Created
June 7, 2017 21:49
-
-
Save jlaura/6afb435d540613b51081205b0b41aa8f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from autocnet.examples import get_path\n", | |
"from autocnet.graph.network import CandidateGraph\n", | |
"\n", | |
"from IPython.display import display\n", | |
"\n", | |
"%pylab inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Generate a 2 image adjacenecy graph" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#Point to the adjacency Graph\n", | |
"adjacency = get_path('three_image_adjacency.json')\n", | |
"basepath = get_path('Apollo15')\n", | |
"cg = CandidateGraph.from_adjacency(adjacency, basepath=basepath)\n", | |
"\n", | |
"cg.extract_features()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cg.match()\n", | |
"cg.symmetry_checks()\n", | |
"cg.ratio_checks()\n", | |
"cg.compute_fundamental_matrices(clean_keys=['symmetry', 'ratio'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"err = cg.edge[0][1].compute_fundamental_error(clean_keys=['fundamental'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7ff7b6a31208>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFBJJREFUeJzt3X+M5HV9x/Hnu1ABWQuHwPR6WBcSNAWuxd6GmljNrlpA\nbAXaaiEEQbQnqTZtckl7/kg1WlO0UhurlV4LAaNlsVKUApVS6oo2ot7pwYGAHHjqHeQogqcLSHP2\n3T/2u2ay7t3OzPc739358Hwkk535zGe+n9fOzb5u9rvfmYnMRJJUrp9b7gCSpOGy6CWpcBa9JBXO\nopekwln0klQ4i16SCmfRS1LhLHpJKpxFL0mFO3C5AwAceeSROT4+3tp6TzzxBIceemhr6zVhFDPD\naOYexcxg7jatlMxbtmx5NDOPWmreiij68fFxNm/e3Np6MzMzTE5OtrZeE0YxM4xm7lHMDOZu00rJ\nHBHf6WWeu24kqXAWvSQVzqKXpMJZ9JJUOItekgpn0UtS4Sx6SSqcRS9JhbPoJalwK+KVsdJKNr7x\nxmVZd8clr16WdVUen9FLUuEsekkqnEUvSYWz6CWpcEsWfURcERGPRMRdXWPXRMTW6rQjIrZW4+MR\n8VTXdZcNM7wkaWm9HHVzJfAR4OPzA5n5B/PnI+JSYE/X/Acy8+SmAkqS6lmy6DPztogYX+y6iAjg\ndcDLm40lSWpK3X30LwV2Z+b9XWPHRsQ3IuILEfHSmtuXJNUUmbn0pLln9Ddk5kkLxj8GbM/MS6vL\nBwFjmfn9iFgHfAY4MTN/uMg21wPrATqdzrrp6ema30rvZmdnGRsba229JoxiZhjN3Aszb9u1Zz+z\nh2ftmsP6mj+K9zWMZu6VknlqampLZk4sNW/gV8ZGxIHA7wLr5scy82ng6er8loh4AHgB8DMfCJuZ\nm4BNABMTE9nm5y+ulM977McoZobRzL0w84XL9crY8yaXnNNtFO9rGM3co5a5zq6bVwL3ZubO+YGI\nOCoiDqjOHwccDzxYL6IkqY5eDq+8Gvgy8MKI2BkRb6yuOge4esH0lwF3RsQdwKeBizPzsSYDS5L6\n08tRN+fuY/zCRcauBa6tH0uS1BRfGStJhbPoJalwFr0kFc6il6TCWfSSVDiLXpIK52fGaiS0+bmt\nG9buXbZXw0rD4DN6SSqcRS9JhbPoJalwFr0kFc6il6TCWfSSVDiLXpIKZ9FLUuEsekkqnEUvSYWz\n6CWpcBa9JBWulw8HvyIiHomIu7rG3h0RuyJia3U6o+u6t0XE9oi4LyJOG1ZwSVJvenlGfyVw+iLj\nH8rMk6vTTQARcQJwDnBidZu/j4gDmgorSerfkkWfmbcBj/W4vTOB6cx8OjO/DWwHTqmRT5JUU519\n9G+NiDurXTurqrE1wPe65uysxiRJyyQyc+lJEePADZl5UnW5AzwKJPBeYHVmXhQRHwW+nJmfqOZd\nDtyUmdcuss31wHqATqezbnp6upFvqBezs7OMjY21tl4TRjEzNJd72649DaTpTecQ2P1Ua8vt09o1\nh/U1/5n+GGnTSsk8NTW1JTMnlpo30CdMZebu+fMR8Y/ADdXFncDzuqYeAzy0j21sAjYBTExM5OTk\n5CBRBjIzM0Ob6zVhFDNDc7nb/MSnDWv3cum25f/wtR3nTfY1/5n+GGnTqGUeaNdNRKzuung2MH9E\nzvXAORFxUEQcCxwPfLVeRElSHUs+bYmIq4FJ4MiI2Am8C5iMiJOZ23WzA3gzQGbeHRGfAr4J7AXe\nkpk/GU50SVIvliz6zDx3keHL9zP/fcD76oSSJDXHV8ZKUuEsekkqnEUvSYWz6CWpcBa9JBXOopek\nwln0klQ4i16SCmfRS1LhLHpJKpxFL0mFs+glqXAWvSQVzqKXpMJZ9JJUOItekgpn0UtS4Sx6SSqc\nRS9JhbPoJalwSxZ9RFwREY9ExF1dY38dEfdGxJ0RcV1EHF6Nj0fEUxGxtTpdNszwkqSl9fKM/krg\n9AVjtwAnZeavAt8C3tZ13QOZeXJ1uriZmJKkQS1Z9Jl5G/DYgrH/yMy91cXbgWOGkE2S1IDIzKUn\nRYwDN2TmSYtc92/ANZn5iWre3cw9y/8h8M7M/OI+trkeWA/Q6XTWTU9PD/YdDGB2dpaxsbHW1mvC\nKGaG5nJv27WngTS96RwCu59qbbl9WrvmsL7mP9MfI21aKZmnpqa2ZObEUvMOrLNIRLwD2At8shp6\nGPjlzPx+RKwDPhMRJ2bmDxfeNjM3AZsAJiYmcnJysk6UvszMzNDmek0YxczQXO4LN95YP0yPNqzd\ny6Xbav1oNGLHeZN9zX+mP0baNGqZBz7qJiIuAH4bOC+rXwsy8+nM/H51fgvwAPCCJoJKkgYzUNFH\nxOnAnwOvycwnu8aPiogDqvPHAccDDzYRVJI0mCV/P42Iq4FJ4MiI2Am8i7mjbA4CbokIgNurI2xe\nBrwnIvYCPwEuzszHFt2wJKkVSxZ9Zp67yPDl+5h7LXBt3VCSpOb4ylhJKpxFL0mFs+glqXAWvSQV\nzqKXpMJZ9JJUOItekgpn0UtS4Sx6SSqcRS9JhbPoJalwFr0kFc6il6TCWfSSVDiLXpIKZ9FLUuEs\nekkqnEUvSYWz6CWpcD0VfURcERGPRMRdXWNHRMQtEXF/9XVVNR4R8eGI2B4Rd0bErw8rvCRpab0+\no78SOH3B2Ebg1sw8Hri1ugzwKuD46rQe+Fj9mJKkQfVU9Jl5G/DYguEzgauq81cBZ3WNfzzn3A4c\nHhGrmwgrSepfnX30ncx8GKD6enQ1vgb4Xte8ndWYJGkZRGb2NjFiHLghM0+qLv8gMw/vuv7xzFwV\nETcCf5WZX6rGbwX+LDO3LNjeeuZ27dDpdNZNT0838O30ZnZ2lrGxsdbWa8IoZobmcm/btaeBNL3p\nHAK7n2ptuX1au+awvuY/0x8jbVopmaemprZk5sRS8w6sscbuiFidmQ9Xu2YeqcZ3As/rmncM8NDC\nG2fmJmATwMTERE5OTtaI0p+ZmRnaXK8Jo5gZmst94cYb64fp0Ya1e7l0W50fjWbsOG+yr/nP9MdI\nm0Ytc51dN9cDF1TnLwA+2zX++uromxcDe+Z38UiS2tfT05aIuBqYBI6MiJ3Au4BLgE9FxBuB7wKv\nrabfBJwBbAeeBN7QcGZJUh96KvrMPHcfV71ikbkJvKVOKElSc3xlrCQVzqKXpMJZ9JJUOItekgpn\n0UtS4Sx6SSqcRS9JhbPoJalwFr0kFc6il6TCWfSSVDiLXpIKZ9FLUuEsekkq3PJ/jI6kRY33+ala\nG9bubeyTuHZc8upGtqOVwWf0klQ4i16SCmfRS1LhLHpJKtzAf4yNiBcC13QNHQf8BXA48IfA/1Tj\nb8/MmwZOKEmqZeCiz8z7gJMBIuIAYBdwHfAG4EOZ+cFGEkqSamnq8MpXAA9k5ncioqFNaiVazkP+\nJA2mqX305wBXd11+a0TcGRFXRMSqhtaQJA0gMrPeBiKeBTwEnJiZuyOiAzwKJPBeYHVmXrTI7dYD\n6wE6nc666enpWjn6MTs7y9jYWGvrNWGlZN62a09f8zuHwO6nhhRmSEYxMzSbe+2aw5rZUA9WymO7\nHysl89TU1JbMnFhqXhNFfybwlsw8dZHrxoEbMvOk/W1jYmIiN2/eXCtHP2ZmZpicnGxtvSaslMyD\n7Lq5dNtovQB7FDNDs7nbfGXsSnls92OlZI6Inoq+iV0359K12yYiVndddzZwVwNrSJIGVOu//4h4\nNvBbwJu7hj8QESczt+tmx4LrJEktq1X0mfkk8NwFY+fXSiRJapSvjJWkwln0klQ4i16SCmfRS1Lh\nLHpJKpxFL0mFs+glqXAWvSQVzqKXpMJZ9JJUOItekgpn0UtS4Sx6SSqcRS9JhbPoJalwFr0kFc6i\nl6TCWfSSVDiLXpIKZ9FLUuFqfTg4QETsAH4E/ATYm5kTEXEEcA0wDuwAXpeZj9ddS5LUv6ae0U9l\n5smZOVFd3gjcmpnHA7dWlyVJy2BYu27OBK6qzl8FnDWkdSRJS4jMrLeBiG8DjwMJ/ENmboqIH2Tm\n4V1zHs/MVQtutx5YD9DpdNZNT0/XytGP2dlZxsbGWluvCSsl87Zde/qa3zkEdj81pDBDMoqZodnc\na9cc1syGerBSHtv9WCmZp6amtnTtSdmn2vvogZdk5kMRcTRwS0Tc28uNMnMTsAlgYmIiJycnG4jS\nm5mZGdpcrwkrJfOFG2/sa/6GtXu5dFsTD7P2jGJmaDb3jvMmG9lOL1bKY7sfo5a59q6bzHyo+voI\ncB1wCrA7IlYDVF8fqbuOJGkwtYo+Ig6NiOfMnwdOBe4CrgcuqKZdAHy2zjqSpMHV/T2vA1wXEfPb\n+ufM/FxEfA34VES8Efgu8Nqa60iSBlSr6DPzQeDXFhn/PvCKOtuWJDXDV8ZKUuEsekkqnEUvSYWz\n6CWpcBa9JBXOopekwln0klQ4i16SCmfRS1LhLHpJKtzovRerGO/zrYIlPbP5jF6SCmfRS1LhLHpJ\nKpxFL0mFs+glqXAWvSQVzqKXpMJZ9JJUuIGLPiKeFxGfj4h7IuLuiPiTavzdEbErIrZWpzOaiytJ\n6ledV8buBTZk5tcj4jnAloi4pbruQ5n5wfrxJEl1DVz0mfkw8HB1/kcRcQ+wpqlgkqRmNLKPPiLG\ngRcBX6mG3hoRd0bEFRGxqok1JEmDicyst4GIMeALwPsy818jogM8CiTwXmB1Zl60yO3WA+sBOp3O\nuunp6Vo5+jE7O8vY2Fhr6zWhO/O2XXuWOU3vOofA7qeWO0V/RjEzNJt77ZrDmtlQD0b953E5TU1N\nbcnMiaXm1Sr6iPh54Abg5sz8m0WuHwduyMyT9rediYmJ3Lx588A5+jUzM8Pk5GRr6zWhO/MovXvl\nhrV7uXTbaL1J6ihmhmZz77jk1Y1spxej/vO4nCKip6Kvc9RNAJcD93SXfESs7pp2NnDXoGtIkuqr\n89//S4DzgW0RsbUaeztwbkSczNyumx3Am2sllCTVUueomy8BschVNw0eR5LUNF8ZK0mFs+glqXAW\nvSQVzqKXpMJZ9JJUOItekgpn0UtS4Sx6SSrc6L2hh6Sha/P9lDas3cuF1XptvsfOM4lFX8Ny/TBI\nUj/cdSNJhbPoJalwFr0kFc6il6TC+cdYSSvGcn16WulH+/iMXpIKZ9FLUuEsekkqnEUvSYUbWtFH\nxOkRcV9EbI+IjcNaR5K0f0Mp+og4APgo8CrgBODciDhhGGtJkvZvWIdXngJsz8wHASJiGjgT+OYw\nFuv3kCzfN0ZSt+XskDYO7RzWrps1wPe6Lu+sxiRJLYvMbH6jEa8FTsvMN1WXzwdOycw/7pqzHlhf\nXXwhcF/jQfbtSODRFtdrwihmhtHMPYqZwdxtWimZn5+ZRy01aVi7bnYCz+u6fAzwUPeEzNwEbBrS\n+vsVEZszc2I51h7UKGaG0cw9ipnB3G0atczD2nXzNeD4iDg2Ip4FnANcP6S1JEn7MZRn9Jm5NyLe\nCtwMHABckZl3D2MtSdL+De1NzTLzJuCmYW2/pmXZZVTTKGaG0cw9ipnB3G0aqcxD+WOsJGnl8C0Q\nJKlwxRZ9RBwREbdExP3V11X7mHdBNef+iLiga/xzEXFHRNwdEZdVr/ZdsZkj4tkRcWNE3FtlvmTY\neZvIXY2/LyK+FxGzLWTd71tzRMRBEXFNdf1XImK867q3VeP3RcRpw87aRO6IeG5EfD4iZiPiIyOS\n+bciYktEbKu+vnxEcp8SEVur0x0RcXabufcrM4s8AR8ANlbnNwLvX2TOEcCD1ddV1flV1XW/UH0N\n4FrgnJWcGXg2MFXNeRbwReBVI3JfvxhYDcwOOecBwAPAcdV9dAdwwoI5fwRcVp0/B7imOn9CNf8g\n4NhqOwe0dP/WyX0o8JvAxcBH2sjbQOYXAb9UnT8J2DUiuZ8NHFidXw08Mn95uU/FPqNn7i0XrqrO\nXwWctcic04BbMvOxzHwcuAU4HSAzf1jNOZC5f/A2/pgxcObMfDIzPw+Qmf8LfJ251y+0oe59fXtm\nPtxCzp++NUd1H82/NUe37u/l08ArIiKq8enMfDozvw1sr7bXhoFzZ+YTmfkl4MctZZ1XJ/M3MnP+\ndTd3AwdHxEGtpK6X+8nM3FuNH0w7ndGTkou+M18e1dejF5mz37dqiIibmftf+UfM/YMOW+3MABFx\nOPA7wK1DyrlQI7lb0EuGn86pfmj3AM/t8bbDUif3cmkq8+8B38jMp4eUc6FauSPiNyLibmAbcHFX\n8S+rkf7M2Ij4T+AXF7nqHb1uYpGxn/4vnJmnRcTBwCeBlzP3LLSWYWeOiAOBq4EPZ/Wmck0Ydu6W\n9JJhX3OWM3+d3MulduaIOBF4P3Bqg7mWUit3Zn4FODEifgW4KiL+PTPb/m3qZ4x00WfmK/d1XUTs\njojVmflwRMzvL1toJzDZdfkYYGbBGj+OiOuZ+3WtdtG3kHkTcH9m/m3drN3auK9bsORbc3TN2Vn9\np3kY8FiPtx2WOrmXS63MEXEMcB3w+sx8YPhxfybTvIHu68y8JyKeYO5vDJuHF7c3Je+6uR6YP7Lj\nAuCzi8y5GTg1IlZVR4qcCtwcEWNVYc0/Qz4DuHclZ66y/iVzD7o/bSFrt1q5W9TLW3N0fy+/D/xX\nzv117XrgnOqIi2OB44GvjkDu5TJw5mrX443A2zLzv1tLPKdO7mOrviAins/cmzXuaCf2Epb7r8HD\nOjG3z+xW4P7q6xHV+ATwT13zLmLuD2vbgTdUYx3m/sHvZO6PQX9HC389r5n5GOZ+fbwH2Fqd3rTS\n7+tq/APMPUv6v+rru4eY9QzgW8wdWfGOauw9wGuq8wcD/1Jl/CpwXNdt31Hd7j5aOqKpodw7mHvG\nOVvdvyes5MzAO4Enuh7HW4GjV/p9DZxf9cVW5g6GOKvNx8j+Tr4yVpIKV/KuG0kSFr0kFc+il6TC\nWfSSVDiLXpIKZ9FLUuEsekkqnEUvSYX7f4bLWNHsWtJ2AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ff830715e10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"err.hist()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7ff830715d30>" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEpxJREFUeJzt3X+M3PWd3/Hn6yChKDkVUsLWNW6NVLcKKT0SrQhS+sf2\nuILhqppURTJCiS+h8lWCKpH8R03yB9dLkahakjYoQfIVK07lC0VNUls5XzkfzSi9Pwg/UopxfJQt\nccPGFtYdhGQTlWpz7/4xX/emztg7Xu/MrPfzfEirmXl/P9/5ft47tl/z/THjVBWSpPb80rQnIEma\nDgNAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1KhLpz2Bc7nqqqtq8+bN057GOf30\npz/lXe9617SnMTUt999y79B2/2u99+eff/5Pquq9y41b0wGwefNmnnvuuWlP45x6vR5zc3PTnsbU\ntNx/y71D2/2v9d6T/K9RxnkISJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CS\nGrWmPwksrWVHfvgWv7H79ya+3eMP/frEt6n1yT0ASWqUASBJjTIAJKlRBoAkNcoAkKRGLRsASf5C\nkmeS/PckR5P8865+bZLvJHklyX9I8s6ufln3eL5bvnngue7v6i8nuXVcTUmSljfKHsDbwK9W1a8A\nNwBbk9wE/Evg81W1BXgTuKcbfw/wZlX9deDz3TiSXAdsB94PbAW+lOSS1WxGkjS6ZQOg+ha7h+/o\nfgr4VeA/dvV9wB3d/W3dY7rlNydJV3+8qt6uqu8D88CNq9KFJOm8jXQOIMklSV4ATgGHgf8J/Kiq\nlrohC8DG7v5G4DWAbvlbwF8arA9ZR5I0YSN9Eriqfg7ckOQK4BvA+4YN625zlmVnq/9/kuwEdgLM\nzMzQ6/VGmeLULC4urvk5jlPL/c9cDruuX1p+4CpbK7/vll/79dL7eX0VRFX9KEkPuAm4Isml3bv8\na4AT3bAFYBOwkORS4C8CbwzUTxtcZ3Abe4A9ALOzs7WW/+NlWPv/OfS4tdz/I/sP8PCRyX+byvG7\n5ya+zWFafu3XS++jXAX03u6dP0kuB34NOAZ8C/hH3bAdwIHu/sHuMd3y/1JV1dW3d1cJXQtsAZ5Z\nrUYkSednlLcvG4B93RU7vwQ8UVXfTPI94PEk/wL4b8Bj3fjHgH+fZJ7+O//tAFV1NMkTwPeAJeDe\n7tCSJGkKlg2AqnoR+MCQ+qsMuYqnqv43cOdZnutB4MHzn6YkabX5SWBJapQBIEmNMgAkqVEGgCQ1\nygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMM\nAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjlg2AJJuSfCvJsSRHk3yyq/9Wkh8m\neaH7uX1gnfuTzCd5OcmtA/WtXW0+ye7xtCRJGsWlI4xZAnZV1XeT/DLwfJLD3bLPV9W/Hhyc5Dpg\nO/B+4K8Af5jkb3SLvwj8PWABeDbJwar63mo0Ikk6P8sGQFWdBE5293+S5Biw8RyrbAMer6q3ge8n\nmQdu7JbNV9WrAEke78YaAJI0Bed1DiDJZuADwHe60n1JXkyyN8mVXW0j8NrAagtd7Wx1SdIUjHII\nCIAk7wa+Bnyqqn6c5FHgs0B1tw8DnwAyZPVieNjUkO3sBHYCzMzM0Ov1Rp3iVCwuLq75OY5Ty/3P\nXA67rl+a+HbXyu+75dd+vfQ+UgAkeQf9f/z3V9XXAarq9YHlvwN8s3u4AGwaWP0a4ER3/2z1/6eq\n9gB7AGZnZ2tubm6UKU5Nr9djrc9xnFru/5H9B3j4yMjvoVbN8bvnJr7NYVp+7ddL76NcBRTgMeBY\nVX1uoL5hYNhHgJe6+weB7UkuS3ItsAV4BngW2JLk2iTvpH+i+ODqtCFJOl+jvH35MPBR4EiSF7ra\np4G7ktxA/zDOceA3AarqaJIn6J/cXQLuraqfAyS5D3gSuATYW1VHV7EXSdJ5GOUqoD9i+HH9Q+dY\n50HgwSH1Q+daT5I0OX4SWJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUA\nSFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAk\nNcoAkKRGGQCS1KhlAyDJpiTfSnIsydEkn+zq70lyOMkr3e2VXT1JvpBkPsmLST448Fw7uvGvJNkx\nvrYkScsZZQ9gCdhVVe8DbgLuTXIdsBt4qqq2AE91jwFuA7Z0PzuBR6EfGMADwIeAG4EHToeGJGny\nlg2AqjpZVd/t7v8EOAZsBLYB+7ph+4A7uvvbgK9U39PAFUk2ALcCh6vqjap6EzgMbF3VbiRJIzuv\ncwBJNgMfAL4DzFTVSeiHBHB1N2wj8NrAagtd7Wx1SdIUXDrqwCTvBr4GfKqqfpzkrEOH1Ooc9TO3\ns5P+oSNmZmbo9XqjTnEqFhcX1/wcx6nl/mcuh13XL018u2vl993ya79eeh8pAJK8g/4//vur6utd\n+fUkG6rqZHeI51RXXwA2Dax+DXCiq8+dUe+dua2q2gPsAZidna25ubkzh6wpvV6PtT7HcWq5/0f2\nH+DhIyO/h1o1x++em/g2h2n5tV8vvY9yFVCAx4BjVfW5gUUHgdNX8uwADgzUP9ZdDXQT8FZ3iOhJ\n4JYkV3Ynf2/papKkKRjl7cuHgY8CR5K80NU+DTwEPJHkHuAHwJ3dskPA7cA88DPg4wBV9UaSzwLP\nduN+u6reWJUuJEnnbdkAqKo/Yvjxe4Cbh4wv4N6zPNdeYO/5TFCSNB5+EliSGmUASFKjDABJapQB\nIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhplAEhSowwASWqUASBJjTIAJKlRBoAkNcoAkKRGGQCS\n1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktSoZQMgyd4kp5K8NFD7rSQ/TPJC\n93P7wLL7k8wneTnJrQP1rV1tPsnu1W9FknQ+RtkD+DKwdUj981V1Q/dzCCDJdcB24P3dOl9KckmS\nS4AvArcB1wF3dWMlSVNy6XIDqurbSTaP+HzbgMer6m3g+0nmgRu7ZfNV9SpAkse7sd877xlLklbF\nsgFwDvcl+RjwHLCrqt4ENgJPD4xZ6GoAr51R/9CwJ02yE9gJMDMzQ6/Xu4Apjt/i4uKan+M4tdz/\nzOWw6/qliW93rfy+W37t10vvKw2AR4HPAtXdPgx8AsiQscXwQ0017Imrag+wB2B2drbm5uZWOMXJ\n6PV6rPU5jlPL/T+y/wAPH7mQ91Arc/zuuYlvc5iWX/v10vuK/vRW1eun7yf5HeCb3cMFYNPA0GuA\nE939s9UlSVOwostAk2wYePgR4PQVQgeB7UkuS3ItsAV4BngW2JLk2iTvpH+i+ODKpy1JulDL7gEk\n+SowB1yVZAF4AJhLcgP9wzjHgd8EqKqjSZ6gf3J3Cbi3qn7ePc99wJPAJcDeqjq66t1IkkY2ylVA\ndw0pP3aO8Q8CDw6pHwIOndfsJElj4yeBJalRBoAkNcoAkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEg\nSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJapQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLU\nKANAkhplAEhSowwASWqUASBJjVo2AJLsTXIqyUsDtfckOZzkle72yq6eJF9IMp/kxSQfHFhnRzf+\nlSQ7xtOOJGlUo+wBfBnYekZtN/BUVW0BnuoeA9wGbOl+dgKPQj8wgAeADwE3Ag+cDg1J0nQsGwBV\n9W3gjTPK24B93f19wB0D9a9U39PAFUk2ALcCh6vqjap6EzjML4aKJGmCLl3hejNVdRKgqk4mubqr\nbwReGxi30NXOVv8FSXbS33tgZmaGXq+3wilOxuLi4pqf4zi13P/M5bDr+qWJb3et/L5bfu3XS+8r\nDYCzyZBanaP+i8WqPcAegNnZ2Zqbm1u1yY1Dr9djrc9xnFru/5H9B3j4yGr/FVre8bvnJr7NYVp+\n7ddL7yu9Cuj17tAO3e2prr4AbBoYdw1w4hx1SdKUrDQADgKnr+TZARwYqH+suxroJuCt7lDRk8At\nSa7sTv7e0tUkSVOy7P5rkq8Cc8BVSRboX83zEPBEknuAHwB3dsMPAbcD88DPgI8DVNUbST4LPNuN\n++2qOvPEsiRpgpYNgKq66yyLbh4ytoB7z/I8e4G95zU7SdLY+ElgSWqUASBJjTIAJKlRBoAkNcoA\nkKRGGQCS1CgDQJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktQoA0CSGmUASFKjDABJ\napQBIEmNMgAkqVEGgCQ1ygCQpEYZAJLUKANAkhp1QQGQ5HiSI0leSPJcV3tPksNJXulur+zqSfKF\nJPNJXkzywdVoQJK0MquxB/B3q+qGqprtHu8GnqqqLcBT3WOA24At3c9O4NFV2LYkaYXGcQhoG7Cv\nu78PuGOg/pXqexq4IsmGMWxfkjSCCw2AAv4gyfNJdna1mao6CdDdXt3VNwKvDay70NUkSVNw6QWu\n/+GqOpHkauBwkj8+x9gMqdUvDOoHyU6AmZkZer3eBU5xvBYXF9f8HMep5f5nLodd1y9NfLtr5ffd\n8mu/Xnq/oACoqhPd7akk3wBuBF5PsqGqTnaHeE51wxeATQOrXwOcGPKce4A9ALOzszU3N3chUxy7\nXq/HWp/jOE27/827f29q2951PTx85ELfQ52/43fPTXybw0z7tZ+m9dL7ig8BJXlXkl8+fR+4BXgJ\nOAjs6IbtAA509w8CH+uuBroJeOv0oSJJ0uRdyNuXGeAbSU4/z+9W1X9O8izwRJJ7gB8Ad3bjDwG3\nA/PAz4CPX8C2JUkXaMUBUFWvAr8ypP6nwM1D6gXcu9LtSZJWl58ElqRGTf4MltalaZ6MlbQy7gFI\nUqMMAElqlAEgSY3yHIB0kZnm+ZbjD/361Lat1ecegCQ1ygCQpEYZAJLUKANAkhrlSeB1ZtInCHdd\nv8Rv+CEw6aLkHoAkNco9AEkjG9zDnOTen5efjod7AJLUKANAkhrlIaAx8JsxJV0M3AOQpEYZAJLU\nKANAkhrlOQBJa57fgDoe7gFIUqMMAElqlAEgSY0yACSpURM/CZxkK/BvgUuAf1dVD41rW5M4ceS3\nYUrr27B/Rybx934SJ58nugeQ5BLgi8BtwHXAXUmum+QcJEl9kz4EdCMwX1WvVtX/AR4Htk14DpIk\nJh8AG4HXBh4vdDVJ0oSlqia3seRO4Naq+sfd448CN1bVPx0YsxPY2T38m8DLE5vgylwF/Mm0JzFF\nLfffcu/Qdv9rvfe/VlXvXW7QpE8CLwCbBh5fA5wYHFBVe4A9k5zUhUjyXFXNTnse09Jy/y33Dm33\nv156n/QhoGeBLUmuTfJOYDtwcMJzkCQx4T2AqlpKch/wJP3LQPdW1dFJzkGS1DfxzwFU1SHg0KS3\nO0YXzeGqMWm5/5Z7h7b7Xxe9T/QksCRp7fCrICSpUQbACiX5V0n+OMmLSb6R5IqBZfcnmU/ycpJb\npznPcUlyZ5KjSf4syewZy1rof2vX33yS3dOez7gl2ZvkVJKXBmrvSXI4ySvd7ZXTnOO4JNmU5FtJ\njnV/5j/Z1S/6/g2AlTsM/K2q+tvA/wDuB+i+2mI78H5gK/Cl7isw1puXgH8IfHuw2EL/jX6lyZfp\nv56DdgNPVdUW4Knu8Xq0BOyqqvcBNwH3dq/3Rd+/AbBCVfUHVbXUPXya/mcaoP/VFo9X1dtV9X1g\nnv5XYKwrVXWsqoZ9SK+F/pv7SpOq+jbwxhnlbcC+7v4+4I6JTmpCqupkVX23u/8T4Bj9bzC46Ps3\nAFbHJ4Df7+63/nUXLfTfQo+jmKmqk9D/RxK4esrzGbskm4EPAN9hHfTv/wl8Dkn+EPjLQxZ9pqoO\ndGM+Q38Xcf/p1YaMvygvtRql/2GrDaldlP2fQws96gxJ3g18DfhUVf04GfbH4OJiAJxDVf3auZYn\n2QH8feDm+vPraZf9uouLxXL9n8W66f8cWuhxFK8n2VBVJ5NsAE5Ne0LjkuQd9P/x319VX+/KF33/\nHgJaoe4/tvlnwD+oqp8NLDoIbE9yWZJrgS3AM9OY45S00L9fadJ3ENjR3d8BnG2v8KKW/lv9x4Bj\nVfW5gUUXff9+EGyFkswDlwF/2pWerqp/0i37DP3zAkv0dxd/f/izXLySfAR4BHgv8CPghaq6tVvW\nQv+3A/+GP/9KkwenPKWxSvJVYI7+t2C+DjwA/CfgCeCvAj8A7qyqM08UX/SS/B3gvwJHgD/ryp+m\nfx7gou7fAJCkRnkISJIaZQBIUqMMAElqlAEgSY0yACSpUQaAJDXKAJCkRhkAktSo/wsqF8Q5P5RG\nWQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ff7b6ac3080>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"err = cg.edge[0][1].compute_fundamental_error(clean_keys=['symmetry'])\n", | |
"err.hist()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7ff7b6975f28>" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEf5JREFUeJzt3X+sX3V9x/Hne1QQcUoRuWvabpfFxol2i+wG2VyWG2to\nAWPZYpMaIsWxNFuY0+Ums+gfTVQSzIYoZpo0o7MYIjJ0a7PisKt840wGAmIoWFlvoIMrHegKaGHq\nrr73x/fT+PV+vv11T3vPvd/v85HcfM95n8855/Pp9977uufH9zQyE0mSev1K2x2QJM0/hoMkqWI4\nSJIqhoMkqWI4SJIqhoMkqWI4SJIqhoMkqWI4SJIqi9ruwGyde+65OTo62nY3TsiLL77IWWed1XY3\n5tQwjhmGc9zDOGZYWON+8MEHf5CZrz2etgs2HEZHR3nggQfa7sYJ6XQ6jI+Pt92NOTWMY4bhHPcw\njhkW1rgj4r+Ot62nlSRJFcNBklQxHCRJFcNBklQxHCRJFcNBklQxHCRJFcNBklQxHCRJlQX7CWlp\nvhrdtJOJldNcvWnnnO53/w2Xz+n+NNg8cpAkVQwHSVLFcJAkVQwHSVLFcJAkVQwHSVLFcJAkVQwH\nSVLFcJAkVQwHSVLFcJAkVQwHSVLFcJAkVQwHSVLFcJAkVQwHSVLFcJAkVQwHSVLFcJAkVY4ZDhGx\nNSKejYhHemrnRMSuiNhXXheXekTEzRExGREPR8SFPetsKO33RcSGnvrvRsSess7NEREne5CSpBNz\nPEcOnwPWzKhtAnZn5gpgd5kHuBRYUb42Ap+FbpgAm4G3ABcBmw8HSmmzsWe9mfuSJM2xY4ZDZn4d\nODijvBbYVqa3AVf01G/NrnuBsyNiCbAa2JWZBzPzOWAXsKYse1Vm/kdmJnBrz7YkSS2Z7TWHkcw8\nAFBezyv1pcBTPe2mSu1o9ak+dUlSixad5O31u16Qs6j333jERrqnoBgZGaHT6cyii+05dOjQgutz\nU8M45omV04yc2X2dS23/Ow/jew2DO+7ZhsMzEbEkMw+UU0PPlvoUsLyn3TLg6VIfn1HvlPqyPu37\nyswtwBaAsbGxHB8fP1LTeanT6bDQ+tzUMI756k07mVg5zY17TvbfXke3/8rxOd3fTMP4XsPgjnu2\np5V2AIfvONoAbO+pX1XuWroYeKGcdrobuCQiFpcL0ZcAd5dlP4qIi8tdSlf1bEuS1JJj/mkTEV+g\n+1f/uRExRfeuoxuAOyLiGuBJYF1pfhdwGTAJvAS8FyAzD0bER4H7S7uPZObhi9x/TveOqDOBr5Qv\nSVKLjhkOmfnuIyxa1adtAtceYTtbga196g8AbzpWPyRJc8dPSEuSKoaDJKliOEiSKoaDJKliOEiS\nKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaD\nJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKnSKBwi4q8i4tGI\neCQivhARL4+I8yPivojYFxFfjIjTS9szyvxkWT7as53rSv2xiFjdbEiSpKZmHQ4RsRT4S2AsM98E\nnAasBz4O3JSZK4DngGvKKtcAz2Xm64CbSjsi4oKy3huBNcBnIuK02fZLktRc09NKi4AzI2IR8Arg\nAPA24M6yfBtwRZleW+Ypy1dFRJT67Zn5k8x8ApgELmrYL0lSA4tmu2Jmfi8i/hZ4Evhf4KvAg8Dz\nmTldmk0BS8v0UuCpsu50RLwAvKbU7+3ZdO86vyQiNgIbAUZGRuh0OrPtfisOHTq04Prc1DCOeWLl\nNCNndl/nUtv/zsP4XsPgjnvW4RARi+n+1X8+8Dzwj8ClfZrm4VWOsOxI9bqYuQXYAjA2Npbj4+Mn\n1umWdTodFlqfmxrGMV+9aScTK6e5cc+sf7xmZf+V43O6v5mG8b2GwR13k9NKbweeyMzvZ+b/AV8G\nfh84u5xmAlgGPF2mp4DlAGX5q4GDvfU+60iSWtAkHJ4ELo6IV5RrB6uA7wD3AO8qbTYA28v0jjJP\nWf61zMxSX1/uZjofWAF8s0G/JEkNNbnmcF9E3Al8C5gGHqJ7ymcncHtEfKzUbimr3AJ8PiIm6R4x\nrC/beTQi7qAbLNPAtZn5s9n2S5LUXKOTopm5Gdg8o/w4fe42yswfA+uOsJ3rgeub9EWSdPL4CWlJ\nUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVw\nkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRVDAdJUsVwkCRV\nDAdJUqVROETE2RFxZ0R8NyL2RsTvRcQ5EbErIvaV18WlbUTEzRExGREPR8SFPdvZUNrvi4gNTQcl\nSWqm6ZHDp4B/zczfAn4H2AtsAnZn5gpgd5kHuBRYUb42Ap8FiIhzgM3AW4CLgM2HA0WS1I5Zh0NE\nvAr4Q+AWgMz8aWY+D6wFtpVm24AryvRa4Nbsuhc4OyKWAKuBXZl5MDOfA3YBa2bbL0lSc02OHH4T\n+D7wDxHxUET8fUScBYxk5gGA8npeab8UeKpn/alSO1JdktSSRQ3XvRB4X2beFxGf4henkPqJPrU8\nSr3eQMRGuqekGBkZodPpnFCH23bo0KEF1+emhnHMEyunGTmz+zqX2v53Hsb3GgZ33E3CYQqYysz7\nyvyddMPhmYhYkpkHymmjZ3vaL+9ZfxnwdKmPz6h3+u0wM7cAWwDGxsZyfHy8X7N5q9PpsND63NQw\njvnqTTuZWDnNjXua/HiduP1Xjs/p/mYaxvcaBnfcsz6tlJn/DTwVEa8vpVXAd4AdwOE7jjYA28v0\nDuCqctfSxcAL5bTT3cAlEbG4XIi+pNQkSS1p+qfN+4DbIuJ04HHgvXQD546IuAZ4ElhX2t4FXAZM\nAi+VtmTmwYj4KHB/afeRzDzYsF+SpAYahUNmfhsY67NoVZ+2CVx7hO1sBbY26Ysk6eTxE9KSpIrh\nIEmqzO3tFNIcGt20s+0uSAuWRw6SpIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6S\npIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6SpIrhIEmqGA6SpIrh\nIEmqGA6SpMqitjugwbbney9w9aadbXdD0gnyyEGSVGkcDhFxWkQ8FBH/UubPj4j7ImJfRHwxIk4v\n9TPK/GRZPtqzjetK/bGIWN20T5KkZk7GkcP7gb098x8HbsrMFcBzwDWlfg3wXGa+DriptCMiLgDW\nA28E1gCfiYjTTkK/JEmz1CgcImIZcDnw92U+gLcBd5Ym24AryvTaMk9Zvqq0Xwvcnpk/ycwngEng\noib9kiQ10/SC9CeBvwZ+tcy/Bng+M6fL/BSwtEwvBZ4CyMzpiHihtF8K3Nuzzd51fklEbAQ2AoyM\njNDpdBp2f24dOnRowfW5qZEzYWLl9LEbDpg2xt3299Ywfn/D4I571uEQEe8Ans3MByNi/HC5T9M8\nxrKjrfPLxcwtwBaAsbGxHB8f79ds3up0Oiy0Pjf16du2c+Oe4bspbmLl9JyPe/+V43O6v5mG8fsb\nBnfcTb573wq8MyIuA14OvIrukcTZEbGoHD0sA54u7aeA5cBURCwCXg0c7Kkf1ruOpOM02uItw/tv\nuLy1fevUmPU1h8y8LjOXZeYo3QvKX8vMK4F7gHeVZhuA7WV6R5mnLP9aZmapry93M50PrAC+Odt+\nSZKaOxXHvR8Ebo+IjwEPAbeU+i3A5yNiku4Rw3qAzHw0Iu4AvgNMA9dm5s9OQb8kScfppIRDZnaA\nTpl+nD53G2Xmj4F1R1j/euD6k9EXSVJzfkJaklQxHCRJFcNBklQxHCRJFcNBklQxHCRJFcNBklQx\nHCRJFcNBklQxHCRJleF7lvKQauuJnRMrW9mtpIY8cpAkVQwHSVLFcJAkVQwHSVLFcJAkVQwHSVLF\nW1klNTa6aScTK6e5eo5vmd5/w+Vzur9h4pGDJKliOEiSKoaDJKliOEiSKoaDJKliOEiSKoaDJKli\nOEiSKoaDJKky63CIiOURcU9E7I2IRyPi/aV+TkTsioh95XVxqUdE3BwRkxHxcERc2LOtDaX9vojY\n0HxYkqQmmhw5TAMTmfkG4GLg2oi4ANgE7M7MFcDuMg9wKbCifG0EPgvdMAE2A28BLgI2Hw4USVI7\nZh0OmXkgM79Vpn8E7AWWAmuBbaXZNuCKMr0WuDW77gXOjoglwGpgV2YezMzngF3Amtn2S5LU3Em5\n5hARo8CbgfuAkcw8AN0AAc4rzZYCT/WsNlVqR6pLklrS+KmsEfFK4EvABzLzhxFxxKZ9anmUer99\nbaR7SoqRkRE6nc4J97dNhw4daq3PEyunW9nvyJnt7btNwzjuNsY8H34HtPlzfSo1CoeIeBndYLgt\nM79cys9ExJLMPFBOGz1b6lPA8p7VlwFPl/r4jHqn3/4ycwuwBWBsbCzHx8f7NZu3Pn3bdm78xost\n7b2dp7NPrJzmxj3D92T4YRx3G2Pef+X4nO6vn06nw0L7XXQ8mtytFMAtwN7M/ETPoh3A4TuONgDb\ne+pXlbuWLgZeKKed7gYuiYjF5UL0JaUmSWpJk5h/K/AeYE9EfLvUPgTcANwREdcATwLryrK7gMuA\nSeAl4L0AmXkwIj4K3F/afSQzDzbolySpoVmHQ2Z+g/7XCwBW9WmfwLVH2NZWYOts+yJJOrn8hLQk\nqWI4SJIqhoMkqTJc99pJGiijm3a2tu/9N1ze2r7ngkcOkqSK4SBJqhgOkqSK4SBJqhgOkqSK4SBJ\nqhgOkqSK4SBJqhgOkqSK4SBJqhgOkqSK4SBJqhgOkqSK4SBJqhgOkqSK4SBJqhgOkqSK4SBJqgzl\nfxPa1n8tOLGyld1KOgUO/x6ZWDnN1XP4O2Wu/ntSjxwkSRXDQZJUMRwkSRXDQZJUMRwkSZV5Ew4R\nsSYiHouIyYjY1HZ/JGmYzYtwiIjTgL8DLgUuAN4dERe02ytJGl7zIhyAi4DJzHw8M38K3A6sbblP\nkjS05ks4LAWe6pmfKjVJUgsiM9vuAxGxDlidmX9a5t8DXJSZ75vRbiOwscy+HnhsTjva3LnAD9ru\nxBwbxjHDcI57GMcMC2vcv5GZrz2ehvPl8RlTwPKe+WXA0zMbZeYWYMtcdepki4gHMnOs7X7MpWEc\nMwznuIdxzDC4454vp5XuB1ZExPkRcTqwHtjRcp8kaWjNiyOHzJyOiL8A7gZOA7Zm5qMtd0uShta8\nCAeAzLwLuKvtfpxiC/aUWAPDOGYYznEP45hhQMc9Ly5IS5Lml/lyzUGSNI8YDqdYRPxNRHw3Ih6O\niH+KiLN7ll1XHhfyWESsbrOfJ1tErIuIRyPi5xExNmPZII97KB4DExFbI+LZiHikp3ZOROyKiH3l\ndXGbfTzZImJ5RNwTEXvL9/b7S30gx204nHq7gDdl5m8D/wlcB1AeD7IeeCOwBvhMeYzIoHgE+GPg\n673FQR73kD0G5nN0379em4DdmbkC2F3mB8k0MJGZbwAuBq4t7+9AjttwOMUy86uZOV1m76X7GQ7o\nPh7k9sz8SWY+AUzSfYzIQMjMvZnZ70OKgzzuoXkMTGZ+HTg4o7wW2FamtwFXzGmnTrHMPJCZ3yrT\nPwL20n2Sw0CO23CYW38CfKVMD+sjQwZ53IM8tuMxkpkHoPuLFDiv5f6cMhExCrwZuI8BHfe8uZV1\nIYuIfwN+rc+iD2fm9tLmw3QPS287vFqf9gvq1rHjGXe/1frUFtS4j2KQx6YiIl4JfAn4QGb+MKLf\n277wGQ4nQWa+/WjLI2ID8A5gVf7i3uHjemTIfHascR/Bgh/3UQzy2I7HMxGxJDMPRMQS4Nm2O3Sy\nRcTL6AbDbZn55VIeyHF7WukUi4g1wAeBd2bmSz2LdgDrI+KMiDgfWAF8s40+zrFBHvewPwZmB7Ch\nTG8AjnT0uCBF9xDhFmBvZn6iZ9FAjtsPwZ1iETEJnAH8Tyndm5l/VpZ9mO51iGm6h6hf6b+VhSci\n/gj4NPBa4Hng25m5uiwb5HFfBnySXzwG5vqWu3RKRMQXgHG6TyR9BtgM/DNwB/DrwJPAusycedF6\nwYqIPwD+HdgD/LyUP0T3usPAjdtwkCRVPK0kSaoYDpKkiuEgSaoYDpKkiuEgSaoYDpKkiuEgSaoY\nDpKkyv8DsNJkxc5suMUAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7ff7b6ac3a20>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"err = cg.edge[0][1].compute_fundamental_error()\n", | |
"err.hist()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "AutoCNet", | |
"language": "python", | |
"name": "autocnet" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment