Last active
December 27, 2018 13:47
-
-
Save jkotra/f6ceaa0fc3c90477bfcd8a62b94d73a7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "Using TensorFlow backend.\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np\n", | |
| "\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import keras\n", | |
| "from sklearn.model_selection import train_test_split" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "train_data = pd.read_csv(\"~/datasets/fashionmnist/fashion-mnist_train.csv\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#preprocessing\n", | |
| "\n", | |
| "X = np.array(train_data.iloc[:,1:]) / 255\n", | |
| "\n", | |
| "X = X.reshape(X.shape[0],28,28,1)\n", | |
| "\n", | |
| "y = np.array(train_data.iloc[:,0])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "X_train,X_val,y_train,y_val = train_test_split(X,y,test_size=0.2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAE/hJREFUeJzt3W1sneV5B/D/5eNzfPyeOC/GCQGTEsIiSgP1aLcyRkeJAKEFKobIhyqbUFNNrdRKfACxaaMfJrEX2qGJMaUjapha2m4UEam0Kgvb0nYsjcnSJEBKgBny4sQhJonj2D5v1z74oXLAz3U75+05zvX/SVHsc53H584T/318zvXc9y2qCiLypynpARBRMhh+IqcYfiKnGH4ipxh+IqcYfiKnGH4ipxh+IqcYfiKnmuv5YBlp0Sza6/mQ84JkMmY9tzBt1tPdudhaX+a0eexYKWvW85oy67mS/S20oPlcbK0EMY89OdJt1tOn82Zdc/Hn5WI1iXHkdMo+sZGKwi8itwF4HEAKwD+r6qPW/bNox6fklkoe8qLUfOnlZv3Q3cvN+rI734mtPXT5j81j/+vs1Wb96JQdwCPnFpj1O5fuja1Nqv1DbesTd5j1ZS8cNuuFoXfN+sVop26f833L/rVfRFIAngBwO4A1ADaIyJpyvx4R1Vclr/lvAPCmqr6tqjkA3wOwvjrDIqJaqyT8ywEcmvH54ei284jIJhEZFJHBPKYqeDgiqqaav9uvqptVdUBVB9JoqfXDEdEcVRL+IwBWzPj80ug2IpoHKgn/LgCrROQKEckAuA/AtuoMi4hqTSpZyUdE7gDw95hu9W1R1b+y7t8lPXoxtvoO/sOnzPrGm35m1q9rGzLrxwp2O+3Zo9fH1lJNJfPYdUtfM+trWuxf5ta2nDLrC5viryNY99rnzWNv7T1g1ldnh836L8dXxtb+dcenzWNXffV/zHqj2qnbcUZHa9/nV9UXALxQydcgomTw8l4ipxh+IqcYfiKnGH4ipxh+IqcYfiKnKurzX6j53Od/+7trY2u3rrL70XtPLjPrzYFe/Lm8PfW1LR0/r32qaM/HP3naXl+hkLO7wVoMtJRz8c8v2Z5J89AFHfFrAQBAsVT+c9cnFh81678cvsysX3LX62U/di1dSJ+fz/xETjH8RE4x/EROMfxETjH8RE4x/ERO1XXp7kbWvLLfrPf2nImtvXzUPlbEbqeGWlZtLfYS1Gcm41dIasvYy1svM/5dQLjNOD5pLzve1RbfzpvM2V97Km9/e4aOt/znW6vMemfHhFkv/MEnzXrzS69c8Jjqjc/8RE4x/EROMfxETjH8RE4x/EROMfxETjH8RE6xzx859rk+s74kE7/jayHQpx+bsHcqyjQXzXohMC23ORU/JTgXOHbMuEYACF+DkDIeG7B79aHrH6x/FwA0NQWunyjGjz00kT30fzL8u/Z5W/FS4AEaAJ/5iZxi+ImcYviJnGL4iZxi+ImcYviJnGL4iZyqqM8vIkMAxgAUARRUdaAag0rC2cvtelcx/lT1tNpLTJfUXkk5NG99qmD36q2vHr6GwP75r4Gxl0r22AqIrzcHxpYr2OclN2XX8+Px8/0XX2KvY5BtLpj1kT577PNBNS7y+ayqvleFr0NEdcRf+4mcqjT8CuCnIvKKiGyqxoCIqD4q/bX/RlU9IiJLAbwoIgdUdcfMO0Q/FDYBQBZtFT4cEVVLRc/8qnok+nsEwHMAbpjlPptVdUBVB9KwJ0MQUf2UHX4RaReRzg8+BrAOwP5qDYyIaquSX/t7ATwnIh98ne+q6k+qMioiqrmyw6+qbwP4RBXHkqjcEruva22jvbzttHnsuqWvmfUnfnWzWZfAFt6pVPzs9NC8dQls5lwqhfr8dt2a7z85aa+7n07bvfT8Ofv4VFv8/+kVC06axx4b7zLr0mXvpTAfsNVH5BTDT+QUw0/kFMNP5BTDT+QUw0/kFJfujqQ77daNtTx3T2bcPPbqlmGznmmxt9EOTcu1pgyHpuyGhJbXbgp8+dDxFcnbD77u2gOxtfbUlHnsobEFZr21na0+IpqnGH4ipxh+IqcYfiKnGH4ipxh+IqcYfiKn2OePdLRPmnVrCevhSXv65+oee/roPVfuMevbhj5u1lPGlN+2FrsffW4qY9ZD1wmElt8uGddHZLP29Q0hUrCnE3+yYyi2NlpsN48NLafe120v/T0f8JmfyCmGn8gphp/IKYafyCmGn8gphp/IKYafyCn2+SOL2u1ttvPF+K2mC4FtqndPLTPrRQ300o3lrwF7znzBGDcA5APbf4e26LaW5gaAonGdgHV9AhC+xkDy9tgO53pia2mxr08I/bvbm+3rJybMamPgMz+RUww/kVMMP5FTDD+RUww/kVMMP5FTDD+RU8E+v4hsAXAngBFVvSa6rQfA9wH0AxgCcK+qvl+7YdZeqG87WmiLrfVk7GsE/unQ75v17ozdFe5osdeYn8jHb1V9ZqLFPDa0rn6o3z01ZW+T3dRU/vbhbYH9DCaa7a/Q3Rz//1IKXFuRzQT2UkjZW7pfLH3+bwO47UO3PQRgu6quArA9+pyI5pFg+FV1B4DRD928HsDW6OOtAO6q8riIqMbKfc3fq6of7EF1DEBvlcZDRHVS8Rt+qqowXr6JyCYRGRSRwTzs165EVD/lhv+4iPQBQPT3SNwdVXWzqg6o6kAa9ptPRFQ/5YZ/G4CN0ccbATxfneEQUb0Ewy8izwB4GcBqETksIvcDeBTArSJyEMDnos+JaB4J9vlVdUNM6ZYqj6W2mux56/0d9tr6x8Y7Y2tLMmPmsT8bW2nW82322Ba3njXr70zFz1sP9atTRh8eACZydh9fxL4OwOrzFwJrCYTWWHivxV4P4Mnnbo+t/cUf/cB+7Fb7sTNN9noAkrb3Q9C8fV1JPfAKPyKnGH4ipxh+IqcYfiKnGH4ipxh+IqfcLN2durLfrE8Uj5r1orHV9J/27DKPffqlm8x6foXd8lq76LBZP3hySWytNdDqC21FnWm2p64WjPMCAFYjcOJc1jx24VK73TZkVoH+P385tnbPnxwzj/1R2t6yvRRa0nz5JWa9MPSuWa8HPvMTOcXwEznF8BM5xfATOcXwEznF8BM5xfATOeWmz19Y3GHW02JPD7W2k16aajePveqpU2b9wAP28eMFewUka5vtUJ8/tP13SDFweKY5fuqrluxe+Vjevg6gEk2B573Joh2NRS32NQijS7rtAQzZ5XrgMz+RUww/kVMMP5FTDD+RUww/kVMMP5FTDD+RU276/BOXVNYzbk3H98vfK46bx5b2HzDr6dZrzfp4wV4G2lqeO7QFt3X9AmCvYwAATYGvb8m22ctXj03Z1zdkF9pz7i1vBJbObmu2r48ImehtNeu1u4Jh7vjMT+QUw0/kFMNP5BTDT+QUw0/kFMNP5BTDT+RUsM8vIlsA3AlgRFWviW57BMAXAZyI7vawqr5Qq0FWw/hS++dcyVxhHlhozN/en4vfvnsuBlYcMuvD57rMeltgzr7F3mgaaAms259qCpxXY337ng57TvyJ0/YaDKt6T5h166zsmrzcPLY1ZZ/T0LUXxRb7+6kRzOWZ/9sAbpvl9m+q6troT0MHn4g+Khh+Vd0BYLQOYyGiOqrkNf9XRGSviGwRkYVVGxER1UW54X8SwMcArAUwDOCxuDuKyCYRGRSRwTymynw4Iqq2ssKvqsdVtaiqJQDfAnCDcd/NqjqgqgNp2BM1iKh+ygq/iPTN+PRuAPurMxwiqpe5tPqeAXAzgMUichjAXwK4WUTWAlBML0L8pRqOkYhqIBh+Vd0wy81P1WAsNZXvqqzv2pGOf7/i30Z/O3C0/V7HHy7eY9YfO3irWQ/14i3pwHz+SubrA0CuGL+nQHvanlM/EljXPxvoxVvVV88tN49tCuzj0JKyz3m+vfGvn2v8ERJRTTD8RE4x/EROMfxETjH8RE4x/EROuVm6u9Bm19+bsrfJXpiJn376o30fN4+9CoNmva3JbgVO5NJm3Wr1FQJLb1tLkgOAGlNyKzUV2Aa7tdVuBXYa7VcAGDNqO0/0m8dev9ieZh3aPnyy5+KY0ktEFyGGn8gphp/IKYafyCmGn8gphp/IKYafyClHfX57auqZnN233XjJL2JrL++/zjy29Ht2HXjDrKZT9gLb1rTbUB8/NDU11IsPTfnNGGOfLNhfuzNr9/GbA9Nu0RQ/nfjoyW7z0Jt63zTre8YvNesFe4fuhsBnfiKnGH4ipxh+IqcYfiKnGH4ipxh+IqcYfiKn3PT5iy12PzrUz16eOh1bS9nTznGm376GYLRob0UdYm2D3dpkXyMQmq8fug5gUstfa+DkuL3IwrmS/bW7mifMeqonfgvJ1Ft2I777Wnv7cOucA0ChvbIlz+uBz/xETjH8RE4x/EROMfxETjH8RE4x/EROMfxETgX7/CKyAsDTAHoBKIDNqvq4iPQA+D6AfgBDAO5V1fdrN9TKaLqyLZeteeu9v4i/BgAAJpfZ/ezJQD97Km//N/V1nYmtFQPr9rcH1r6vpcu6T5n1o2e7Kvr60hG/F8PS3fb3Q/bz5X8/ABdPn78A4AFVXQPg0wC+LCJrADwEYLuqrgKwPfqciOaJYPhVdVhVd0cfjwF4HcByAOsBbI3uthXAXbUaJBFV3wW95heRfgDXAdgJoFdVh6PSMUy/LCCieWLO4ReRDgDPAviaqp73IlNVFdPvB8x23CYRGRSRwTySe31JROebU/hFJI3p4H9HVX8Y3XxcRPqieh+AkdmOVdXNqjqgqgNptFRjzERUBcHwi4gAeArA66r6jRmlbQA2Rh9vBPB89YdHRLUylym9nwHwBQD7RGRPdNvDAB4F8AMRuR/AOwDurc0QG0Nq9lc107VTZ81j81faU3Z3nllp1hd3jpt1q+2UDbTycqXKZnWHpgSXEF8fL2TMY0PttFC91BXfYu387/8zjw3JNttLoodWFW8Ewf95Vf05EPs/eEt1h0NE9cIr/IicYviJnGL4iZxi+ImcYviJnGL4iZxys3S3BPrRIUWjX62n4qfUAsDIwDKzvrH7LbOeL8VvNQ0AaWN57mJoiemSPXU1yJ6NbAr16TvTk2a9pcke+6Hbe2Jry//6gHns6aK9tHfwGoPsxTGll4guQgw/kVMMP5FTDD+RUww/kVMMP5FTDD+RU276/Jqy+64dgXnvuycvi60V37dXLL/qHw+b9b/FerNe6LS32W7rjZ/vf+kCe1nx7hZ7m+tzgTn3hcDS4NZ8/5Gz9joHp07Y9f/NXWHWV780Fj8u80hgXec+s7771AqzHloqvhHwmZ/IKYafyCmGn8gphp/IKYafyCmGn8gphp/IKTd9/tS4/XMuG9iie+uh34mtZfCOeWzhnUNmfeWDdr2W7KsAamtphfWQSmbUP/jmPWZ9UdbeS2E+4DM/kVMMP5FTDD+RUww/kVMMP5FTDD+RUww/kVPBPr+IrADwNIBeTLdON6vq4yLyCIAvAjgR3fVhVX2hVgOtVFPeXr9+Qdqe175rNH4+f385A5qpyV6XHyV7Pr9bNTxvJ8bstQR+a8HxwGNXtk9EPczlIp8CgAdUdbeIdAJ4RURejGrfVNW/q93wiKhWguFX1WEAw9HHYyLyOoDltR4YEdXWBb3mF5F+ANcB2Bnd9BUR2SsiW0RkYcwxm0RkUEQG87CXyiKi+plz+EWkA8CzAL6mqmcAPAngYwDWYvo3g8dmO05VN6vqgKoOpNFShSETUTXMKfwiksZ08L+jqj8EAFU9rqpFVS0B+BaAG2o3TCKqtmD4RUQAPAXgdVX9xozb+2bc7W4A+6s/PCKqlbm82/8ZAF8AsE9E9kS3PQxgg4isxXT7bwjAl2oywirJL7DbPjd2vWHWX8Tqag7nfNr4yzw3pBq2QEuBVt1NXb826y92XV3N4dTEXN7t/zkw6+b0DdvTJ6IwXuFH5BTDT+QUw0/kFMNP5BTDT+QUw0/klJulu9d8/V2z/tjO+8x633F7ae+KaCWLTFMtdG7rNOtf37/BrF+2o/HnsfCZn8gphp/IKYafyCmGn8gphp/IKYafyCmGn8gp0Tr2mEXkBHDeftaLAbxXtwFcmEYdW6OOC+DYylXNsV2uqkvmcse6hv8jDy4yqKoDiQ3A0Khja9RxARxbuZIaG3/tJ3KK4SdyKunwb0748S2NOrZGHRfAsZUrkbEl+pqfiJKT9DM/ESUkkfCLyG0i8msReVNEHkpiDHFEZEhE9onIHhEZTHgsW0RkRET2z7itR0ReFJGD0d+zbpOW0NgeEZEj0bnbIyJ3JDS2FSLyHyLymoi8KiJfjW5P9NwZ40rkvNX9134RSQF4A8CtAA4D2AVgg6q+VteBxBCRIQADqpp4T1hEbgJwFsDTqnpNdNvfABhV1UejH5wLVfXBBhnbIwDOJr1zc7ShTN/MnaUB3AXgj5HguTPGdS8SOG9JPPPfAOBNVX1bVXMAvgdgfQLjaHiqugPA6IduXg9ga/TxVkx/89RdzNgagqoOq+ru6OMxAB/sLJ3ouTPGlYgkwr8cwKEZnx9GY235rQB+KiKviMimpAczi95o23QAOAagN8nBzCK4c3M9fWhn6YY5d+XseF1tfMPvo25U1esB3A7gy9Gvtw1Jp1+zNVK7Zk47N9fLLDtL/0aS567cHa+rLYnwHwGwYsbnl0a3NQRVPRL9PQLgOTTe7sPHP9gkNfp7JOHx/EYj7dw8287SaIBz10g7XicR/l0AVonIFSKSAXAfgG0JjOMjRKQ9eiMGItIOYB0ab/fhbQA2Rh9vBPB8gmM5T6Ps3By3szQSPncNt+O1qtb9D4A7MP2O/1sA/iyJMcSMayWAX0V/Xk16bACewfSvgXlMvzdyP4BFALYDOAjg3wH0NNDY/gXAPgB7MR20voTGdiOmf6XfC2BP9OeOpM+dMa5Ezhuv8CNyim/4ETnF8BM5xfATOcXwEznF8BM5xfATOcXwEznF8BM59f+uxy4aZn7uvwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "image = X_train[0,:].reshape((28,28))\n", | |
| "plt.imshow(image)\n", | |
| "plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from keras.models import Sequential\n", | |
| "from keras.layers import Dense,Flatten,Conv2D,Dropout,MaxPool2D\n", | |
| "\n", | |
| "model = Sequential()\n", | |
| "\n", | |
| "\n", | |
| "model.add(Conv2D(64,activation='relu',kernel_size=(8,8), input_shape = X_train[0].shape))\n", | |
| "model.add(MaxPool2D((4,4)))\n", | |
| "model.add(Dropout(0.2))\n", | |
| "model.add(Conv2D(32,activation='relu',kernel_size=(4,4)))\n", | |
| "model.add(MaxPool2D((2,2)))\n", | |
| "model.add(Flatten())\n", | |
| "model.add(Dense(128,activation=\"relu\"))\n", | |
| "model.add(Dense(10,activation=\"softmax\"))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "model.compile(loss=\"sparse_categorical_crossentropy\",\n", | |
| " optimizer=\"adam\", metrics=['accuracy'])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Train on 48000 samples, validate on 12000 samples\n", | |
| "Epoch 1/50\n", | |
| "48000/48000 [==============================] - 14s 297us/step - loss: 0.6563 - acc: 0.7572 - val_loss: 0.4424 - val_acc: 0.8445\n", | |
| "Epoch 2/50\n", | |
| "48000/48000 [==============================] - 6s 130us/step - loss: 0.4292 - acc: 0.8451 - val_loss: 0.3857 - val_acc: 0.8585\n", | |
| "Epoch 3/50\n", | |
| "48000/48000 [==============================] - 5s 113us/step - loss: 0.3835 - acc: 0.8619 - val_loss: 0.3654 - val_acc: 0.8672\n", | |
| "Epoch 4/50\n", | |
| "48000/48000 [==============================] - 6s 125us/step - loss: 0.3528 - acc: 0.8711 - val_loss: 0.3353 - val_acc: 0.8792\n", | |
| "Epoch 5/50\n", | |
| "48000/48000 [==============================] - 6s 128us/step - loss: 0.3321 - acc: 0.8785 - val_loss: 0.3381 - val_acc: 0.8756\n", | |
| "Epoch 6/50\n", | |
| "48000/48000 [==============================] - 6s 124us/step - loss: 0.3192 - acc: 0.8832 - val_loss: 0.3284 - val_acc: 0.8803\n", | |
| "Epoch 7/50\n", | |
| "48000/48000 [==============================] - 5s 110us/step - loss: 0.3073 - acc: 0.8863 - val_loss: 0.3073 - val_acc: 0.8896\n", | |
| "Epoch 8/50\n", | |
| "48000/48000 [==============================] - 5s 109us/step - loss: 0.2956 - acc: 0.8915 - val_loss: 0.3015 - val_acc: 0.8890\n", | |
| "Epoch 9/50\n", | |
| "48000/48000 [==============================] - 5s 103us/step - loss: 0.2836 - acc: 0.8934 - val_loss: 0.2983 - val_acc: 0.8927\n", | |
| "Epoch 10/50\n", | |
| "48000/48000 [==============================] - 5s 95us/step - loss: 0.2742 - acc: 0.8968 - val_loss: 0.2969 - val_acc: 0.8927\n", | |
| "Epoch 11/50\n", | |
| "48000/48000 [==============================] - 5s 104us/step - loss: 0.2666 - acc: 0.9007 - val_loss: 0.2815 - val_acc: 0.8952\n", | |
| "Epoch 12/50\n", | |
| "48000/48000 [==============================] - 5s 114us/step - loss: 0.2606 - acc: 0.9018 - val_loss: 0.2819 - val_acc: 0.8982\n", | |
| "Epoch 13/50\n", | |
| "48000/48000 [==============================] - 5s 98us/step - loss: 0.2547 - acc: 0.9031 - val_loss: 0.2817 - val_acc: 0.8987\n", | |
| "Epoch 14/50\n", | |
| "48000/48000 [==============================] - 5s 114us/step - loss: 0.2495 - acc: 0.9063 - val_loss: 0.2833 - val_acc: 0.8946\n", | |
| "Epoch 15/50\n", | |
| "48000/48000 [==============================] - 6s 119us/step - loss: 0.2460 - acc: 0.9069 - val_loss: 0.2861 - val_acc: 0.8958\n", | |
| "Epoch 16/50\n", | |
| "48000/48000 [==============================] - 5s 113us/step - loss: 0.2373 - acc: 0.9110 - val_loss: 0.2693 - val_acc: 0.9023\n", | |
| "Epoch 17/50\n", | |
| "48000/48000 [==============================] - 6s 123us/step - loss: 0.2306 - acc: 0.9123 - val_loss: 0.2704 - val_acc: 0.9029\n", | |
| "Epoch 18/50\n", | |
| "48000/48000 [==============================] - 7s 137us/step - loss: 0.2283 - acc: 0.9133 - val_loss: 0.2887 - val_acc: 0.8975\n", | |
| "Epoch 19/50\n", | |
| "48000/48000 [==============================] - 5s 104us/step - loss: 0.2262 - acc: 0.9146 - val_loss: 0.2737 - val_acc: 0.9050\n", | |
| "Epoch 20/50\n", | |
| "48000/48000 [==============================] - 5s 113us/step - loss: 0.2209 - acc: 0.9167 - val_loss: 0.2664 - val_acc: 0.9050\n", | |
| "Epoch 21/50\n", | |
| "48000/48000 [==============================] - 6s 128us/step - loss: 0.2184 - acc: 0.9163 - val_loss: 0.2648 - val_acc: 0.9023\n", | |
| "Epoch 22/50\n", | |
| "48000/48000 [==============================] - 6s 119us/step - loss: 0.2130 - acc: 0.9199 - val_loss: 0.2765 - val_acc: 0.9012\n", | |
| "Epoch 23/50\n", | |
| "48000/48000 [==============================] - 5s 110us/step - loss: 0.2135 - acc: 0.9204 - val_loss: 0.2649 - val_acc: 0.9065\n", | |
| "Epoch 24/50\n", | |
| "48000/48000 [==============================] - 5s 107us/step - loss: 0.2081 - acc: 0.9208 - val_loss: 0.2834 - val_acc: 0.8974\n", | |
| "Epoch 25/50\n", | |
| "48000/48000 [==============================] - 5s 98us/step - loss: 0.2033 - acc: 0.9222 - val_loss: 0.2649 - val_acc: 0.9067\n", | |
| "Epoch 26/50\n", | |
| "48000/48000 [==============================] - 6s 121us/step - loss: 0.2006 - acc: 0.9232 - val_loss: 0.2783 - val_acc: 0.9017\n", | |
| "Epoch 27/50\n", | |
| "48000/48000 [==============================] - 6s 128us/step - loss: 0.2011 - acc: 0.9221 - val_loss: 0.2883 - val_acc: 0.8982\n", | |
| "Epoch 28/50\n", | |
| "48000/48000 [==============================] - 6s 118us/step - loss: 0.1981 - acc: 0.9248 - val_loss: 0.2773 - val_acc: 0.9058\n", | |
| "Epoch 29/50\n", | |
| "48000/48000 [==============================] - 5s 113us/step - loss: 0.1934 - acc: 0.9257 - val_loss: 0.2639 - val_acc: 0.9102\n", | |
| "Epoch 30/50\n", | |
| "48000/48000 [==============================] - 5s 113us/step - loss: 0.1924 - acc: 0.9252 - val_loss: 0.2724 - val_acc: 0.9073\n", | |
| "Epoch 31/50\n", | |
| "48000/48000 [==============================] - 5s 97us/step - loss: 0.1910 - acc: 0.9273 - val_loss: 0.2812 - val_acc: 0.9058\n", | |
| "Epoch 32/50\n", | |
| "48000/48000 [==============================] - 5s 110us/step - loss: 0.1885 - acc: 0.9292 - val_loss: 0.2848 - val_acc: 0.9022\n", | |
| "Epoch 33/50\n", | |
| "48000/48000 [==============================] - 5s 98us/step - loss: 0.1858 - acc: 0.9285 - val_loss: 0.2807 - val_acc: 0.9066\n", | |
| "Epoch 34/50\n", | |
| "48000/48000 [==============================] - 6s 128us/step - loss: 0.1828 - acc: 0.9304 - val_loss: 0.2761 - val_acc: 0.9069\n", | |
| "Epoch 35/50\n", | |
| "48000/48000 [==============================] - 6s 122us/step - loss: 0.1813 - acc: 0.9307 - val_loss: 0.2731 - val_acc: 0.9112\n", | |
| "Epoch 36/50\n", | |
| "48000/48000 [==============================] - 5s 96us/step - loss: 0.1784 - acc: 0.9311 - val_loss: 0.2832 - val_acc: 0.9065\n", | |
| "Epoch 37/50\n", | |
| "48000/48000 [==============================] - 5s 114us/step - loss: 0.1782 - acc: 0.9321 - val_loss: 0.2861 - val_acc: 0.9056\n", | |
| "Epoch 38/50\n", | |
| "48000/48000 [==============================] - 5s 108us/step - loss: 0.1763 - acc: 0.9331 - val_loss: 0.2812 - val_acc: 0.9096\n", | |
| "Epoch 39/50\n", | |
| "48000/48000 [==============================] - 5s 110us/step - loss: 0.1768 - acc: 0.9320 - val_loss: 0.2848 - val_acc: 0.9063\n", | |
| "Epoch 40/50\n", | |
| "48000/48000 [==============================] - 5s 97us/step - loss: 0.1738 - acc: 0.9329 - val_loss: 0.2784 - val_acc: 0.9097\n", | |
| "Epoch 41/50\n", | |
| "48000/48000 [==============================] - 5s 101us/step - loss: 0.1727 - acc: 0.9332 - val_loss: 0.2858 - val_acc: 0.9077\n", | |
| "Epoch 42/50\n", | |
| "48000/48000 [==============================] - 5s 109us/step - loss: 0.1719 - acc: 0.9340 - val_loss: 0.2972 - val_acc: 0.9055\n", | |
| "Epoch 43/50\n", | |
| "48000/48000 [==============================] - 5s 102us/step - loss: 0.1686 - acc: 0.9354 - val_loss: 0.2894 - val_acc: 0.9056\n", | |
| "Epoch 44/50\n", | |
| "48000/48000 [==============================] - 5s 101us/step - loss: 0.1677 - acc: 0.9353 - val_loss: 0.3028 - val_acc: 0.9073\n", | |
| "Epoch 45/50\n", | |
| "48000/48000 [==============================] - 5s 103us/step - loss: 0.1696 - acc: 0.9348 - val_loss: 0.2810 - val_acc: 0.9069\n", | |
| "Epoch 46/50\n", | |
| "48000/48000 [==============================] - 5s 106us/step - loss: 0.1673 - acc: 0.9359 - val_loss: 0.2825 - val_acc: 0.9080\n", | |
| "Epoch 47/50\n", | |
| "48000/48000 [==============================] - 5s 108us/step - loss: 0.1640 - acc: 0.9368 - val_loss: 0.2895 - val_acc: 0.9062\n", | |
| "Epoch 48/50\n", | |
| "48000/48000 [==============================] - 5s 99us/step - loss: 0.1635 - acc: 0.9376 - val_loss: 0.3062 - val_acc: 0.9037\n", | |
| "Epoch 49/50\n", | |
| "48000/48000 [==============================] - 5s 96us/step - loss: 0.1633 - acc: 0.9370 - val_loss: 0.2935 - val_acc: 0.9078\n", | |
| "Epoch 50/50\n", | |
| "48000/48000 [==============================] - 5s 112us/step - loss: 0.1578 - acc: 0.9392 - val_loss: 0.2997 - val_acc: 0.9043\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "history = model.fit(X_train, y_train,\n", | |
| " batch_size=50,\n", | |
| " epochs=50,\n", | |
| " verbose=1,\n", | |
| " validation_data=(X_val, y_val))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "9 => 9\n", | |
| "5 => 5\n", | |
| "8 => 8\n", | |
| "1 => 1\n", | |
| "4 => 4\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "predictions = model.predict_classes(X_val)\n", | |
| "\n", | |
| "for i,j in zip(y_val[:5],predictions[:5]):\n", | |
| " print(i,\"=>\",j)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[ 965 1 31 35 5 0 147 0 10 0]\n", | |
| " [ 3 1220 0 18 0 0 8 0 0 0]\n", | |
| " [ 12 1 1012 13 61 0 60 0 3 0]\n", | |
| " [ 8 8 5 1117 25 0 22 0 0 0]\n", | |
| " [ 1 1 94 49 972 0 78 0 2 0]\n", | |
| " [ 0 0 0 1 0 1199 0 16 4 11]\n", | |
| " [ 106 1 97 41 66 0 860 0 8 0]\n", | |
| " [ 0 0 0 0 0 6 0 1189 0 31]\n", | |
| " [ 4 0 3 2 3 0 7 1 1164 1]\n", | |
| " [ 1 0 0 0 0 5 0 32 0 1154]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "from sklearn.metrics import confusion_matrix as cm\n", | |
| "\n", | |
| "print(cm(y_val,predictions))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.7" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment