- Create an
.envrc
file:
export PATH=/home/<user>/anaconda3/bin:$PATH
# conda env create -n <env_name> -f environment.yml
source activate <env_name>
- Create an
environment.yml
file:
library(packagemetrics) # devtools::install_github("ropenscilabs/packagemetrics") | |
library(ctv) | |
library(dplyr) | |
task_view <- "Optimization" | |
out_path <- paste0(task_view, ".rds") | |
pkgs <- ctv:::.get_pkgs_from_ctv_or_repos(task_view) | |
pkgs <- as.character(as.data.frame(pkgs[1])[,1]) | |
if(!file.exists(out_path)){ | |
pkg_metrics <- packagemetrics::package_list_metrics(pkgs) |
## Rsync Filter for $HOME | |
# Universal excludes -- These apply to all subdirs | |
- [Cc]ache | |
- temp | |
- tmp | |
- octave-core | |
# Emacs temp files | |
- .#* |
test.png: test.pdf | |
convert -density 300 $<[0] -crop 100x20% -background white -alpha remove -strip -quality 70 test.png | |
mv test-0.png test.png | |
rm test-*.png | |
convert test.png -alpha set -background black -fill white \ | |
\( +clone -colorize 100 -gravity south -chop 0x6 -splice 0x6 \ | |
-spread 20 -paint 8 +transparent white -blur 0x0.8 \) \ | |
-background none -compose dstin -composite torn.png |
library(rloadest) | |
my_model_no <- 1 | |
loadreg_original <- loadReg(Phosphorus ~ model(1), | |
data = app1.calib, dates = "DATES", flow = "FLOW") | |
loadreg_mod <- loadReg(as.formula(paste0("Phosphorus ~ model(", my_model_no, ")")), | |
data = app1.calib, dates = "DATES", flow = "FLOW") | |
identical( | |
loadreg_original, |
.envrc
file:export PATH=/home/<user>/anaconda3/bin:$PATH
# conda env create -n <env_name> -f environment.yml
source activate <env_name>
environment.yml
file:library(rdrop2) # devtools::install_github("karthik/rdrop2") | |
library(dplyr) | |
top_level_path <- function(x){ | |
stringr::str_extract(x, "^(.+?)(\\/)") | |
} | |
rdrop2::drop_auth() | |
file_list_raw <- drop_dir(recursive = TRUE) |
Add [[indexedsearch]]
to mediagoblin.ini
library(dams) | |
library(dplyr) | |
library(sf) | |
library(mapview) | |
dt <- nid_subset | |
dt <- dt[c( | |
grep("edenville", tolower(dt$dam_name)), | |
grep("sanford", tolower(dt$dam_name))),] %>% | |
dplyr::filter(state == "MI") %>% |
get_hypso <- function(rsub){ | |
maxdepth <- abs(cellStats(rsub, "min")) # set to "max" if depths are positive | |
# define depth intervals by raster resolution | |
min_res <- 0.5 | |
depth_int <- -1 * seq(0, round(maxdepth/min_res) * min_res, by = min_res) | |
# calculate area of raster between depth intervals | |
# reclassify raster based on depth intervals | |
# calculate area of each class |
library(mboxr) | |
library(tm.plugin.webmining) | |
library(tm) | |
library(wordcloud) | |
fpath <- path.expand("~/Downloads/jobs.mbox") | |
data <- read_mbox(fpath) | |
content <- paste(unlist(data$content), collapse = " ") | |
test <- extractHTMLStrip(content) | |
write.csv(test, "~/Downloads/jobs.csv") |