Skip to content

Instantly share code, notes, and snippets.

@jorisvandenbossche
Created February 13, 2020 12:35
Show Gist options
  • Save jorisvandenbossche/38c0d3f41c0a5b89fe29e02058636677 to your computer and use it in GitHub Desktop.
Save jorisvandenbossche/38c0d3f41c0a5b89fe29e02058636677 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pyarrow as pa\n",
"import pyarrow.parquet as pq\n",
"import pyarrow.dataset as ds\n",
"from pyarrow.fs import LocalFileSystem"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write small table to a file in a Hive-partitioned directory nesting:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"table = pa.table({'a': [1, 2, 3], 'b': [.1, .2, .3]})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"path = \"test_source/year=2020/month=2/data0.parquet\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"pq.write_table(table, path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Manually create a FileSystemSource and Dataset:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"partitioning_schema = pa.schema([(\"year\", pa.int32()), (\"month\", pa.int32())])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"partitioning = ds.HivePartitioning(partitioning_schema)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"((year == 2020:int32) and (month == 2:int32))\n"
]
}
],
"source": [
"expr = partitioning.parse(path)\n",
"print(expr)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a: int64\n",
"b: double\n",
"year: int32\n",
"month: int32"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset_schema = table.schema.append(partitioning_schema[0]).append(partitioning_schema[1])\n",
"dataset_schema"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"source = ds.FileSystemSource(dataset_schema, None, ds.ParquetFileFormat(), LocalFileSystem(), [path], [expr])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"dataset = ds.Dataset([source], dataset_schema)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>year</th>\n",
" <th>month</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0.1</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>0.2</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>0.3</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b year month\n",
"0 1 0.1 NaN NaN\n",
"1 2 0.2 NaN NaN\n",
"2 3 0.3 NaN NaN"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset.to_table().to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (arrow-dev)",
"language": "python",
"name": "arrow-dev"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment