Created
November 28, 2021 06:01
-
-
Save jj-github-jj/d9612c97aa0b7b701b3a07acefd4251d to your computer and use it in GitHub Desktop.
# convert data frame strings to numeric where possible and drop rows with non numeric content
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # convert data frame strings to numeric where possible and drop rows with non numeric content | |
| df23=df23.apply(pd.to_numeric, errors='ignore') # converts to numbers when possible for all columns | |
| df23 | |
| c=df23.columns.to_list() | |
| data_columns=[c[x] for x in range(1,6)] | |
| # Eliminate invalid data from dataframe (see Example below for more context) | |
| num_df = (df23.drop(data_columns, axis=1) | |
| .join(df23[data_columns].apply(pd.to_numeric, errors='coerce'))) #numeric dataframe | |
| num_df = num_df[num_df[data_columns].notnull().all(axis=1)] | |
| num_df | |
| #----------------------- | |
| # remove blanks from column names in dataframe since some tools dont accept blanks in strings | |
| df.columns = df.columns.str.replace(' ', '_') | |
| df.rename(columns={'two':'new_name'}, inplace=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment