Last active
October 17, 2015 01:42
-
-
Save jgc128/75964e86b05d760b8158 to your computer and use it in GitHub Desktop.
Code for homework 1 (2015 Fall NLP Class)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
base_dir = '/data1/aromanov/study/2015_fall/nlp/homeworks/hw1/' | |
brit3_filename = os.path.join(base_dir, 'brit3-excerpt.txt') | |
brit3_marked_filename = os.path.join(base_dir, 'brit3-excerpt-marked.txt') | |
problem4_text_filename = os.path.join(base_dir, 'problem4.txt') | |
def load_documents_from_dir(directory): | |
files = [os.path.join(directory, f) for f in os.listdir(directory)] | |
docs = [] | |
for fl in files: | |
with open(fl, 'r') as f: | |
d = f.read() | |
docs.append(d) | |
return docs | |
def load_file(filename): | |
with open(filename, 'r') as f: | |
result = f.read() | |
return result | |
def load_file_lines(filename): | |
with open(filename, 'r') as f: | |
lines = f.readlines() | |
result = [l.strip('\n') for l in lines] | |
return result |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import string\n", | |
"from collections import defaultdict\n", | |
"\n", | |
"import nltk\n", | |
"import gensim" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class NgramIterator:\n", | |
" def __init__(self, doc, n=2):\n", | |
" self.__doc = doc\n", | |
" self.__n = n\n", | |
"\n", | |
" self.__i = 0\n", | |
" self.__doc_len = len(doc)\n", | |
" self.__ngram_count = self.__doc_len - n + 1\n", | |
"\n", | |
" def __iter__(self):\n", | |
" return self\n", | |
"\n", | |
" def __next__(self):\n", | |
" if self.__i < self.__ngram_count:\n", | |
" i = self.__i\n", | |
" self.__i += 1\n", | |
" result = []\n", | |
" for j in range(self.__n):\n", | |
" result.append(self.__doc[i+j])\n", | |
" return result\n", | |
" else:\n", | |
" self.__i = 0\n", | |
" raise StopIteration()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"%run common.py" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 66, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"doc = load_file(problem4_text_filename)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 88, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# tokens = [t.lower() for t in nltk.word_tokenize(doc)]\n", | |
"tokens = [t.lower() for t in doc.replace('\\n', ' ').split(' ')]\n", | |
"# tokens = [t for t in doc.replace('\\n', ' ').split(' ')]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 89, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# clean_tokens = [t for t in tokens if t not in string.punctuation]\n", | |
"clean_tokens = tokens" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 90, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# clean_tokens.insert(0, '<start>')\n", | |
"# clean_tokens.append('<end>')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 91, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"226" | |
] | |
}, | |
"execution_count": 91, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(clean_tokens)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 92, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"149" | |
] | |
}, | |
"execution_count": 92, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"vocab = set(clean_tokens)\n", | |
"len(vocab)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 93, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# count bigrams\n", | |
"bigrams = defaultdict(int)\n", | |
"for bigram in NgramIterator(clean_tokens):\n", | |
" key = '_'.join(bigram)\n", | |
" bigrams[key] += 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 94, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[('of_war', 2),\n", | |
" ('that_could', 3),\n", | |
" ('which_could', 2),\n", | |
" ('in_a', 2),\n", | |
" (',_\"', 2),\n", | |
" ('._the', 3),\n", | |
" ('could_be', 2)]" | |
] | |
}, | |
"execution_count": 94, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[(bk,bigrams[bk]) for bk in bigrams.keys() if bigrams[bk] > 1]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 95, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_bigram_prob(wi_1, wi, bigrams, vocab):\n", | |
" numerator = bigrams[wi_1+'_'+wi]\n", | |
" denominator = sum([bigrams[wi_1+'_'+wj] for wj in vocab])\n", | |
" \n", | |
" if numerator == 0:\n", | |
" return 0\n", | |
" else:\n", | |
" return numerator/denominator" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 96, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def get_bigram_prob_with_smoothing(wi_1, wi, smoothing, bigrams, vocab):\n", | |
" numerator = smoothing + bigrams[wi_1+'_'+wi]\n", | |
" denominator = (len(vocab) * smoothing) + sum([bigrams[wi_1+'_'+wj] for wj in vocab])\n", | |
" \n", | |
" return numerator/denominator" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 97, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0.75\n", | |
"0.3577331759149941\n" | |
] | |
} | |
], | |
"source": [ | |
"print(get_bigram_prob('that', 'could', bigrams, vocab))\n", | |
"print(get_bigram_prob_with_smoothing('that', 'could', 0.03, bigrams, vocab))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 102, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"['we', 'seek', 'a', 'solution', 'that', 'could', 'be', 'accepted', 'by', 'both', 'sides', '.']\n" | |
] | |
} | |
], | |
"source": [ | |
"test_phrase = 'We seek a solution that could be accepted by both sides .'\n", | |
"test_phrase_tokens = [t.lower() for t in test_phrase.split(' ')]\n", | |
"# test_phrase_tokens = [t for t in test_phrase.split(' ')]\n", | |
"print(test_phrase_tokens)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 99, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0.000390625\n" | |
] | |
} | |
], | |
"source": [ | |
"result_prob = 1\n", | |
"for bigram in NgramIterator(test_phrase_tokens):\n", | |
" result_prob *= get_bigram_prob(bigram[0], bigram[1], bigrams, vocab)\n", | |
"print(result_prob)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 103, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"2.860849507990039e-09\n" | |
] | |
} | |
], | |
"source": [ | |
"result_prob = 1\n", | |
"smoothing = 0.03\n", | |
"for bigram in NgramIterator(test_phrase_tokens):\n", | |
" result_prob *= get_bigram_prob_with_smoothing(bigram[0], bigram[1], smoothing, bigrams, vocab)\n", | |
"print(result_prob)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 104, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"4.47" | |
] | |
}, | |
"execution_count": 104, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(vocab) * smoothing" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment