Name | Latitude | Longitude |
---|---|---|
Athens International Airport | 37.9356467 | 23.9484156 |
Ancient Agora of Athens | 37.9746507 | 23.7219716 |
Tzistarakis Mosque | 37.9759204 | 23 |
Roman Forum | 37.9743749 | 23.7255435 |
Theatre of Dionysus | 37.9703658 | 23.7278553 |
Parthenon | 37.9715285 | 23.7267166 |
Acropolis Museum | 37.9684499 | 23.7285227 |
Temple of Olympian Zeus | 37.9693 | 23 |
Cluster | Latitude | Longitude |
---|---|---|
0 | 40.846395 | 14.281423 |
1 | 36.411881 | 25.418702 |
2 | 37.958535 | 23.747617 |
3 | 35.359073 | 24.500997 |
4 | 35.449291 | 23.570038 |
5 | 40.645347 | 14.610990 |
6 | 35.325403 | 25.158296 |
7 | 35.517232 | 24.019294 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000000 | 11.987656 | 9.896897 | 11.599586 | 10.742770 | 0.386050 | 12.197858 | 11.100726 | 0.249281 | 12.021981 | 12.517198 | 11.246962 |
1 | 11.987656 | 0.000000 | 2.276986 | 1.396634 | 2.084259 | 11.607277 | 1.117249 | 1.660945 | 11.797155 | 1.488543 | 1.208088 | 1.837654 |
2 | 9.896897 | 2.276986 | 0.000000 | 2.706433 | 2.515520 | 9.523493 | 2.987206 | 2.456373 | 9.720741 | 3.096684 | 3.240456 | 2.751974 |
3 | 11.599586 | 1.396634 | 2.706433 | 0.000000 | 0.935321 | 11.214140 | 0.658161 | 0.507003 | 11.391950 | 0.439252 | 0.966409 | 0.500744 |
4 | 10.742770 | 2.084259 | 2.515520 | 0.935321 | 0.000000 | 10.356811 | 1.593083 | 0.454365 | 10.530636 | 1.306551 | 1.900750 | 0.504926 |
5 | 0.386050 | 11.607277 | 9.523493 | 11.214140 | 10.356811 | 0.000000 | 11.813022 | 10.715118 | 0.211347 | 11.636331 | 12.132428 | 10.861026 |
6 | 12.197858 | 1.117249 | 2.987206 | 0.658161 | 1.593083 | 11.813022 | 0.000000 | 1.155043 | 11.993443 | 0.439558 | 0.320395 | 1.143226 |
7 | 11.100726 | 1.660945 | 2.456373 | 0.507003 | 0.454365 | 10.715118 | 1.155043 | 0.000000 | 10.892023 | 0.921615 | 1.469345 | 0.297166 |
Name | Latitude | Longitude | Cluster | Day |
---|---|---|---|---|
Athens International Airport | 37.9356467 | 23.9484156 | 2 | 1 |
Acropolis of Athens | 37.9715323 | 23.7257492 | 2 | 1 |
Pl. Agias Irinis 2 | 37.977418 | 23.7280221 | 2 | 1 |
Diporto - Secret underground restaurant | 37.9806622 | 23.7257688 | 2 | 1 |
Temple of Zeus | 37.9692838 | 23.7331012 | 2 | 1 |
Plaka | 37.9725529 | 23.7303363999999 | 2 | 1 |
Temple of Olympian Zeus | 37.9693 | 23.7331 | 2 | 1 |
Lake Vouliagmeni | 37.8078002 | 23.7855018 | 2 | 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.spatial.distance import cdist | |
distance_matrix = cdist( | |
mean_lat_long_by_group.values, | |
mean_lat_long_by_group.values | |
) | |
df_distance_matrix = pd.DataFrame(distance_matrix) | |
df_distance_matrix |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
starting_point = 2 #@param {type:"integer"} | |
cur_index = starting_point | |
seq = [cur_index] | |
while len(seq) < len(list(df_distance_matrix.keys())): | |
nearest_clusters = list(df_distance_matrix[cur_index].sort_values().index) | |
for cluster_id in nearest_clusters: | |
if cluster_id != cur_index and cluster_id not in seq: | |
seq.append(cluster_id) | |
cur_index = cluster_id |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
places = [] | |
with open(kml_filename, "r") as file: | |
content = file.readlines() | |
content = "".join(content) | |
bs_content = BeautifulSoup(content, "xml") | |
placemarks = bs_content.findAll('Placemark') | |
for placemark in placemarks: |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# KMeans | |
from sklearn.cluster import KMeans | |
kmeans = KMeans(n_clusters=int(num_days), random_state=0).fit(places_lat_long) | |
group = list(kmeans.labels_) | |
# MeanShift | |
from sklearn.cluster import MeanShift, estimate_bandwidth | |
bandwidth = estimate_bandwidth(places_lat_long, quantile=0.2) | |
clustering = MeanShift(bandwidth=bandwidth).fit(places_lat_long) | |
group = clustering.labels_ |
Authors | Paper | Method | Region of Interest | Application |
---|---|---|---|---|
Zheng et al. | Deep Learning-based Detection for COVID-19 from Chest CT using Weak Label | U-Net | Lung | Diagnosis |
Cao et al. | Longitudinal Assessment of COVID-19 Using a Deep Learning–based Quantitative CT Pipeline: Illustration of Two Cases | U-Net | Lung, Lesion | Quantification |
Huang et al. | Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning Approach | U-Net | Lung, Lung lobes, Lesion | Quantification |
Qi et al. | Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study | U-Net | Lung lobes, Lesion | Quantification |
Gozes et al. | [Rapid ai development cycle for the c |