Created
September 6, 2017 21:25
-
-
Save john-science/cb523ded1795a03e3cce3a6943e9396b to your computer and use it in GitHub Desktop.
Greedy Cave EXP-Grinding Rate
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE29JREFUeJzt3XuwnVddxvHvU2Itlt68NJVUoBUKLaIQNIUp2i3VXnBM\n660GlYug49BKO8A4JPxBMzoo9UZhtFVGhBQKNTBiW61pKOkZB7Um0tbWJrTx0ksqjTeoVEFa+/OP\n/abspmmyz8rZZ+999vczs+e8e2W971575ZzznLXWft83VYUkSfN1yLgbIEmaTgaIJKmJASJJamKA\nSJKaGCCSpCYGiCSpybJxN2ChJfFzyZLUoKoyn/pLcgRSVTP1uOSSS8behkl72Cf2h/0xv0eLJRkg\nkqTRM0AkSU0MkCWg1+uNuwkTxz55IvvjieyPhZHWua9JlaSW2nuSpFFLQrmIrlmQ9B+SxscAkSQ1\nMUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1\nMUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUpORB0iStyT5+yS3J7kqyaFJjkmyOcldSW5IctRA\n/XVJdibZkeTMgfKV3THuTnLZqNstSdq/kQZIkmcCbwZWVtV3AsuAVwNrgRur6vnAFmBdV/8U4Hzg\nZOAc4PIk6Q53BfDGqjoJOCnJWaNsuyRp/xZjCutpwOFJlgFPBx4AzgU2dP++ATiv214NXF1Vj1bV\nPcBOYFWS44AjqmpbV+/KgX0kSWMw0gCpqn8Bfgu4j35wPFRVNwLLq2p3V+dB4NhulxXA/QOHeKAr\nWwHsGijf1ZVJksZk2SgPnuRo+qONZwMPAR9P8tNA7VV17+cHZf369Y9v93o9er3eQh5ekqbe3Nwc\nc3NzB3WMVC3o7+4nHjz5ceCsqvr57vlrgJcBrwR6VbW7m566qapOTrIWqKq6tKu/CbgEuHdPna58\nDXB6Vb1pH69Zo3xPmgx7Vsb8r5YWRhKqKgeu+TWjXgO5D3hZksO6xfAzgO3AtcDruzqvA67ptq8F\n1nSf1DoBeC6wtZvmeijJqu44rx3YR5I0BiOdwqqqrUk+AdwKPNJ9fT9wBLAxyRvojy7O7+pvT7KR\nfsg8AlwwMJy4EPgQcBhwfVVtGmXbJUn7N9IprHFwCms2OIUlLaxJnMKSJC1RBogkqYkBIklqYoBI\nByH52nqMNGsMEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQA\nkSQ1MUAkSU0MEElSEwNEktTEAJEOwEu2S/tmgEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaI\nJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBoYnkjJ2myGSCS\npCYGiCSpiQEiSWoy8gBJclSSjyfZkeTOJKcmOSbJ5iR3JbkhyVED9dcl2dnVP3OgfGWS25PcneSy\nUbdbkrR/izECeS9wfVWdDHwX8DlgLXBjVT0f2AKsA0hyCnA+cDJwDnB58vgy6hXAG6vqJOCkJGct\nQtslSU9hpAGS5Ejge6vqgwBV9WhVPQScC2zoqm0Azuu2VwNXd/XuAXYCq5IcBxxRVdu6elcO7CNJ\nGoNRj0BOAP49yQeT3JLk/Um+AVheVbsBqupB4Niu/grg/oH9H+jKVgC7Bsp3dWWSpDFZtgjHXwlc\nWFV/m+Q99Kevaq96ez8/KOvXr398u9fr0ev1FvLwWoL2TJTWgn4nSpNrbm6Oubm5gzpGaoQ/MUmW\nA39dVSd2z19BP0C+HehV1e5ueuqmqjo5yVqgqurSrv4m4BLg3j11uvI1wOlV9aZ9vGaN8j1p8ezv\nl/pC/8JvfS2DR0tFEqpqXqfujnQKq5umuj/JSV3RGcCdwLXA67uy1wHXdNvXAmuSHJrkBOC5wNZu\nmuuhJKu6RfXXDuwjSRqDUU9hAVwEXJXk64B/An4WeBqwMckb6I8uzgeoqu1JNgLbgUeACwaGExcC\nHwIOo/+prk2L0HZJ0lMY6RTWODiFtXQ4hSUtnombwpIkLV0GiCSpiQEiSWpigEiSmhggkqQmBogk\nqYkBIklqcsATCZOcBqwHnt3VD/3LjZw42qZpFngehTS9hjkT/QPAW4DPAv832uZIkqbFMAHyUFX9\n+chbIkmaKge8lEmSd9O/dtUfA/+7p7yqbhlt09p4KZPpMimXEJmUdkjj0nIpk2FGIKd2X797oKyA\nV87nhSRJS4sXU9RYTcpf/pPSDmlcFnQEkuRnquojSd66r3+vqt+ebwMlSUvH/qawDu++HrEYDZEk\nTRensDRWkzJ1NCntkMZlJIvo3a1l3ww8Z7B+Va2ebwOlpcbg0Cwb5lNYf0L/ZMLrgMdG2xxJ0rQY\nJkC+UlXvG3lLJElTZZgTCX8KeB6wGU8k1AKblLUH1zk060Z1IuGLgNfQP3FwzxSWJxJK0owbZgTy\nD8ApVfXVxWnSwXEEMl0cgUiToWUEMsz9QP4eOLqtSZKkpWqYKayjgc8l2cYT10D8GK+0H45ctNQN\nEyCXjLwVkqSp45noGqulvAbiCETTZFSfwpJmmgEg7dswi+iSJD3JUwZIkvcn+ZEkXo1XkvQkT7kG\nkuRU4BzgDOCr9M9E31RVf7d4zZs/10CmyzSsgUzSMaVRaVkDGWoRPck3AWfSD5QXAbfSD5ONLQ0d\nJQNkuhgg0mQYWYDs44VeCpxdVe+a984jZoBMl0k5A9wA0axbtACZZAbIdDFApMkwqkuZSJL0JAaI\nJKnJMLe0PQy4AHgF/cu4fwa4oqq+MuK2SZIm2DCXc98IfAn4SFf0U8DRVfUTI25bE9dApotrINJk\nGNWlTL6jqk4ZeH5Tku3za5okaakZZg3kliQv2/OkO8Hwb0fXJKmvyr/epUk2TIC8FPirJPckuQf4\na+B7ktyR5PZhXiTJIUluSXJt9/yYJJuT3JXkhiRHDdRdl2Rnkh1JzhwoX5nk9iR3J7lsXu9SkrTg\nhlkDefb+/r2q7j3giyRvoR9ER1bV6iSXAv9RVb+e5O3AMVW1NskpwFXA9wDHAzcCz6uqSvI3wC9W\n1bYk1wPvraob9vFaroFMkUlZJ3ANRLNuVOeBPK+q7h18AL2B7QM16njgVcAfDBSfC2zotjcA53Xb\nq4Grq+rRqroH2AmsSnIccERVbevqXTmwjyRpDIYJkHcmuSLJ4UmWJ7kO+OF5vMZ7gF+i/xHgPZZX\n1W6AqnoQOLYrXwHcP1Dvga5sBbBroHxXVyZJGpNhPoV1OvA24Lbu+Tur6mPDHDzJDwG7q+q2JL39\nVF3QQf769esf3+71evR6+3tpyWkmzZ65uTnm5uYO6hjDrIF8I/B7wJH01yU+Alw6zEJDkl8FfgZ4\nFHg6cATwSeC76U+D7e6mp26qqpOTrAWqqi7t9t9E/57s9+6p05WvAU6vqjft4zVdA5kiS3mdYCm/\nNy09o1oDuZn+pdvPpr+4/UzgL4c5eFW9o6qeVVUnAmuALVX1GuA64PVdtdcB13Tb1wJrkhya5ATg\nucDWbprroSSrkgR47cA+kqQxGGYK6weq6j6AqvoycFGS7zvI1303sDHJG+iPLs7vjr+9O/N9O/AI\ncMHAcOJC4EPAYcD1VbXpINugJcq//KXFMcwUVoCfBk6sql9O8izguKrauhgNnC+nsKbLUv747KS0\nQxrGqKawLgdeDry6e/4l4Hfn2TZJ0hIzzBTWqVW1MsmtAFX1hSSHjrhdkqQJN8wI5JEkT6P7qG2S\nbwEeG2mrJEkTb5gAeR/9j94em+Rd9O8H8qsjbZVmhhdMlKbXUPdET/IC4AwgwKeraseoG9bKRXS5\neC3NX8si+lABMk0MEBkg0vyN6lNYkiQ9iQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKk\nJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKk\nJgaIJKmJASJJamKASJKaLBt3A6SFVjXuFkizwRGIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpi\ngEiSmhggkqQmBogkqclIAyTJ8Um2JLkzyR1JLurKj0myOcldSW5IctTAPuuS7EyyI8mZA+Urk9ye\n5O4kl42y3ZKkAxv1CORR4K1V9ULg5cCFSV4ArAVurKrnA1uAdQBJTgHOB04GzgEuT5LuWFcAb6yq\nk4CTkpw14rZLkvZjpAFSVQ9W1W3d9sPADuB44FxgQ1dtA3Bet70auLqqHq2qe4CdwKokxwFHVNW2\nrt6VA/tIksZg0dZAkjwHeDFwM7C8qnZDP2SAY7tqK4D7B3Z7oCtbAewaKN/VlUmSxmRRAiTJM4BP\nABd3I5G9r5fq9VMlacqM/HLuSZbRD48PV9U1XfHuJMuranc3PfWvXfkDwLcN7H58V/ZU5fu0fv36\nx7d7vR69Xu8g34UkLS1zc3PMzc0d1DFSI755QpIrgX+vqrcOlF0K/GdVXZrk7cAxVbW2W0S/CjiV\n/hTVp4DnVVUluRm4CNgG/BnwvqratI/Xq1G/J0laapJQVTlwzYF9RvnLNslpwF8Ad9CfpirgHcBW\nYCP9UcW9wPlV9cVun3XAG4FH6E95be7KXwp8CDgMuL6qLn6K1zRAJGmeJi5AxsEAkaT5awkQz0SX\nJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACR\nJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACR\nJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACR\nJDUxQCRJTQwQSVKTqQqQJGcn+VySu5O8fdztkaRZNjUBkuQQ4HeAs4AXAq9O8oLxtmoyzM3NjbsJ\nE8c+eSL744nsj4UxNQECrAJ2VtW9VfUIcDVw7pjbNBH8YXgy++SJ7I8nsj8WxjQFyArg/oHnu7oy\nSdIYTFOASJImSKpq3G0YSpKXAeur6uzu+VqgqurSvepNxxuSpAlTVZlP/WkKkKcBdwFnAJ8HtgKv\nrqodY22YJM2oZeNuwLCq6v+S/CKwmf7U2wcMD0kan6kZgUiSJouL6FMmyQeS7E5y+0DZMUk2J7kr\nyQ1JjhpnGxdTkuOTbElyZ5I7klzUlc9knyT5+iR/k+TWrj8u6cpnsj/2SHJIkluSXNs9n/X+uCfJ\n33XfJ1u7snn3iQEyfT5I/2TKQWuBG6vq+cAWYN2it2p8HgXeWlUvBF4OXNidYDqTfVJV/wt8f1W9\nBHgxcE6SVcxofwy4GNg+8HzW++MxoFdVL6mqVV3ZvPvEAJkyVfUZ4At7FZ8LbOi2NwDnLWqjxqiq\nHqyq27rth4EdwPHMdp/8T7f59fTXOYsZ7o8kxwOvAv5goHhm+6MTnvz7f959YoAsDcdW1W7o/0IF\njh1ze8YiyXPo/9V9M7B8Vvukm665FXgQ+FRVbWOG+wN4D/BL9IN0j1nuD+j3xaeSbEvyc13ZvPtk\naj6FpXmZuU9GJHkG8Ang4qp6eB/nA81Mn1TVY8BLkhwJfDLJC3ny+5+J/kjyQ8DuqrotSW8/VWei\nPwacVlWfT/ItwOYkd9HwPeIIZGnYnWQ5QJLjgH8dc3sWVZJl9MPjw1V1TVc8030CUFX/BcwBZzO7\n/XEasDrJPwEfA16Z5MPAgzPaHwBU1ee7r/8G/An9aw3O+3vEAJlO6R57XAu8vtt+HXDN3jsscX8I\nbK+q9w6UzWSfJPnmPZ+eSfJ04AfprwvNZH9U1Tuq6llVdSKwBthSVa8BrmMG+wMgyTd0I3aSHA6c\nCdxBw/eI54FMmSQfBXrANwG7gUvo/wXxceDbgHuB86vqi+Nq42JKchrwF/R/AKp7vIP+lQo2MmN9\nkuRF9BdAD+kef1RV70ryjcxgfwxKcjrwtqpaPcv9keQE4JP0f1aWAVdV1btb+sQAkSQ1cQpLktTE\nAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQKQFkuTiJIeNux3SYvE8EGmBJPln4KVV9Z/jbou0GByB\nSA26y0H8aXdDntuTvBN4JnBTkk93dS5PsnXwxk5d+auS7OiuhPreJNcNHPMDSW5O8tkkPzyedycN\nxxGI1CDJjwJnVdUvdM+PBG6jPwL5Qld2dFV9MckhwKeBNwM7u8crquq+7tI0z+gur/Eu4M6q+mh3\nPautwIur6suL/w6lA3MEIrW5A/jBJL+W5BXdlW/3vsjlmiSfBW4FTukeLwD+saru6+p8bKD+mcDa\n7l4ec8ChwLNG+zakdt4PRGpQVTuTrKR/p7tfSbKFgfsndDe3ehv9Ecl/JfkgsGeBPexbgB+rqp0j\na7i0gByBSA2SfCvw5ar6KPCbwErgS8CRXZUjgYeBL3X3WDinK78LOCHJnpHFTw4c9gbgooHXePHo\n3oF08ByBSG1eBPxGkseArwJvAl4ObEryQFWdkeQ2+vfiuB/4DEBVfSXJBcANSR4GtvG1kcuvAJcl\nuZ3+aOSfgdWL+aak+XARXVpkSQ6vqv/utn8XuHuvm2FJU8EpLGnx/Xz38d876U91/f64GyS1cAQi\nSWriCESS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNfl/xuC2LQ6WhXcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f8cbf440e10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"from matplotlib import collections as mc\n", | |
"%matplotlib inline\n", | |
"\n", | |
"# raw data, straight from screenshots\n", | |
"raw_data = [(17, (196266 - 185204), 2), (18, (208966 - 196266), 2), (19, (217978 - 208966), 1),\n", | |
" (20, (225760 - 217978), 2), (22, (248708 - 236672), 2), (23, 262819 - 248708, 2),\n", | |
" (24, 277200 - 262819 + 982, 2), (25, 15534 - 982, 3)]\n", | |
"\n", | |
"# data munging\n", | |
"data = []\n", | |
"for d in raw_data:\n", | |
" data.append([(d[0], d[1] / float(d[2])), (d[0], d[1] / float(d[2] + 1))])\n", | |
"\n", | |
"# create plot of multiple line segments\n", | |
"lc = mc.LineCollection(data, linewidths=2)\n", | |
"fig, ax = plt.subplots()\n", | |
"ax.add_collection(lc)\n", | |
"\n", | |
"# format plot\n", | |
"ax.set_xlim([1, 50])\n", | |
"ax.set_ylim([0, max([max([v[0][1], v[1][1]]) for v in data]) + 250])\n", | |
"ax.set_xlabel('stage')\n", | |
"ax.set_ylabel('exp / min')\n", | |
"\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment