Skip to content

Instantly share code, notes, and snippets.

@jonathan-taylor
Created September 18, 2019 23:33
Show Gist options
  • Save jonathan-taylor/fde508f93f1e7ca2bc53306781100226 to your computer and use it in GitHub Desktop.
Save jonathan-taylor/fde508f93f1e7ca2bc53306781100226 to your computer and use it in GitHub Desktop.
Lab writeup
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Relationship between launch angle, horizontal range (and vertical starting point)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we start at height $y_0$ e.g. $97.0 cm=0.97m$, then the time until we hit the ground is found by setting $y_t=0$ in the equation\n",
"$$\n",
"y_t = y_0 + v_0 \\sin \\theta \\cdot t - \\frac{g}{2}t^2\n",
"$$\n",
"and solving for $t$.\n",
"\n",
"Here, the speed (magnitude of initial velocity) is $v_0$ so its vertical component is $v_0 \\sin \\theta$ where\n",
"$\\theta$ is the angle with the horizon at launch.\n",
"\n",
"So, \n",
"$$\n",
"\\Delta_y = v_0 \\sin \\theta \\cdot t - \\frac{g}{2} t^2\n",
"$$\n",
"And\n",
"$$\n",
"t = \\frac{v_0 \\sin \\theta \\pm \\sqrt{v_0^2 \\sin^2 \\theta - 2 g \\Delta_y}}{g}\n",
"$$\n",
"Here, $\\Delta_y < 0$ so the square root will always be OK. We always want the positive time, so\n",
"$$\n",
"t = \\frac{\\sqrt{v_0^2 \\sin^2 \\theta - 2 g \\Delta_y} + v_0 \\sin \\theta}{g}.\n",
"$$\n",
"\n",
"If $\\Delta_y=0$ then this becomes\n",
"$$\n",
"\\frac{2 \\cdot v_0 \\sin \\theta}{g}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The horizontal distance traveled will be\n",
"$$\n",
"v_0 \\cos \\theta \\cdot \\frac{\\sqrt{v_0^2 \\sin^2 \\theta - 2 g \\Delta_y} + v_0 \\sin \\theta}{g} = \n",
"v_0^2 \\cos \\theta \\cdot \\frac{\\sqrt{\\sin^2 \\theta - 2 g \\Delta_y / v_0^2} + \\sin \\theta}{g}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11845bdd8>]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deWBU5b3G8e8v+54ACWsICRCWgAQw\nIKKidbniBmoVobUV1MutddfqtbZqa6u3dd+11l0riDutCy5VKwpKAoQ97JCwJkBCEsj+3j8SW0CE\nAJOczMzz+UdmzmHO0+nJw8l7ltecc4iIiP8L8TqAiIj4hgpdRCRAqNBFRAKECl1EJECo0EVEAkSY\nVxtOTk526enpXm1eRMQv5eXllTjnUva3zLNCT09PJzc316vNi4j4JTNb90PLNOQiIhIgVOgiIgFC\nhS4iEiBU6CIiAUKFLiISIFToIiIBQoUuIhIgPLsOXXyvocGxs6qWHbtq2bGrhoqqOiqq66ioqqOq\nrp7q2gZq6huoq3c0OIdzjpAQIyzECA0JITIshKjwUKIjQoiPDCc+KoyE6HA6xEbQLjaC8FD9+y/S\nlqnQ/UjprhrWbtvFum2VbCytYkPpLjaVVrGlvIqtO6vZVllDfUPLPd8+MTqcTgmRdE6MpmtiFKnt\nounePoYeHWLJSI4lMTq8xbYtIgenQm9jnHNs2VnN0k07KdhSzsqtFazcWsHq4gp2VtXttW5STDid\nE6LonBhFVpcEUuIjaR8bSfvYcJKiI4iPCiMuKozYiDCiwkOJCg8hIiyEsJAQQgzMjIYGR71z1Dc4\nqmsb2F1bz66axiP78qo6ynbXsr2yhm0VNWyrrGZzWRWbd1axZONOSiqq98qTEh9J75Q4+naOJ6tr\nAlldEujTKZ6IMB3Zi7QGFbqHnHMU7dhNflEpC4vKWLihjCWbdlK6q/bf63xXkmMGdyW9QyzpHWJJ\n6xBD16Ro4iKP/P++kBAjBCM8FKLCQ0mk+UfZu2vqKdyxi3XbdrGquPEfnhVbK3htTiG7a+sBiAgN\nIatrAoO7JzEkLYnhGe3pkhh9xLlF5PvMqynocnJyXLA9y6W6rp6FRWXMWbuDvHU7mF+4g5KKGqCx\n+Pp2jmdgtwT6d0mgX+cE+naKJzHG/4Yx6hsc67ZVsmTTThYWlTG/sJSFG8rYVdNY8t2SohnRswPH\nZ3bguF7JdEyI8jixiP8wszznXM5+l6nQW05NXQPzC0v5elUJs1ZtY15hKTV1DQD0TI5lSFo7hqQl\nMbh7UsAPTdTVN7Bsczlz1m7n2zXbmb16GzuafhPp2ymek/ql8KO+HTm6RzudfBU5ABV6K3HOsaq4\ngn8tL+HLFcXMXr2d3bX1mMGArgmMyOjAsIz25PRoR4e4SK/jeqqhwbFk005mrizhX8uL+XbNduoa\nHInR4ZzSvyOnD+jMiX1SiAoP9TqqSJuiQm9BVbX1fL2qhM+WFfNZwVaKduwGGo/AT8hMZmTvZEZk\ndPDLoZPWVF5Vy8wVJXy8ZAufLN3Czqo6YiNCOS2rE+dkd+WEzJSA/g1GpLlU6D62o7KGT5Y2Fs+/\nlpewu7aemIhQjuudzI/6dmRUn2RS28V4HdNv1dY3MHv1Nt5fuIn3F26mbHctSTHhjMnuyo+HpjIo\nNREz8zqmiCdU6D5QXF7Nh4s3M2PRZmat3kZ9g6NLYhSn9u/EqVmdOCajvYYHWkBNXQMzVxbz1twN\nfLRkCzV1DfTpFMf4YWn8eGiqfvORoKNCP0ylu2p4f+Fm3lu4kVmrttHgGodSRg/szOiBnTmqm44U\nW1PZ7lreW7CJ1+asJ7+ojMiwEM4a1IVLjk0nu3uS1/FEWoUK/RBU1dbz8ZItvDt/A18sL6a23pGR\nHMvZg7pw1qAu9O0UrxJvAxZtKGPqnPW8PXcDlTX1DO6exKTj0jnzqC66SkYCmgr9IBoaHN+u3c5b\nc4v4YOFmyqvr6JwQxZjBXRmT3ZUBXRNU4m1UeVUtb+YV8dKsdawuqaRrYhSXHp/BRcO6Ex+l4RgJ\nPCr0H7ChdDdv5hXxel4hhdt3ExsRyplHdeG8od0YkdGBkBCVuL9oaHB8vnwrf/liNd+s2U58VBgT\nR6Yz6bgM2sdGeB1PxGdU6HuorW/gkyVbmDKnkC9XFOMcjOzVgQtzUhk9oAvRETqx6e/yC0t56otV\nfLBoMzERofz0mDT+58ReJAf5tf8SGI6o0M3sOeBsYKtzbuB+lhvwMHAmsAuY6Jybe7BQrV3ohdt3\nMeXb9UzLLaKkoprOCVGMy0nlwpzudG+vSwwD0Yot5Tzx+Srenb+ByLBQLhmZzuRRPXXELn7tSAt9\nFFABvPQDhX4mcDWNhX4M8LBz7piDhWqNQq9vcHxesJWXZ6/ji+XFGHByv0785JjunNinI6EaUgkK\nq4srePjTFUzP30hMeCiTR/Xi8hMyiPXBw81EWtsRD7mYWTrwjx8o9L8AnzvnpjS9LgBOcs5tOtBn\ntmShl+6q4bU5hbzyzToKt++mY3wk44enMX5Yd7om6Ul/wWr5lnIe+Gg5Hy7eTHJcBNecksmE4Wm6\nKkb8yoEK3ReHKN2Awj1eFzW9d8BCbwkFm8t54eu1vD2viKraBoZntOeW0f35rwGd9EMr9OkUz1M/\nO5q563fw5w+Wcfu7i3nh67X85sz+nNyvo65kEr/Xqr9zmtlkYDJAWlqaTz6zocHxxfJinp25hpkr\nS4gMC+G8Id24ZGQ6/bsk+GQbEliGprVj6uQRfLp0K3e/v5TLXszl+N7J3HFOFpmd4r2OJ3LY/HbI\npaq2nrfnbeCZL1ezqriSTgmR/PzYdH4yPI12OuklzVRb38Ars9fx0CcrqKyuY+LIdK49NVPXsEub\n1dJDLtOBq8xsKo0nRcsOVuZHYkdlDa/MXseLs9ZSUlHDgK4JPHTRYM48qouexieHLDw0hEnHZTB2\ncDfunVHAs1+t4Z35G7nt7P6Mye6qYRjxK825ymUKcBKQDGwB7oDGecqcc081Xbb4GDCaxssWJznn\nDnrofbhH6A99spyHPlnBSX1TmHxCT47t1UE/dOIzC4pKue2dReQXlXFCZjJ3jh1IRnKs17FE/i2g\nbizaUVnD1vJq+nbWWKe0jPoGx9++Wce9HxZQXd/AtadkMnlUT51YlzbhQIXud3tou9gIlbm0qNAQ\n4+fHpvPJjSdySr+O3DujgLGPfcWiDWVeRxM5IL8rdJHW0ikhiicvPpqnLh5KcUU1Yx//ivtmFPx7\nXliRtkaFLnIQowd24ZPrT+Tcwd147LOVjHlsJks27vQ6lsj3qNBFmiExJpz7x2Xz15/nUFJRw5jH\nZvL4Zyupb/DmHJTI/qjQRQ7BaVmd+Pj6UZw+sDP3zihg/NOzKNy+y+tYIoAKXeSQtYuN4LEJQ3hg\nXDZLN5VzxsNf8u78DV7HElGhixwOM+P8oal8cO0J9Oscz7VT5/Or1/OprK7zOpoEMRW6yBHo3j6G\nqZNHcM3JvXlzbhHnPDqTxRt1eaN4Q4UucoTCQkO44b/68urlI6isqeO8J75myrfr8eqmPQleKnQR\nHzm2Vwfeu+YEjsloz6/fWsiN0/LZVaMhGGk9KnQRH0qOi+SFScO5/tQ+vD1/A+c9/jVrSiq9jiVB\nQoUu4mOhIca1p2by0qXD2VpexZhHZ/Lxki1ex5IgoEIXaSEnZKbw96uPJz05lv9+KZcHPiqgQTci\nSQtSoYu0oNR2Mbz+i2O58OhUHvnnSia/nEd5Va3XsSRAqdBFWlhUeCj3XDCI352TxWcFWzn/ia9Z\nq3F1aQEqdJFWYGZMPC6Dly8dTklFNec+8RWzVm3zOpYEGBW6SCsa2TuZd648juS4SH727DdM/Xa9\n15EkgKjQRVpZjw6xvPXLkYzsncwtby3krveW6GSp+IQKXcQDCVHhPHdJDpcc24O/frmGX/5tLrtr\n6r2OJX5OhS7ikbDQEH4/diC3n53FjCWbmfDX2ZRUVHsdS/yYCl3EY5cen8FTFx/Nss07+fGTugJG\nDp8KXaQNOH1AZ6ZOPpbyqjrOf/Jr5heWeh1J/JAKXaSNGNw9iTevGElcZBgTnp7NZ8u2eh1J/IwK\nXaQNyUiO5c0rRtK7YxyXv5TLW3OLvI4kfkSFLtLGpMRHMmXyCEb0bM8N0/J55svVXkcSP6FCF2mD\n4iLDeG7iMM48qjN/fG8p93y4TBNmyEGFeR1ARPYvMiyURycMJTF6EU98voryqjp+P2YAISHmdTRp\no1ToIm1YaIhx93kDSYgO4y9frKayuo57LhhEWKh+uZbva9ZeYWajzazAzFaa2S37WZ5mZp+Z2Twz\nW2BmZ/o+qkhwMjNuGd2Pm07vy1vzNnDlq3OprtNdpfJ9By10MwsFHgfOALKACWaWtc9qvwWmOeeG\nAOOBJ3wdVCSYmRlX/qg3vzsnixmLt/CLl/OoqlWpy96ac4Q+HFjpnFvtnKsBpgJj91nHAQlNf04E\nNvouooh8Z+JxGfzf+Ufx+fJiLntxjiahlr00p9C7AYV7vC5qem9PvwMuNrMi4H3g6v19kJlNNrNc\nM8stLi4+jLgiMmF4GvdfmM2sVduY+NwcKqtV6tLIV2dWJgAvOOdSgTOBl83se5/tnHvaOZfjnMtJ\nSUnx0aZFgs/5Q1N5ZMIQ8tbvYOLz31KhUheaV+gbgO57vE5tem9PlwHTAJxzs4AoINkXAUVk/84e\n1JVHxg9h7vpSLnnuW81VKs0q9DlAppllmFkEjSc9p++zznrgFAAz609joWtMRaSFnTWoC49NGEJ+\nYWOp60g9uB200J1zdcBVwAxgKY1Xsyw2szvNbEzTajcC/21m+cAUYKLTbW0ireKMo7rw2E+GkF9U\nxqTnv9WYehAzr3o3JyfH5ebmerJtkUD03oJNXDN1Hjk92vH8pGHEROi+wUBkZnnOuZz9LdPtZiIB\n4qxBXXhgXDZz1m7n8hdzdZ16EFKhiwSQsYO7cf+4bGat3sYvXsnTHaVBRoUuEmDOG5LK3ecdxecF\nxVwzZR519Q1eR5JWokIXCUAThqdxR9NjAm6Ylk99g65RCAY6ayISoCYdl8Hu2nru+bCA2Mgw7j5v\nIGZ69G4gU6GLBLBfntSbiqo6nvh8FQlRYdxyRj+VegBToYsEuJtO70t5VR1/+ddqEqLDufJHvb2O\nJC1EhS4S4MyM348ZQEV1HffOKCAxOpyLR/TwOpa0ABW6SBAICTHuuWAQZbtrue3dRbSLieCsQV28\njiU+pqtcRIJEeGgIj/9kKDk92nHda/P4coUetxRoVOgiQSQ6IpRnLhlGr5Q4/uflPPILS72OJD6k\nQhcJMonR4bx06XDax0Zw6QtzWFNS6XUk8REVukgQ6pgQxUuXDscBP3/uG7aWV3kdSXxAhS4SpHqm\nxPH8xGGUlNcw6fk5epZ6AFChiwSx7O5JPHnxUJZtLueKV/Ko1XNf/JoKXSTIndS3I/93/lF8uaKE\nW95ciOam8V+6Dl1EGJfTnU2lVTz4yXK6JkVx43/19TqSHAYVuogAcM0pvdlUtptH/7mSbknRjB+e\n5nUkOUQqdBEBGh8R8IdzB7KxrIrfvLOIrknRjOqT4nUsOQQaQxeRf2u8m3QImR3j+OXf5rJs806v\nI8khUKGLyF7io8J5ftIwYiNDmfT8HLbs1DXq/kKFLiLf0yUxmucmDmPn7loufzGXXTW6Rt0fqNBF\nZL8GdE3k0Z8MYfHGMq6bOp8GTWPX5qnQReQHndyvE7edncVHS7bw5w+XeR1HDkJXuYjIAU0cmc6a\nkkr+8q/V9EyJ5aJhupyxrdIRuogckJlx+9lZjOqTwm/fWcTs1du8jiQ/QIUuIgcVFhrCoxOGkNY+\nhiteyWPdNj1yty1qVqGb2WgzKzCzlWZ2yw+sM87MlpjZYjN71bcxRcRridHhPDdxGA647MVcdlbV\neh1J9nHQQjezUOBx4AwgC5hgZln7rJMJ/Bo4zjk3ALiuBbKKiMd6dIjlqYuPZm1JJVe/Oo96XfnS\npjTnCH04sNI5t9o5VwNMBcbus85/A48753YAOOe2+jamiLQVI3p24M6xA/lieTF/+mCp13FkD80p\n9G5A4R6vi5re21MfoI+ZfWVms81s9P4+yMwmm1mumeUWF2uCWhF/9ZNj0vj5sT3465dreCOvyOs4\n0sRXJ0XDgEzgJGAC8FczS9p3Jefc0865HOdcTkqKHvoj4s9uOzuLkb06cOtbC8lbt8PrOELzCn0D\n0H2P16lN7+2pCJjunKt1zq0BltNY8CISoBof5DWUzolR/OKVPDaX6ZkvXmtOoc8BMs0sw8wigPHA\n9H3WeYfGo3PMLJnGIZjVPswpIm1Qu9gI/vrzHCqr6/ifV/Koqq33OlJQO2ihO+fqgKuAGcBSYJpz\nbrGZ3WlmY5pWmwFsM7MlwGfATc453X0gEgT6do7ngXHZ5BeW8pu3F2kKOw+ZV19+Tk6Oy83N9WTb\nIuJ7D3y8nEc+XcEd52Qx6bgMr+MELDPLc87l7G+Z7hQVEZ+47pRMTu3fiT++t1SPB/CICl1EfCIk\nxHjgomx6dIjhyr/NZWPpbq8jBR0Vuoj4TEJUOE//LIfqugZ+oZOkrU6FLiI+1btjHA9eNJgFRWXc\n9o5OkrYmFbqI+NxpWZ24+uTevJ5XxJRvCw/+F8QnVOgi0iKuO7UPJ/ZJ4Y7pi5i3XneStgYVuoi0\niNAQ4+Hxg+mcGMUVr8yluLza60gBT4UuIi0mKSaCpy4+mh27arhmyjzq6hu8jhTQVOgi0qIGdE3k\nj+cOZNbqbdz30XKv4wQ0FbqItLgLc7ozYXgaT32xihmLN3sdJ2Cp0EWkVdxxThaDUhP51bR81pRo\nTtKWoEIXkVYRFR7KEz8dSmioccUreeyu0U1HvqZCF5FWk9ouhocuGkzBlnJuf3eR13ECjgpdRFrV\nSX07cvWPGm86mjZHNx35kgpdRFrdtaf24bjeHbjt3UUs2bjT6zgBQ4UuIq2u8aajISTFhHPlq3Mp\nr6r1OlJAUKGLiCeS4yJ5dMJQ1m/fxS1vLtRDvHxAhS4inhme0Z6bTu/Lews38fLsdV7H8XsqdBHx\n1OQTenJyv4784R9LyC8s9TqOX1Ohi4inQkKM+y/MpmN8FFdNmUvZbo2nHy4Vuoh4rl1sBI9MGMKm\n0ir+940FGk8/TCp0EWkTju7RjptH9+XDxZt5aZbG0w+HCl1E2ozLj+/JKf06ctd7S1lYVOZ1HL+j\nQheRNiMkxLjvwmyS4yK48tW57NT16YdEhS4ibcp34+kbSndz61u6Pv1QqNBFpM3JSW/PDaf14R8L\nNjFVz3tpNhW6iLRJV5zYixMyk/nd9MUs26znvTRHswrdzEabWYGZrTSzWw6w3o/NzJlZju8iikgw\nCgkxHhg3mITocK56dR67auq8jtTmHbTQzSwUeBw4A8gCJphZ1n7WiweuBb7xdUgRCU4p8ZE8OG4w\nq4oruPPvS7yO0+Y15wh9OLDSObfaOVcDTAXG7me9PwB/Bqp8mE9EgtzxmclccWIvps4p5O/5G72O\n06Y1p9C7AXuelShqeu/fzGwo0N05996BPsjMJptZrpnlFhcXH3JYEQlO15/WhyFpSdz61kLWb9vl\ndZw264hPippZCPAAcOPB1nXOPe2cy3HO5aSkpBzppkUkSISHhvDI+CFgcPXUedTWN3gdqU1qTqFv\nALrv8Tq16b3vxAMDgc/NbC0wApiuE6Mi4kvd28fwp/MHkV9YyoMfL/c6TpvUnEKfA2SaWYaZRQDj\ngenfLXTOlTnnkp1z6c65dGA2MMY5l9siiUUkaJ01qAvjh3XnyS9W8fXKEq/jtDkHLXTnXB1wFTAD\nWApMc84tNrM7zWxMSwcUEdnT7edk0TM5lutem8/2yhqv47Qp5tVttTk5OS43VwfxInLolmzcybmP\nf8UJmck8c0kOZuZ1pFZjZnnOuf0OaetOURHxO1ldE/j1mf34dNlWTV23BxW6iPiliSPTOalvCn98\nbykFm8u9jtMmqNBFxC+ZNT5qNyEqnGumzKOqtt7rSJ5ToYuI30qOi+S+CwdRsKWcu99f6nUcz6nQ\nRcSvndS3I5cdn8FLs9bx6dItXsfxlApdRPzezaP70q9zPDe/sYDi8mqv43hGhS4ifi8yLJRHJgyh\norqOm97ID9pZjlToIhIQ+nSK5zdn9efzgmJe+Hqt13E8oUIXkYDxsxE9OLlfR/7vg2VBeSmjCl1E\nAoaZcc8Fg0iICuPaqfOorguuSxlV6CISUJLjIrn3gmyWbS7n3g8LvI7TqlToIhJwftSvIz8b0YNn\nZq5h5orgeSqjCl1EAtKtZ/anV0osN74+nx1B8lRGFbqIBKToiFAeHj+E7ZU13Pr2wqC4lFGFLiIB\na2C3RG44rS8fLNrMm3M3HPwv+DkVuogEtMmjejI8oz13vLso4CeYVqGLSEALDTEeGJdNiBnXT5tP\nfUPgDr2o0EUk4KW2i+HOcweQt24HT32xyus4LUaFLiJB4dzB3ThrUBce/Hg5izaUeR2nRajQRSQo\nmBl3nTuQDnERXPfa/ICcEEOFLiJBIykmgvsuzGbl1gr+9MEyr+P4nApdRILKCZkpTByZzgtfr+XL\nFcVex/EpFbqIBJ1bzuhHr5RYbnp9AWW7ar2O4zMqdBEJOlHhoTx00RBKKqq57d1FXsfxGRW6iASl\no1ITue7UTKbnb2R6/kav4/iECl1EgtYvTuzFkLQkfvv2QjaXVXkd54ip0EUkaIWFhvDguMHU1ruA\nmIu0WYVuZqPNrMDMVprZLftZfoOZLTGzBWb2qZn18H1UERHfS0+O5Tdn9efLFSW8PHud13GOyEEL\n3cxCgceBM4AsYIKZZe2z2jwgxzk3CHgDuMfXQUVEWspPj0njxD4p3P3+UlYVV3gd57A15wh9OLDS\nObfaOVcDTAXG7rmCc+4z59x3jzGbDaT6NqaISMv5bi7SqPBQbpiWT119g9eRDktzCr0bULjH66Km\n937IZcAH+1tgZpPNLNfMcouLA+uCfhHxb50SovjjuQPJLyzlyc/98wFePj0pamYXAznAvftb7px7\n2jmX45zLSUlJ8eWmRUSO2NmDujImuysPf7rCLx/g1ZxC3wB03+N1atN7ezGzU4HfAGOcc9W+iSci\n0rruHDuADnERXO+HD/BqTqHPATLNLMPMIoDxwPQ9VzCzIcBfaCzzrb6PKSLSOpJiIrjngmxWbK3g\n/o8KvI5zSA5a6M65OuAqYAawFJjmnFtsZnea2Zim1e4F4oDXzWy+mU3/gY8TEWnzTuyTwsUj0nhm\n5hpmr97mdZxmM68upM/JyXG5ubmebFtE5GB21dRxxsNfUt/g+PC6UcRFhnkdCQAzy3PO5exvme4U\nFRHZj5iIMO6/MJsNpbu5670lXsdpFhW6iMgPyElvz+RRPZnybSGfLWv7pwdV6CIiB3DDaX3o2yme\n/31zATsqa7yOc0AqdBGRA4gMC+WBi7LZXlnD7dMXex3ngFToIiIHMaBrIteeksnf8zfyjwVt99np\nKnQRkWa44qReZKcmcts7i9ha3jafna5CFxFphrDQEO4fN5hdNfX8+s2FbfLZ6Sp0EZFm6t0xjptH\n9+PTZVt5Pa/I6zjfo0IXETkEk0amc0xGe/7w9yVsKN3tdZy9qNBFRA5BSIhx34XZ1DvH/76xgIaG\ntjP0okIXETlE3dvH8Nuzspi5soS/fdN2pq1ToYuIHIYJw7szqk8Kd7+/jLUllV7HAVToIiKHxcy4\n58eDCA81fvV6PvVtYOhFhS4icpg6J0bx+7EDyF23g2dnrvY6jgpdRORInDu4G6cP6MR9Hy1nxZZy\nT7Oo0EVEjoCZcdd5RxEXGcYN0/KprW/wLIsKXUTkCCXHRXLXuQNZuKGMJz9f5VkOFbqIiA+ccVQX\nxmR35ZFPV7B4Y5knGVToIiI+cufYAbSLjeDGaflU19W3+vZV6CIiPpIUE8Gfzj+KZZvLeeTTFa2+\nfRW6iIgPndK/ExcencqTn69ifmFpq25bhS4i4mO3nZNF54Qobpw2n6ra1ht6UaGLiPhYQlQ4f75g\nEKuKK7lvRkGrbVeFLiLSAk7ITOGnx6Tx7Fdr+HbN9lbZpgpdRKSF3Hpmf1LbRXPTG/nsqqlr8e2p\n0EVEWkhsZBj3XZDN+u27+NMHy1p8eyp0EZEWdEzPDkwamcFLs9bx1cqSFt1WswrdzEabWYGZrTSz\nW/azPNLMXmta/o2Zpfs6qIiIv7p5dF96Jsdy8xsLKK+qbbHtHLTQzSwUeBw4A8gCJphZ1j6rXQbs\ncM71Bh4E/uzroCIi/ioqPJT7xmWzqWw3d723tMW205wj9OHASufcaudcDTAVGLvPOmOBF5v+/AZw\nipmZ72KKiPi3oWntmDyqF1PnFPJZwdYW2UZzCr0bULjH66Km9/a7jnOuDigDOuz7QWY22cxyzSy3\nuLj48BKLiPip60/L5OR+HYkOD22Rzw9rkU/9Ac65p4GnAXJycryfr0lEpBVFhoXy3MRhLfb5zTlC\n3wB03+N1atN7+13HzMKARGCbLwKKiEjzNKfQ5wCZZpZhZhHAeGD6PutMBy5p+vMFwD+dczoCFxFp\nRQcdcnHO1ZnZVcAMIBR4zjm32MzuBHKdc9OBZ4GXzWwlsJ3G0hcRkVbUrDF059z7wPv7vHf7Hn+u\nAi70bTQRETkUulNURCRAqNBFRAKECl1EJECo0EVEAoR5dXWhmRUD6w7zrycDLfvYMv+i72Nv+j7+\nQ9/F3gLh++jhnEvZ3wLPCv1ImFmucy7H6xxthb6Pven7+A99F3sL9O9DQy4iIgFChS4iEiD8tdCf\n9jpAG6PvY2/6Pv5D38XeAvr78MsxdBER+T5/PUIXEZF9qNBFRAKE3xX6wSasDmRm1t3MPjOzJWa2\n2MyubXq/vZl9bGYrmv7bzuusrcnMQs1snpn9o+l1RtNk5SubJi+P8DpjazGzJDN7w8yWmdlSMzs2\nWPcPM7u+6edkkZlNMbOoQN83/KrQmzlhdSCrA250zmUBI4Arm/733wJ86pzLBD5teh1MrgX2nHn3\nz8CDTZOW76BxEvNg8TDwoXOuH5BN4/cSdPuHmXUDrgFynHMDaXz093gCfN/wq0KneRNWByzn3Cbn\n3NymP5fT+MPajb0n6X4ROA0w660AAAITSURBVNebhK3PzFKBs4Bnml4bcDKNk5VDEH0fZpYIjKJx\nfgKcczXOuVKCd/8IA6KbZlGLATYR4PuGvxV6cyasDgpmlg4MAb4BOjnnNjUt2gx08iiWFx4CbgYa\nml53AEqbJiuH4NpHMoBi4PmmIahnzCyWINw/nHMbgPuA9TQWeRmQR4DvG/5W6AKYWRzwJnCdc27n\nnsuapv4LimtRzexsYKtzLs/rLG1EGDAUeNI5NwSoZJ/hlWDZP5rOE4yl8R+5rkAsMNrTUK3A3wq9\nORNWBzQzC6exzP/mnHur6e0tZtalaXkXYKtX+VrZccAYM1tL4/DbyTSOISc1/ZoNwbWPFAFFzrlv\nml6/QWPBB+P+cSqwxjlX7JyrBd6icX8J6H3D3wq9ORNWB6ym8eFngaXOuQf2WLTnJN2XAO+2djYv\nOOd+7ZxLdc6l07gv/NM591PgMxonK4fg+j42A4Vm1rfprVOAJQTn/rEeGGFmMU0/N999FwG9b/jd\nnaJmdiaN46bfTVh9l8eRWo2ZHQ98CSzkP2PGt9I4jj4NSKPxkcTjnHPbPQnpETM7CfiVc+5sM+tJ\n4xF7e2AecLFzrtrLfK3FzAbTeII4AlgNTKLxwC3o9g8z+z1wEY1Xh80DLqdxzDxg9w2/K3QREdk/\nfxtyERGRH6BCFxEJECp0EZEAoUIXEQkQKnQRkQChQhcRCRAqdBGRAPH/JK2xfoVg+NgAAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np, matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"theta = np.linspace(0, np.pi / 2, 101)\n",
"v_0 = 2.20\n",
"delta_y = -0.97\n",
"g = 9.8\n",
"plt.plot(theta * 360 / (2 * np.pi), v_0**2 * np.cos(theta) * (np.sqrt(np.sin(theta)**2 - 2 * g * delta_y / v_0**2) + np.sin(theta)) / g)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"235.5589098293673"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import numpy as np;\n",
"204 * np.sqrt(1 + np.tan(30 * (2 * np.pi) / 360)**2)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-0.7596879128588212"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.cos(15)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"219.4565068527247"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sqrt(212**2+56.72**2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "all,-slideshow"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment