Created
March 21, 2016 18:54
-
-
Save jfpuget/00349d0ac60ab0cab5e5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import math\n", | |
"import numpy as np\n", | |
"import random" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def mean(lst):\n", | |
" return sum(lst) / len(lst)\n", | |
"\n", | |
"\n", | |
"def standard_deviation(lst):\n", | |
" m = mean(lst)\n", | |
" variance = sum([(value - m) ** 2 for value in lst])\n", | |
" return math.sqrt(variance / len(lst))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"lst = [random.random() for i in range(0,25)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 5.50 times longer than the fastest. This could mean that an intermediate result is being cached \n", | |
"100000 loops, best of 3: 10 µs per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit standard_deviation(lst)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 4.05 times longer than the fastest. This could mean that an intermediate result is being cached \n", | |
"10000 loops, best of 3: 37.8 µs per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit np.std(lst)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def np_array(lst):\n", | |
" return np.array(lst)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 9.61 times longer than the fastest. This could mean that an intermediate result is being cached \n", | |
"100000 loops, best of 3: 2.09 µs per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit np_array(lst)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"lsta = np_array(lst)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"10000 loops, best of 3: 30.4 µs per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit np.std(lsta)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 4.02 times longer than the fastest. This could mean that an intermediate result is being cached \n", | |
"10000 loops, best of 3: 35.6 µs per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit np.std(np_array(lst))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment