Created
April 17, 2018 14:24
-
-
Save jojonki/95fed8a6f743741201f5cd9d807e3330 to your computer and use it in GitHub Desktop.
A simple usage of pack_padded_sequence and pad_packed_sequence in pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"from torch.autograd import Variable\n", | |
"from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence\n", | |
"from itertools import chain" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sequences: [['hello'], ['hi', 'how', 'are', 'you'], ['good', 'thank', 'you']]\n", | |
"max_seq_len: 4\n", | |
"Vectorized: [[3], [4, 5, 1, 7], [2, 6, 7]]\n" | |
] | |
} | |
], | |
"source": [ | |
"seqs = ['hello', 'hi how are you','good thank you']\n", | |
"seqs = [s.split(' ') for s in seqs]\n", | |
"print ('Sequences:', seqs)\n", | |
"max_seq_len = max(len(s) for s in seqs)\n", | |
"print('max_seq_len:', max_seq_len)\n", | |
"vocab = ['<pad>'] + sorted(list(set(chain.from_iterable(seqs))))\n", | |
"\n", | |
"vocab_size = len(vocab)\n", | |
"embd_size = 12 # E\n", | |
"hidden_size = 5 # H\n", | |
"\n", | |
"embed = nn.Embedding(len(vocab), 12)\n", | |
"lstm = nn.LSTM(12, 5)\n", | |
"\n", | |
"vec_seqs = [[vocab.index(w) for w in s] for s in seqs]\n", | |
"print('Vectorized:', vec_seqs)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"sorted seq_tensor Variable containing:\n", | |
" 4 5 1 7\n", | |
" 2 6 7 0\n", | |
" 3 0 0 0\n", | |
"[torch.LongTensor of size 3x4]\n", | |
"\n", | |
"--- torch.Size([4, 3])\n", | |
"packed_input: torch.Size([8, 12])\n", | |
"packed_output: torch.Size([8, 5])\n", | |
"output: torch.Size([4, 3, 5])\n", | |
"Variable containing:\n", | |
"(0 ,.,.) = \n", | |
" -0.1543 -0.1183 -0.0109 0.0120 -0.1675\n", | |
" -0.1021 -0.0724 0.3059 -0.1867 -0.0173\n", | |
" 0.3118 0.0151 0.2762 0.2161 0.0431\n", | |
"\n", | |
"(1 ,.,.) = \n", | |
" -0.0578 -0.0463 0.1577 0.1174 -0.1212\n", | |
" -0.0393 0.1662 -0.0028 -0.0290 -0.0161\n", | |
" 0.0000 0.0000 0.0000 0.0000 0.0000\n", | |
"\n", | |
"(2 ,.,.) = \n", | |
" 0.0893 -0.0111 0.1398 -0.2752 -0.0908\n", | |
" -0.0861 0.1073 0.0872 0.0157 -0.0729\n", | |
" 0.0000 0.0000 0.0000 0.0000 0.0000\n", | |
"\n", | |
"(3 ,.,.) = \n", | |
" -0.0328 -0.0071 0.1282 -0.0450 -0.1021\n", | |
" 0.0000 0.0000 0.0000 0.0000 0.0000\n", | |
" 0.0000 0.0000 0.0000 0.0000 0.0000\n", | |
"[torch.FloatTensor of size 4x3x5]\n", | |
"\n", | |
"torch.Size([3, 5])\n" | |
] | |
} | |
], | |
"source": [ | |
"seq_lengths = torch.LongTensor([len(seq) for seq in vec_seqs])\n", | |
"\n", | |
"seq_tensor = []\n", | |
"for seq in vec_seqs:\n", | |
" pad_len = max(0, max_seq_len - len(seq))\n", | |
" seq_tensor.append(seq + [0] * pad_len)\n", | |
"seq_tensor = Variable(torch.LongTensor(seq_tensor))\n", | |
"\n", | |
"# sort the tensors for pack_padded_sequence\n", | |
"seq_lengths, seq_indices = seq_lengths.sort(0, descending=True)\n", | |
"seq_tensor = seq_tensor[seq_indices]\n", | |
"print('sorted seq_tensor', seq_tensor)\n", | |
"\n", | |
"# transpose the tensor for RNN (batch_first is false in default)\n", | |
"seq_tensor = seq_tensor.transpose(0,1) # (B,L) -> (L,B). B: batch_size, L: Length, \n", | |
"\n", | |
"seq_tensor = embed(seq_tensor) # (L, B, E)\n", | |
"packed_input = pack_padded_sequence(seq_tensor, seq_lengths.numpy()) # (sum_of_valid_token=8, E)\n", | |
"print('packed_input:', packed_input.data.size())\n", | |
"\n", | |
"packed_output, (ht, ct) = lstm(packed_input)\n", | |
"print('packed_output:', packed_output.data.size()) # (sum_of_valid_token=8, H)\n", | |
"\n", | |
"# unpack the output with paddings\n", | |
"output, _ = pad_packed_sequence(packed_output) # (L, bs, H)\n", | |
"print ('output:', output.size())\n", | |
"print(output) # you can see 0 values of padding\n", | |
"\n", | |
"# final hidden state\n", | |
"print (ht[-1].size()) # (B, H)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment