Skip to content

Instantly share code, notes, and snippets.

@johntyree
Created December 20, 2012 10:54
Show Gist options
  • Save johntyree/4344602 to your computer and use it in GitHub Desktop.
Save johntyree/4344602 to your computer and use it in GitHub Desktop.
Cython with Numpy. From 2.2s to 0.4s.
# cython: infer_types=True
# Use the C math library to avoid Python overhead.
from libc cimport math
# For boundscheck below.
import cython
# We're lazy so we'll let Numpy handle our array memory management.
import numpy as np
# You would normally also import the Numpy pxd to get faster access to the Numpy
# API, but it requires some fancier compilation options so I'll leave it out for
# this demo.
# cimport numpy as np
import random
# This is a small function that doesn't need to be exposed to Python at all. Use
# `cdef` instead of `def` and inline it.
cdef inline int h3(int a,int b,int c,int d, int m,int x):
return (a*x**2 + b*x+c) % m
# If we want to live fast and dangerously, we tell cython not to check our array
# indices for IndexErrors. This means we CAN overrun our array and crash the
# program or screw up our stack. Use with caution.
# @cython.boundscheck(False)
# `cpdef` so that calling this function from another Cython (or C) function can
# skip the Python function call overhead, while still allowing us to use it from
# Python.
cpdef floyd(int[:] inputx):
# Type the variables in the scope of the function.
cdef int a,b,c,d, value, cyclelimit
cdef unsigned int dupefound = 0
cdef unsigned int nohashcalls = 0
cdef unsigned int loopno, pos, j
# `m` has type int because inputx is already a Cython memory view and
# `infer-types` is on.
m = inputx.shape[0]
cdef unsigned int loops = int(m*math.log(m))
# Again using the memory view, but letting Numpy allocate an array of zeros.
cdef int[:] listofpos = np.zeros(m, dtype=np.int32)
# Keep this random sampling out of the loop
cdef int[:, :] randoms = np.random.randint(0, m, (loops, 5)).astype(np.int32)
for loopno in xrange(loops):
if (dupefound == 1):
break
# From our precomputed array
a = randoms[loopno, 0]
b = randoms[loopno, 1]
c = randoms[loopno, 2]
d = randoms[loopno, 3]
pos = randoms[loopno, 4]
value = inputx[pos]
# Unforunately, Memory View does not support "vectorized" operations
# like standard Numpy arrays. Otherwise we'd use listofpos *= 0 here.
for j in xrange(m):
listofpos[j] = 0
listofpos[pos] = 1
setofvalues = set((value,))
cyclelimit = int(math.sqrt(m))
for j in xrange(cyclelimit):
pos = h3(a, b, c, d, m, inputx[pos])
nohashcalls += 1
if (inputx[pos] in setofvalues):
if (listofpos[pos]==1):
dupefound = 0
else:
dupefound = 1
print "Duplicate found at position", pos, " and value", inputx[pos]
break
listofpos[pos] = 1
setofvalues.add(inputx[pos])
return dupefound, nohashcalls
import math, random
cdef int a,b,c,d,m,pos,value, cyclelimit, nohashcalls
def h3(int a,int b,int c,int d, int m,int x):
return (a*x**2 + b*x+c) %m
def floyd(inputx):
dupefound, nohashcalls = (0,0)
m = len(inputx)
loops = int(m*math.log(m))
for loopno in xrange(loops):
if (dupefound == 1):
break
a = random.randrange(m)
b = random.randrange(m)
c = random.randrange(m)
d = random.randrange(m)
pos = random.randrange(m)
value = inputx[pos]
listofpos = [0] * m
listofpos[pos] = 1
setofvalues = set([value])
cyclelimit = int(math.sqrt(m))
for j in xrange(cyclelimit):
pos = h3(a,b, c,d, m, inputx[pos])
nohashcalls += 1
if (inputx[pos] in setofvalues):
if (listofpos[pos]==1):
dupefound = 0
else:
dupefound = 1
print "Duplicate found at position", pos, " and value", inputx[pos]
break
listofpos[pos] = 1
setofvalues.add(inputx[pos])
return dupefound, nohashcalls
#/usr/bin/env python
import math, random
import numpy as np
import pyximport; pyximport.install()
import cyhash as cy
m = 5000
inputx = np.array(random.sample(xrange(m**2), m), dtype=np.int32)
(dupefound, nohashcalls) = cy.floyd(inputx)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment