Skip to content

Instantly share code, notes, and snippets.

View joeyism's full-sized avatar

Joey joeyism

View GitHub Profile
import pickle
def __extract_file__(fname):
with open(fname, 'rb') as fo:
d = pickle.load(fo, encoding='bytes')
return d
import pickle
def __extract_file__(fname):
with open(fname, 'rb') as fo:
d = pickle.load(fo, encoding='bytes')
return d
def __extract_reshape_file__(fname):
import numpy as np
import pickle
def __extract_file__(fname):
with open(fname, 'rb') as fo:
d = pickle.load(fo, encoding='bytes')
return d
import numpy as np
import pickle
import os
def __extract_file__(fname):
with open(fname, 'rb') as fo:
d = pickle.load(fo, encoding='bytes')
return d
import numpy as np
import pickle
import os
import math
def __extract_file__(fname):
with open(fname, 'rb') as fo:
d = pickle.load(fo, encoding='bytes')
return d
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,