Created
November 26, 2017 11:46
-
-
Save jfpuget/caf314ea06471835e61617bb05865e51 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import xgboost as xgb" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>X10</th>\n", | |
" <th>X100</th>\n", | |
" <th>X101</th>\n", | |
" <th>X102</th>\n", | |
" <th>X103</th>\n", | |
" <th>X104</th>\n", | |
" <th>X105</th>\n", | |
" <th>X106</th>\n", | |
" <th>X108</th>\n", | |
" <th>X109</th>\n", | |
" <th>...</th>\n", | |
" <th>X89</th>\n", | |
" <th>X90</th>\n", | |
" <th>X91</th>\n", | |
" <th>X92</th>\n", | |
" <th>X94</th>\n", | |
" <th>X95</th>\n", | |
" <th>X96</th>\n", | |
" <th>X97</th>\n", | |
" <th>X98</th>\n", | |
" <th>X99</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 322 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" X10 X100 X101 X102 X103 X104 X105 X106 X108 X109 ... X89 X90 \\\n", | |
"0 0 0 0 0 0 0 0 0 0 0 ... 0 0 \n", | |
"1 0 1 1 0 0 0 0 0 0 0 ... 0 0 \n", | |
"2 0 0 1 0 0 0 0 0 0 0 ... 0 0 \n", | |
"3 0 0 1 0 0 0 0 0 1 0 ... 0 0 \n", | |
"4 0 0 1 0 0 0 0 0 1 0 ... 0 0 \n", | |
"\n", | |
" X91 X92 X94 X95 X96 X97 X98 X99 \n", | |
"0 0 0 0 0 0 0 0 0 \n", | |
"1 0 0 0 0 1 0 1 0 \n", | |
"2 0 0 0 0 1 0 1 0 \n", | |
"3 0 0 0 0 1 0 1 0 \n", | |
"4 0 0 0 0 1 0 1 0 \n", | |
"\n", | |
"[5 rows x 322 columns]" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"train = pd.read_csv('Mercedes-Benz/data/train_notype.csv')\n", | |
"y_train = pd.read_csv('Mercedes-Benz/input/train.csv.zip', usecols=['y'])\n", | |
"train.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"x_train = xgb.DMatrix(train, label=y_train)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"params = {\n", | |
" 'eta': 0.0045,\n", | |
" 'max_depth': 4,\n", | |
" 'subsample': 0.93,\n", | |
" 'objective': 'reg:linear',\n", | |
" 'eval_metric': 'rmse',\n", | |
" 'nthread':6,\n", | |
" 'silent': 0\n", | |
"}\n", | |
"\n", | |
"bst = xgb.train(params, x_train, num_boost_round=500)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xgboost.core.Booster at 0x107a81470>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"bst" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 89.09706116, 84.26348877, 69.81824493, ..., 100.67781067,\n", | |
" 84.15869141, 84.2922821 ], dtype=float32)" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"bst.predict(x_train)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pickle as pkl" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"with open('test.plk', 'wb') as file:\n", | |
" pkl.dump(bst, file)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"with open('test.plk', 'rb') as file:\n", | |
" bst1 = pkl.load(file)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 89.09706879, 84.2634964 , 69.8182373 , ..., 100.67781067,\n", | |
" 84.15869904, 84.29228973], dtype=float32)" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"bst1.predict(x_train)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "ValueError", | |
"evalue": "feature_names must be unique", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-11-9e304fedfca2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtrain1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrename\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'X100'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m'X101'\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mx_train1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mxgb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDMatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0my_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mbst1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_train1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/Users/JFPuget/anaconda/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, label, missing, weight, silent, feature_names, feature_types)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_weight\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 280\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeature_names\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfeature_names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 281\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeature_types\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfeature_types\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/Users/JFPuget/anaconda/lib/python3.5/site-packages/xgboost-0.6-py3.5.egg/xgboost/core.py\u001b[0m in \u001b[0;36mfeature_names\u001b[0;34m(self, feature_names)\u001b[0m\n\u001b[1;32m 582\u001b[0m \u001b[0mfeature_names\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_names\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 583\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_names\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_names\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 584\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'feature_names must be unique'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 585\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_names\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_col\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 586\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'feature_names must have the same length as data'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mValueError\u001b[0m: feature_names must be unique" | |
] | |
} | |
], | |
"source": [ | |
"train1 = train.rename(columns={'X100':'X101'})\n", | |
"x_train1 = xgb.DMatrix(train1, label=y_train)\n", | |
"bst1.predict(x_train1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [default]", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment