library(rlang)
library(tidymodels)
#> Registered S3 method overwritten by 'tune':
#> method from
#> required_pkgs.model_spec parsnip
rmsle <- function(data, ...) {
UseMethod("rmsle")
}
π
library(tidyverse)
library(tidycensus)
library(sf)
#> Linking to GEOS 3.8.1, GDAL 3.1.4, PROJ 6.3.1
library(viridis)
#> Loading required package: viridisLite
library(patchwork)
theme_set(silgelib::theme_plex())
library(tidymodels)
#> Registered S3 method overwritten by 'tune':
#> method from
#> required_pkgs.model_spec parsnip
library(baguette)
set.seed(123)
car_folds <- bootstraps(mtcars, times = 5)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidymodels) | |
library(textrecipes) | |
data("small_fine_foods") | |
sparse_bp <- hardhat::default_recipe_blueprint(composition = "dgCMatrix") | |
text_rec <- | |
recipe(score ~ review, data = training_data) %>% | |
step_tokenize(review) %>% | |
step_stopwords(review) %>% |
library(tidyverse)
library(silgelib)
theme_set(theme_plex())
games <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-03-16/games.csv')
#>
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> cols(
#> gamename = col_character(),
library(tidyverse)
library(tidylo)
library(tidytext)
theme_set(silgelib::theme_plex())
ninja_raw <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-12-15/ninja_warrior.csv')
#>
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> cols(
library(tidyverse)
library(broom)
theme_set(silgelib::theme_plex())
raw_hikes <- read_rds(url('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-24/hike_data.rds'))
hikes <- raw_hikes %>%
mutate(across(c(length, gain, highpoint, rating), parse_number))
library(tidyverse)
library(tidytext)
library(tidylo)
library(silgelib)
beyonce_lyrics <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-29/beyonce_lyrics.csv')
#> Parsed with column specification:
#> cols(
#> line = col_character(),
library(tidymodels)
data(ames)
set.seed(833961)
ames_split <- initial_split(ames, prob = 0.80, strata = Sale_Price)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)
ames_rec <- recipe(Sale_Price ~ Neighborhood + Gr_Liv_Area + Year_Built + Bldg_Type,
library(tidymodels)
centers <- tibble(
cluster = factor(1:3),
num_points = c(100, 150, 50), # number points in each cluster
x1 = c(5, 0, -3), # x1 coordinate of cluster center
x2 = c(-1, 1, -2) # x2 coordinate of cluster center
)