Created
September 9, 2021 11:21
-
-
Save jnothman/0fc6daf3d9d75513dd3311e86e06cc8c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2021-09-09T11:20:14.234777Z", | |
"start_time": "2021-09-09T11:20:14.232154Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from upsetplot import from_contents, plot" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2021-09-09T11:15:58.006192Z", | |
"start_time": "2021-09-09T11:15:57.995175Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"data = from_contents({\"c1\": \"ABDE\", \"c2\": \"AD\", \"c3\": \"BCE\", \"c4\": \"ABD\", \"c5\": \"F\"})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2021-09-09T11:15:58.107232Z", | |
"start_time": "2021-09-09T11:15:58.099741Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>id</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>c1</th>\n", | |
" <th>c2</th>\n", | |
" <th>c3</th>\n", | |
" <th>c4</th>\n", | |
" <th>c5</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"4\" valign=\"top\">True</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <td>A</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <td>B</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <td>D</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <th>False</th>\n", | |
" <td>E</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">False</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">False</th>\n", | |
" <th>True</th>\n", | |
" <th>False</th>\n", | |
" <th>False</th>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>False</th>\n", | |
" <th>False</th>\n", | |
" <th>True</th>\n", | |
" <td>F</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" id\n", | |
"c1 c2 c3 c4 c5 \n", | |
"True True False True False A\n", | |
" False True True False B\n", | |
" True False True False D\n", | |
" False True False False E\n", | |
"False False True False False C\n", | |
" False False True F" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2021-09-09T11:16:15.499591Z", | |
"start_time": "2021-09-09T11:16:15.279873Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"{'matrix': <matplotlib.axes._subplots.AxesSubplot at 0x7f8be880fa58>,\n", | |
" 'shading': <matplotlib.axes._subplots.AxesSubplot at 0x7f8be06aea90>,\n", | |
" 'totals': <matplotlib.axes._subplots.AxesSubplot at 0x7f8c182a4550>,\n", | |
" 'intersections': <matplotlib.axes._subplots.AxesSubplot at 0x7f8bb8832358>}" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAO0AAAEpCAYAAAB/Q6WZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO2de7gcVZnuf292siEXIBcEIiAJmDkojiIiF5kzMIoKGcaMwQt4YURHhQOKOszxOo7H0ZkzPhwc8YZ4hxE8o0GDDooeJIgCCjIBDJcxQ4JErgm5QW7s7O/88VWT3nt3d1Wt7r0rlf39nqeepLurv7Vqd721Vq1a6/1kZgRBUB8mVF2BIAjKEaINgpoRog2CmhGiDYKaEaINgpoRog2CmhGirRknnXSSAbHt+ltbQrQ1Y/Xq1VVXIaiYEG0Q1IwQ7Sgh6UBJ10m6W9IySee12EeSLpK0XNIdko6ooq5BvZhYdQV2YQaAvzGz2yTtAfxG0k/N7K6mfU4G5mXb0cAXs3+DoC3R0o4SZvaQmd2W/X8jcDew/7DdFgCXmnMzMF3S7DGualAzQrRjgKQ5wAuBXw37aH/ggabXqxgp7CAYQnSPRxlJ04BFwHvMbMPwj1t8ZcRwv6R3AO8A2HfffVmyZEmvqxn0iIULF7J27drC+8+YMYMrr7xyxPsnnHBC2+8oluaNHpImAT8ErjGzC1t8/iVgiZldkb2+FzjBzB5qF/PII4+0W2+9dbSqHHSJ1Oo63Jk2GmwbKLrHo4T81/sqcHcrwWZcBZyRjSIfA6zvJNgggOgejybHAW8G7pS0NHvvQ8CzAMzsYuBqYD6wHNgEnFlBPYOaEaIdJczsF3To4mT7GHDO2NQo2FWI7nEQ1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEG0BJB0k6cTs/5OzjAFBUAkh2hwkvR34LvCl7K0DgO9XV6NgvBOizecc3FlxA4CZ/Q7Yp9IaBeOaEG0+W81sW+OFpInkJP0NgtEkRJvP9ZI+BEyW9HLgO8APKq5TMI4J0ebzAeAx4E7gncDVZvbhaqsUjGdCtPm8Efi2mb3WzF5jZl+WdErelyR9TdKjkn7b5vMTJK2XtDTbPtrzmge7JCHafD4L3CDpOU3vfbzA974BnJSzzw1mdni2FYkZBCHaAqwA3gp8V9Jrs/dyU6OZ2c+Bx0ezYsH4JHL55GNmdpuk44ErJB0N9PUo9rGSbgceBM43s2U9ihvswoRo83kIwMxWS3ol8M/A83oQ9zbgIDN7QtJ8fMLGvFY7RlLpXZtWv2ckla4ISXOAH5pZrsglrQSONLPVnfaLpNI7N2ORVDpa2jZI+hcze4+kH9BiMoWZvarL+PsBj5iZSToKH19Y003MYHwQom3PZdm/F6R8WdIVwAnA3pJWAX8PTIKnE0q/Bjhb0gCwGTjNotsTFCC6xyWQNAM40MzuqKoO0T3euRmL7nE88slB0hJJe0qaCdwOfF3ShVXXKxi/hGjz2cvMNgALga+b2YuAEyuuUzCOCdHmM1HSbOB1wA+rrkwQhGjz+ThwDbDczG6RdDDwu4rrFIxjYvQ4BzP7Dr4cr/H6PuDU6moUjHeipQ2CmhGiDYKaEaINgpoR97Q5SNoNv4edQ9PfK9a/BlURos1nMbAe+A2wteK6BEGItgAHmFmeA0UQjBlxT5vPjZL+uOpKBEGDaGnz+RPgLZJW4N1j4W4Wz6+2WsF4JUSbz8lVVyAImonucQ5mdj8wHfiLbJuevRcElRCizUHSecC38Pw9+wD/Kuld1dYqGM9E9ziftwFHm9mTAJL+GbgJ90MOgjEnWtp8BGxver2dAr7HQTBaREubz9eBX0n6Xvb6L4GvVlifYJwTos3BzC6UtAR/9CPgTDP7j2prFYxnQrRtkLSnmW3IvKFWZlvjs5lmFik/gkoI0bbncuAUfM5xs12estcHV1GpIAjRtsHMTsn+nVt1XYKgmRg9zkHStUXeC4KxIkTbBkm7Z/eze0uaIWlmts0Bnlng+3lJpSXpIknLJd0h6YjeHkGwqxKibc878fvZQ7N/G9ti4PMFvv8NOieVPhnPkjcPz4j3xS7qGowj4p62DWb2GeAzkt5lZqVnP5nZz7NWuR0LgEuz/D03S5ouabaZPZRW42C8EC1tPoOSpjdeZF3l/9GDuPsDDzS9XpW9FwQdiZY2n7eb2dPdYTNbK+ntwBe6jNtqKmTrTEwFkkovXLiQtWvXlqrAjBkzuPLKKwvvX7aMnS3+WJVRlkgq3WMk3QG8oJGGUlIfcIeZHVbgu3Nok1Ra0peAJWZ2Rfb6XuCEvO5xu6x5KdnaoG3Gtpb0MCNcJfHHoozImrdzcA3wb5JeJumlwBXAj3sQ9yrgjGwU+RhgfdzPBkWI7nE+78dHks/Gr34/Ab6S96UCSaWvBuYDy4FNwJmjUPdgFyREm4OZDUr6BvAzM7u3xPdOz/ncgHO6rF4wDonucQ6SXgUsJesSSzpc0lXV1ioYz4Ro8/l74ChgHYCZLcWzDQRBJYRo8xkws/VVVyIIGsQ9bT6/lfQGoE/SPODdwI0V1ykYx0RLm8+7gMNwo/IrgA3AeyqtUTCuiZY2BzPbBHwY+HA2sWKqmW2puFrBOCZa2hwkXS5pT0lTgWXAvZL+tup6BeOXEG0+zzWzDbgL49XAs4A3V1ulYDwTos1nkqRJuGgXm9lTtJnYHwRjQYg2n4txJ8apwM8lHYQPRgVBJcRAVAckTQAeMbP9m977PfBn1dUqGO9ES9sBMxsEzh32npnZQEVVCoIQbQF+Kul8SQc2mbvNrLpSwfglusf5vDX7t3lFTpiVB5URos0hzMqDnY3oHucgaYqkj0i6JHs9T9IpVdcrGL+EaPP5OrANeEn2ehXwieqqE4x3QrT5HGJmnwKeAjCzzURS6aBCQrT5bJM0mWwWlKRD8BU/QVAJMRCVz8dwq5kDJX0LOI4wYQsqJESbg5n9RNJvgGPwbvF5Zra64moF45joHucg6VozW2Nm/25mPzSz1ZHqMqiSaGnbIGl3YApZqkt2DD7tSYFUl0EwWoRo2/NO3FbmmXiKy4ZoN1As1WUQjArRPW6DmX0mmw11vpkdbGZzs+0FZva5IjEknSTp3ixx9AdafH6CpPWSlmbbR3t+IMEuR7S0OZjZZyW9BPc6ntj0/qWdvpf5SX0eeDk+IeMWSVeZ2V3Ddr3BzGKGVVCYEG0Oki4DDsGzDGzP3jago2hxg/PlZnZfFufbeCLp4aINglKEaPM5EveJKmsx0ypp9NEt9jtW0u3Ag3hXfFlaNYPxQog2n98C+wFl01AWSRp9G3CQmT0haT7wfWDeiEAFkkqn0stYu2L8sSgjkkr3GEnXAYcDv6Zp+qKZvSrne8cCHzOzV2avP5h97586fGclcGSnyRuRVDo9/liUMRZJpaOlzedjid+7BZgnaS7wB+A04A3NO0jaD/egMklH4aP5a7qoazAOCNHmYGbXJ35vQNK5eCb5PuBrZrZM0lnZ5xcDrwHOljQAbAZOS7h3DsYZ0T1ug6SNtPY3Fu7vtucYVwmI7nE38ceijOgeV4iZ7VF1HYKgFTEjKghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGiHYUKZBUWpIuyj6/Q9IRVdQzqBch2lGiKan0ycBzgdMlPXfYbifjWfLm4VnxvjimlQxqSYh29Hg6qbSZbQMaSaWbWQBcas7NwHRJs8e6okG9CNGOHq2SSu+fsE8QDCFy+YweRZJKF9lnSFJpYBnwvBFfGoNEaqNdRhxDMUK0o8cq4MCm1wcADybsg5ldAlzS6woG9SS6x6PH00mlJfXjSaWvGrbPVcAZ2SjyMcB6M3torCsa1ItoaUeJgkmlrwbmA8uBTcCZVdU3qA+RVDoIakZ0j4OgZoRog6BmhGiDoGaEaIOgZoRog6BmhGiDoGaEaIOgZoRog6BmjIloFy9e/OOxKCcIxgNj1dLuPUblBMEuT3SPg6BmhGiDoGaEaIOgZnRcmidpj14UsmjRogm9ihUE4wEz29jus2hpg6BmxCL4oBteDDwb2A4sBf6z2uqMD+ok2g0l999zVGpRDyYAM4Dp2f8HgbXAuuz/3XIq8DH8UV7DRaEPuAf4IHBjD8qYCMzEf0cBA/gxrKeF+V0ie+F/p0nZ643A48C2HsXfDT+GadnrbfgxlD2Xh1An0QbFmAI8CxdRM7OBfYD7gc1dxP8gcF5WznBeCHwP+GvgB12UsRduJdvsVtmflfkMYCXwVBfx+4A5wO7D3p+VbQ/h4u2GvYF9h73Xjwt4M34MSRfQuKfdeXgjsAL4ZbadkRCjHziIkYJt0Jd9PqnN53n8Ge0F22Ay8BWGukyWYSojBdtMPy64dp8XYQ4jBdvMbPzCkcoMRgq2mcn475BEiHbnYhFwXLZdmvD9WeT/pn3Zfin8LZ0F21zG2xPLeAb5guzHhZHCHnQWbHM9UikyA3AKfoEqTYi2Ok4HbsLv/3rlaTy9x/s1MwtPdVKEfuAtCWVMoviJnHIMUFzsu+EtYlmm4sffy7oMIURbDYcC5wN/DrwEeH/2/gJcyJdRPj3IRIr/nn0l9m2wD7C1xP4p3csy3fbULn5RQZXdN+U7SccQoq2G44HF7BjsWAv8CDgMOBa4DvhSyZhlBzXK7r+F9vfKrRgoGR/K1Sl1FHy0yyjznaRR8BBtNYiRP1jzo4ZvAIeXjDmIG54X4cmSscFHnct876aEMrZQfFT4iYT4UPxxy2BiGU9QXIxJj35CtNWwBHg1/gwPRo42zgfuTYhb9DHFmoTYg3i+3S0F9n0S+HRCGVD8GFIfyaylmKjWFdxvONvxZ8l5DGZllCae01bDPcAFeJd4O3A78Agu1sYkgrMS4q7HB0I6DXA8jk8iSOES4M3445x2926b8cG1nyWWsRp/ltlpQOohyt1fN7Md+AOdHyttAR5OjA9ev8n4YFYrDE++ltTFD9FWx+XZ1szHehD3Qfykm8VQYW3DW9huJg08AZyIT6CYh5+Yjd7aAN61vQafXNHNrKWV+COXmQw9R7cAj9HljCL84jaAD641P8Lajl8wH6W7+g8C9+G9p70YOhbwZBa/6K3MCOok2vE8LbEsj2fbZPyE2U53s6CaWQP8KXAMcA7wnCz+zcAXSOvWt+KxbJuCXxieIr11bcWT+GSW/mwzXEi9miI5iLe4D+PHILz+3czkAuol2qA8vRJqK27OttEmuUUqyDZ6N9e4FUbawF9bYiAqCGpGx5a200LcMixevHiwV7GCYLwTLW0Q1IwQbRDUjBBtENSMEG0Q1IwQbRDUjBBtENSMEO0ujKSpkvaUVMRtIiV+fxZ/D0lllu0VjS9J07IyUhakFyljtyz+NEk91YOkZ0u6SNLdkpZLukbS/G7/VpXNiJLUq+liLTGzbjyEao2kvXHLk/6m97YBj5lZygqf4fEnA/vh1i0NTNI64GEz62qqniTh83aHzD2WtBl41MyKrKLJK2OPrIwhc48lrQUeMbPtXcTuA74IvAmfRtr4HQ7BTQ8elXSima1IiR8t7U6CpPdJukvSHZKulZRk/CXpQOCZjFyF0w/sL6msI8bw+FPxk294xgjhq4ueLSnF8aERX8BcfDL/8EZlMnBQdlFKRtJ03NxteA+kD7/YHdxla/hV3KhvMiN/h2m4qdvNkvZLCR6i3Xn4D+BIM3s+8F3gU2UDZCdjnu/QLElJiy8yQT2LzufNJOCAlPgZ+7DDJ7gdz5RUxJxtBJIm4ksLO/XEGj2JlPgvBF5LZwO8Pvx3+ruUMkK0FSHpjKxVvV3SZWZ2nZk1JsffTNqJX9RlMbWl2otivkbTJLVbS9qW7KIwM3dHJ9VRchbF7FdnJLa276P9OtpmJgFvyXoupQjRVoCkw4APAy81sxfgXsLNvA1fIF8mZh/FnQynZQIpS5kkaimt+WSKm52lLtUsegwTSLM4fQXFvbQGcIP3UsTSvGp4KfBdM1sNYGZPL0yX9CbgSNz8rQxlL8AT8HWwo1VGSoNQ5kKSOtA42sdQ5n7eSLBpjZa2GloZuyHpRLwFfpWZlV3wPUBx+5LtiaOjZdadpqxRLTPqnLoGdrSP4dES+07CrW9KEaKthmuB10maBSBpZjaA8SVcsGV+eADMzHCrlCKkWs4U/V5Rc7MhmNk2ijsgFj3W4RQ9hi1NYwxl+BzFF70/YGZ3lS0guscVYGbLJH0SuF7Sdnzk+AB81PQ72e3m783sVSVDP4Y773e6p9pOmhsjZrY1exab5+7/mJml+hI/it9Ldur+NrLPpbARd/TI65Y+khj/UuATBfZ7EviHlAJCtBVhZt8EvtnjmNskrcSfQbYS7gCwMmvRUlmF99DaDQStTukpNDCzJyQ9QPvHMluBFakXBTMzSSvwZ8HthPuH1AkcZrZe0in4QGLDG2o4T+JZJIYb+xUiRLuLYWZPSrqHHflpJ+JiXQes7WamTxZ/EFgpaRr++KTxvPRJYI2Zde1LZWbrJD2JP/7ZC79INFrXddmtQDfxByQtxy88M/FHNIN4K7ymy4saZnaDpOOAC/EZUI2/0UbcSfLjwJdTj6My0Y7naYajTSbM1dk2WmU8QbrLf5H4T+Fd1NRual58w++7u54S2Sb+7cDLspltK7O35wO/7PaiEy1tEIwiZnZ/45G4mf2iFzFj9DgIakaINghqRog2CGpGiDYIakaINghqRsfR42x1f9csWrRoQq9iBUFdKaOBThk5oqUNgpoRz2mD8c4B2bYFuJveptOEoQ4Wz8TzB3dFr0XbMtnvihUr2n42ioz3fLZ74FMAG9MY15OeAb4Vk/ApgM3TGNdSfo1uJ6bjv2MjP+1aepf68pXAB4DD8CmSysq5FLgAX3zRDbOB/wmc3vTe0mz7J+C61MDR0u569OPGYcMXY++Fn5wr6T6x8WxG2sJMw/2dHqa7bPPgrdOBjDw/p+OivZ/ia4db8SHg3exoBZv9pt4GvAZ4GTumH5blj4Cf4hfO5mPYHU/G/W18JdBnU4LHPe3OxwK8V1LahgRf2TOH9u4J/fjqlm6cBvejvY+TcEHnmct1Yjf8otOuQZmCH2MqCxgq2OH04wsh/p20v9NuwNXsWKzRism42cGJCfFDtDsZ04CzgVsSvz+LfI+lRrc2hYkFv/uMxPjgrXXeeTkZ7zmk8FE6OyWSlT8DOCkh/kLaL8lrZgou3NKEaKvjdOAm4Ebgkuy9jwD/QvpgSNEWLrUlnEExb6ZJpI0p9FHceC3lGA4Divo+TwPOTSjjXPItYJvrM6dsAXFPWw2HAucDL8fv/2YAz8dHMX+Md9/K0kfx33MSfsEue19Yxms4xbB8N4obtpW2aMVvDQZK7l+WA0vsuw2/FVhZpoAQbTUcDyxmx4DNOuBbwFldxCy7RjNlTWeZ7+yM8csINmV/KD96XnpQMLrH1TDcjXEP4Ln4AMZvgRcD/5dyg1GDFO9WbybtpC9qWAZpj2a2UPykL1OXBksp3kJvx29dyvJriv9t+4HSxm4h2mpYAryaHYM6jVHf52XbLcDrccO3MhR91JL6SGYdxUS1Bb8wlGW0HSUfBq6nmKi2kvZI5jMUu2BtB36A/01LEaKthnvwB/g/wq/m/9ijuI+TbwGzkYQTJcPIn9EzSIKXbxOPkd9jWEPaRQF89DhPVJtxm9s7E+LfiF90txQo45MJ8UO0FXI5cDRu/HX2sM/mU76VbXA/flIPH2QaxD2jfp8Yt8GGLEYrYW0CVpB/wnZiELgPn8E1vEUcwFvLh7uIfxf+WGYjI8VreLf7euDMLso4DfhVFmv4MWzCj+0U/DhL0+uBqJbD/HPnzr2e8mkugnQexv2DG1MAt+Ni61VO4I3ZNoWh0xh7NW93ELdq7cOPQbhgezUV9ib8ccsb8cG/RlrRa/BHbin3ss1sAv4CP+ffi6eBARfpF4Ar6GJKaYwe77oMkt4NLsomejcXuBXbSTclz2Md8Plsa1wMXtfjMq7Ptkb8w3sRNLrHQVAzOra0nRbilmHx4sWDvYoVBL2myeJ0VM7RXsePljYIakaINghqRog2CGpGiDYIakaINghqRog2CGpGTK7YBZE0ATcuOx13kXgU+Ffg2i4ytLcqR/hKFQOe6jaF47DY/cCpwF/is6LuB75mZr/uYRnPA97e9PptwBVmNioTRiRN6Mnf38x6tuE/3ojtggsuaPn+aG69PK46bcCx+KT+DU1/j0bC5AeAF/WgjEm4Hehh+OL95wPPAfYFJvQg/kJ8fm7zMQzgiyHuAA7qMv4zgF/gs7meaipjIz4d8x09OAZl5RzaFP95uNFBfzexo3u8CyHpaOD/4eZqzbYtwi1QDgCWSDqiizJ2A54N7M1Q47NJuGgPkZRsHCfptcBleOvafAx9wFR83fGtkg5IjD8DX/P6Ytxrqrm3OQ2fT/1pSe9KiZ+VIdz1YjZDHTwm4Msx50nK86lqS4h2J0HSWZLulLRU0i8kPbfk94UvnM87GaYCV6gxTac8c+hsHjcZvziURtJU4Ot0PoY+3J7n8yllAP+A9xI62eFMAT4laXZiGbPp7BPVB8xJ/Q1CtDsPl5vZH5vZ4cCngAtLfv9PcTfGPISbm724ZPxGLpoizg97SspzhWzFGyi2EqkPeIWkfcsEz1q3t1Dcv+qdZeJnZTRa0zwm4jarpQnRVoSkMyTdIel2SZeZWfOys6mUX0a3MPteESbjAzxlKWpbqhL7NvNGijsZDuCDbWU4juK+T7szNDtAUfaguK6SRBujxxUg6TDc8/Y4M1staWb2/jnA+/CW4KUdQrRiJsWdDIu2BsMpc6+acl9bRugTKW632qCxNrcoRS8gzYz23yha2op4KfBdM1sNYGaPZ/9+3swOAd6PeyCX4UGKm6INAA+VjN/4XlFSUo88UjL+mpLxV5fcP8WHarT/RiHaihjuxjicb1O++3oFxZ0jnsrKKEvRBemD+CObsnyV4o4OE3H3yjL8knJuj18uGR+8/kWFm7TAP0RbDdcCr5M0C0DSTEnzmj7/c+B3ZQKa2VLgP8k/KQeApWZ2b5n4WRmbKGZd+riZpWTP+z7FWp8t+MBdKfsZMxvA3RKLmMIJ+GaZ+FkZRrEWfSuJljNxT1sBZrZM0ieB6yVtx03c1ks6kR0pHf8qIfRC4Fb83rDV/dJAFvv1SRV37gcOpn22gQ2kdb0xs6cknYJnnGs3qLYVd+R/b0oZeJrJV+Ce0pPb7LMJeL2ZpfQWMLNHsxld7cYNtgErMoGXJkRbEWb2TRKu5DkxV0h6URb3KLy12I0d7og3An9lZqu6KGNA0nL8WeksXLwNF8M1qSd6U/ybJB2PP689hB3PbDfhPcPvA++0RBcIM9sm6WV4i/tmvCvfuEA8gd9Xv8PMfpZ+FGBmqyStxyehNNiK3yen9kQAUKLYS7F48eJbFyxYcOSoFxQ8jaRD8Pvi6fiJ8j0zW1lppUoi6XB2WMmeA3zHzLpN9twcfy/gtey4dz0OuCm1BexQjs/xNUud0DKEaGl3Uczsv4D/U3U9usHMljb5K31hFOKvB74i6cvZ626tU8eEGIgKgpoRog2CmhGiDYKaEaINgpoRog2CmtFx9DhbitU1ixYtmtCrWMH4ZCzOn9Euo0z8Ts+ho6UNgpoRog3qQtGF62UZy7kKPSkrRLvrshuwD2598gx6f9ILn8o4G9iPNrmJE+nD007e1PTeg7h31It6VMZzgIsZOk/6dtzZot286jJMAd6BJ7Fu8AfgImBey28UJE/5PUniu2LFip7FKkEvT6I60Yd7NA1fwL0PvqpkFSOzxJdlZhaveVHCLHyxw0N0kTAZn8T/fdzhsXnRQD+eqPnlwCeBz3ZRxuvxucf9DNXAXOB/A2cDJ5O2nhb8b/MT/GLW7Hc1GXgTfkH6a+CHKcGjpd15eAlwA74KZ0FijAn4idfOcWGP7PNu5sDOwlvXVquIJgEHdii/CN/EV+C0WuUzARfBR4BXJ8b/E7y1m0LrRmsKvlDhe4nx+/B1vs+itUHdxOz9r5LYawjR7jysAs4C/q2LGDPJN17bHe/WpjABt0nthHBRp/DfgBPI755OBj6RWMbHab8kr0E/8EfAf0+I/0rc7TGvF7s78HcJ8UO0FXI6fs92I3AJ8HtgGd11XYuKsYhrY7v4RVrpftJa27MoPlgzEzimZPyDccPwIkwB3l0yPsB5FDt24auK9itbQKzyqYZDgfPx+7PHSW/5mumj+GBTP/mWN63Ia6Ga2R1fn1qGIyh+Tk7AB5NuLhH/UHwBepGBJuEZFMpyaIl9t+KDUg+XKSBa2mo4HljMjoGOJK+goPYkrdsN0VZDSiuXx3a8FSnCtsTyi3grpezb4DcUdygcBO4uGf8eivdGDPhtyfhQrk67475epQjRVsMSfPSz4SHUi+4xFH9EUdZ6tMFaiol9G8UM4IZzMcXdEtdQrmsMcB9wZ8F9N+GjzGW5iGK3BYY/LShjGwuEaKviHuAC4Ef4QNQ/4vdz9+Bi/gyeJKosj5Nvo7qF9O74IPn3X0aisRve6vyMHZ5W7diMm72n8FHyewHb8N/iFwnxf4w/CcjrMWwhcQQ8BqKq4/Jsa6bMIEYrDFhB68kVsGNyRTdd80ZrPnxyBfiJ+iDlB6CaORO4Ejickc9qG7cA/wsfE0jhl8C5wOfw58rDNbAJ/xsuTIw/iFvg/gR/9DX8We1T2fZW4LaUAvJE25NZRXPnzr0eH3wJRp/tuM1pP26lOhG3Tl1P8XvePB7HW+vp+HNhw1uvXsx62wycgpvSvRcfwR3AxwF+gPdClnZZxnfwKYvvxmcnCb8ArQQ+jT8rL2r83orH8Mkyp+PHsD/+uwwC38Iz/v1XavCObow9XJp3/amnnhqiDVKYnG0bKJdyoyh9+MVtK2n34UWYhl9E11HwOXynpb7VeqMAAAJaSURBVHnRPQ52djaTNhJdlO2kzzEuSje3CyOIgaggqBkdW9pUF/fhLF68eLBXsYJgvBMtbRDUjBBtENSMEG0Q1IwQbRDUjLzntD9maKq+VPamWKLdXrK7mRVdOxkEtWFMUl1KutXMxjTVZRVlBsFYEN3jIKgZIdogqBljJdpLxqicqssMglFnTO5pgyDoHdE9DoKa0RPRSjpQ0nWS7pa0TNJ5LfY5QdJ6SUuz7aM9KPckSfdKWi7pAy0+l6SLss/vkHREt2UGQdX0amneAPA3ZnZbtgb3N5J+amZ3DdvvBjM7pRcFSurDFxO/HHdjuEXSVcPKPBm3qJwHHA18Mfs3CGpLT1paM3vIzG7L/r8Rd6TbvxexO3AUsNzM7jOzbcC3GZlOYwFwqTk3A9MlpbrfB8FOQc/vaSXNwXOx/KrFx8dKul3SjySlGEE3sz/wQNPrVYy8UBTZJwhqRU+dKyRNAxYB7zGz4X5BtwEHmdkTkubjmdG6SfnXKj3F8KHwIvsEQa3oWUsraRIu2G+Z2ZXDPzezDWb2RPb/q4FJkrqZ17wKz9DW4ADcCbDsPkFQK3o1eiw8dd/dZnZhm332y/ZD0lFZ2amm2QC3APMkzZXUD5wGXDVsn6uAM7JR5GOA9WaW6skbBDsFveoeHwe8GbhTUsPe8kN4jk7M7GLgNcDZkgZwo67TrIuZHWY2IOlc4BrcUe9rZrZM0llNZV4NzAeW4362Z6aWFwQ7CzEjKghqRsyICoKaEaINgpoRog2CmhGiDYKaEaINgpoRog2CmhGiDYKaEaINgprx/wEt2/lj5S8sQwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 288x352 with 4 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plot(data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"z”" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment