sxcszqRR4W+yJEmSJKlD\nFlmSJEmS1CGLLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJElShyyy\nJEmSJKlDFlmSJEmS1CGLLEmSJEnqkEWWJEmSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmS\nJElShyyyJEmSJKlDFlmSJEmS1KGBF1lJjktyY5Kbk5w6T5u3Jtmc5JokRy61b5LfTbIryX6DHIMk\naXz1kaeO6ll/TpLpJNfOar9vkouT3JTkoiTrBj0OSdLoGGiRlWQN8DbgOcARwIlJDp/V5rnAIVV1\nKHAycNZS+iY5EHgWsGWQY5Akja8+89Q7eh4+t+0722nAJVV1GHAp8PoBhC9JGlF7D/j5jwE2V9UW\ngCTvB04AbuxpcwJwPkBVXZ5kXZINwKMX6ftnwOuACxYKYMOGx/Yd/Otf/7v81m+9su/+kqSR13ee\nqqrpqvpskoPneN4TgKe1988DpmgKL0nSKjDoIusA4Nae5dtoEtpibQ5YqG+S5wO3VtV1SRYM4Pbb\nL+wrcPgwn/vcFRZZkjTe+slTW9t10ws87/5VNQ1QVduS7N9BrJKkFWLQRVY/FqyakjwEeAPNVMEl\n9On3SNYG4KY++0qSdD817AAkSXvOoIusrcBBPcsHtutmt3nUHG32mafvIcBG4EtpDmMdCHwxyTFV\ndfsDQ9jUc3+yvUmS9pSpqSmmpqaGHcZ8lpOnFjI9M6UwyQQwR366z6ZNm+69Pzk5yeTk5CJPL0nq\nUte5KlWD27mWZC+aw0HPBL4BXAGcWFU39LQ5HnhVVT0vybHAn1fVsUvp2/b/J+Doqrpzju1X/zsP\nz+WFL/wHPvShc/vsD00NuJzXNyz3/Rl2DKt9+10YhzFIvZJQVQvP9d5DlpOneh7fCHy8qh7fs+4M\n4I6qOqM9Y+G+VTXnb7KS1Lh+Rrdv385++02wc+f2vvqvXbueHTvuoP/vwOV8f662vg8GdvTVc8OG\ng9m27Wt9blcaTcvNVQM9klVV9yQ5BbiY5kyG51TVDUlObh6us6vqE0mOT3ILcBdw0kJ959oMi0wx\nlCRpLsvJUwBJ3kszRWJ9kq8Dp1fVucAZwAeTvJzmLLgv2rMjk3bXDvot0Kan/W+YNNtAj2QNm0ey\nhh/Dat9+F8ZhDFKvUTqSNQo8kjU/j2StnL7j+jes1Wu5uWrgFyOWJEmSpNXEIkuSJEmSOmSRJUmS\nJEkdssiSJEmSpA5ZZEmSJElShyyyJEmSJKlDFlmSJEmS1CGLLEmSJEnqkEWWJEmSJHXIIkuSJEmS\nOmSRJUmSJEkdssiSJEnS0ExMbCRJX7eJiY3DDl+a097DDkCSJEmr1/T0FqD67Jtug5E64pEsSZIk\nSeqQRZYkSZJWHacpapCcLihJkqRVx2mKGiSPZEmSJElShyyyJEmSJKlDFlmSJEmS1CGLLEmSJEnq\nkEWWJElaFi6NAAAXFklEQVSSJHXIIkuSJEmSOmSRJUmSJEkdssiSJEmSpA5ZZEmSJGkZ1pKk79tq\nMzGxse/XamJi47DD1xLtPewAJEmStJLtAGoZ/VdXoTU9vYV+X6/p6dX1Wq1kHsmSJEmSpA5ZZEmS\nJElShyyyJEmSJKlDFlmSJEmS1KGBF1lJjktyY5Kbk5w6T5u3Jtmc5JokRy7WN8mbk9zQtv9IkkcO\nehySpPE0oDx1epLbklzV3o7bE2ORJI2GgRZZSdYAbwOeAxwBnJjk8FltngscUlWHAicDZy2h78XA\nEVV1JLAZeP0gxyFJGk8DzFMAZ1bV0e3twsGPRpI0KgZ9JOsYYHNVbamqncD7gRNmtTkBOB+gqi4H\n1iXZsFDfqrqkqna1/S8DDhzwOCRJ42kgearluZYlaZUadJF1AHBrz/Jt7bqltFlKX4CXA3+/7Egl\nzWk5F030wolaAQaZp05ppxe+K8m67kKWdJ/+L4QsDdIoXox4yX/1SX4f2FlV752/1aae+5PtTdJS\nLeeiiU1/E9lqNzU1xdTU1LDD6NJS/qjfDvyPqqokfwicCbxivsabNm269/7k5CSTk5PLDFFaLZZz\nIWTzk+7Tda4adJG1FTioZ/nAdt3sNo+ao80+C/VN8jLgeOAZC4ewabcCliR1a3bR8MY3vnF4wTzQ\nQPJUVX2zZ/07gY8vFERvkSVJ2vO6zlWDni54JfDYJAcn2Qd4MXDBrDYXAC8BSHIs8O2qml6ob3uW\nptcBz6+qHQMegyRpfA0qT0309P8F4MuDHYYkaZQM9EhWVd2T5BSaswGuAc6pqhuSnNw8XGdX1SeS\nHJ/kFuAu4KSF+rZP/Zc0exA/2c6pvayqfnOQY5EkjZ8B5qk3t6d63wV8jeashJKkVSJV/f/WYtQl\nqf7n6Z7LC1/4D3zoQ+cuZ/ss57csEJb7/gw7htW+/S4MewzD3r7GTxKqyh9DtJLUuH5Gtm/fzn77\nTbBz5/a++q9du54dO+5geb+5se9o9x3mtpfT98E0vwfrV/8xj+v3xahZbq4axRNfSJIkSSPME25o\nYYP+TZYkSZIkrSoWWZIkSZLUIYssSZIkSeqQRZYkSZIkdcgiS5IkSZI6ZJElSZIkSR2yyJIkSZKk\nDllkSZIkSVKHLLIkSZKkFWEtSfq67bXXw/ruOzGxcdgDX3H2HnYAkiRJkpZiB1B99dy1K333nZ5O\nX/1WM49kSZIkSVpA/0fQVuuRMI9kSZIkSVpA/0fQYHUeCfNIliRJkiR1yCJLkiRJkjpkkSVJkiRJ\nHbLIkiRJkqQOWWRJkiRJUocssiRJkiSpQxZZkiRJktQhiyxJkiRJA9T/xYz32uthK/IiyF6MWJIk\nSdIA9X8x41270nffYV4E2SNZkkbexMTGvvdiDXtPliRJGpb+j6Atl0eyJI286ekt9LsXq+k/vD1Z\nkiRpWPo/ggbL+7+DR7IkSZIkqUMWWZIkSZLUIYssSZIkSeqQRZYkSZIkdcgiS5IkSZI6NPAiK8lx\nSW5McnOSU+dp89Ykm5Nck+TIxfom2TfJxUluSnJRknWDHockaTyZpyRJXRtokZVkDfA24DnAEcCJ\nSQ6f1ea5wCFVdShwMnDWEvqeBlxSVYcBlwKvH+Q4RsHU1NSwQ+jY1LAD6Mw4vTfjNJbG1LAD6Mz4\nvTejwTy1p00NO4A9bGrYAexhU8MOYA+bGnYAe9jUsANYUQZ9JOsYYHNVbamqncD7gRNmtTkBOB+g\nqi4H1iXZsEjfE4Dz2vvnAS8Y7DCGb/z+gzU17AA6M07vzTiNpTHVybMM+2LIExMbefrTn+7FmAfD\nPLVHTQ07gD1satgB7GFTww5gD5sadgB72NSwA1hRBl1kHQDc2rN8W7tuKW0W6ruhqqYBqmobsH+H\nMUvS/dx3MeT+bk3/5W7/9KFtf8yZpyRJndt72AHMoZ/LK897KedHPvLn+wpi586vs3btT/XVV5I0\n1jrNU+NszZo17Nr1g3tz8fe/fxMPfvAXl9z/rru2Dyo0SRqsqhrYDTgWuLBn+TTg1FltzgJ+qWf5\nRmDDQn2BG2j2EgJMADfMs/3+dz178+bNm7eB3QaZe1ZSnjJXefPmzdvo3paTXwZ9JOtK4LFJDga+\nAbwYOHFWmwuAVwEfSHIs8O2qmk7yrQX6XgC8DDgDeCnwsbk2XlX97G2UJK0eQ81TYK6SpHE00CKr\nqu5JcgpwMc3vv86pqhuSnNw8XGdX1SeSHJ/kFuAu4KSF+rZPfQbwwSQvB7YALxrkOCRJ48k8JUka\nhLRTFSRJkiRJHRj4xYj3hCQvTPLlJPckOXrWY69vLyB5Q5Jn96w/Osm17QUk/3zPR700SU5PcluS\nq9rbcT2PzTm2UbaUi36OsiRfS/KlJFcnuaJdt2IuOprknCTTSa7tWTdv/KP8NzbPWFbk5yXJgUku\nTXJ9kuuSvKZdv1Lfm9njeXW7fkW+P4OQ5M3tWK9J8pEkj+x5bCxfi5X+/b+Yfj7HK12SNe1n+YJ2\neWzHCpBkXZIPtZ/N65P81LiOuf0eur79v/JfJ9lnnMa6R/4/NOwfHXf0w+XDgENpLvh4dM/6HwOu\nppkWuRG4hfuO3l0OPLm9/wngOcMexzxjOx34nTnWzzu2Ub3RFPW3AAcDDwKuAQ4fdly7OYavAvvO\nWncG8Hvt/VOBNw07zgXi/1ngSODaxeIHfnyU/8bmGcuK/LzQnBjhyPb+w4GbgMNX8Hsz33hW5Psz\noNfo3wNr2vtvAv54Jby3yxjviv/+X8IYd+tzPA434LeBvwIuaJfHdqztmP4PcFJ7f29g3TiOuf2c\nfhXYp13+AM1vS8dmrPP8H6LTnDsWR7Kq6qaq2swDT6t7AvD+qrq7qr4GbAaOSTIBPKKqrmzbnc9o\nXyhyrh9Fzzm2PRrV7lvKRT9HXXjgEeAVc9HRqvoscOes1fPF/3xG+G9snrHACvy8VNW2qrqmvb+d\n5sx0B7Jy35u5xjNz/agV9/4MQlVdUlW72sXLaN5vGPH3dhnG4ft/QX18jle0JAcCxwPv6lk9lmMF\naI82/1xVnQvQfka/w3iO+V+BHwAPS7I38BBgK2M01j3x/6GxKLIWMPtCkVu57wKSt/Wsn+vik6Pk\nlHZKybt6Dl3ON7ZRtpSLfo66Aj6Z5Mokv9auW+kXHd1/nvhX4t8YrPDPS5KNNHvXLmP+v62VOJ7L\n21Ur+v0ZkJfTzKiA8X0txuH7f8mW+Dle6f4MeB1NXpwxrmMFeDTwrSTntlMkz07yUMZwzFV1J/AW\n4Os030HfqapLGMOxztLp/4dWTJGV5JPtvNCZ23Xtv/1dbXiELDK2twOPqaojgW00f/QanqdU1dE0\ne+9eleTnuH+CYY7llWYlx7+iPy9JHg58GHhtuyd8Rf9tzTGeFf3+7K6l5K0kvw/srKr3DTFUdWjc\nPsdzSfI8YLo9crfQJQhW/Fh77A0cDfyv9v8Bd9FcG28c39/H0EwFPRj4UZojWr/CGI51Ecsa36Cv\nk9WZqnpWH922Ao/qWT6wXTff+qHYjbG9E/h4e3+kxrBEW4GDepZXQsz3U1XfaP/9ZpKP0hwunk6y\noZrr5kwAtw81yN03X/wr7m+sqr7Zs7iiPi/tlIwPA++pqplrKq3Y92au8azk96cfi323J3kZzQ6b\nZ/SsHsvXgjH4/l+K3fwcr2RPAZ6f5HiaqWSPSPIeYNsYjnXGbcCtVfWFdvkjNEXWOL6/TwI+V1V3\nACT5W+BnGM+x9uo0566YI1m7oXePygXAi9szojwaeCxwRXsI8DtJjkkS4CUscKHIYWrf5Bm/AHy5\nvT/n2PZ0fLvp3ot+JtmH5sKdFww5piVL8tB2DyVJHgY8G7iO+y46CotcdHREhAd+Tl7W3u+NfyX8\njd1vLCv88/Ju4CtV9Rc961bye/OA8azw96dTac6s+Drg+VW1o+ehcX0tVvT3/27Ync/xilVVb6iq\ng6rqMTTv5aVV9as0O05e1jYbi7HOaKeR3Zrkce2qZwLXM4bvL81JW45N8uD2/8nPBL7C+I11sP8f\n6uosHcO80fww7Vbg34BvAH/f89jrac4CcgPw7J71P0nzH+TNwF8MewwLjO184FqaMzF9lGY+7IJj\nG+UbcBzNh3czcNqw49nN2B/dvg9Xt387p7Xr9wMuacd1MfBDw451gTG8F/hnYAfNXOuTgH3ni3+U\n/8bmGcuK/LzQ7BW+p+fv66r2szLv39YKHc+KfH8G9BptprlI8VXt7e3j/lqs5O//JY5vtz/H43AD\nnsZ9Zxcc97E+kWaHwTXA39CcXXAsx0yzE+j69jv7PJqzgo7NWPfE/4e8GLEkSZIkdWgcpwtKkiRJ\n0tBYZEmSJElShyyyJEmSJKlDFlmSJEmS1CGLLEmSJEnqkEWWJEmSJHXIIksrSpIzk7ymZ/nCJGf3\nLP9pkt9K8iNJPriM7Zyc5D8vN94+trtPkk8muSrJLyZ5bZIHL/M5fy7JF5PsTPILsx57aZKbk9yU\n5CU96zcmuax97H1J9t7NbX53OTFL0kqQZFeSP+lZ/t0k/72j5z539nf2ICR5YZKvJPnUbvT5pyT7\nDSiel866cPlS+hyW5Oo21z0myWd3s3/fuTbJG5M8o5++Gm8WWVppPgf8DEB7FfJ/BxzR8/jPAJ+v\nqm9U1Yv63UhV/e+q+qtlRdqfo5vN19FV9SHgt4CH7s4TJJn9ud5Cc+Xyv57Vbl/gvwNPBn4KOD3J\nuvbhM4C3VNXjgG8Dr9jNcXgBPkmrwQ7gFwZVcPQryV670fwVwK9V1TN3o88gv+NfBhywm31eAHyo\nqn6yqr5aVT87u8Eir8lu59oZVXV6VV3aT1+NN4ssrTSfpy2yaIqrLwPfTbIuyT7A4cBVSQ5Och3c\nu1fsI0n+vj1ic8bMkyX5bpI/THJNks8n+eF2/elJfqe9/+kkb0pyeZIbkzylXf+QJB9I8uUkf9Me\n+Tk6yZp2D+S1Sb6U5LWzB5HkP7Ttv5jk4iQ/3G77PcCT2yNZrwF+FPj0zB7GJM9u4/xCu+2Htuv/\nqY3xC8ALe7dVVV+vqi/zwKT4HODiqvpOVX2b5urmx7WPPQP4SHv/POA/zjGGlyb5aPv63DTX3tsk\nD0tySRvvl5L8fLv+jb2vS/sevDrJRJLPtOO/dua1lqQRdTdwNvA7sx+YfSRq5gh/kqclmWq/P29p\nv7v/c5Ir2u/JR/c8zbOSXNnmnue1/dckeXObk65J8us9z/sPST4GXD9HPCe236vXJvnjdt1/A34W\nOKc3N/Y832eS/F27/bf3PtzT7m/bGK9L8mvtupOS/FlPm19L8pYkD22f7+o2jl+ctc3/BDwJ+Ks2\nD6xN8sz2/peSvCvJg2b1eS5NkfTKnlzZ+1rf+5rMtf0kr2ZWru157icl+Uh7/4Qk30uydxvXP85+\nn9tcvKnN7V9K8rjZ74NWD4ssrShV9Q1gZ5IDaY9aAZcDP03zxXxdVd0907yn6xOBXwSeAPxSkpm9\nZA+jOfJ1JPB/gV+fZ9N7VdVPAb8NbGrX/SZwR1X9BPDfaI5CARwJHFBVT6iqJwLnzvF8/7eqjq2q\nnwQ+AJxaVd8Efq197OiqeiuwFZisqmcmWQ/8PvDMqnoS8EXun9i/VVVPqqqlTpM8ALi1Z3krcEC7\nnTurale7/jaaBDSXJ9MUYE8EfjHJ0bMe/z7wgjbeZwBntuvfDbwE7j0i+WLgr4BfBi6sqqPb57xm\niWORpGEo4H8Bv5LkEUtoO+MJwG8APw78KvDYqjoGOAd4dU+7g6vqycB/AM5KszPxFcC325x0DPAb\nSQ5u2x8FvLqqDu/dcJIfAd4ETNLkqGOSPL+q/ifwBeCXq+rUOWJ+MvAq4MeAx2bu6YsntTE+GXht\nmlkSHwT+Q+47enQSzff+ccDWqjqqqp4AXHi/F6jqI8CVbTwz+eRc4BfbfPog4JWz+vw9cBbwZz1H\n43pf697X5AHbr6q/pCfXzhrb1TS5CJpi9Drum/1x2RyvBcDtbW4/C3jdPG20ClhkaSX6PPAUmiLr\n/9F80c0sf26ePp+qqu1VtQP4CjCTkHZU1Sfa+18ENs7T/2962sz0/Vng/QBVdT1wbbv+q8Cjk/xF\nkucAc/0+6VFJLkpyLfBfaRLtXMJ9ewyPbdt9LsnVNEXKQT1tPzDPc/QjizcB4JNV9e2q+j7NazQz\nRSM9//5xki8BlwA/mmT/qtoCfCvJE4FnA1dV1Z00yfWk9qjYE6rqrq4GJEmDUFXbaY74P2DWwgKu\nrKrbq+oHwC3ARe3667h/Hvpgu41bgH+kma3xbOAlbR64HNgPOLRtf0VVfX2O7T0Z+HRV3dHuQPtr\n4Kk9j8/3nX9FVW2pqgLex33f8b1+K8k1NLn4QODQ9rv7UppC6zBg7zZPXkdzdO6Pk/xsVc2VH3vz\n3mHAV6vqH9vl82bFvRS9r8l82+/d5r2q6h7gH5McTlPQngk8Dfg5mh2zc/nb9t/e/y9oFbLI0ko0\nM2XwJ2imC15GcyTrp9vH5rKj5/49wMyJHHbOs36+/gu1CUA79e6JwBRwMvCuOdr+JfDWdk/afwGW\n8oPb0EzvO7rdC/cTVfUbPY/vbkGylfsXaQfS7OH7F2Bd7vtt14Ft27nMnoJYs/79FZrfzR1VVUcB\nt3PfWN9Fs3dzZg8nVfV/aRLoVuD/ZAgnH5GkPvwFzRGmh/Wsu5v2/1ntEft9eh7rzUm7epZ3cf8c\n0/sdm3Y5NEdmjmpvh1TVJW2bhfLAUnee9ZrvO755wuRpNLMUfqqdEXIN933Hn8N93/HnAlTVZppZ\nH9cBf5jkD5YQQz9x97r3Nelz+/8APBf4Ac3Owp+l2bE7X5G1lP8vaBWwyNJK9HmaqRN3VONO4IdY\nuMiaz3K+vD8H/BJAkh+nKfpop9vtVVV/SzON8Kg5+j4S+Of2/ksX2Ma/tm2hPWKX5JB2Ow9Ncui8\nPefWO96LaPborWundzyL+/amfppmeuVMfB+b5/meleSHkjyE5ofHM2d0mtnOOpqpE7uSPJ3779X7\nKM3UjSfNbDfJQW37c2iKsNnTDyVplMzsXLuT5qhT70mCvkbz/QZwAs1Ut931i2kcAjwauInm+/I3\n0571NcmhaX+fu4ArgKcm2a+dwncizY7AxRyT5jfOa2jy3ezCYh3N9PId7dGeY2ceqKorgEe123pf\nG+uPAP9WVe8F/oS5v+N7895NwMFJHtMu/yrwmSXEPWduX2D7vduc7bM0v/n6fLsTcj1wWHtkTpqX\nFbZWoutovuT+ata6h1bVHUvoX/PcX0r7Xm+nOdryZeBGmh8af4fmt07ntkmpgNPm6PtG4MNJ7qCZ\nUrFxnm28E7gwydb2d1knAe9LsrZ97j8ANi80jiRPopm+8EM0Uzc2VdXjq+rOJDPz8Qt4Y3sUjjbm\n97ePX02zR3IuV9BMEzwAeE9VXd2un4nnr4GPt9MFvwDcMNOxqnYm+TRNgp5pPwm8LslOmmmW955W\nXpJGUO9371tofr80s+6dwMfaaX0XMf9RpoXy0NdpvmcfAZxcVT9I8i6anHFVe4TsdpqdXPMHWbUt\nyWncV1j9XVX93RK2/wXgbcBjgUur6qOz+lwI/Jck19MURP9vVv8PAk+squ+0y48H/iTJLpojQ6/k\ngc6j+f3Z92h2nr6cJl/uRTOl/KyFxrrImObb/v1y7aw+lwP70xzRguanAfvPsy3PrKt75b7/20ja\nHW0R9aB2D95jgE/S7N26e5GuYyHJS4GfrKrXLNp47v5raOasv7Bnvr0kaQS0UwF/t6qev4zn+Dhw\nZlV9urvIpJXBI1lS/x5Kc8rXmSkgr1wtBdZyJfkx4O+Aj1hgSdJ4SXPNxSuAqy2wtFp5JEuSJEmS\nOuSJLyRJkiSpQxZZkiRJktQhiyxJkiRJ6pBFliRJkiR1yCJLkiRJkjpkkSVJkiRJHfr/AcLV518k\n0pmQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f58458368d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"outcome=[]\n",
"first_win=[]\n",
"\n",
"bet_value=1\n",
"bet=0 # bet on specific pocket every time - 35X payoff\n",
"payoff=35\n",
"nruns=1000\n",
"nplays=100 # how many games played at one sitting\n",
"p_payoff=1/38.\n",
"\n",
"print('Expected value of $1 bet = p(outcome)*u(outcome) = $%0.2f'%float(-1*bet_value*(1-p_payoff) + payoff*p_payoff))\n",
"\n",
"for i in range(nruns):\n",
" o=[]\n",
" fw=-1\n",
" for j in range(nplays):\n",
" r,c=roulette_spin()\n",
" if payoff==r and fw<0:\n",
" fw=j+1\n",
" o.append(payoff*bet_value*(payoff==r) - bet_value)\n",
" first_win.append(fw)\n",
" outcome.append(numpy.sum(o))\n",
"print('Mean outcome over %d bets (on $%0.2f bet): $%0.2f (range: $%0.2f - $%0.2f)'%(nplays,\n",
" bet_value,numpy.mean(outcome),numpy.min(outcome),numpy.max(outcome)))\n",
"\n",
"plt.figure(figsize=(12,5))\n",
"plt.subplot(1,2,1)\n",
"_=plt.hist(outcome,20,normed=True)\n",
"plt.ylabel('frequency')\n",
"plt.xlabel('Winnings after %d plays'%nplays)\n",
"plt.subplot(1,2,2)\n",
"_=plt.hist(first_win,20,normed=True)\n",
"plt.ylabel('frequency')\n",
"plt.xlabel('Number of plays to first win')\n",
"\n",
"plt.tight_layout()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's see how change in the utilty function and probability weighting function change the attractiveness of the bet. We use a power utility function and a one-parameter (Prelec) weighting function. Default values are from Table 11.3 in the Fox & Poldrack Neuroeconomics chapter"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def pi(p,gamma):\n",
" assert gamma > 0 and gamma <= 1\n",
" return numpy.exp(-1*(-1*numpy.log(p))**gamma)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFHCAYAAAB0yVAwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xlc1VX+x/HXyazGrEazZbRVx6ls2nMpUTEV1CjFChcq\n10TLaiZ1sCy3pqlMhSYzUcwFXEswBVNQRAIntVzSX4tU0KJNNolDZRrC+f3x5TqkaCx3hffz8eDR\nvd/7vd/7sRmOn8493/M21lpERERERMR9TvN1ASIiIiIiNY2abBERERERN1OTLSIiIiLiZmqyRURE\nRETcTE22iIiIiIibqckWEREREXEztzTZxpg5xphvjTEflDnWwBiTZoz5xBiz1hhzXpnXnjTG5Bpj\nPjLGhJQ5frMx5gNjzB5jTKw7ahMRkcorb1wv55x/lo7lO4wxN3qzPhERf+eumey5QOhxx8YA66y1\nVwEZwJMAxpgWQARwDdANmGGMMaXveQ0YbK39E/AnY8zx1xQREe8ob1w/xhjTDWhmrW0ORAEzvVWY\niEggcEuTba3NBgqOO9wDmF/6eD7Qs/Tx3cASa+1Ra20+kAu0MsZcDJxjrd1aet6CMu8REREvOsm4\nXlYPnHEaa+1m4DxjzEXeqE1EJBB4ck32hdbabwGstf8GLiw93gT4qsx5e0uPNQG+LnP869JjIiLi\nf042louICN698VH57SIiIiJSK5zuwWt/a4y5yFr7belSkP2lx/cCl5Y575LSYyc7fgJjjBp2EQlY\n1lrz22f5PY3ZIlJrVGXcdudMtin9cVkJDCh93B94q8zxPsaYM4wxVwJ/BLaULin5rzGmVemNkA+W\nec8JrLX6qeDP+PHjfV5DIP3o35f+fbn7Jzs7mwsvvJBFixa5ccj1iuPH9bJW4ozTGGPaAAdt6RLB\n8vj6fwNv/9TG3wv9mWvHT234M+/du5c///nPdOz4V+6/v7jKA6i7tvBbBGzC2RHkS2PMQOAFoIsx\n5hOgU+lzrLUfAsuAD4HVwMPWWtcsxyPAHGAPkGutXeOO+kREfCU1NZXw8HAWLFhA3759fV1OhZU3\nrhtjoowxQwGstauBPGPMp0Ac8LAPyxURcYvc3FyCgoKIjIykqGgqvXtXvVV2y3IRa22/k7zU+STn\nPw88X87x94Hr3FGTiIivJSYmMmrUKFatWkXr1q19XU6lnGJcL3vOCG/UIiLiDdu2bSMsLIxJkybR\nrdsQJk+GLl2qfj1PrskWPxEcHOzrEgKK/n1Vjv59lS8mJoaYmBgyMjJo0aKFr8sRL6uNvxf6M9cO\nNfXPvGHDBnr37k1cXBzh4eH8859w111w5plVv6b530qNwGGMsYFYt4jUfNZaxo4dS1JSEmlpaVx2\n2WW/et0Yg60ZNz5WmMZsEfFnycnJREVFsWzZsmP/EdGuHYwZA3feWfVxWzPZIiJucvToUYYPH87O\nnTvJzs6mUaNGvi5JREROIT4+nnHjxrFmzRpuvvlmAPbuhf/7v+otFQE12SIibnH48GEiIyMpLCxk\n/fr1nHPOOb4uSURETsJaywsvvMCsWbPYuHEjzZs3P/bam2/C3XfDGWdU7zO8GUYjIlIjFRYW0r17\nd+rUqUNKSooabBERP1ZSUsLIkSNZtGgROTk5v2qwAZYuhYiI6n+OmmwRkWrYv38/HTt25KqrrmLx\n4sWcWZ27ZERExKOKioro378/W7ZsISsri8aNG//q9U2bnOUincvdH69y1GSLiFRRfn4+QUFBhIWF\nMWPGDOrUqePrkkRE5CQOHTpEeHg4BQUFpKWl0aBBgxPOGTcOnnmm+ktFQE22iEiV7N69m3bt2vHY\nY48xceJEnKBaERHxRwUFBXTp0oWGDRuSnJxMvXr1Tjhn40b4/HPo3989n6kmW0SkkjZt2kSnTp2Y\nPHkyI0Yoj0VExJ/t27eP9u3b06ZNG+bNm0fdunVPOMdaZxZ73Dgo5+UqUZMtIlIJq1evpmfPngEX\nky4iUhuVjUmfMmUKp51Wfuu7YQN88w3cf7/7Pltb+ImIVFBCQgKjR48OyJh0EZHapmxM+pAhQ056\nnrXOOuzx4+F0N3bGarJFRCpAMekiIoHj+Jj0U3njDfjhB+jTx701qMkWETmFsjHp2dnZJ8Ski4iI\nf0lKSmLYsGG/ikk/mZ9+glGjIDER3L1BlJpsEZGTKC4uZvjw4ezYsUMx6SIiAWD27NmMHz/+VzHp\np/L88xAUBO3bu78WNdkiIuVQTLqISOBwxaTPnj37hJj0k/nsM5g5E3bu9ExNarJFRI5TWFhIz549\nadSoESkpKUpxFBHxYyUlJYwaNYr09HSys7NPSHE8mb/+1Vkq0qSJZ+pSky0iUsb+/fvp1q0brVq1\nYvr06UpxFBHxY0VFRQwaNIi8vDyysrLKTXEsT3IyfPKJc9Ojp2ifbBGRUnl5ebRt21Yx6SIiAaAi\nMenlOXAARoyAOXPAk19UqskWEQF27dpFu3btePzxxxWTLiLi5yoSk34yTzwBvXo5Nzx6kpaLiEit\nt2nTJsLDw4mNjVWKo4iIn9u3bx+hoaF07tyZqVOnnjTFsTxr1kBmJuze7bn6XDSTLSK1WmpqKj16\n9GD+/PlqsEVE/FzZmPRp06ZVqsEuLISoKJg1C+rX92CRpYy11vOf4mbGGBuIdYuIf0lMTGTUqFG8\n9dZbXotJN8Zgra1Va1E0ZouIO1Q0Jv1kBg6EunWdJrsyqjpua7mIiNRKsbGxTJs2TTHpIiIBYMOG\nDURERBAXF0evXr0q/f7lyyE7G7Zv90BxJ6EmW0RqFcWki4gElrIx6R07dqz0+/ftg4cfhpUrvbNM\nxEVNtojUGopJFxEJLJWNST9eSQkMGOA02V5aFXiMmmwRqRUUky4iEjhcMemzZs2qcEx6eWJinBse\nx451c4EVoCZbRGo8xaSLiASOsjHpOTk5FY5JP96778KLL8KWLXC6DzpebeEnIjXa/v376dixI1dd\ndRWLFy9Wgy0i4seKiooYMGAAmzdvJisrq8oNdkEB9Onj7CRyxRXurbGi1GSLSI2Vn59PUFAQd955\np2LSRUT8nCsm/cCBA6Snp1c4Jv141jrb9fXoAT17urnISlCTLSI1kism/bHHHmPSpEmKSRcR8WMF\nBQWEhIRUKSb9eNOmwddfw+TJbiywCtRki0iNs2nTJjp37szkyZMZMWKEr8sREZFT2LdvH+3bt6d1\n69bMmzePunXrVvlamZlOc/3mm+Dr1YFqskWkRnHFpC9YsEAx6SIifq5sTPqUKVMqFZN+vK+/hn79\nICHBd+uwy1KTLSI1RmJiIoMHDyYlJYXQ0FBflyMiIqewbds2OnTowJNPPsmYMWOqtazvyBG47z4Y\nMQJCQtxYZDUYa62va6g0Y4wNxLpFxHNcMelr1qzx65h0YwzW2lq1QFxjtogcb8OGDfTu3ZuZM2dW\nKSa9LGshKgr274ekJKjGZHi5qjpua59sEQloikkXEQksycnJREVFsXTp0irFpB9vxgzYtMn5cXeD\nXR1qskUkYLli0rdv384777zDBRdc4OuSRETkFOLj43nmmWeqHJN+vIwMmDTJabDPPdcNBbqRmmwR\nCUhlY9IzMjIUky4i4sfKxqRnZWVVOSa9rM8/d250XLwYmjVzQ5FupiZbRAKOYtJFRAKHu2LSyzp4\nEO68E8aNgzvucEORHuBHK1dERH6bKyb96quvVky6iIifc1dM+q+vCffeC6Gh8PDDbijSQ9Rki0jA\ncMWk33XXXbz66quKSRcR8WPuikkvy1qnsT7rLJg61Q1FepCabBEJCGVj0idMmKCYdBERP1ZQUECX\nLl3cEpNe1ksvwdatzjpsf59nUZMtIn4vJydHMekiIgHCnTHpZS1eDNOnQ0oKBMK97mqyRcSvpaam\n0rNnT8Wki4gEgNzcXNq2bUtkZCRTp06tVkx6WZmZ8PjjkJoKl1zilkt6nHYXERG/lZCQwOjRo0lJ\nSaF169a+LkdERE5h27ZthIWFMWnSJIYMGeK26/7f/0Hv3rBkCVx3ndsu63FqskXEL8XExBATE0NG\nRoZfx6SLiMj/YtLj4uIIDw9323W/+gq6dYNp0/x3q76TUZMtIn5FMekiIoHFFZO+bNkygoOD3Xbd\n77+HkBD4y18gMtJtl/UaNdki4jcUky4iElji4+MZN26c22LSXX76yQmbuftueOIJt13Wq3Tjo4j4\nhcOHDxMREUFeXh4ZGRlqsP2AMaarMeZjY8weY0x0Oa+fb4x52xizwxizyxgzwAdliogPWGt5/vnn\nee6559i4caNbG+xffnHCZq6+Gl54wW2X9TpjrfV1DZVmjLGBWLeIlK9sTHpCQkKNTnE0xmCt9ftN\nvo0xpwF7gE7APmAr0Mda+3GZc8YDZ1lrnzTGNAI+AS6y1h497loas0VqkLIx6WvXrnVLiqNLcTH0\n6wdHjsCbb8LpfrDmoqrjtmayRcSnXDHpV111lWLS/UsrINda+4W1tghYAvQ47px/A67das8Bvj++\nwRaRmqWoqIj+/fu7NSbdxVoYNgz+8x9nJxF/aLCrQ022iPhMXl7esZj0GTNmKCbdvzQBvirz/OvS\nY2XNBq41xuwDdgKPe6k2EfEBV0x6QUGB22LSXayFv/0NPvgAVqxwYtMDnZpsEfEJxaTXCE8CO621\njYGbgFeNMfV9XJOIeEBBQQEhISFuj0l3mTgR1q6Ft98OjDTHigjwiXgRCUSbNm0iPDyc2NhYpTj6\nr71A2f0TLyk9VlZb4DkAa+1nxpg84GrgveMvNmHChGOPg4OD3brNl4h41r59+wgNDaVz585uTXF0\nefFFZ3lIVhY0bOjWS1dJZmYmmZmZ1b6ObnwUEa9KTU1l4MCBJCQkEBoa6utyvC6Abnysg3MjYyfg\nG2AL0Nda+1GZc6YChdbaicaYi3Ca6xustQeOu5bGbJEAlZubS2hoKEOHDiU6Otrt3zq+8grExjoN\ndpPjF6T5iaqO25rJFhGvSUxMZNSoUaxatUox6X7OWltsjBkBpOEsLZxjrf3IGBPlvGxnAc8Dc40x\nOwED/O34BltEAtf27du588473R6T7jJzJkyZAhs3+m+DXR2ayRYRr3DFpK9du5ZrrrnG1+X4TKDM\nZLuTxmyRwJOZmUlERAQzZ86kV69ebr9+fDxMmgQbNkCzZm6/vFtpJltE/JK1lqeffprly5crJl1E\nJAC4YtKXLl1Kx44d3X79uXNhwoTAaLCrQ022iHjM0aNHGT58ODt37iQ7O5tGjRr5uiQRETmFOXPm\n8PTTT7s9Jt1l7lx4+mnIyIDmzd1+eb+iJltEPOLw4cP069ePH374gfXr13NOTdmTSUSkBrLW8uKL\nLxIXF0dWVhbNPdABv/46jBvnNNhXXeX2y/sdNdki4nZlY9JTUlKU4igi4sfKxqTn5OS4NcXRZc4c\nGD8e1q+vHQ02KIxGRNzMFZN+9dVXKyZdRMTPFRUVMXDgQLZs2eL2mHSXuDhnDXZtmcF28XiTbYzJ\nN8bsNMZsN8ZsKT3WwBiTZoz5xBiz1hhzXpnznzTG5BpjPjLGhHi6PhFxn/z8/GMx6a+++qpi0kVE\n/JgrJv37778nLS3NrTHpLq+8As8/D5mZ8Kc/uf3yfs0bM9klQLC19iZrbavSY2OAddbaq4AMnGhe\njDEtgAjgGqAbMMMoa1kkIOzatYugoCDFpIuIBICCggK6dOnC+eef75GYdHD2wI6NdfbBrsm7iJyM\nN5psU87n9ADmlz6eD/QsfXw3sMRae9Ramw/kAq0QEb+2adMmOnfuzEsvvcSIESN8XY6IiJzCvn37\naN++Pa1bt2bu3LnUrVvXrde31tkDe9Ysp8G+/HK3Xj5geKPJtkC6MWarMcYVF3SRtfZbAGvtv4EL\nS483Ab4q8969pcdExE+tXr2aHj16sGDBAvr27evrckRE5BRyc3Np27YtkZGRTJ06ldNOc28raC2M\nGQNvvOFEpV9yiVsvH1C8sbtIW2vtN8aYC4A0Y8wnOI13WYoCEwlAZWPS27Rp4+tyRETkFLZt20ZY\nWJjHYtJLSuCxx2DzZmcN9vnnu/0jAorHm2xr7Tel//zOGLMCZ/nHt8aYi6y13xpjLgb2l56+F7i0\nzNsvKT12ggkTJhx7HBwcTHBwsPuLF5GTio2NZdq0aWRkZNCiRQtfl+O3MjMzyczM9HUZIlLLbdiw\ngd69exMXF0d4eLjbr3/0KAwaBHl5sG4dnHfeb7+npjPWem4S2RhTDzjNWvujMeZsIA2YCHQCDlhr\nXzTGRAMNrLVjSm98XAi0xlkmkg40t8cVaYw5/pCIeIkrJj0pKYm1a9cqJr2SjDFYa2vVXaEas0V8\nKykpiWHDhrFs2TKPTEoePgx9+sCRI7B8OXjgHkqfquq47emZ7IuAZGOMLf2shdbaNGPMe8AyY8wg\n4AucHUWw1n5ojFkGfAgUAQ9rZBbxH8XFxQwfPpwdO3bwzjvvKCZdRMTPxcfHM27cOI/FpP/4I/Ts\nCQ0bwrJlcMYZbv+IgOXRmWxP0ayIiPcdPnyYyMhICgsLSUpKUkx6FWkmW0S8wVrLCy+8wKxZs0hL\nS/NITPp//gPdu8MNN8DMmVBToxGqOm4r8VFEflNhYSHdu3enTp06pKSkqMEWEfFjJSUljBw5kkWL\nFpGTk+ORBvurr6BdO+jc2dmqr6Y22NWhJltETskVk37VVVcpJl1ExM8VFRUxYMAAj8akf/QRBAXB\nkCHwj3+AssfKpyZbRE4qLy/vWEz6jBkzFJMuIuLHXDHpBw4c8FhM+r/+BR07OmEzI0e6/fI1ipps\nESnXrl27aNeunWLSRUQCgCsmvWHDhh6LSU9Nhbvvhtdfh/793X75GkdNtoicICcnRzHpbrRvH8TE\nQMuWvq5ERGqisjHp8+bNc3tMOsC8eTB4MKxa5dzsKL9NTbaI/Mrq1avp2bMn8+fPV0x6NRw86Mz2\ndOoEf/4z7NoFzz/v66pEpKZxxaT369fPYzHpf/87TJzopDgq3LfivBGrLiIBIiEhgdGjR5OSkkLr\n1q19XU7AOXzY+Tp10SIn8axTJ3j4YbjzTjjrLF9XJyI1jadj0o8ehREjnJj0TZvgD39w+0fUaGqy\nRQSAmJgYYmJiFJNeScXFsHEjLFwIyclw440QGQlz5sDvf+/r6kSkpsrMzCQiIoKZM2fSq1cvt1//\np5+gb1/4+WdnjDv3XLd/RI2nJluklrPWMnbsWJKSksjOzlZMegVYCzt2OI314sVw0UVOYz1pEjRp\n4uvqRKSmS05OJioqymMx6d9+C3fdBddcA2++qRTHqlKTLVKLHT169Fcx6RdccIGvS/JreXnOUpCF\nC53ZnX79ID0dNPEvIt7i6Zj0PXugWze4/36YMEF7YFeHmmyRWqpsTHpGRoZSHE/i++/hjTcgMRE+\n+QTuuw9mz4bbb9dfPiLiPWVj0jdu3OiRFMd33nHGuOeec3YSkepRky1SCxUWFtKzZ08aNWpESkqK\nUhyP8/PPkJLizFhv2ODM6kRHQ2iovjYVEe8rKSlh1KhRpKenk5OT45EUx8WL4fHHnXGvSxe3X75W\nUpMtUsvs37+fbt260apVK6ZPn64Ux1IlJc7NPYmJzg2Mt9zirLNesEA3/IiI7xQVFTFkyBA+/fRT\nsrKy3J7iaK2zvWhcHKxfD9dd59bL12pqskVqkby8PEJDQ+nTpw8TJ05UiiPO/tWJic5a60aNdAOj\niPiPQ4cOERERgbWW9PR0t6c4/vILDB0Ku3c7cekemCCv1dRki9QSu3btolu3bkRHR/Poo4/6uhyf\n2rfPaaoTE50115GR8PbbTmiMiIg/KCgoICwsjKZNm/L666+7PcXxwAHo1QsaNHC+xTv7bLdeXlDi\no0itUDYmvbY22D/+6Cz96NIFrr0WPvrIiTr/4gt44QU12CLiP8rGpM+fP9/tDfaePU5y4623Olv0\nqcH2DM1ki9RwqampDBgwgMTEREJDQ31djlcVFztrDBcscG5kbNcOhgyBlSvhd7/zdXUiIifKzc0l\nJCSEqKgooqOj3b6sb8MG6NPHiUp/6CG3XlqOY6y1vq6h0owxNhDrFvE2V0z6W2+9Vati0nfudBrr\nxYvhkkvggQecv1T8YRtwYwzW2lq1GF5jtkjFeDomPT4exo6FJUugY0e3X77Gquq4rZlskRrKFZO+\nYcMGrrnmGl+X43GuddYJCXDwoBOkkJEBV1/t68pERH7bhg0b6N27t0di0ouLYdQoWL3a2Qv7T39y\n6+XlJNRki9QwtSkm/aefYMUKp7HesgXCw+Hll6F9ezhNd5yISIBISkpi2LBhLF26lI5unmL+73+d\nb/KOHoV333VudBTvUJMtUoPUhpj0khLIyoL5850G+7bboH9/SEoCN+9uJSLicbNnz2b8+PEeiUn/\n9FO4+2644w7nRm833z8pv0FNtkgNUdNj0vfscdZZJyQ4MzEPPOAEKFx8sa8rExGpPE/HpK9fD/36\nwcSJMGyYWy8tFaQmW6QGqKkx6QUFsHSpM2udl+f8hbFyJdxwg68rExGpupKSEkaOHMm6devcHpNu\nLUyfDs8954yfwcFuu7RUkppskQD37bff0q1bN9q0acMrr7wS8DHpR4/C2rVOY712LYSGwjPPQEgI\nnK4RS0QCXFFREYMGDSIvL8/tMelHjsAjj8DmzbBpEzRt6rZLSxXoryyRAOaKSe/bty8TJkwI6Jj0\nDz6AefOcHUKuvNJZZx0Xp5t0RKTmKBuTnpaW5taY9H//G+65By66yIlIr1/fbZeWKtL99yIBavfu\n3bRr147HHnuMiRMnBmSD/d13zm4gN98MYWFOQMzGjc5fEMOGqcEWkZqjoKCALl260LBhQ1asWOHW\nBnvrVmjVyvnG78031WD7C4XRiASgnJwcevXqRWxsLH379vV1OZVSVOTs1TpvnpM8FhYGAwY4wQgB\nvtKlQhRGI1L77Nu3j9DQULp06cKUKVM4zY17jM6bB6NHw+zZ0LOn2y4rZSiMRqSWcMWkJyQk0LVr\nV1+X8ytf5OUx75lnKNm7l9OaNGHAs89y+ZVXAs5ykLlzneUgzZvDwIHOuutzz/Vx0SIiHuSKSR86\ndChjxoxx27eORUVOwMzbbzvfALZo4ZbLihupyRYJIImJiYwaNYqUlBS/i0n/Ii+PV7p0YeJnn3E2\n8BPwdM67/P7BdN5adSX/+Y+zzjonB/74R19XKyLieZ6KSd+/H+67D84+2wni+v3v3XZpcSMtFxEJ\nELGxsUybNo01a9bQwg+nLCbefz+jFi7k7DLHfgJ6Xh7J32YncscdtWM5yG/RchGR2iEzM5OIiAi3\nx6Rv3erc4Ni/P0yYoHHVG7RcRKSGCpSY9B9y9/6qwQY4G7i96T66dPFFRSIivpGcnExUVJTbY9Jf\nfx2io52dl9zYt4uHqMkW8WPFxcUMHz6c7du3+2VM+g8/wBtvOAN/4QdN+AlOmMk+zY0hCyIi/i4+\nPp5x48a5NSb9yBF47DFn7XVWFlxzjVsuKx6mLfxE/NThw4eJiIggLy+PjIwMv2mwrYXsbBg0CC67\nzElgHD0aknY+y/hmzfip9LyfgPHNmjHg2Wd9Wa6IiFe4YtKfe+45Nm7c6LYG++uvoUMHZ8vTLVvU\nYAcSrckW8UNlY9ITEhL8Iib9m29gwQJn1vq005wm+8EHneADl2O7i+zbx2mNG/9qdxFxBNKabGNM\nVyAWZ0JmjrX2xXLOCQZigLrAd9baE74b15gtNV1JSQmjR48mLS2NtWvXui0mPSMDIiOdWewxYyAA\n4xBqhKqO22qyRfyMKya9devWTJ8+3acx6UePOntax8fDO+84N9sMHgxt2miwr6pAabKNMacBe4BO\nwD5gK9DHWvtxmXPOAzYBIdbavcaYRtba/5RzLY3ZUmMVFRUxePBgPvvsM1JSUtwSk24tTJkC06ZB\nYiJ06uSGQqXKdOOjSA2Qn59PSEgI/fr1Y/z48T5LcczNdWas58+HK66AIUOc/a2VIlartAJyrbVf\nABhjlgA9gI/LnNMPWG6t3QtQXoMtUpOVjUlPT093S4rjf//r5Ajs3essD7n0UjcUKj6hNdkifmL3\n7t0EBQXx6KOPMmHCBK832D//7MyYBAdD27bwyy+wfj1s2uQsDVGDXes0Ab4q8/zr0mNl/QloaIzZ\nYIzZaox5wGvVifiYKya9QYMGbotJ/+ADaNkS/vAH5wZHNdiBTTPZIn7AFZMeExNDv379vPrZH3zg\nxPEuWgS33gojRsDdd8MZZ3i1DAlMpwM3A3fgbCzzL2PMv6y1nx5/4oQJE449Dg4OJjg42Eslirif\nJ2LSExLgiScgJgbuv98NRUqVZWZmkpmZWe3raE22iI+tXr36WEx6aGioVz7zxx9hyRKnud63z5mp\nHjQILr/cKx9fqwXQmuw2wARrbdfS52MAW/bmR2NMNHCWtXZi6fN44G1r7fLjrqUxW2qM3NxcQkND\nGTp0KNHR0dX+1vHwYXj8ccjMhDffhOuuc0+d4j5VHbe1XETEhxITExk0aBCrVq3yeINtLbz3Hgwd\n6nwFmZIC48ZBfj5MnKgGW06wFfijMeZyY8wZQB9g5XHnvAUEGWPqGGPqAa2Bj7xcp4jXbNu2jQ4d\nOjB27FjGjBlT7QY7L89ZnldQ4CQ5qsGuWbRcRMRHYmJiiImJISMjw6Mx6YWFzlKQWbPg4EHnJsYP\nP3TW/ImcjLW22BgzAkjjf1v4fWSMiXJetrOstR8bY9YCHwDFwCxr7Yc+LFvEYzZs2EDv3r2Ji4sj\nPDy82td76y146CEYO9bZok87NtU8Wi4i4mVlY9LT0tI8EpPumrWeNcv5+rFTJ2cGu3NnZ49r8Z1A\nWS7iThqzJdAlJSUxbNgwt8SkFxXBU0/BsmWwdKmzJar4N23hJxIAPB2T/uOPzqx1XJzz9eNDD8FH\nH8HFF7v1Y0REao3Zs2czfvx4t8Skf/019OkD55wD27bB+ee7qUjxS2qyRbzk8OHDREZGUlhYSEZG\nBuecc47brr1zp9NYL1nixO/+4x/QpYtmrUVEqsoVkz579mw2btxI8+bNq3W9NWtgwADnJsfoaI3P\ntYGabBE/CadnAAAgAElEQVQvKBuTnpKS4paY9MOHna8bX3vNmR0ZMgR27YImx+9kLCIilVJSUsKo\nUaNIT08nOzu7WjHpR4/C+PFOuNeyZdC+vRsLFb+mJlvEw/bv30+3bt1o1aqVW2LSP/0UZs50Buxb\nboExY+DOO+F0/TaLiFSbKyb9888/Jysrq1ox6Xv3Qt++cNZZzvKQCy90Y6Hi9/RlhYgH5efnExQU\nRFhYGDNmzKhyg11cDCtXQteucNttzteM777rfP3Yo4cabBERdzh06BDh4eEcOHCAtLS0ajXYa9Y4\nEyGhoc5jNdi1j/5qFvGQ3bt3061bN6KjoxkxYkSVrvHddxAf78xcX3wxPPIIrFjhzIqIiIj7FBQU\nEBYWRtOmTXn99depW7dula5TVATPPAOJic7uIR06uLlQCRhqskU8wBWTHhsbS9++fSv9/i1bYPp0\nWLUKevWCpCRnRkRERNzPXTHpX37pLA8591zYvh3cvIGUBBgtFxFxs9TUVMLDw0lISKhUg33kCCQk\nQKtW0Lu3k/z12WcwZ44abBERT8nNzSUoKIjIyEimTp1a5QZ7xQpo2RLuvhtSU9Vgi2ayRdwqISGB\n0aNHs3LlStpUMGFg3z5nOcisWXD99fD0086NjNW8P1JERH7Dtm3bCAsLY9KkSQwZMqRK1zhyBEaP\ndu6beesthcvI/6jJFnGTysakb94ML78Mb78N/fpBZiZcfbXn6xQRkf/FpM+cOZNevXpV6Rp79jjh\nMlde6SwPqcZ9klIDabmISDW5YtLj4uLIzs4+ZYNdVOTcCHPbbc7AfOutkJcHr76qBltExFuSk5Pp\n3bs3S5curXKDnZAAbds6ybpvvqkGW06kmWyRanDFpO/YsYPs7GwaNWpU7nkFBTB7tnMz45VXwt/+\n5qzb05IQERHvqm5M+g8/wIgRzg3q69c7y/xEyqMmW6SKysakr1+/vtyY9M8/h9hYZyunO+90boyp\nwpguIiLV5IpJnzVrVpVj0t9/3/kWsn17eO89OPtsDxQqNYaWi4hUQWFhId27d6dOnTqkpKSc0GBv\n3gz33efsFFKvnhN3npCgBltExBdcMemLFi0iJyen0g12SQlMmwbdusHf/+7s+qQGW36LZrJFKulk\nMeklJc5NjJMnwxdfwF//CnPnQv36Pi5Yaj1jzNXAFYAFvrDWfuzbikS8p7ox6d9+CwMGwMGDzgTK\nlVd6pk6pedRki1RCfn4+ISEh9O3blwkTJmCM4ehRWLIEXnzRWWMdHe3MYivqXHzJGHMF8ATQHfga\n+AYwwB+MMU2AVCDGWpvvoxJFPO7QoUNEREQAkJaWRr169Sr1/rQ0p8EeNAjGj4cqhkBKLWWstb6u\nodKMMTYQ65bAtmvXrmMx6Y8++iiHD8O8ec7M9WWXwZgxEBoKxvi6UvFnxhistR7/f4kxZhkwC8i0\n1h497rXTgY7AEGttby/UojFbvK46MelHjsBTTzm7QSUkQMeOHixU/F5Vx2012SIV4IpJf/nll+nR\now9xcTBlCtxwA4wdC7ff7usKJVB4q8n2JxqzxduqE5P+8cdONPoVV0B8PJx/vufqlMBQ1XFbNz6K\n/IbVq1fTs2dPZs9ewL//3YdmzWDjRifdKzVVDbb4N2PMWcaYJ4wxScaY5caYvxpjzvJ1XSKekpub\nS9u2bSsdk26ts9Vqu3YwbBgkJanBlurxu1WjxpiuQCzOfwDMsda+6OOSpBZzxaQPHLiK4cPb0LIl\nrF4NN97o68pEKmwB8APwSunzfkACcJ/PKhLxkKrGpH//vRMq8/nnkJUF11zjwSKl1vCrJtsYcxow\nHegE7AO2GmPe0p3w4gsxMbE899w06tXLYMeOFqxYAS1b+roqkUr7s7W2bAzpBmPMhz6rRsRDXDHp\ncXFxhIeHV+J90L8/3HsvLF4MZ57pwSKlVvGrJhtoBeRaa78AMMYsAXoAarLFa6y1PPTQ0yxatJwr\nr8zm5Zcvo3NnX1clUmXbjDFtrLXvAhhjWgPv+bgmEbdKSkpi2LBhLFu2jODg4Aq955df4JlnnLCw\n1193blwXcSd/a7KbAF+Vef41TuMt4hWFPx7ilja9yP/ke1544R3+8pcLFH0uge4WYJMx5svS55cB\nnxhjdgHWWqtQaAloVYlJ//hjiIyESy6BHTvgggs8XKTUSv7WZFfYhDL7pAWX/ohUx2FgIHADkAsw\n6kIY5dOSpAbILP3xoa6+/XgRz6hKTLq1EBfnzGA/+yxERWnbVfEcf2uy9+LMsrhcUnrsBBO0HZS4\nUWFhIcFdg/nop4/4aP1H0OgKX5ckNUQwv54EmOilv9GNMedYa39wLb872TleKUbEzVwx6enp6eTk\n5NC4cePffM/+/TBkCOzdC++8A1df7YVCpVbzty38tgJ/NMZcbow5A+gDrPRxTVLD7d+/n6D2Qewx\ne1i6ZClXqMGWmiHZGPOqMSbEGNPQddAY07D02GtAkg/rE6mSoqIi+vfvz5YtW8jKyqpQg+3aFapF\nC/jXv9Rgi3f41Uy2tbbYGDMCSON/W/h95OOypAbLz8+nc5fO/HjVj4yNHsvd19zt65JE3MJa29kY\n0xFny76XjTGNAYuzc1M2sMham+nDEkUqrbIx6YcOwejRkJLi7BzSoYM3qhRxKPFRaq1du3bRvXt3\n6t9Rn6B7gph11yyMFueJhynxUaRqXDHpzZo1Y86cOb8Zk75tm3Nz4003wYwZ8Pvfe6lQqXGqOm77\n1Uy2iLe4YtKb9WvGha0v5LWw19RgS41ijLnaWvuxMabc7Rastdu8XZNIVe3du5euXbsSEhLCSy+9\ndMoUx+JimDwZYmLg5ZediHQRX1CTLbXO6tWr6d+/P7eOuJXDVxxm8T2LOf00/SpIjfMEMBSYirNM\nxMWUPr/DF0WJVFZubi4hISFERUURHR19ygmRvDx48EE4/XR47z247LKTniricf5246OIRyUmJjJw\n4EDueOoOCpoUsLLPSn5X93e+LkvE7ay1Q0sfdgdSgf8CB3FuJu/uq7pEKmPbtm106NCBp556ijFj\nxpy0wbYW5s2DVq2gZ09Yv14Ntvie1mRLrREbG8u0adPo9EwndtldrHtwHb8/S4v0xLu8vSbbGLMM\nKAQWlh7qB5xnrY3wYg0as6XSXDHpM2fOpFevXic97z//gWHDYM8eJ73xesUriZtpTbbISVhrefrp\np1m+fDndn+/O5h83s/7B9Wqwpbb4s7W2RZnnG4wxH/qsGpEKcMWkL126lI4dO570vLffdva+7tfP\nabDPOsuLRYr8BjXZUqMdPXqUhx9+mO3bt3PHpDt4t+Bd1j+4noa/a/jbbxapGbYZY9pYa98FMMa0\nBt7zcU0iJ1WRmPSffnK25ktNhYULITjYuzWKVISabKmxDh8+TGRkJIWFhdwy5ha2HtjKugfXqcGW\n2uYWYJMx5svS55cBnxhjdgHWWqsv18UvVDQmffNmeOABaN0adu7U1nziv9RkS41UWFhIz549Of/8\n87l02KXsPLiTdQ+s47yzzvN1aSLe1tXXBYj8lorEpBcVwd//DjNnwquvwr33+qBQkUpQky01zv79\n++nWrRu3tryVHzr9wOc/fE7a/Wmcc+Y5vi5NxOustV/4ugaRUykqKmLw4MF89tlnZGVl0aBBgxPO\n+egjZ/b6wgth+3aoQJK6iM9pCz+pUfLz8wkKCqJr9678u8O/OfjLQVZHrlaDLSLihw4dOkR4eDgH\nDhwgPT39hAa7pMQJlGnfHh56yFmDrQZbAoVmsqXGcMWkPz7ycd5u+Dbnn34+b/R6gzPqnOHr0kRE\n5DgFBQXcddddNG3atNyY9C+/hIED4eefYdMmOMkSbRG/pZlsqRFycnLo3Lkzzzz7DMvOXkbT3zdl\n8T2L1WCLiPihffv20b59e1q1asW8efN+1WBbCwkJcOut0LkzZGWpwZbApJlsCXipqakMGDCAaXHT\neP6b57n7qrt5vtPzp4zeFRER3zhVTPp330FUFOTmQloa3HijDwsVqSbNZEtAS0hIYPDgwbyy4BWe\n/vJpBt00iBc6v6AGW0TED7li0seOHXtCTPrKlU5aY/Pm8N57arAl8GkmWwKWKyZ92sJpPL79cSZ3\nnkz/G/v7uiwRESmHKyY9Li6O8PDwY8cLC+Evf4HMTFi2DNq1812NIu6kmWwJONZannrqKWbOnMnE\nBRN5fNvjzO0xVw22iIifSkpKonfv3ixbtuxXDXZmpjN7XbeuEyyjBltqEs1kS0A5evQow4cPZ+fO\nnQx7dRhPvvckKX1TaH1Ja1+XJiIi5YiPj2fcuHG/ikn/+Wd48kl44w2Ij4du3XxcpIgHqMmWgFE2\nJr3ThE78c/c/yRqYxZ/O/5OvSxMRkeO4YtJnz579q5j0LVvgwQfh5pth1y5o2NDHhYp4iLHW+rqG\nSjPG2ECsW6rOFZPe8PyG1O9dn90HdpPaL5WL6l/k69JEKsUYg7W2Vt2ZqzG79ikbk7527VoaN27M\nL7/As8/CrFnwyisQEeHrKkUqpqrjttZki9/bv38/HTt2pOkfm/Lj3T/y3S/fkTkgUw22iIcZY7oa\nYz42xuwxxkSf4ryWxpgiY0wvb9Yn/qmoqIj+/fuzefNmsrKyaNy4Mbt2QevWsGOHs/ZaDbbUBmqy\nxa+5YtKDQ4J57+b3uOz3l/FWn7eof0Z9X5cmUqMZY04DpgOhwLVAX2PM1Sc57wVgrXcrFH/kikkv\nKCggPT2dc89twIsvwh13wKOPOtv0XXyxr6sU8Q412eK3du3aRbt27bhnwD28ceEb9L62N3FhcZx+\nmm4lEPGCVkCutfYLa20RsAToUc55jwJvAvu9WZz4n4KCAkJCQmjYsCHJycns3VuPdu1g7Vpn3+tB\ng0ARBlKbqMkWv+SKSY98IpI5decwuctknmz3pEJmRLynCfBVmedflx47xhjTGOhprX0N0C9nLVY2\nJv311+cRF1eX22+Hvn1h3Tq4/HJfVyjifZoSFL+zevVq+vfvT99xfZl3ZB5JvZMIuizI12WJyIli\ngbJrtU/aaE+YMOHY4+DgYIKDgz1WlHhXbm4uoaGhDB06lD59ogkNNRw6BDk58Cdt/iQBKDMzk8zM\nzGpfR7uLiF9JTExk1KhRdH6qM1vMFlL7pdL8/Oa+LkvEbQJldxFjTBtggrW2a+nzMYC11r5Y5pzP\nXQ+BRsBPwFBr7crjrqUxu4batm0bYWFhTJw4iTp1hhAdDSNHwujRUKeOr6sTcY+qjtuayRa/ERMT\nw7SYaVw7+lq+Ovcr/hXxL86vd76vyxKprbYCfzTGXA58A/QB+pY9wVrb1PXYGDMXWHV8gy01lysm\n/fnnZ5Kc3Iu9e2H9eifBUUS0Jlv8gCsm/dXXXqXBww24tNmlpD+QrgZbxIestcXACCAN+D9gibX2\nI2NMlDFmaHlv8WqB4lPJycn07t2bqKilPPVUL26+GTZvVoMtUpaWi4hPFRcXM3z4cDZt3URBrwIe\n7fgo0W2jdYOj1FiBslzEnTRm1yzx8fE8/fQ4rrsuhb17b2b+fGjZ0tdViXiOlotIwHHFpH+671O+\n6fUNs+6ZxT0t7vF1WSIiUg5XTHps7Cys3ciNNzZn1So46yxfVybin9Rki0+4YtK/4zsKehWwNnIt\ntza+1ddliYhIOUpKSnj00VEsWpTOeeflkJjYmCBt+iRySmqyxev2799P165d+enCn6jfsz6b+22m\nyblNfvuNIiLidUVFRXTrNph33vmMBx7I4uWXG3D22b6uSsT/qckWr8rPz6dT504caXGE2+6/jfnh\n86lXt56vyxIRkXJ8++0hWrWKYP9+WL48nbAwjdciFaXdRcRrdu3aRevbW1NwQwEPPfEQy+5bpgZb\nRMRPpaQUcPnlIdSt25CvvkpWgy1SSWqyxStycnJo17EdPwf/TNykOMYHj9cOIiIifujQIRgyZB/h\n4e3p2rUVe/bMo1Gjur4uSyTgqMkWj0tJTSHkzhDOuPcMNk7dyH3X3ufrkkREpBzvvgvXXpvLkiVB\nPPlkJMnJUzntNLUKIlWh3xzxqPh58dwbeS/NHmnGrim7uOkPN/m6JBEROc6RI/DUU3Dnndv47387\nEBv7FJMmjdE3jiLVoBsfxWOe+cczvDjlRcL+HsbiYYs58/QzfV2SiIgcZ/t26N8fzjlnA8b0Zvbs\nmfTq1cvXZYkEPM1ki9tZa7n/kft5PvZ5npr7FMsfWa4GW0TEzxQVwbPPQmgoBAcnkZvbmzfeWKoG\nW8RNFKsubnX06FE63NuBLe9vYWnyUnrdqsFapCzFqos/+PBDZ/a6YUPo3DmemJhxpKamctNNWtIn\ncjzFqovPHfzxIDd2uZHvD37P+znvc/1l1/u6JBERKaO4GGJj4fnn4dlnLQUFL/Daa7PZuHEjzZs3\n93V5IjWKmmxxi4+//pjWnVtzboNzyd+Sz/nnnO/rkkREpIzPP4cBA5zH775bwquvjmTdunVkZ2fT\nuHFjn9YmUhNpTbZUW+r2VK6/7XquvuZq8t7JU4MtIuJHrIWZM6F1awgPh/T0IiZNGsDWrVvJyspS\ngy3iIZrJlmr5x6p/MG7QOCJ6R7DwlYXa7klExI98/TUMHgwHDkBWFlx++SHuuScCgLS0NOrVU4qj\niKdoJluq5MjRI9z7yr2Mf3A8T458kkXTF6nBFhHxE9ZCQgLcfDMEBcG//gUXX1xAly5daNiwIcnJ\nyWqwRTxMM9lSaXsL9xL6j1A+nfkpcf+MY9CDg3xdkoiIlPruO4iKgj17YM0ap9Het28foaGhhISE\n8NJLLynFUcQL9FsmlZL9ZTbXj7ye/Lh8VixZoQZbRMSPrFgB118PzZvD++87DXZubi5BQUFERkYy\nZcoUNdgiXqKZbKkQay0zts7gyZgnOX3d6axfs57WrVv7uiwREQEOHoTHH4ecHHjzTWjb1jm+bds2\nwsLCmDRpEkOGDPFtkSK1jJps+U0/F/3MsNRhpC9Mp/6/6rNu4zpatGjh67JERARYtw4GDYKwMNix\nA+rXd45v2LCB3r17M3OmYtJFfEFNtpxSXkEe4UvDKUovov7u+qzbtI7LLrvM12WJiNR6hw7BmDGQ\nlATx8dC16/9eS05OJioqimXLlhEcHOyzGkVqMy3MkpNa++laWs9uze/W/I56X9YjJztHDbaIiB/Y\nsgVuugm+/x527fp1gx0fH88jjzzCmjVr1GCL+JBmsuUEJbaEf7zzD17d9CrXbLyGukV1Sc5I5pxz\nzvF1aSIitVpRETz7LMTFwSuvQETE/16z1vLCCy8wa9YsxaSL+AE12fIrBw8f5MHkB/n2wLc0fbsp\nF198MQsWLODMM8/0dWkiIrXahx/CAw/AxRc7a6//8If/vVZSUsKoUaNIT08nJydHKY4ifkDLReSY\nD779gFtn3cqFXEjR60XccO0NLFq0SA22iIgPlZRAbCx06ABDh0JKyq8b7KKiIgYMGMDmzZsVky7i\nRzSTLQAkfpDIX9f+laeufYrX/vIaffv2ZcKECUpxFBHxoa++ggED4PBhePddaNbs168fOnSIiIgI\nrLWkp6crxVHEj2gmu5Y7cvQIj6Q+wqSNk5jZciZTh07lscceY+LEiWqwRUR8xFpYuBBuuQU6dYKs\nrBMb7IICJya9QYMGrFixQg22iJ/RTHYt9tV/v+LeN+6l8TmNmf7n6TzQ+wFiY2Pp27evr0sTEam1\nDhyA4cNh925Yu9bZReR4rpj0Ll26KMVRxE/pt7KWSv8snZazW3LPNfcw+OzBREZEsmDBAjXYIiI+\nlJ4ON9zgrLl+773yG+zc3Fzatm1L3759mTp1qhpsET+lmexapsSW8FzWc7z23mssuXcJX73zFUNG\nDyElJUUx6SIiPvLzzxAdDcnJMHcudO5c/nmKSRcJHGqya5HvD33PA8kP8MMvP/D+0PdZOmcp06ZN\nIyMjQzHpIiI+sn07REbC9dfDzp3QsGH552VmZhIREaGYdJEAoe+Yaomte7dyy6xbaHFBC9Y/sJ5X\nnn+FmTNnkp2drQZbRMQHioth8mQICYGxY2Hx4pM32ElJSURERLB06VI12CIBwmMz2caY8cBDwP7S\nQ09Za9eUvvYkMAg4CjxurU0rPX4zMA84C1htrf2Lp+qrLay1vPbea4zPHE9cWBw9/tSD4cOHs337\ndt555x0uuOACX5coIlLrfPklPPigs4vIe+/B5Zef/NzZs2czfvx41qxZw8033+y9IkWkWjy9XGSa\ntXZa2QPGmGuACOAa4BJgnTGmubXWAq8Bg621W40xq40xodbatR6uscb68ZcfiUqJYvf+3WwatIlL\nz76UiIgICgsLycjIUEy6iIgPLFkCjz0GTzwBo0dDnTrln6eYdJHA5ukmu7yNlnsAS6y1R4F8Y0wu\n0MoY8wVwjrV2a+l5C4CegJrsKvjwuw+5d9m93HbJbbw7+F2Kfi6ie/fuNGrUiJSUFKU4ioh4WWEh\njBgBW7bA2287e2CfTElJCSNHjmTdunWKSRcJUJ5ekz3CGLPDGBNvjDmv9FgT4Ksy5+wtPdYE+LrM\n8a9Lj0klJX6QSId5HRh9+2jm9JjDDwU/0LFjR6666ioWL16sBltExMs2bYIbb4R69eD990/dYBcV\nFdG/f3+2bt2qmHSRAFatmWxjTDpwUdlDgAXGAjOASdZaa4z5OzAV0H5DHnT46GEef/txMr/IJOPB\nDK676Dry8/MJCQmhT58+SnEUEfGyo0fhuefgtdcgLg569Dj1+a6YdIC0tDSlOIoEsGo12dbaLhU8\ndTawqvTxXuDSMq9dUnrsZMfLNWHChGOPg4ODCQ4OrmApNdOnBz4l4o0Imp/fnK0PbeXcM89l9+7d\ndOvWjejoaEaMGOHrEkVqpczMTDIzM31dhvhAfr6zNV+9erBtG/zWhHRBQQFhYWH88Y9/JD4+nrp1\n63qlThHxDOPcb+iBCxtzsbX236WP/wq0tNb2M8a0ABYCrXGWg6QDzUtnvN8FHgO2AqnAP107khx3\nbeupugPR8g+XMzx1OOM7jOfhlg9jjGHTpk2Eh4crJl3EzxhjsNbWqq+UauOY7bq58W9/c25w/K1Q\nRldMekhICC+99JJSHEX8SFXHbU/e+DjZGHMjUALkA1EA1toPjTHLgA+BIuDhMqPvI/x6C78TGmz5\nnyNHj/C39L+xcs9KUvul0rJJSwBSU1MZOHAgCQkJhIaG+rhKEZHa48cf4dFHISfnt29udMnNzSUk\nJISoqCiio6O1rE+khvDYTLYn1cZZkePlH8wn4o0IGp/TmLk95tLgdw0ASEhIYPTo0axYsYI2bdr4\nuEoROZ5msmuubdugTx8ICoJ//hPq16/IexSTLuLvqjpu6/uoALTyk5W0mt2KPn/uQ3Lv5GMNdmxs\nLGPHjiUjI0MNtoiIl1gLsbEQGgqTJsHrr1eswd6wYQNdu3bl1VdfVYMtUgN5ep9scaOi4iLGrBvD\n8o+Ws7LvStpc4jTS1lrGjh1LUlIS77zzDpefKjpMRETc5rvvYOBA55+bN0PTphV7X1JSEsOGDWPp\n0qV07NjRs0WKiE9oJjtAfHHwC9rPa8+eA3vYFrXtWINdXFxMVFQU6enparBFRLxo40a4+Wa49lrI\nzq54gz179mxGjBjBmjVr1GCL1GCayQ4AKz9ZyUOrHmL07aMZedvIYzfFHD58mMjISMWki4h4UXHx\n//a+njsXunat2PsUky5Su6jJ9mO/FP9ybHnIit4ruO3S2469VlhYSM+ePRWTLiLiRf/+t7P3tbVO\ncmNFwxhLSkoYNWoU6enpikkXqSW0XMRP5RXk0W5uOz498Cnbo7b/qsHev3+/YtJFxOOMMV2NMR8b\nY/YYY6LLeb2fMWZn6U+2MeY6X9TpLevXO8tD2rWD9PSKN9hFRUUMGDCALVu2KCZdpBZRk+2Hkj9K\npnV8a3pf25u3+rxFw981PPZafn4+QUFBhIWFMWPGDOrUqePDSkWkpjLGnAZMB0KBa4G+xpirjzvt\nc6C9tfYG4O846b41TnExTJgADzwACQnO44oOvYcOHSI8PJwDBw6QlpZGgwYNPFmqiPgRLRfxI0eO\nHmF0+mhW7VnFqr6raH1J61+9rph0EfGiVkCutfYLAGPMEqAH8LHrBGvtu2XOfxcnxbdG+fZbZ3lI\nSYmzD/bFF1f8vQUFBdx11100bdqUOXPmKCZdpJbRTLaf+PTAp9z++u18Xfg124ZuO6HBzsnJoVOn\nTkyePFkNtoh4QxPgqzLPv+bUTfQQ4G2PVuRlWVlOYuNttznLQyrTYO/bt4/27dvTqlUr5s2bpwZb\npBZSk+0Hluxewm1zbmPgjQNZHrH8WLiMy+rVq+nZsyfz58+nb9++PqpSRKR8xpiOwEDghHXbgcha\nmDIFIiIgPh6efbbiy0PAiUkPCgqiX79+TJ06ldNO01+1IrWRlov40KGiQ/xlzV/YkL+BtPvTuOkP\nN51wTmJiIqNGjWLVqlVKcRQRb9oLXFbm+SWlx37FGHM9MAvoaq0tONnFJkyYcOxxcHAwwcHB7qrT\nrf77XydcZu9e2LIFLrvst99T1vbt27nzzjsVky4SwDIzM8nMzKz2dYy1tvrVeJkxxgZi3WV9+N2H\nRLwRwQ0X38DMO2dyzpkn7nEdExNDTEwMa9asoUWLFj6oUkTczRiDtdb4uo7fYoypA3wCdAK+AbYA\nfa21H5U55zJgPfDAceuzj79WQIzZu3bBPfdAly4wbRpUduOmzMxMIiIimDlzJr169fJMkSLidVUd\ntzWT7WXWWubumEv0umgmd57MgBsHHAuXKXuOKyY9Ozubyyo7lSIiUk3W2mJjzAggDWdp4Rxr7UfG\nmCjnZTsLeAZoCMwwzkBWZK1t5buqq27xYnjsMYiJgfvvr/z7k5OTiYqKUky6iByjmWwvKjxSyLCU\nYezav4ul9y6lxQUnzk4XFxczfPhwduzYwerVq2nUqJEPKhURTwmUmWx38ucxu6gIoqPhrbcgKQlu\nuHA5RWAAABVGSURBVKHy14iPj2fcuHGkpKRw8803u79IEfEpzWT7uff3vU+f5X2444o72DxkM/Xq\n1jvhnLIx6evXr1dMuoiIB333Hdx3H9SrB++9B5Xdwtpay4svvqiYdBEpl2559jBrLbHvxtJtYTee\nu+M54u6KK7fBLiwspHv37tSpU4eUlBQ12CIiHrRtG7RsCW3bwqpVlW+wS0pKGDlyJAsXLiQ7O1sN\ntoicQDPZHvTdT98x8K2BfHfoOzYP2cyVDa4s97z9+/fTrVs3WrVqxfTp05XiKCLiQYsWweOPw2uv\nwb33Vv79RUVFDB48mM8//5ysrCylOIpIuTST7SEb8jZwU9xNXHvBtWQPzD5pg+2KSb/rrrsUky4i\n4kHFxTBmDDz9NGRkVK3BVky6iFSUZrLd7GjJUSZmTmTO9jnM6zmPkGYhJz13165ddOvWjTFjxijF\nUUTEgwoLoV8/+PFHZ//rqtxTXlBQQFhYGM2aNVNMuoj8Js1ku9EXB78geF4wm/duZlvUtlM22Dk5\nOXTu3JmXXnpJDbaIiAfl5cHtt8Ollzrx6FVpsPfu3Uv79u1p06aNYtJFpELUZLvJ8g+X03J2S+6+\n6m7W3L+Gi+tffNJzXTHpCxYsUEy6iIgH5eQ4DXZUFMyYAVXpjV0x6ZGRkUyZMkUx6SJSIVouUk2H\nig7xxNonSP88nZR+KbRqcuocBsWki4h4x8KF/9/evYdHVd95HH9/RdHVWhRRWkt11QIVu15wuTwP\neKFCuJRawC6kQS4CNYLQ6gLFPriNLm5FhIIXQG7KJRZhIVEBMQkkBJLK/SIUtegSuxAFqyC0PiwJ\n89s/5kTHSJKZyVwyM5/X8+ThzMk5Z76/wzm/+eY355wvPPwwLF4MPXqEt42dO3fSu3dvlUkXkZAp\nya6HfUf3kb4inRub38jO+3fS5IImtS4/Y8YM/vCHP7B+/XpuuOGGGEUpIpJanIMnnoAFC6CoCMLt\nbouKiujfvz9z5sxRmXQRCZmS7DA455i9fTZZG7J4utvTDLlpyDdKo1df/tFHH2XlypUqky4iEkWn\nT/svDdm7FzZvhu/UfOVerXJycsjMzGT58uUqky4iYVGSHaJPv/iUEatG8OHxDykdVkqry1rVunxl\nZSWjRo1i9+7dlJSUqEy6iEiUnDwJ99wDF1wAxcVw0UXhbWfevHlkZWWRl5enMukiEjbdvRGC4rJi\nbp5zM9dccg1vDX+rzgT71KlT9O/fn4MHD7J+/Xol2CIiUfLxx3DHHXDddZCbG16C7ZzjySef5Pe/\n/z3FxcVKsEWkXjSSHYRKXyWPbXiMF3e9yIK7F9CzZc861zlx4gR9+vShWbNmrF69mvPPPz8GkYqI\npJ6//MV/Y+OwYTBxItRy9V6NfD4f48aNo6CggNLSUq688srIByoiKUVJdh0OHjtIRk4GTc5vwq7M\nXTT/VvM611GZdBGR2Ni5E37yE5g0CcJ9+EdFRQXDhg1TmXQRiShdLlKLP+79Ix3md6B/m/68MfCN\noBLsqjLpvXv3Vpl0EZEo2rTJP4I9c2b4CXZVmfRjx45RUFCgBFtEIkYj2Wdx8v9OMnrtaLYc2kLe\nvXnc8t1bglpv79699OrViwkTJqiKo4hIFK1dC4MHw9Kl0LVreNuoKpN+7bXX8uKLL6qKo4hElEay\nq9l6eCtt57bl/Ebns+P+HUEn2FVl0qdMmaIEW0Qkil59FYYOhVWrwk+wy8vLuf322+nQoQOLFi1S\ngi0iEaeRbM8Z3xmmlE5hxpYZzOo1i3va3BP0umvWrGHo0KFkZ2fTvXv3KEYpIpLaVqyA0aP9I9nh\nPvzjwIEDpKWlkZmZyYQJE2qtcyAiEi4l2cChE4cYlDsIn/Ox/Zfb+X6T7we97pIlSxg/frzKpIuI\nRNkrr/jLpOflwU03hbcNlUkXkVhJ+ctFct7J4da5t9L1mq4UDi4MKcGePn06EydOpLCwUAm2iEgU\nrVjhT7ALCsJPsIuKiujRowfPP/+8EmwRibqUHcn+x+l/8NCbD1FYVshr6a/RsUXwSbJzjokTJ5Kb\nm6sy6SIiUbZqFTz4IOTnw49+FN42cnJyeOCBB1i2bJnKpItITKTkSPaO8h20nduW077T7MrcFVKC\nXVlZSWZmJuvWrWPTpk1KsEVEoigvD4YPh9Wrwx/BnjdvHqNHj2bt2rVKsEUkZlJqJNvnfEz901Sm\n/mkqz/Z8lvQfpYe0/qlTp8jIyODkyZOsX7+eiy++OEqRiojI5s1w773+p4m0axf6+s45Jk+ezNy5\ncykuLqZly5aRD1JEpAYpk2QfOnGIwbmDqfBVsO2X27j6kqtDWl9l0kVEYufdd6FPH1i0CDp1Cn19\nn8/H2LFjWbduncqki0hcpMTlIiv3r+TWubfy42t+zIYhG0JOsI8ePUqXLl1o3bo1S5cuVYItIhJF\n5eXQsydMngy9eoW+fkVFBUOGDGHbtm1s3LhRCbaIxEVSj2T//fTf+fXaX1P8YTGvp79OhxYdQt5G\nWVkZaWlpZGRkkJWVpeepiohE0cmT/sQ6M9NfcCZUX3zxBf379wcgPz+fCy+8MLIBiogEKWlHsrce\n3sotc27B4diVuSusBHvfvn3cdttt/OpXv+Kxxx5Tgi0iEkU+n79Uert2MGFC6OsfO3aMbt260bRp\nU3Jzc5Vgi0hcJd1I9hnfGSaXTObZrc8ys9dMft7m52Ftp7S0lH79+vHMM8+Qnh7aDZIiIhK6xx+H\nTz6BZcsg1DGN8vJyunfvTrdu3Zg6dSrnnJO0Y0gikiCSKskuO17GoNxBNG7UmB3376DFt1uEtZ01\na9Zw3333kZ2dTVpaWoSjFBGR6lasgIULYetWaNw4tHVVJl1EGqKk+VP/5bdfpt28dtzd6m4KBhWE\nnWBnZ2czfPhwVq1apQRbRCQG3nsPRo6E3Fxo3jy0dXfu3Mkdd9zBxIkTeeSRR5Rgi0iDkfAj2cdP\nHWfUmlHs/ng3+ffmc8t3bwl7W8888wzTpk2jsLCQNm3aRDBKERE5m9OnISMDJk2Ctm1DW7eoqIgB\nAwbwwgsv0K9fv+gEKCISpoQeyS4uK+amF26i6T81Zfv928NOsKvKpM+ePZuSkhIl2CIiMfLoo9Ci\nhf9pIqHIyclhwIABLFu2TAm2iDRICTuS/ci6R1i8ZzHz755Pr5ZhPEjVU1lZyciRI9mzZw8lJSU0\na9YsglGKiEhN1q+Hl1+G3btDu9Fx3rx5ZGVl8eabb9I21OFvEZEYSdgke/8n+9n9wG6uuOiKsLdx\n6tQpBg4cyIkTJ1QmXUQkhj7/3P8c7IUL4fLLg1tHZdJFJJGYcy7eMYTMzJzP56vXDS6BZdKXLFmi\nKo4iEhNmhnMupe7OMzNX/bNm3Dg4fhzmzw9uGz6fj3HjxlFQUEBeXp6qOIpIzITbbyfsSHZ9Euwj\nR47Qs2dPOnbsyHPPPUejRo0iGJmIiNTmwAH/CPaf/xzc8hUVFQwfPpwPPviAjRs3cumll0Y1PhGR\nSEjoGx/DcfDgQW677TZ++tOfMnPmTCXYIiIxNm4cjB8f3OP6vvjiC/r27ctnn31GQUGBEmwRSRgp\nlWTv3bv3yzLpjz/+uJ6nKiISY+vWwb598NBDdS977Ngx0tLSVCZdRBJSyiTZpaWldO3alalTpzJ6\n9Oh4hyMiknIqK+Hhh+Hpp6Gu22DKy8u5/fbbad++PQsXLuS8886LTZAiIhGSEkn2mjVr6Nu3L4sX\nLyY9PT3e4YiIpKSPPoJOnaBv39qXO3DgAJ06dWLgwIFMmzaNc85JiY8qEUkyCft0kWDjzs7OZty4\ncbz66qt07NgxypGJiNROTxep3Y4dO+jduzeTJk1ixIgRUY5MRKRuKfd0kWBMnz6d6dOnq0y6iEgC\nqCqTPmfOHPrWNdwtItLAJWWSXVUmPScnh5KSEq666qp4hyQiIrXIzc0lMzOT5cuXc+edd8Y7HBGR\neku6JPvMmTOMHDmSXbt2sWnTJi4PtpSYiIjExfz58/nd736nMukiklSSKskOLJNeWFioMukiIg2Y\nc46nnnpKZdJFJCklTZIdWCZ99erVKpMuItKA+Xw+xo8fT35+PiUlJSqTLiJJJymei3T06FG6dOlC\n69atWbp0qRJsEZEGrKKigqFDh7JlyxY2btyoBFtEklK9kmwz+7mZ7TOzM2bWttrvfmtmB8zsHTNL\nC5jf1szeNrO/mNmMgPmNzewVb523zCyouxXLysro3LkzvXv3ZtasWSqTLiISIWbWw8ze9frrCTUs\n86zXb+82s5vr2mZgmfT8/HyVSReRpFXfkey9QF+gOHCmmV0P9AeuB3oCs+yrGuazgeHOuVZAKzPr\n7s0fDnzmnGsJzACm1PXm+/bto3PnzowZM0Zl0muxYcOGeIeQULS/QqP9lZzM7BzgeaA7cAPwCzP7\nYbVlegLXef12JvBCbdusKpN+2WWXJX2Z9FQ8L9Tm1JCKbQ5XvZJs59x7zrkDQPXs9mfAK865Sudc\nGXAAaG9m3wEuds5t85ZbDPQJWGeRN70CuKu29y4tLeWuu+5iypQpjBkzpj7NSHo6IUKj/RUa7a+k\n1R444Jz70DlXAbyCv58O9DP8/TjOuS1AEzNrXtMGzYy+ffvy0ksvJX2Z9FQ8L9Tm1JCKbQ5XtK7J\n/h7wvwGvD3vzvgccCph/yJv3tXWcc2eA42bWtKY36NOnD4sXLyYjIyOScYuIiF/1fjywv65pmcNn\nWeZLl1xyCWPHjlWZdBFJCXU+XcTMCoDAkQkDHDDRObcqWoHxzdHxr1m1apXKpIuIiIhIg2TOufpv\nxKwIGOuc2+m9fgRwzrmnvNdvAlnAh0CRc+56b346cIdzbmTVMs65LWbWCPjIOXdFDe9X/6BFROLE\nOdfgbyAxs47AY865Ht7rr/Xr3rwX8Pfpy7zX7+Lv049U25b6bBFJaOH025F8Tnbgm78OvGxm0/F/\ndfgDYKtzzpnZ52bWHtgGDAaeDVhnCLAF+DegsKY3SoQPKBGRBLcN+IGZXQ18BKQDv6i2zOvAg8Ay\nLyk/Xj3BBvXZIpKa6pVkm1kf4DmgGbDazHY753o65/ab2XJgP1ABjHJfDZk/CCwELgDecM696c1f\nACwxswPAp/g7dBERiQPn3BkzGw3k479/Z4Fz7h0zy/T/2s11zr1hZr3M7H3gH8B98YxZRKQhicjl\nIiIiIiIi8pUGd4t3Qyhwk8jMLMvMDpnZTu+nR8DvQtp/qSiY4hupyMzKzGyPme0ys63evEvNLN/M\n3jOzPDNrErD8WY+1ZGVmC8zsiJm9HTAv5P2T6OdiNIrXNHR1tdnMMrxzZ4+ZlZjZv8QjzkgKtp80\ns3ZmVmFm/WIZXzQEeWzf6fWR+7x71RJWEMf1ZWa21juP95rZ0DiEGVFn68fPskxo/ZdzrkH9AK2B\nlvivyW4bMP96YBf+S1z+GXifr0bitwDtvOk3gO7e9Ehgljc9AP+zu+Pexijvvyzg388yP+T9l2o/\n+P/ofB+4GjgP2A38MN5xNYQf4H+AS6vNewr4jTc9AZjsTbep6VhL1h+gM3Az8HZ99k8in4vBnD/4\ni5Ot8aY7AJvjHXcM2twRaOJN90iFNgcstx5YDfSLd9wx+H9uAvwZ+J73ulm8445ye7OAJ6vaiv8y\n33PjHXs92/2Nfrza70PuvxrcSLaLY4GbJHK2m4zC2X+pJpjiG6nK+OY3X4Hn1yK+Om7u5izHWiyC\njBfnXAlwrNrskPZPEpyLES9ekwDqbLNzbrNz7nPv5WZqeY54ggi2nxyD/3P3aCyDi5Jg2pwBrHTO\nHQZwzv0txjFGUjDt/Ri42Ju+GPjUOVcZwxgjroZ+PFDI/VeDS7JrEfUCN0lktPdVxvyAr6jD2X+p\nJpjiG6nKAQVmts3MRnjzmjvvSRLOuY+BqkduhlSgJIldEeL+SfRzMeLFaxJAqH3GCGBtVCOKvjrb\nbGZXAn2cc7Opo+ZFggjm/7kV0NTMirx+clDMoou8YNo7D7jBzMqBPcCvYxRbPIXcf0XyEX5BswZa\n4CZR1Lb/gFnAfzrnnJk9AUzD37GL1Ecn59xHZnY5kG9m7+E/5gLpLuraaf+kMDPrgv/pK53jHUsM\nzMB/iVSVpPjsrcO5QFvgx8BFwFtm9pZz7v34hhU1vwX2OOe6mNl1+AdhbnTO/T3egTUkcUmynXPd\nwljtMPD9gNctvHk1zQ9cp9z8BW6+7Zz7LIz3blBC2H/zgKo/WsLZf6nmMBB4c2wq74uvcc595P37\niZm9iv/rxCNm1tw5d8S71KHqa2EdU36h7p9E32/BnD+J3sbqguozzOxGYC7QwzlX29fRiSCYNv8r\n8IqZGf7rdXuaWYVz7vUYxRhpwbT5EPA359wp4JSZbQRuwn9tc6IJpr2dgP8CcM59YGYHgR8C22MS\nYXyE3H819MtFqhe4STf/E0Ou4asCNx8Dn5tZe++EHgy8FrDOEG+61gI3ycL7MK/SD9jnTYez/1LN\nl8U3zKwx/me1J+qHQsSY2YVm9i1v+iIgDdiLf98M9RYbwtfPu28cazENOj6Mb/ZZQ73pOvdPEpyL\nwZw/r+NvV1VFybMWr0kgdbbZ/E+1WgkMcs59EIcYI63ONjvnrvV+rsF/XfaoBE6wIbhj+zWgs5k1\nMrML8d8Y906M44yUYNr7DtAVwLsuuRX+G+QTXfV+PFDI/VdcRrJrYypwU19TvMfK+IAyIBMgzP2X\nUlwNxTfiHFZD0BzINX9p7HOBl51z+Wa2HVhuZsOAD4H+UOexlpTM7I/AncBlZvZX/HfeTwb+O8T9\nk7DnYk3njyVx8Zpg2gz8B9AUmOX98VThnEvYG4GDbPPXVol5kBEW5LH9rpnlAW8DZ4C5zrn9cQw7\nbEH+Hz8JvGRme/Anpb9J9CsFaujHG1OP/kvFaEREREREIqyhXy4iIiIiIpJwlGSLiIiIiESYkmwR\nERERkQhTki0iIiIiEmFKskVEREREIkxJtoiIiIhIhCnJFhERERGJMCXZIiIiIiIRpiRbREREEo5X\n9vsdM8s2s/1mttzMLoh3XCJVlGSLiIhIomoNPO+cawOcBEbFOR6RLynJFhERkUT1V+fcZm86G+gc\nz2BEAinJFhERkWTh4h2ASBUl2SIiIpKorjKzDt50BlASz2BEAinJFhERkUT1HvCgme0HLgFmxzke\nkS+dG+8ARERERMJU6ZwbHO8gRM5GI9kiIiKSqHQNtjRY5pyOTxERERGRSNJItoiIiIhIhCnJFhER\nERGJMCXZIiIiIiIRpiRbRERERCTClGSLiIiIiESYkmwRERERkQj7f9u3gQh+kGXNAAAAAElFTkSu\nQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f583788abe0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from ipywidgets import HTML\n",
"from IPython.display import display\n",
"\n",
"bet_max=1000\n",
"label = HTML()\n",
"\n",
"def plot_prob_weighting(alpha,gamma,bet_value,lam):\n",
" beta=alpha # use same weighting for gains and losses\n",
" p=numpy.linspace(0.01,1,99)\n",
" plt.figure(figsize=(12,5))\n",
" plt.subplot(1,2,1)\n",
" o=numpy.linspace(0,bet_max,100)\n",
" v_o=o**alpha\n",
" plt.plot(o,v_o)\n",
" plt.plot(-1*o,-1*v_o*lam)\n",
"\n",
" plt.axis([-1*bet_max,bet_max,-1*bet_max,bet_max])\n",
" plt.plot(o,o,color='black')\n",
" plt.plot([-1*bet_max,bet_max],[0,0])\n",
" plt.plot(-1*o,-1*o,color='black')\n",
"\n",
" plt.plot(bet_value,bet_value**alpha,marker='o',color='red')\n",
"\n",
" plt.subplot(1,2,2)\n",
" plt.plot(p,pi(p,gamma))\n",
" plt.plot(p,p,color='black')\n",
" plt.axis([0,1,0,1])\n",
" plt.xlabel('p')\n",
" plt.ylabel('pi(p)')\n",
" payoff=35*bet_value\n",
" p_payoff=1/38.\n",
" eu=(payoff**alpha)*pi(p_payoff,gamma) - lam*bet_value**beta\n",
" label.value = ('Expected value of $%d bet = $%0.2f'%(bet_value,eu))\n",
"\n",
"\n",
"_=interact(plot_prob_weighting, bet_value=FloatSlider(description='bet amount', min=10, max=bet_max, step=10,value=100),\n",
" \n",
" alpha=FloatSlider(description='alpha (value function curvature)', min=0.5, max=1, step=0.005,value=0.88),\n",
" gamma=FloatSlider(description='gamma (probability weighting)', min=0.5, max=1, step=0.005,value=0.74),\n",
" lam=FloatSlider(description='lambda (loss aversion)', min=0.5, max=5, step=0.1,value=2.0)\n",
"\n",
"\n",
" )\n",
"display(_, label)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment