Skip to content

Instantly share code, notes, and snippets.

@jvangael
Created March 8, 2014 13:22
Show Gist options
  • Save jvangael/9430527 to your computer and use it in GitHub Desktop.
Save jvangael/9430527 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Introduction to Aeronotical Engineering, Atmosphere#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this Notebook we show how to compute temperature, density and pressure at any height in the atmosphere. These calculations are based on the edX course https://www.edx.org/course/delftx/delftx-ae1110x-introduction-aeronautical-1201. First, we define a number of constants and utility methods."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"g = 9.80665 # m / s^2\n",
"R = 287.00 # J / kg * K\n",
"\n",
"def celcius_to_kelvin(c):\n",
" return c + 273.15\n",
"\n",
"ISA_T_0 = celcius_to_kelvin(15.0)\n",
"ISA_p_0 = 101325\n",
"ISA_rho_0 = ISA_p_0 / (R * ISA_T_0)\n",
"\n",
"# Layers represents the thicknes and lapse rate for every segment of the atmosphere.\n",
"layers = [\n",
" (11.0e3, -0.0065),\n",
" (9.0e3, 0.0),\n",
" (12.0e3, 0.001),\n",
" (15.0e3, 0.0028),\n",
" (np.infty, 0.0)\n",
"]"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 49
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def T(h, T_0=ISA_T_0, layers=layers):\n",
" \"\"\"Computes the temperature at height h (in meters).\"\"\"\n",
" lh, a = layers[0]\n",
" if h < lh:\n",
" return T_0 + a * h\n",
" return T(h - lh, T_0 + a * lh, layers[1:])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 50
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def rho(h, T_0=ISA_T_0, rho_0=ISA_rho_0, layers=layers):\n",
" \"\"\"Computes the density at height h (in meters).\"\"\"\n",
" lh, a = layers[0]\n",
" \n",
" if a == 0.0:\n",
" if h < lh:\n",
" return rho_0 * np.exp(-g * h / (T_0 * R))\n",
" return rho(h - lh, T_0, rho_0 * np.exp(-g * lh / (T_0 * R)), layers[1:])\n",
" else:\n",
" if h < lh:\n",
" T_1 = T_0 + a * h\n",
" return rho_0 * np.power(T_1 / T_0, -g / (a * R) - 1.0)\n",
" T_1 = T_0 + a * lh\n",
" return rho(h - lh, T_1, rho_0 * np.power(T_1 / T_0, -g / (a * R) - 1.0), layers[1:])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 51
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def p(h, T_0=ISA_T_0, p_0=ISA_p_0, layers=layers):\n",
" \"\"\"Computes the pressure at height h (in meters).\"\"\"\n",
" lh, a = layers[0]\n",
" \n",
" if a == 0.0:\n",
" if h < lh:\n",
" return p_0 * np.exp(-g * h / (T_0 * R))\n",
" return p(h - lh, T_0, p_0 * np.exp(-g * lh / (T_0 * R)), layers[1:])\n",
" else:\n",
" if h < lh:\n",
" T_1 = T_0 + a * h\n",
" return p_0 * np.power(T_1 / T_0, -g / (a * R))\n",
" T_1 = T_0 + a * lh\n",
" return p(h - lh, T_1, p_0 * np.power(T_1 / T_0, -g / (a * R)), layers[1:])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 52
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now compute the temperature, density and pressure up to 60km."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hs = np.arange(start=0.0, stop=60000.0, step=1000.0)\n",
"Ts = np.zeros_like(hs)\n",
"rhos = np.zeros_like(hs)\n",
"ps = np.zeros_like(hs)\n",
"for i in xrange(len(hs)):\n",
" Ts[i] = T(hs[i])\n",
" rhos[i] = rho(hs[i])\n",
" ps[i] = p(hs[i])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 53
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def plot_layers(width):\n",
" cs = 0.0\n",
" for h, _ in layers:\n",
" cs += h\n",
" plt.plot([0.0, width], [cs, cs], 'k-.')\n",
" \n",
"plt.figure(figsize=(16,4))\n",
"plt.subplot(131)\n",
"plt.plot(Ts, hs)\n",
"plot_layers(np.max(Ts))\n",
"plt.title(\"Temperature (Kelvin)\")\n",
"plt.subplot(132)\n",
"plt.semilogx(rhos, hs)\n",
"plot_layers(np.max(rhos))\n",
"plt.title(\"Density (Kg/m3)\")\n",
"plt.subplot(133)\n",
"plt.semilogx(ps, hs)\n",
"plot_layers(np.max(ps))\n",
"plt.title(\"Pressure (Pascal)\");"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAEPCAYAAACZYjMyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8z3X/x/HHdwyJzeYwbORqluUQUg4dJDOnGJEcLodK\nJUkokrq60CWHDjpc6ae6XIWIUlcklnKouXIIXcqhDLuwA2GzzXFj798fn3wvc/zOvttn38+e99vN\njX2+38/n+3wbr33en8/78367jDEGERERERERER/mZ3cAERERERERkfxS51ZERERERER8njq3IiIi\nIiIi4vPUuRURERERERGfp86tiIiIiIiI+Dx1bkVERERERMTnqXMrxdq2bdu49dZb832cDz/8kDvv\nvNOj99avX5/vv//eo/c2a9aMbdu25SeaiBSyuLg4IiMjvXrM22+/nc2bN3v1mAXhvvvuIzY21u4Y\nIuIA3jpH87Zzz/lOnTrFjTfeyKFDh2xOJWepc+ujypUrR/ny5Slfvjx+fn6ULVvW/fXHH39sd7yr\nUqtWLVasWFGon/nCCy8watSoXBmWL1/u/nrevHkEBwcTFxfntc/csmULLVu29Oi9I0eO5K9//avX\nPlukOKlVqxZly5YlICCAoKAgbr/9dt59910Kenn3O++8k19//TVXjvzUti+//JLAwEAaNmwIwLhx\n4+jXr5/79aSkJCIjIxk+fLjHx/z444/585//nOcsK1eu5KabbiIoKIjg4GDatm2b6wLc6NGj+ctf\n/pLn44pI3p2tceXLl6dq1ao8+OCDHDt2zO5YXnOxc7Si1t7SpUvz0EMPMXnyZFtzyP+oc+ujjh49\nSmZmJpmZmVx33XUsXrzY/XXv3r3tjneBM2fOXPE9LpcrXyednnzGuVJSUli1ahVdu3bNlcHlcgEw\nc+ZMnnjiCZYsWeLxXVlv69y5MytXruTAgQO2fL6IL3O5XCxevJiMjAz27t3Ls88+y5QpUxg4cGCh\n58hPbZs+fXquzuzZGgWwZ88eWrZsSdeuXXnjjTc8PuZXX33FPffck+cs9erVY+nSpaSlpXHgwAEa\nN27MQw895H791ltvJSMjg40bN+b52CKSN2drXGZmJps2bWLDhg1MmDDhgvedPn3ahnS5eesczZP2\nFrbevXszc+ZMsrOz7Y4iqHPrODk5OUyePJnatWtTqVIlevbsSVpaGgD//e9/8fPz48MPP6RmzZpU\nrFiR6dOn8+OPP7qvxA8dOtR9rA8//JDbb7+doUOHUqFCBW688cZcdx/S09MZOHAg1atXJywsjBde\neIGcnJxc+z711FNUqlSJ8ePHs3v3blq3bk2lSpWoXLkyffv2JT09HYB+/fqxd+9eOnfuTPny5Xn1\n1VdZtWoVNWrUyNW+c++AjBs3jvvuu49+/foRGBjIzJkzL5vpfN988w1NmjShVKlSubYbY3j33XcZ\nOXIky5Yto3nz5lds77kGDx6c60ojQJcuXdwnnue34f7772fAgAEEBARQv379XCeFZcqUoUmTJnz9\n9dcXbYOIeKZ8+fJ07tyZ+fPnM3PmTLZu3QpYQ8pGjhzJddddR9WqVRk8eDAnT54EYNWqVYSFhTF1\n6lRCQkKoXr06H374ofuYS5YsoV69egQEBBAWFsZrr73m3u9s7Tq/tr3yyit06tSJt99+O1e+m266\niYULF16QOysri5UrV3LXXXe5t53tKO/atYuWLVvSr1+/XHcNEhISaNmyJQEBAURHRzNkyJBcneOc\nnBy+/fZb2rdvn+efC1WqVCE0NNR9HD8/P6pVq5Yrc6tWrfjqq688/M6IiDdUr16d9u3bu2ubn58f\n77zzDhEREdSpUweAxYsX06hRI/dIll9++cW9/5QpUwgLCyMgIIDIyEj3ecr69eu55ZZbCAwMpGrV\nqjz99NMAtp2jnd/eLVu2cOTIETp16kSVKlUIDg6mc+fOJCUlud/74YcfEh4eTkBAANdffz1z5851\nv/b+++9Tt25dAgICqFevHj/99BOA+1z67PYvvvjikn/3YWFhBAUFsWbNmku+RwqPOrcO8/e//51F\nixbx/fffk5KSQlBQEEOGDMn1nvXr17Nz507mzZvHsGHDmDhxIitWrGDr1q188sknuZ4HXb9+PbVr\n1+bw4cOMHz+ebt26ceTIEQAeeOABSpUqxa5du/jpp59YtmwZ//jHP3LtGx4ezu+//85zzz2HMYbn\nn3+elJQUtm/fzr59+xg3bhwAs2fPpmbNmu4rciNHjrxo+869YwGwaNEievToQXp6On369LlipnP9\n8ssv7oJ/rnfeeYexY8eyYsUKbr75Zvd2T4/dp08f5s+f7/46LS2Nb775hl69el20DV9++SW9e/cm\nPT2dmJgYnnjiiVyv33jjjT7xrJ2IL7j11lsJCwtj9erVADz77LPs3LmTzZs3s3PnTpKSknjxxRfd\n7z9w4AAZGRkkJyczY8YMhgwZ4r4oN3DgQN577z0yMjLYunUrrVu3vuDzzq9to0aNYsCAAXz00Ufu\n92zevJnk5OSL3kmNj4/Hz8+P6tWru7e5XC52797NXXfdxeDBg9119Kw+ffrQvHlzUlNTGTduHB99\n9FGuurN+/Xquv/56goODc23z9OfC3r17CQoKomzZsnz11VfMmDEj1+erZokUnrMXu/bt28fSpUtp\n3Lix+7WFCxfy448/sm3bNn766ScGDhzI+++/T2pqKoMGDSImJobs7Gx+++03pk2bxoYNG8jIyGDZ\nsmXUqlULgGHDhjFixAjS09PZvXs3PXv2vGSWwjhHO7+9N998Mzk5OQwcOJC9e/eyd+9errnmGve5\n1LFjxxg2bBixsbFkZGSwZs0aGjVqBMCnn37K+PHjmT17NhkZGSxatIiKFSsCULt2bVavXk1GRgZj\nx46lb9++lx1Fp7pXdKhz6zDvvvsuEyZMoHr16vj7+zN27FgWLFiQ68rYCy+8QKlSpYiOjqZ8+fL0\n6dOHSpUqUb16de688073VSuwrtIPGzaMEiVKcP/991OnTh0WL17MgQMHWLp0Ka+//jrXXHMNlStX\nZvjw4cybN8+9b/Xq1RkyZAh+fn6UKVOG8PBwoqKi8Pf3p1KlSowYMYLvvvsuX+297bbbiImJAaw7\nq1fKdK709HTKlSuXa5sxhm+//ZYWLVpQv35993ZP2nvWHXfcgcvlcj+nu2DBAm677TaqVq160Rx3\n3nkn7du3x+Vy0bdv3wuKY/ny5d0XFEQk/6pXr05qairGGN5//32mTp1KhQoVKFeuHGPGjMn1/9rf\n35+//vWvlChRgg4dOlCuXDl+++03AEqVKsXWrVvJyMggMDAw10nl5XTu3JkdO3awa9cuwOoA9+rV\ni5IlS17w3iNHjlC+fPlc24wxbNmyhePHj3P//ffnem3v3r1s2LCBF198kZIlS3L77bcTExOTa1j0\nxYYk5+XnQs2aNUlLS+PQoUM0bNiQBx98MNexypUrp5olUgiMMXTt2pWgoCDuvPNOWrVqxXPPPed+\nfcyYMVSoUIHSpUvz3nvvMWjQIG699VZcLhf9+/endOnSrFmzhpIlS3Lq1Cm2bt1KdnY2NWvW5Prr\nrwesOhcfH8+hQ4coW7YsTZs29ThfQZyjXay9wcHB3HvvvZQpU4Zy5crx3HPP5Tq/9PPz45dffuHE\niROEhIRQt25dAP7xj38wevRomjRpAkB4eDg1a9YErMnxzp633X///URERLBu3bpLtlXnakWHOrcO\n89///pd7772XoKAggoKCqFu3LiVLlsx1tSkkJMT952uuueaCr899OP/s8LOzrrvuOpKTk9m7dy/Z\n2dlUq1bN/VmPPfYYBw8edL/3/OEqBw4coFevXoSFhREYGEi/fv04fPhwvtobFhbm/vOePXuumOlc\nQUFBZGZm5trmcrmYPn06v/32Gw8//PBVHdvlctGrVy/3xF5z58697MQt5/79ly1blpMnT+a6GJGR\nkUFQUNAV/iZExFOJiYkEBwdz6NAhjh8/TpMmTdz/rzt06JBr1suKFSvi5/e/H5Vly5bl6NGjAHz2\n2WcsWbKEWrVq0apVK9auXevR55cpU4b777+f2bNnY4xh3rx5uYYNn+tSdSomJoYHH3yQ1q1bs3fv\nXvdrycnJBAcHU6ZMGfe282vx0qVL6dixY65tV/q5cLbN52d79dVX+fLLL8nIyHBvz8zMpEKFCpf7\nKxARL3C5XCxcuJC0tDT++9//8vbbb1O6dGn36+f+39+zZw+vvfaau9YFBQWRmJhISkoK4eHhvPHG\nG4wbN46QkBB69+5NSkoKADNmzGDHjh3ceOONNG3aNE+PHBTEOdrF2nv8+HEGDRpErVq1CAwM5K67\n7iI9PR1jDNdeey3z589n+vTpVK9enU6dOrkvUCYmJhIeHn7Rz581axaNGzd2Z92yZctlz1kzMzN1\nrlZEqHPrMDVr1iQ2Npa0tDT3r+PHj1/wTJSnzn1mAaziFBoaSo0aNShdujSHDx92f056enqu5zfO\nH57y3HPPUaJECbZs2UJ6ejqzZ8/O1Yk7//3XXnstx48fd3995syZC4rguft4kulcN910Ezt27Lhg\ne0hICMuXLycuLo7HH3/8qo7du3dvFixYwJ49e1i/fj3du3e/6Ps8sX37dvcsqSKSPz/++CPJycnc\ncccdVKxYkWuuuYZt27a5/18fOXIkV0ftcm655Ra++OILDh48SNeuXS+4i3rW+bUNYMCAAcyZM4dv\nv/2WsmXL0qxZs4vuW7t2bYwx7hNN+N+wvNdee41OnTrRunVrkpOTAahWrRqpqamcOHHC/f5zO7/7\n9+8nJSXF47vMl2sDQHZ2Nn5+frlOqLdv3+4e9ici9jn3/23NmjV5/vnnc50fHj161D3MuHfv3sTF\nxbFnzx5cLhejR48GrBo0d+5cDh48yOjRo7nvvvs4ceKEbedoF/Paa6+xY8cO1q9fT3p6Ot999x3G\nGHetbNu2LcuWLWP//v1ERkbyyCOPuDPt3LnzguPt2bOHRx99lGnTppGamkpaWhr169e/7MSAOlcr\nOtS5dZjHHnuM5557zn0yc/DgQRYtWpSnY5z7n/f333/nrbfeIjs7m08//ZRff/2Vjh07UrVqVdq2\nbctTTz1FZmYmOTk57Nq167Lrtx49epRrr72WgIAAkpKSeOWVV3K9HhIS4h6mB3DDDTdw8uRJlixZ\nQnZ2NhMmTODUqVOXPH61atXylKlNmzZs2rSJrKysix5r+fLlxMbG8tRTT+X52I0aNaJSpUo8/PDD\ntG/fnoCAgEvmvpyTJ0+yadMmoqOjr2p/keLubD3LyMhg8eLF9O7dm379+lGvXj38/Px45JFHGD58\nuPukLCkpiWXLll3xuNnZ2cyZM4f09HRKlChB+fLlKVGixEXfe35tA2jRogUul4uRI0fSv3//S35O\nqVKlaNOmDatWrbro62+//TZ33303UVFR/P7771x33XXccsstjBs3juzsbNasWcPixYvdJ5lLly6l\nQ4cOV2zf+c7+PX7++efs2LGDnJwcDh48yFNPPUXHjh1zdW6///77q/oMESk4jzzyCNOnT2f9+vUY\nYzh27BhfffUVR48eZceOHaxYsYJTp05RunRpypQp465nH330kbs+BgYG4nK58PPzs/Uc7XxHjx7l\nmmuuITAwkNTUVMaPH+9+7ffff2fhwoUcO3YMf39/rr32WnfbHn74YV599VU2bdqEMYadO3eyd+9e\njh07hsvlolKlSuTk5PDBBx+wZcuWS35+UlISqamp7glIxV7q3DrMsGHDiImJoW3btgQEBNCiRQvW\nr1/vfv1SV9/Pde57mjVrRnx8PJUrV+aFF17gs88+cw+7mDVrFllZWdStW5fg4GB69OjB/v373cc4\n/7PGjh3Lpk2bCAwMpHPnznTv3j3Xe8aMGcOECRMICgpi6tSpBAYG8s477/Dwww8TFhZGuXLlcg2x\nudhnXC7T+UJCQmjduvUlZ8CrUaMGK1asYMGCBTz//PN5bm+fPn1YsWIFffr0uezf9fn7nfv1l19+\nyd13333J53VF5PI6d+5MQEAANWvWZNKkSTz99NN88MEH7tenTJlC7dq1ad68OYGBgURHR+e6W3C5\nmvnRRx/xpz/9icDAQN577z3mzJlz0f3Or21n9e/fn19++YW+fftetg2DBg1i9uzZuY597vHfe+89\nmjZtSnR0NKmpqcyZM4c1a9ZQsWJFXnjhBXr27OnufH711VcXDEnOy8+F5ORk9wW7m2++maCgIGbO\nnOl+348//kj58uW55ZZbrnhMESk45/+/btKkCe+//z5PPPEEwcHBREREMGvWLMCaNX7MmDFUrlyZ\natWqcejQISZNmgTA119/Tf369SlfvjwjRoxg3rx5lC5d2vZztHMNHz6cEydOUKlSJW677TY6dOjg\n/uycnBxef/11QkNDqVixInFxcfzf//0fYD1X+/zzz9OnTx8CAgLo1q0baWlp1K1bl6effpoWLVpQ\ntWpVtmzZwh133HHJts2dO5cHHngAf3//K2aVgucyBb2avfisDz/8kBkzZrgnRnKi7du3M2DAgFwX\nAIqS5s2b889//tM9+YGIOMfs2bN5//33Lzvi5aw77riDadOmXdWwt549e1K3bl2ef/55qlWrRkJC\nwgUTtXjLfffd5x6xIiKSH0X9HA2sCwONGjUiLi6OSpUq2R1H8ODO7ZEjR7jvvvu48cYbqVu3LuvW\nrSM1NZXo6GhuuOEG2rZtm2t2sEmTJhEREUFkZGSuoV0bN26kQYMGREREMGzYMPf2U6dO0bNnTyIi\nImjevDl79uzxchNFLu3GG28s0kVz7dq16tgWEtU6KUzHjx9n2rRpPProox69f/Xq1R53bDds2MCu\nXbvIyclh6dKlLFq0iK5du5KWlsaECRMKrGML1uzw6tgWbap14iuK+jkaQOnSpdm+fbs6tkXIFTu3\nw4YNo2PHjmzfvp2ff/6ZyMhIJk+e7B66FRUV5V48ftu2bcyfP59t27YRGxvL448/7n5OZ/DgwcyY\nMYP4+Hji4+OJjY0FrFnYKlasSHx8PCNGjHA/wC72u9iQEhGnUq2TwvL1119TpUoVqlWrdtnHFq7W\n/v37ufvuu93DCKdPn07Dhg2pXLkygwYN8vrniW9RrRMRRzOXceTIEfOnP/3pgu116tQx+/fvN8YY\nk5KSYurUqWOMMWbixIlm8uTJ7ve1a9fOrFmzxiQnJ5vIyEj39o8//tgMGjTI/Z61a9caY4zJzs42\nlSpVulwkERGvU60TkeJAtU5EnO7CFePPkZCQQOXKlXnwwQfZvHkzTZo04Y033uDAgQPuNfBCQkLc\na6gmJyfnmiksLCyMpKQk/P39c611FRoa6l5iJikpyf0AesmSJd0znQUHB7vfr7uHInIxxktTBqjW\niUhR5416p1onIkVdfmvdZYclnz59mk2bNvH444+zadMmrr32WvdQlbMKa+iq+WO9Kl/4NXbsWNsz\nODGr8irvub+8ySm1zpPv3+Xec7HXzt927td5/XNB/Xu81Pvy2h5P2pHf/yP6Hul7dDXfF29Rrcv/\n9+hS/9b0/8je75En7Sjq3yNPvi9O/x55w2U7t2FhYYSFhXHrrbcC1iyImzZtomrVqu6pu1NSUqhS\npQpgXbnbt2+fe//ExETCwsIIDQ0lMTHxgu1n9zm7Juvp06dJT0/PdXVPRKSgOaXWtWrVKl/vudhr\n528792tP/pwfnh7nUu/La3vO/9quNul71Mrjr/U9yhvVuku/5un36Nyv9f/o0gr7e3T+1774PTp/\nm75HV8lcwZ133ml+++03Y4wxY8eONaNGjTKjRo1yP4MxadIkM3r0aGOMMVu3bjUNGzY0p06dMrt3\n7zbXX3+9ycnJMcYY07RpU7N27VqTk5NjOnToYJYuXWqMMWbatGnmscceM8ZYz2z07NnzggwexCxS\nxo4da3cEj/lSVmOUt6B5K+/u3cakp3vlUJfk7bpQnGpdRoYxiYmF8lE+93/gSpzWHmOc1yantccY\n79YGJ9a6nBxjfv3Vq4fMM6f9u3Nae4xxXpuc1h5jvFMbrniE//znP+aWW24xN910k7n33nvNkSNH\nzOHDh01UVJSJiIgw0dHRJi0tzf3+l156yYSHh5s6deqY2NhY9/YNGzaY+vXrm/DwcDN06FD39pMn\nT5oePXqY2rVrm2bNmpmEhIQLQ/pY53blypV2R/CYL2U1RnkLmrfytm9vzJIlXjnUJXm7LhSnWvf+\n+8Y0aWLMiRMF/1m+9n/gSpzWHmOc1yantccY79YGJ9a65GRjKlc2ZsMGrx42T5z2785p7THGeW1y\nWnuM8U5tcP1xoCLN5XJ5bRy2iBS8Dh3gySet3wuKE+tCYbXJGOjRAypVgunTC/zjRCSfnFbvCqI9\nCxbAqFGwcSPo6TYR3+SN2nDFdW5FRMRZXC745z9h5UqYOdPuNCIi+XfffdCtG/TtCzk5dqcREbuo\ncysiUgwFBMDnn8PIkbB5s91pRETyb/JkyMyECRPsTiIidlHnVkSkmKpXD958E7p3hyNH7E4jIpI/\n/v7wySfw7ruwbJndaUTEDurciogUY336WM9GDxigoXwi4vuqVYO5c6F/f/hjRSIRKUbUuRURKeZe\new0OHICXX7Y7iYhI/t11Fzz9tPUc7qlTdqcRkcKkzq2ISDFXqhR8+im88QasWGF3GhGR/Bs5EkJD\nYfhwu5OISGFS51ZERKhRA+bMgT//GZKS7E4jIpI/Lhd8+CEsXw6zZ9udRkQKizq3IiICQFQUDB1q\nrYGblWV3GhGR/AkMtNa/feop+OUXu9OISGFQ51ZERNyefRYqVoRnnrE7iYhI/t10E7z+ujUrfHq6\n3WlEpKCpcysiIm5+fjBrFnz5Jcyfb3caEZH869sX2rSBBx8EY+xOIyIFSZ1bERHJJSjIGsr3xBOw\nfbvdaURE8u/11yEx0ZodXkScS51bERG5QOPGMGUKdOsGmZl2pxERyZ/Spa2Ldq++Ct99Z3caESko\n6tyKiMhFPfQQ3H47PPywhvKJiO+rWdN67KJPH0hOtjuNiBQEdW5FROSS/v53iI+Ht96yO4mISP61\nbQuPPQY9e0J2tt1pRMTb1LkVEZFLuuYaayjfxInw73/bnUZEJP+efx7Kl7dmhxcRZ1HnVkRELuv6\n6+Gf/7TudBw4YHcaEZH88fODjz6Czz+3Lt6JiHOocysiIld0zz3WMhq9esHp03anERHJn+Bgq2M7\neDD8+qvdaUTEW9S5FRERj4wbB/7+8MILdicREcm/Jk1g0iTo3h2OHrU7jYh4gzq3IiLikRIlYO5c\n69fChXanERHJv4EDoVkzePRRzQov4gTq3IqIiMcqVYJPPoFHHoGdO+1OIyKSPy4XTJsG27ZZv4uI\nb1PnVkRE8qRZM2uIcvfucPy43WlERPLnmmvgs8/gxRdhzRq704hIfqhzKyIieTZ4MDRoYP2uoXwi\n4uvCw2HGDGtW+IMH7U4jIldLnVsREckzlwvefRc2boT337c7jYhI/nXuDH37Qu/ecOaM3WlE5Gqo\ncysiIlfl2mutoXzPPw8bNtidRkQk/1580RqN8te/2p1ERK6GOrciInLV6tSB6dPhvvvg8GG704iI\n5E/JkvDxxzBrFixebHcaEckrdW5FRCRfune3Ord9+0JOjt1pRETyp0oVmD8fHnoIdu+2O42I5IU6\ntyIikm+TJsGxYzBhgt1JRETy77bb4C9/sS7enThhdxoR8ZQ6tyIikm/+/tadjnffhdhYu9OIiOTf\n0KEQGQlDhtidREQ8dcXOba1atbjpppto3LgxTZs2BSA1NZXo6GhuuOEG2rZty5EjR9zvnzRpEhER\nEURGRrJs2TL39o0bN9KgQQMiIiIYNmyYe/upU6fo2bMnERERNG/enD179nizfSIiHlGty79q1axn\n1R54ABzYPBFHUK3znMtlzQa/di384x92pxERT1yxc+tyuVi1ahU//fQT69evB2Dy5MlER0ezY8cO\noqKimDx5MgDbtm1j/vz5bNu2jdjYWB5//HHMHwsgDh48mBkzZhAfH098fDyxf1zanzFjBhUrViQ+\nPp4RI0YwevTogmqriMglqdZ5R8uWMGqU9QzuqVN2pxGR86nW5U25cvD55zBmjLX0mYgUbR4NSz5b\nyM5atGgRAwYMAGDAgAF88cUXACxcuJDevXvj7+9PrVq1qF27NuvWrSMlJYXMzEz3FcL+/fu79zn3\nWN27d2f58uXeaZmISB6p1nnHU09BzZpwzs0cESlCVOvyJjISpk2zLtqlptqdRkQup+SV3uByuWjT\npg0lSpRg0KBBPPLIIxw4cICQkBAAQkJCOHDgAADJyck0b97cvW9YWBhJSUn4+/sTFhbm3h4aGkpS\nUhIASUlJ1KhRwwpTsiSBgYGkpqYSHBycK8e4cePcf27VqhWtWrW6uhaLiE9atWoVq1atKrDjq9Z5\nj8sFH3wAt94KM2fCH+e5IuKhgqx3qnVX5/77Yc0a6NcPvvwS/DRrjUi+FUStu2Ln9t///jfVqlXj\n4MGDREdHExkZmet1l8uFy+XyaqiLObcIikjxc/7Jz/jx4716fNU67woIgM8+g7vvhkaNoGFDuxOJ\n+I6CrHeqdVfv5ZetmjZxojWTsojkT0HUuited6pWrRoAlStX5t5772X9+vWEhISwf/9+AFJSUqhS\npQpgXbnbt2+fe9/ExETCwsIIDQ0lMTHxgu1n99m7dy8Ap0+fJj09/YKreyIiBU21zvvq14c33rCG\n8p0zP42I2Ei17ur5+8Mnn8A778A339idRkQu5rKd2+PHj5OZmQnAsWPHWLZsGQ0aNCAmJoaZM2cC\nMHPmTLp27QpATEwM8+bNIysri4SEBOLj42natClVq1YlICCAdevWYYxh9uzZdOnSxb3P2WMtWLCA\nqKioAmusiMjFqNYVnD//Gdq1s2ZQPu8xPxEpZKp1+Ve9Osydaw1P/qMPLyJFibmM3bt3m4YNG5qG\nDRuaevXqmYkTJxpjjDl8+LCJiooyERERJjo62qSlpbn3eemll0x4eLipU6eOiY2NdW/fsGGDqV+/\nvgkPDzfPY4TfAAAgAElEQVRDhw51bz958qTp0aOHqV27tmnWrJlJSEi4IMcVYopIEdO+vTFLlhTs\nZ3izLqjWFayTJ41p1syYyZPtTiLim7xVG1TrvOfll41p2tSqbyLiHd6oDa4/DlSkuVyuC2b2E5Gi\nq0MHePJJ6/eC4sS64MQ2nbVvHzRtaq2DW8TnjREpcpxWG5zQHmOgWzcIDYW337Y7jYgzeKM2aK43\nEREpcDVqwOzZ0KcPJCfbnUZEJH9cLvjwQ/j6a5gzx+40InKWOrciIlIo2rSBIUOsJTWys+1OIyKS\nP4GB1qzww4fDL7/YnUZEQJ1bEREpRGPGQIUK8MwzdicREcm/m26CqVOhe3fIyLA7jYiocysiIoXG\nz88anrxwobWkhoiIr+vXD6Ki4MEHNSu8iN3UuRURkUIVFAQLFlhDlLdvtzuNiEj+vfGGNXHe1Kl2\nJxEp3nymc+tyuXC5XIwbN+6C18aNG3fJ7dpP+2m/wt/v9GmYM+fqPk+Kh5tvhsmTraF8fyy7KSLi\ns0qXti7avfIKfPed3WlEii8tBSQiXvXTT9CunTW5RkhIwX2OE+uCE9t0JY89BomJ1jDlEiXsTiNS\nNDmtNjitPedatswanvzjj1C9ut1pRHyLlgISkSIlK8v6of7KKwXbsRXn+Pvf4cQJGDXK7iQiIvnX\ntq110U6zwovYQ51bEfGaKVOsK9X9+9udRHyFv781lO+rr+C99+xOIyKSf88/r1nhReyiYcki4hVb\ntsDdd8OmTVCjRsF/nhPrghPb5Kn4eLjjDpg715p1VET+x2m1wWntuZi0NLjlFnjpJejVy+40Ir5B\nw5JFpEg4fdoajjxxYuF0bMV5IiJg/nzo3VszKIuI7zs7K/zQodbFXxEpHOrciki+vfYaBAbCww/b\nnUR8WatW1tD2Tp3g4EG704iI5E/jxtbPx27dID3d7jQixYOGJYtIvvz6qzWcdMMGqFWr8D7XiXXB\niW26GmPGQFwcLF9uLa8hUtw5rTY4rT1XMmSINSv8v/4FfrqtJHJJ3qgN6tyKyFU7c8bq2Pbta/3w\nLkxOrAtObNPVyMmBnj2hVCn46CNwuexOJGIvp9UGp7XnSrKyrDkp2reHF16wO41I0aVnbkXEVm+9\nZXVABg+2O4k4iZ8fzJoFu3bBuHF2pxERyZ9SpeDTT2H6dFiyxO40Is6mO7ciclV27oTmzWHtWqhd\nu/A/34l1wYltyo8DB6BFC6uDq+WlpDhzWm1wWns89e9/w733wg8/2PNzU6So07BkEbFFTo41xOre\ne2H4cHsyOLEuOLFN+bV9uzXR1Pz51u8ixZHTaoPT2pMX77xj/Vq7FsqVszuNSNGiYckiYov/+z/I\nzraWOBApSDfeCPPmWc/gaokgEfF1gwdD06bW8nnFtH8vUqB051ZE8iQhwfrBHBcHkZH25XBiXXBi\nm7xl1ixrePKaNRASYncakcLltNrgtPbk1cmTcNdd0LWrNTu8iFi8URtKeimLiBQDxsAjj8CoUfZ2\nbKX46d/furDSuTOsXAnXXmt3IhGRq1OmDHz+uXWhuGFD6NjR7kQizqE7tyLisffft3798AOUtPnS\nmBPrghPb5E3GWEP5jhyBzz6DEiXsTiRSOJxWG5zWnqt1doKp1avhhhvsTiNiP00oJSKFZt8+uPlm\n665Z/fp2p3FmXXBim7wtKwvuuccaOfDWW1oDV4oHp9UGp7UnP95/H6ZOhXXrICDA7jQi9lLnVkQK\nhTFWh+K22+Avf7E7jcWJdcGJbSoI6elw553WUOWRI+1OI1LwnFYbnNae/Hr8cesC8sKF1jrfIsWV\nZksWkUIxaxakpMDo0XYnEYHAQFiyxLpzO3++3WlERPLnjTcgIwP++le7k4j4Pk0oJSKXlZxsTSD1\n9dfg7293GhFLWBgsXgxt2kDVqtbMoyIivqhUKfj0U2uCqQYNrKXPROTqaFiyiFySMdZSBTfdBH/7\nm91pcnNiXXBimwra8uXQpw+sWAH16tmdRqRgOK02OK093vKf/0B0tHUx+eab7U4jUvg0LFlECtS8\nebBrV9F5zlbkfFFR8Prr1lIaiYl2pxERuXqNGsE771gXlQ8csDuNiG/SsGQRuagDB2D4cGvoZ+nS\ndqcRubQ+fayObYcOEBcHFSrYnUhE5Or06AFbtkC3btaIFP38Fckbj+7cnjlzhsaNG9O5c2cAUlNT\niY6O5oYbbqBt27YcOXLE/d5JkyYRERFBZGQky5Ytc2/fuHEjDRo0ICIigmHDhrm3nzp1ip49exIR\nEUHz5s3Zs2ePt9omIvnwxBPwwANw6612Jyk8qnW+a9QouPtu647HyZN2pxEp2lTriraxYyEkBAYP\nth4PEhHPedS5ffPNN6lbty6uPxYUnDx5MtHR0ezYsYOoqCgmT54MwLZt25g/fz7btm0jNjaWxx9/\n3D1uevDgwcyYMYP4+Hji4+OJjY0FYMaMGVSsWJH4+HhGjBjBaE3HKmK7BQvgl19g/Hi7kxQu1Trf\n5XJZw5MrV7aWCMrJsTuRSNGlWle0+flZqxRs2mStgSsinrti5zYxMZElS5bw8MMPuwvaokWLGDBg\nAAADBgzgiy++AGDhwoX07t0bf39/atWqRe3atVm3bh0pKSlkZmbStGlTAPr37+/e59xjde/eneXL\nl3u/lSLisUOHYOhQ+Oc/oUwZu9MUHtU631eiBMyeDb//bg2p1x0PkQup1vmGcuVg0SJ47TVr6TMR\n8cwVn7kdMWIEr7zyChkZGe5tBw4cICQkBICQkBAO/PHUe3JyMs2bN3e/LywsjKSkJPz9/QkLC3Nv\nDw0NJSkpCYCkpCRq1KhhhSlZksDAQFJTUwkODs6VY9y4ce4/t2rVilatWuWxqSLiiWHDoFcvuO02\nu5PktmrVKlatWlVgx1etc4YyZeCLL6BlS5gyBZ591u5EInlXkPVOtc531KxpjaTq0gVWrdKM8OI8\nBVHrLtu5Xbx4MVWqVKFx48aX/GCXy+Ue1lKQzi2CIlIwFi2Cdevg55/tTnKh809+xntxzLRqnbNU\nqABLl8Ltt1vPrT34oN2JRPKmoOqdap3vue02a2hyTAysXWs9eiHiFAVR6y7buf3hhx9YtGgRS5Ys\n4eTJk2RkZNCvXz9CQkLYv38/VatWJSUlhSpVqgDWlbt9+/a5909MTCQsLIzQ0FASz1mj4ez2s/vs\n3buX6tWrc/r0adLT0y+4uiciBS8tDR5/HObMgbJl7U5TuFTrnCc0FGJjoVUr62SwUye7E4nYT7XO\nN/XrB9u3WzMof/utZlAWuZzLPnM7ceJE9u3bR0JCAvPmzaN169bMnj2bmJgYZs6cCcDMmTPp2rUr\nADExMcybN4+srCwSEhKIj4+nadOmVK1alYCAANatW4cxhtmzZ9OlSxf3PmePtWDBAqKiogqyvSJy\nCU8/bQ19uusuu5MUPtU6Z4qMhIULrTu3P/xgdxoR+6nW+a4JE6wLdY89pvkERC7LeGjVqlWmc+fO\nxhhjDh8+bKKiokxERISJjo42aWlp7ve99NJLJjw83NSpU8fExsa6t2/YsMHUr1/fhIeHm6FDh7q3\nnzx50vTo0cPUrl3bNGvWzCQkJFzw2XmIKSJXITbWmOuuMyYjw+4kniuouqBa5zxLlxpTpYoxW7bY\nnUTk6hREbVCt8z1HjxrTuLExU6bYnUSkYHijNrj+OFCR5nK58IGYIj4pIwPq14cZMyA62u40nnNi\nXXBim4qKOXOsyaXi4qBWLbvTiOSN02qD09pTmBIToUULeOstuPdeu9OIeJc3aoM6tyLF3KBB1pqg\n779vd5K8cWJdcGKbipK33oK334bVq+GPRwpFfILTaoPT2lPYNm6EDh2sifOaNLE7jYj3eKM2XHEp\nIBFxruXLrfXztmyxO4lIwXvySWsd5w4dYOVKCAiwO5GISN41aQLvvWfNk7F2LZyzKpNIsac7tyLF\n1NGjcNNN1p2sjh3tTpN3TqwLTmxTUWOMNSv4b79ZF3bKlLE7kciVOa02OK09dnn1VfjoI+txi/Ll\n7U4jkn8aliwiV+3JJ+HIEZg1y+4kV8eJdcGJbSqKzpyBP/8ZTp6EBQugpMYwSRHntNrgtPbYxRhr\n9uTERGtmeNUy8XXq3IrIVYmLg1694JdfwFeXH3RiXXBim4qqrCxrSF9ICPzzn+B32YXxROzltNrg\ntPbYKTsb7rkHIiKskVgul92JRK6eN2qDfpyLFDPHj8PAgTBtmu92bEXyq1Qp+Owz2LnTWuNZ59ki\n4ov8/eHTT+G77+DNN+1OI2I/3bkVKWZGjoSkJPj4Y7uT5I8T64IT21TUHTkCrVpZS2qMHWt3GpGL\nc1ptcFp7ioI9e+C226wL11272p1G5OpotmQRyZO1a631Pn/5xe4kIkVDhQrw9dfQsiUEBsLw4XYn\nEhHJu+uus5677dgRqleHpk3tTiRiDw1LFikmTp6Ehx6y1vqsVMnuNCJFR0gIfPMNvP669fytiIgv\nuuUWmDHDunO7e7fdaUTsoTu3IsXEiy/CjTfCfffZnUSk6KlZ0+rgtmplLanRo4fdiURE8q5zZ9i7\n17qD+8MPmltDih89cytSDGzcaP2g27wZqla1O413OLEuOLFNvmbzZmjb1rqDe889dqcRsTitNjit\nPUXRyJGwfj0sW6b1vMV3aCkgEbmirCxrqNIzz0Dfvnan8R4n1gUntskXrV0LMTEwfz7cfbfdaUSc\nVxuc1p6iKCcHeve2/vzxx1ruTHyDlgISkSt66SVrook//9nuJCK+oXlz+OQT6NnT6uiKiPgaPz+Y\nOROSk2H0aLvTiBQe3bkVcbDNm6FNG/jPfyA01O403uXEuuDENvmyJUvgwQet2ZQbNbI7jRRnTqsN\nTmtPUZaaai0RNGQIDB1qdxqRy9OdWxG5pOxs68T85Zed17EVKQwdO8I770CHDrB1q91pRETyLjgY\nYmNh8mT47DO704gUPM2WLOJQL78MVarAAw/YnUTEd3Xvbi2j1bYtrFoFERF2JxIRyZtatWDxYmjX\nzlr67I477E4kUnA0LFnEgbZuhbvugk2brCVOnMiJdcGJbXKKGTOs5bS++846URQpTE6rDU5rj6/4\n5htrYsmVK6FuXbvTiFxIw5JF5AKnT8NDD8GECc7t2IoUtoEDYdQoiIqCxES704iI5F10NLz6qvXI\nRVKS3WlECoaGJYs4zBtvwLXXwqOP2p1ExFmeeAJOnYLWra07uNWq2Z1IRCRv+vWDlBRo3x7i4qBC\nBbsTiXiXhiWLOMiOHdasiOvXw/XX252mYDmxLjixTU40cSJ89JH1DG6VKnankeLAabXBae3xNcbA\niBHw00/WbPBlytidSMTijdqgzq2IQ+TkWM/Z9ugBTz5pd5qC58S64MQ2OdXYsfCvf8GKFVCpkt1p\nxOmcVhuc1h5flJMDffpYKyt88gmUKGF3IhE9cysi53j7bev3J56wN4dIcTBuHNxzj/UMW2qq3WlE\nRPLGzw9mzoT0dGsNXF1rEKfQnVsRB9i1C5o1gzVris9SJU6sC05sk5MZA888Y929/fZbCAqyO5E4\nldNqg9Pa48syM6FVK+jUCcaPtzuNFHe6cysi5OTAww/DmDHFp2MrUhS4XNZ60i1bWutHpqfbnUhE\nJG/Kl4elS2HuXHjnHbvTiOSfz3RuXS4XLpeLcePGXfDauHHjLrld+2k/p+/30Udw4gQMH160c3q6\nn4gvcblg6lRo3tyafTQz0+5EIiJ5U6UKLFtmTZb3ySd2pxHJHw1LFvFxPXpAly7WwuzFiRPrghPb\nVFwYA4MGwc6dsGSJZh8V73JabXBae5zi55+hTRtrNvi2be1OI8WRZksWKeaMgerVrWdta9WyO03h\ncmJdcGKbipMzZ6w1JDMz4fPPwd/f7kTiFE6rDU5rj5PExUG3brB4sTWXh0hh0jO3IsXc7t3W9P3X\nXWd3EhEpUcKafdTlgv79rc6uiIgvufNO+OADa0TY9u12pxHJu8t2bk+ePEmzZs1o1KgRdevWZcyY\nMQCkpqYSHR3NDTfcQNu2bTly5Ih7n0mTJhEREUFkZCTLli1zb9+4cSMNGjQgIiKCYcOGubefOnWK\nnj17EhERQfPmzdmzZ4+32yjiWHFxcPvt1sm0XD3VOvEWf3/rmbWDB61hyro5JUWJap14olMna7K8\ndu1g716704jkkbmCY8eOGWOMyc7ONs2aNTNxcXFm1KhRZsqUKcYYYyZPnmxGjx5tjDFm69atpmHD\nhiYrK8skJCSY8PBwk5OTY4wx5tZbbzXr1q0zxhjToUMHs3TpUmOMMdOmTTODBw82xhgzb94807Nn\nzwsyeBBTpFgaONCYv//d7hT28HZdUK0Tb8rMNKZFC2OGDzfmj38aIlfNm7VBtU48NXWqMXXqGPP7\n73YnkeLCG7XhisOSy5YtC0BWVhZnzpwhKCiIRYsWMWDAAAAGDBjAF198AcDChQvp3bs3/v7+1KpV\ni9q1a7Nu3TpSUlLIzMykadOmAPTv39+9z7nH6t69O8uXL/dm313E0VavhjvusDuFM6jWiTeVK2dN\nLLVqFYwda3cakf9RrRNPjRgB3btDhw6QkWF3GhHPlLzSG3Jycrj55pvZtWsXgwcPpl69ehw4cICQ\nkBAAQkJCOHDgAADJyck0b97cvW9YWBhJSUn4+/sTFhbm3h4aGkpSUhIASUlJ1KhRwwpTsiSBgYGk\npqYSHBycK8e5S4a0atWKVq1aXV2LRRzi4EHYvx8aNLA7SeFYtWoVq1atKrDjq9aJt1WoYC2vcddd\nVmf3mWfsTiS+oiDrnWqd5MWECXD4MHTtqpngxfsKotZdsXPr5+fHf/7zH9LT02nXrh0rV67M9frZ\ndSwLmtbDFMlt9Wpo0cKaxKY4OP/kZ/z48V49vmqdFITKleGbb6BlS6uD+/jjdicSX1CQ9U61TvLC\n5YJp06BPH+jdGz79FEpesfcg4pmCqHUez5YcGBjIPffcw8aNGwkJCWH//v0ApKSkUKVKFcC6crdv\n3z73PomJiYSFhREaGkpiYuIF28/us/ePp9VPnz5Nenr6BVf3RORCq1dbsxqKd6nWibeFhsK338Lk\nydZsyiJFgWqdeKpECZg9G44fh0cf1UR5UrRdtnN76NAh94x5J06c4JtvvqFx48bExMQw84+f0DNn\nzqRr164AxMTEMG/ePLKyskhISCA+Pp6mTZtStWpVAgICWLduHcYYZs+eTZcuXdz7nD3WggULiIqK\nKrDGijiJnrf1HtU6KWh/+pN1B3fMGOvOh4gdVOvkapUqZa3fvX07jBqlDq4UYZebbernn382jRs3\nNg0bNjQNGjQwL7/8sjHGmMOHD5uoqCgTERFhoqOjTVpamnufl156yYSHh5s6deqY2NhY9/YNGzaY\n+vXrm/DwcDN06FD39pMnT5oePXqY2rVrm2bNmpmEhIQLclwhpkixc/SoMWXLGnP8uN1J7OPNuqBa\nJ4Vl82ZjqlQx5ssv7U4ivsRbtUG1TvLr8GFj6tUz5qWX7E4iTuSN2uD640BFmsvlwgdiihSalSvh\n+efhhx/sTmIfJ9YFJ7ZJLrR+vbWO5Ny50KaN3WnEFzitNjitPcVNcrI1cuyZZ+Cxx+xOI07ijdrg\n8TO3IlJ0xMXpeVsRX9W0KXz2mTVBy+rVdqcREcmb6tWtxyz+9jeYN8/uNCK5qXMr4oP0vK2Ib7vz\nTpgzB7p1gx9/tDuNiEjehIdDbCwMG2YtESRSVGhYsoiPOX0agoMhIQEqVrQ7jX2cWBec2Ca5vEWL\n4JFHrLsgN91kdxopqpxWG5zWnuJszRqIiYF//UsX3SX/NCxZpBj6+WeoUaN4d2xFnCImBv7+d2jf\nHn791e40IiJ506KFNX9At27w0092pxFR51bE52h9WxFnuf9+aw3c6GjYtcvuNCIieRMdDdOnwz33\nwG+/2Z1GiruSdgcQkbyJi4M/lhMUEYfo3x9OnICoKPj+e6hZ0+5EIiKe69YN0tOhbVvrPEU1TOyi\nzq2IDzHGunP78st2JxERbxs0yOrgtm5tdXCrV7c7kYiI5x580OrgtmljdXBDQuxOJMWROrciPmT3\nbihRAmrVsjuJiBSE4cP/dwf3u++gShW7E4mIeG74cDhyBNq1g1WroEIFuxNJcaNnbkV8yNklgFwu\nu5OISEEZMwZ69LDufhw+bHcaEZG8GTsWWrWynsE9dszuNFLcqHMr4kPi4jSZlEhxMH68deejXTvr\nLoiIiK9wuWDqVKhTB+69F06dsjuRFCfq3Ir4kNWr4fbb7U4hIgXN5bKerW/RAjp0gMxMuxOJiHjO\nzw/eew8CAqB3bzh92u5EUly4jA+soq3FvkXg4EGIiLCGKZYoYXca+zmxLjixTZI/OTnw2GPWGrhL\nl8K119qdSOzgtNrgtPbIpZ06Za3wEBICH3xgdXpFLsUbtUH/xER8xL//bd3FUcdWpPjw87PWj7z+\neusE8cQJuxOJiHiudGn4/HNrQswnn7RWfRApSOrciviIuDhrMikRKV78/GDGDGvm5O7d9fyaiPiW\nsmVh8WJYswaef97uNOJ06tyK+IjVqzWZlEhxVaIEzJplnSTefz9kZdmdSETEc4GB8PXXsHAhTJ5s\ndxpxMj1zK+IDjh2z7tocOgTXXGN3mqLBiXXBiW0S78rKgvvug1KlYN48KKnV6osFp9UGp7VHPJec\nDC1bwogRMGSI3WmkqNEztyLFxPr10LChOrYixV2pUvDpp9YFr/794cwZuxOJiHiuenX49luYMgVm\nzrQ7jTiROrciPmD1aj1vKyKWsxO0/P47PPSQNaOyiIivqFULli2DMWNgwQK704jTqHMr4gP0vK2I\nnOuaa2DRItizBx59VB1cEfEtkZHW8mZDhsCSJXanESfRM7ciRdzp01CxojWNfsWKdqcpOpxYF5zY\nJilYR49Chw5Qvz688w64XHYnkoLgtNrgtPbI1Vu7FmJiYP58uPtuu9OI3fTMrUgx8PPPEBamjq2I\nXKhcOeuux3/+ozUkRcT3NG8On3xizQK/dq3dacQJ1LkVKeJWr4bbb7c7hYgUVeXLQ2wsrFsHTz2l\nDq6I+JZWrazJpbp0sS7UieSHOrciRZyetxWRKzm7huT338Mzz6iDKyK+pWNH69GKDh1g2za704gv\nU+dWpAgzBuLi1LkVkSsLCoJvvrGW2XjuOXVwRcS3dO8Or7wCbdvCrl12pxFfpeXfRYqw3buhRAm4\n7jq7k4iILwgOtjq4rVtDyZLwt7/ZnUhExHN9+8Lx49CmDXz3HdSsaXci8TXq3IoUYWeft9UMqCLi\nqUqVYPlya+bRkiVh7Fi7E4mIeO7RR60OblSU9ahFtWp2JxJfos6tSBGm521F5GpUrvy/Dm6JEvCX\nv9idSETEc8OH/+8O7qpVVk0T8YSeuRUpwlavhjvusDuFiPiikBBYsQLmzIFJk+xOIyKSN889B127\nWs/gpqXZnUZ8he7cihRRBw9CSgo0aGB3EhHxVVWrWh3cVq3Azw9Gj7Y7kYiI5yZMsO7gtm9vzScQ\nEGB3IinqLnvndt++fdx9993Uq1eP+vXr89ZbbwGQmppKdHQ0N9xwA23btuXIkSPufSZNmkRERASR\nkZEsW7bMvX3jxo00aNCAiIgIhg0b5t5+6tQpevbsSUREBM2bN2fPnj3ebqOIT/r3v6FFC2tIoRQs\n1TpxsmrVYOVKmDHDmolUii/VOvE1LhdMnQqNG0OnTnDsmN2JpMgzl5GSkmJ++uknY4wxmZmZ5oYb\nbjDbtm0zo0aNMlOmTDHGGDN58mQzevRoY4wxW7duNQ0bNjRZWVkmISHBhIeHm5ycHGOMMbfeeqtZ\nt26dMcaYDh06mKVLlxpjjJk2bZoZPHiwMcaYefPmmZ49e16Q4woxRRzp6aeNmTDB7hRFlzfrgmqd\nFAeJicbUrm3Mq6/anUTyylu1QbVOfNWZM8YMGGBMmzbGnDhhdxopKN6oDXk6QpcuXcw333xj6tSp\nY/bv32+MsQplnTp1jDHGTJw40UyePNn9/nbt2pk1a9aY5ORkExkZ6d7+8ccfm0GDBrnfs3btWmOM\nMdnZ2aZSpUoXhgT3r7vuususXLky1+tjx441Y8eOvWC/sWPHuve71OvaT/sV1f1CQ8eaBx4o+jm9\nvd+lrFy50r3P2WMXFDtr3bltPL/WieTXvn3GhIcbM3Wq3Unkcgqr3qnWiS85fdqYnj2NueceY06d\nsjuNeENB1DqPj5CQkGBq1qxpMjIyTIUKFdzbc3Jy3F8/8cQT5qOPPnK/NnDgQLNgwQKzYcMG06ZN\nG/f277//3nTq1MkYY0z9+vVNUlKS+7Xw8HBz+PDh3CF1hU+KodKljcnMtDtF0VVQdUG1Tpxu715j\nrr/emLfesjuJeKogaoNqnfiirCxjunY1pls3Y7Kz7U4j3uaN2uDRbMlHjx6le/fuvPnmm5QvXz7X\nay6XC5cW4RTxujNnoHRpu1MUL6p1UhzUqGEtE/Tqq/Dee3anETuo1omv8veHefPgxAno3986VxI5\n1xU7t9nZ2XTv3p1+/frRtWtXAEJCQti/fz8AKSkpVKlSBYDQ0FD27dvn3jcxMZGwsDBCQ0NJTEy8\nYPvZffbu3QvA6dOnSU9PJzg42EvNExHxjGqdFCe1alkd3BdfhFmz7E4jhUm1Tnxd6dLw2Wdw4AA8\n/DDk5NidSIqSy3ZujTEMHDiQunXrMnz4cPf2mJgYZs6cCcDMmTPdxTEmJoZ58+aRlZVFQkIC8fHx\nNG3alKpVqxIQEMC6deswxjB79my6dOlywbEWLFhAVFRUgTRURORSVOukOKpd21pa49lnYf58u9NI\nYVCtE6e45hpYtAh27oQhQ8AYuxNJkXG5MctxcXHG5XKZhg0bmkaNGplGjRqZpUuXmsOHD5uoqCgT\nERFhoqOjTVpamnufl156yYSHh5s6deqY2NhY9/YNGzaY+vXrm/DwcDN06FD39pMnT5oePXqY2rVr\nmzwQWScAABvlSURBVGbNmpmEhIQLclwhpogjlSxpPVsiF+fNuqBaJ8XZ5s3GhIQY869/2Z1ELsVb\ntUG1TpwmPd2Ypk2NGT7cmD8m8hYf5o3a4PrjQEWay+XCB2KKeJW/v7Vwub+/3UmKJifWBSe2SXzD\nxo3QoQPMnGn9LkWL02qD09oj9kpLg6goaNcOJk601sYV3+SN2uDRhFIiIiLiXE2awMKFMGCA9Syu\niIivCAqCZctg8WL429/sTiN2U+dWREREaNECFiyAXr0gLs7uNCIinqtUCb79FubOhZdftjuN2Emd\nWxEREQGgZUv4+GPo3h3WrbM7jYiI50JCrJEn770Hb71ldxqxizq3IiIi4tamDXzwAcTEwKZNdqcR\nEfFcaKjVwZ06Fd591+40Ygd1bkVERCSXe+6B//s/6NgRtmyxO42IiOeuu84aojxhgjVJnhQvJe0O\nICIiIkVPt26QlQVt28KKFRAZaXciERHPnF3Hu3VrKF3amktAigd1bkVEROSievWCU6cgOhpWrYLw\ncLsTiYh4JjISvv7aql+lS8O999qdSAqDOrciIiJySQMGwMmT1jqS331nDfkTEfEFDRrAkiXW+t2l\nS1uPWoiz6ZlbERERuaxBg2DECKuDm5RkdxoREc/dfLO1jvcDD1jP4oqzqXMrIiIiVzRsGDz8sDWb\n8oEDdqcREfFc8+bWOt69e8P339udRgqSOrciIiLikWefhZ49rWfYDh+2O42IiOfOruN9332wdq3d\naaSgqHMrIiIiHhs71npurW1bOHLE7jQiIp5r0wY+/BC6dNE63k6lzq2IiIh4zOWCSZPgjjugfXvI\nzLQ7kYiI5zp2hOnTrd9/+cXuNOJt6tyKiIhInrhc8MYb0KgR3HMPHDtmdyIREc/dey+8+Sa0awe/\n/mp3GvEmdW5FREQkz1wueOcda+3bLl3gxAm7E4mIeK5nT5g82ZpDYOdOu9OIt6hzKyIiIlfFzw/+\n8Q+oXNmapOXUKbsTiYh4rn9/eOEF61ncPXvsTiPeoM6tiIiIXLUSJWDWLChdGnr1guxsuxOJiHju\n0UfhqaegdWut4+0E6tyKiIhIvvj7w7x5kJVl3Qk5c8buRCIinnvySXjsMYiK0jrevk6dWxEREcm3\nUqXgs8/g0CEYOBBycuxOJCLiuVGjoE8fa4jyoUN2p5Grpc6tiIiIeEWZMvDFF7B7Nzz+OBhjdyIR\nEc+98AJ06mSt452WZncauRrq3IqIiIjXXHstfPUVbN4Mw4ergysivsPlgokT4a67rHW8MzLsTiR5\npc6tiIiIeFX58rB0KaxeDc8+qw6uiPgOlwumToWbb9Y63r5InVsRERHxugoVYNkyq5M7frzdaURE\nPOdywbRpULs2xMRoHW9fos6tiIiIFIiKFeGbb2D+fJg82e40IiKeO7uOd0gIdOumdbx9hTq3IiIi\nUmBCQmD5cusk8Y037E4jIuK5s+t4ly0LPXtqHW9foM6tiIiIFKjq1WHFCnjzTZg+3e40IiKeK1kS\nPv4YTp+Gvn2t36XoUudWREREClzNmvDtt/DSS/DBB3anERHxXKlSsGCBtTzQQw9pHe+izGc6ty6X\nC5fLxbhx4y54bdy4cZfcrv20n6/ul5MzjpEji35Ob+8nIs4V/v/t3X1QVNf9BvBnVWw0r5gKEtYM\nBBRDQCFR0RrfippYU1+iItYiUQmVRIlOJjHR9hftGN8SYxVfElLtWE2QxEQxUwWtCZCailYkjZIq\nzmACiLRqbXxH4fz+OGEHlcXdZXfPvWefz4wzclmX53uv+2XPnnvPDZMD3Hnz5BtFIiKzaLiP93ff\nAdOncxV4wxLNmDJliggICBBRUVG2bWfPnhVDhgwRXbp0EUOHDhX//e9/bd9btGiRCA8PFxERESIv\nL8+2/R//+IeIiooS4eHhIj093bb96tWrIiEhQYSHh4u4uDhx8uTJJnPcISaRllasEOLBB4VYtUqI\nujrVaYzHnX2BvY7Iuw4fFuKnPxXi6FHVScxBt37HXkdm9sMPQsTFCTFrlhD19arT6MUdvaHZmdsp\nU6YgNzf3pm1LlizB0KFDcfz4ccTHx2PJj8sflpaWIjs7G6WlpcjNzcULL7wA8eNHGmlpaVi/fj3K\nyspQVlZme87169fjwQcfRFlZGWbPno05c+a4d+ROZGKzZgH79slVRgcOBI4dU51IX+x1RN4VEwO8\n9RYwdixw4YLqNL6F/Y6oZRru4/3FF8Abb6hOQ7dqdnDbv39/+Pv737Rtx44dSE5OBgAkJydj+/bt\nAICcnBxMnDgRfn5+CAkJQXh4OIqKilBdXY0LFy6gd+/eAIDJkyfb/k3j5xo7diz27t3r3uqITC4i\nAigsBBISgH79gKVLuZCBJ7DXEXnfc88BTz4JPP88T+/zJvY7opbz95f38f74Y/nejIyjjbP/oKam\nBoGBgQCAwMBA1NTUAABOnTqFPn362B5ntVpRVVUFPz8/WK1W2/bg4GBUVVUBAKqqqtC5c2cZpE0b\n3H///Th37hw6dOhw289tfG3eoEGDMGjQIGejE5lSq1bAzJnAM8/IN4Effwxs2AB07646mXfl5+cj\nPz/faz+PvY7I8zIy5Ad3q1fLPkeSL/Q79joyu4AAuYbAgAHAffcBaWmqE5mPJ3qd04PbxhoWi/EG\nLjxDvi40FNizRw5s4+OBF18E5s6VK/j5glvf/CxYsMBrP5u9jsgz7roL+OgjoG9f+adnT9WJjMEX\n+h17HekgOFi+NxswQM7mJiaqTmQunuh1Tq+WHBgYiNOnTwMAqqurERAQAEB+aldRUWF7XGVlJaxW\nK4KDg1FZWXnb9oZ/8/333wMAbty4gf/9739NzmQQkWSxANOmASUlQHEx8MQTwMGDqlPpib2OyDvC\nwoC1a4EJE4Dz51Wn8U3sd0Sue+QReQ3uSy8Bt1zOTgo4PbgdOXIkNm7cCADYuHEjRo8ebdu+ZcsW\n1NbWory8HGVlZejduzc6deqE++67D0VFRRBCYNOmTRg1atRtz7V161bEx8e7qy4irQUHAzk5cub2\nmWeAV18FrlxRnUov7HVE3jNuHDB8OJCSwutvVWC/I2qZ6Gh5m6DJk4GvvlKdxsc1t5RyYmKiCAoK\nEn5+fsJqtYoNGzaIs2fPivj4+CaXi3/zzTdFWFiYiIiIELm5ubbtDcvFh4WFiZkzZ9q2X716VYwf\nP962XHx5eXmTOe4Qk8in1dQIMWGCEF26CFFYqDqN97izL7DXEal35YoQsbFCrFmjOonx6Nbv2OtI\nV7m5QgQECHHkiOok5uSO3mD58YkMzWKxwAQxiZTavl1ehztmDLB4sVyqXmc69gUdayJyxvHjcoGp\nzz+XMyEk6dYbdKuHqLEPPgBef13ezvHHtdXIQe7oDU6flkxExjR6NHDkCHD5snxTuHu36kRERM7p\n2hV4+215/e3ly6rTEBE5b9Ikef3t008D586pTuN7OHNLpKHdu4HUVGDwYOCdd+QKfrrRsS/oWBOR\ns4QAkpKA9u2BzEzVaYxBt96gWz1ETXn5ZaCoSK6m3K6d6jTmwJlbImrSsGHAN98Ad98NREXJxaeI\niMzAYpGrJ+/dC2zbpjoNEZFr3npLnpaclATU16tO4zs4c0ukucJCuQLp448DGRlAx46qE7mHjn1B\nx5qIXPX3v8s1BIqLgYceUp1GLd16g271ENlz7ZqccOjZE1i+XHUa4+PMLRHd0YABwNdfAw8/LK/F\nzcrirTaIyPj69gXS0oDnnuOsBxGZ009+Is9A2blTTjCQ53HmlsiHHDgATJ0qbzi+bp28X65Z6dgX\ndKyJqCVu3JAf0I0fD8yerTqNOrr1Bt3qIbqT8nK5Evy6dcCPt4SmJnDmloic0rs3cOgQEBsLxMQA\n69dzFpeIjKtNG2DTJuDNN4HSUtVpiIhcExoq1z9JSZHvw8hzOHNL5KO+/hqYNk2upJyZKRuvmejY\nF3SsicgdMjOB996T1+G2bas6jffp1ht0q4fIUZ9+CqSnA/v3A1ar6jTGw5lbInJZjx6yuQ4ZAvTq\nJa8F4XVtRGREzz8PdOoELFyoOgkRkeuefVYObp95Brh4UXUaPXHmlohw7JicxQXkqcoREWrzOELH\nvqBjTUTuUl0tL6f47DN5iYUv0a036FYPkTOEAFJTgZoaudhU69aqExkHZ26JyC0iIuQtgyZMkAse\nLF0qF3IhIjKKoCBg5Uq5evLVq6rTEBG5xmIB1qwBfvgBmDdPdRr9cOaWiG5SXi5PATx/HtiwAeje\nXXWipunYF3SsicidhAASEuQaAcuWqU7jPbr1Bt3qIXLFmTNAXBwwfz6QlKQ6jTG4ozdwcEtEtxFC\nDmxff13eZ3LePOMt4qJjX9CxJiJ3+89/5Idun3wC/OxnqtN4h269Qbd6iFx19CgweLBcSblvX9Vp\n1ONpyUTkERaLvAb38GH554kngIMHVaciIgI6dpQL4E2dytOTicjcHnsM+NOfgHHjgKoq1Wn0wMEt\nEdkVHCw/TZw7V67s98orwJUrqlMRka8bNw6IigIWLFCdhIioZUaMAGbMAMaM4Qd27sDTkonIIf/+\nNzBzJlBcLFdUHjBAbR4d+4KONRF5yunT8pZmO3fKs0t0pltv0K0eopYSAkhMBNq1kzO5FovqRGrw\ntGQi8pqAACA7G3jrLWDiRODFF4ELF1SnIiJf1akTsHy5PD35+nXVaYiIXGexyLVOSkqAVatUpzE3\nDm6JyCmjRwNHjgCXLwPR0cDu3aoTEZGvmjQJsFrlh25ERGZ2993A9u3A4sVAQYHqNObF05KJyGV5\nefJG5PHxcgbF3997P1vHvqBjTUSe9v338rTkv/1N3rNbR7r1Bt3qIXKnPXuA5GS5kGdwsOo03sXT\nkolIqaeekrO47drJWdycHNWJiMjXPPww8LvfyQ/a6utVpyEiapmhQ4H0dLlw3rVrqtOYD2duicgt\nCguBlBTg8cflbTo6dvTsz9OxL+hYE5E31NUB/frJ629TU1WncT/deoNu9RC5mxBycBsQAKxbpzqN\n93DmlogMY8AA4Ouv5SxKdDSQlSWbMxGRp7VuDWRmAr/9LVBTozoNEVHLWCxy1eTPPwc2b1adxlw4\nc0tEbnfggJxBeeQR+YmjJ64Z0bEv6FgTkTfNmQNUVgIffKA6iXvp1ht0q4fIU775Bvj5z+UgNzpa\ndRrP48wtERlS797AoUNAbCwQEyPvi8v3MUTkaf/3f8BXX8kFWYiIzC46GnjnHXmK8g8/qE5jDpy5\nJSKP+uc/5Syuv788bTA01D3Pq2Nf0LEmIm/buVMuxnLkCHDXXarTuIduvUG3eog8bfp04Nw5IDtb\nnrKsK87cEpHhde8O7N8PDBkC9OolF5viiqZE5Cm/+AXQowewbJnqJERE7vGHPwAnTgBr16pOYnyc\nuSUirzl2TM7iWizyVOWW3JNSx76gY01EKlRUyMsiioqAsDDVaVpOt96gWz1E3nDiBNC3L5CbK+/t\nrSPO3BpUfn6+6ggOM1NWgHk9zdN5IyLkLYMSEuRtO5YuBW7c8OiPJMXM9hq4E93qAfSrKT8/H507\nA6++CsyYwev9yTt0fB3pxuw1hYfLmduEBOD8efPX4ymGGNzm5uaiW7du6NKlC5YuXao6TouZ6T+b\nmbICzOtp3sjburW8Hu7gQbnoS58+8rpcX6Bbr3OE2V4Dd6JbPYB+NTXUM3s28N13QE6O2jy+ytf6\nna6vI53oUNP48cDTT8v7eetQjycoH9zW1dVhxowZyM3NRWlpKbKysvDtt9+qjkVEHhYaKge306cD\n8fHA/PlAba3qVJ7jjV7nyC+65h7T1Pdu3db4a0f+3hKOPo+9xzlbz61fq6qJxyjf4a+bq8nPT17j\nP3s2cOWKQzGbzeroY4x2jFTwdL9TeYwaf+0LryNXefsY3fq1GY/Rrdvs/X3UqHwcOybvStESuh2j\nBsoHtwcOHEB4eDhCQkLg5+eHxMRE5PBjViKfYLEAKSlASQlQXCyvITl4UHUqz/BGr9PtTTnf8Dn2\nPR4j+88VHy8XsluyxKGYdp/HmccY7Rip4Ol+p/IYNf7aV15HrtBt4OSNY3TrNnt//+qrfGRny3vf\nfvONQ7EczuTMY4x2jBooX1Bq69atyMvLw/vvvw8A2Lx5M4qKipCRkWF7jEXnNa+JyGVmWpCEvY6I\nWkKnfsdeR0T2tLTXtXFTDpc50uDM1NCJiJrCXkdEvuJO/Y69jog8RflpycHBwaioqLB9XVFRAavV\nqjAREZH7sdcRka9gvyMiVZQPbnv27ImysjKcPHkStbW1yM7OxsiRI1XHIiJyK/Y6IvIV7HdEpIry\n05LbtGmD1atX46mnnkJdXR2mTZuGRx99VHUsIiK3Yq8jIl/BfkdEqiifuQWA4cOH49ixYzhx4gRe\nf/31m75nhvukhYSEoHv37oiNjUXv3r0BAOfOncPQoUPRtWtXDBs2DOfPn1eSberUqQgMDER0dLRt\nW3PZFi9ejC5duqBbt27YvXu3IfLOnz8fVqsVsbGxiI2Nxa5duwyTt6KiAoMHD8Zjjz2GqKgorFq1\nCoAx97G9rEbdv1evXkVcXBxiYmIQGRlp6w1G3LeOaq7XERHphP2OiJQQBnbjxg0RFhYmysvLRW1t\nrejRo4coLS1VHes2ISEh4uzZszdte+WVV8TSpUuFEEIsWbJEzJkzR0U0UVhYKIqLi0VUVNQdsx09\nelT06NFD1NbWivLychEWFibq6uqU550/f75Yvnz5bY81Qt7q6mpx+PBhIYQQFy5cEF27dhWlpaWG\n3Mf2shp5/166dEkIIcT169dFXFyc+PLLLw25b4mIiIhIPUPM3NpjpnvgiltW/tuxYweSk5MBAMnJ\nydi+fbuKWOjfvz/8/f1v2mYvW05ODiZOnAg/Pz+EhIQgPDwcBw4cUJ4XaHplRSPk7dSpE2JiYgAA\n99xzDx599FFUVVUZch/bywoYd/+2b98eAFBbW4u6ujr4+/sbct962qVLl9CrVy/85S9/UR3FLf71\nr38hLS0NCQkJWL9+veo4bpGTk4PU1FQkJiZiz549quO0WHl5OVJSUjB+/HjVUVrs0qVLSE5ORmpq\nKj788EPVcdxCp+MD6FcPoF9P0LFvA3r9fs3Pz0f//v2RlpaGgoIC1XHcQgiBefPmIT09HX/+858d\n+jeGHtxWVVWhc+fOtq+tVqvtzbiRWCwWDBkyBD179rTd062mpgaBgYEAgMDAQNTU1KiMeBN72U6d\nOnXTaoZG2t8ZGRno0aMHpk2bZjsN1Wh5T548icOHDyMuLs7w+7gha58+fQAYd//W19cjJiYGgYGB\ntlOqjb5vPWHZsmWYMGGC6hhu061bN6xbtw5btmxBXl6e6jhuMWrUKGRmZuLdd99Fdna26jgtFhoa\nij/+8Y+qY7jFp59+ioSEBGRmZmLHjh2q47iFTscH0K8eQL+eoGPfBvT6/dqqVSvce++9uHbtmjar\nk2/fvh1VVVVo27atwzUZenBrlpt879u3D4cPH8auXbuwZs0afPnllzd932KxGLaWO2UzQu60tDSU\nl5ejpKQEQUFBePnll+0+VlXeixcvYuzYsVi5ciXuvffe2zIZaR9fvHgR48aNw8qVK3HPPfcYev+2\natUKJSUlqKysRGFhIb744ovb8hhp3zanqevJgTuvK7Bnzx5ERkaiY8eO3orqMFdrAoDPPvsMI0aM\nQGJiojeiOqwlNQHAwoULMWPGDE/HdFhL6zEqZ+pq/EF569atvZ7VUbodK93qAVyryWg9oTFn6zFq\n327MmZqM/Pu1gTP19O/fHzt37sSSJUvwxhtvqIjrEGdqOn78OPr164e3334b69atc+j5DT24Nct9\n0oKCggAAHTt2xJgxY3DgwAEEBgbi9OnTAIDq6moEBASojHgTe9lu3d+VlZUIDg5WkrGxgIAA2yAm\nJSXFdqqpUfJev34dY8eORVJSEkaPHg3AuPu4Ieuvf/1rW1aj718AuP/++zFixAgcOnTIsPv2TqZM\nmYLc3NybttXV1WHGjBnIzc1FaWkpsrKy8O2332LTpk2YPXs2Tp06hYKCAuzfvx8ffvgh3n///SZP\nIVfF1ZoA4Je//CV27dqFjRs3qohul6s1CSEwZ84cDB8+3Hb6vxG05BgZmTN1Wa1WW2+or69XEdch\nztRkBrrVAzhXk1F7QmPOHiOj9u3GnKnJyL9fGzhTT8MH+g888ACuXbumIq5DnO3fDzzwAAA54eEI\nQw9uzXCftMuXL+PChQsA5Hn7u3fvRnR0NEaOHGl78W/cuNE2kDACe9lGjhyJLVu2oLa2FuXl5Sgr\nK7Ot/qxSdXW17e/btm2zfdJjhLxCCEybNg2RkZGYNWuWbbsR97G9rEbdv2fOnLGdIn3lyhXs2bMH\nsbGxhty3jmjqenJ76wokJSVhxYoVeOihh7Bw4UKsWLECv/rVr5Cammqo2WhXayooKMBLL72E3/zm\nNxg8eLCi9E1ztaaMjAzs3bsXW7duxXvvvaco/e1crefcuXOYPn06SkpKDDm75kxdzz77LD755BO8\n8MILhnsP0ZgzNRn9+AD61QM4V9Pq1asN2RMac6YeI/ftxpypyci/Xxs4U8+2bdswffp0TJ48GTNn\nzlSU+M6c7d95eXlIT0/HoEGDHHp+5fe5bY4Z7pNWU1ODMWPGAABu3LiBSZMmYdiwYejZs6ftovuQ\nkBB89NFHSvJNnDgRBQUFOHPmDDp37ozf//73eO2115rMFhkZiYSEBERGRqJNmzZYu3at11/ot+Zd\nsGAB8vPzUVJSAovFgtDQUNsvCSPk3bdvHzZv3my7FRQgb0djxH3cVNZFixYhKyvLkPu3uroaycnJ\nqK+vR319PZKSkhAfH4/Y2FjD7VtXNbWuQFFRUZOPbVhEy+gcqWngwIEYOHCgt6O5zJGa0tPTkZ6e\n7u1oLnGkng4dOuDdd9/1drQWsVdX+/btsWHDBoXJXGevJjMeH0C/egD7NWVkZBh6gGGPvXrM1rcb\nu1PPM8vv1wb26nnttddsYxKzsVdTu3btnL4e39CDW0DeJ2348OGqY9gVGhqKkpKS27Z36NABf/3r\nXxUkullWVlaT2+1lmzt3LubOnevJSM1qKu/UqVPtPl513ieffNLuaW5G28f2sjb3+lK5f6Ojo1Fc\nXHzb9uZeW6r/PzjL6INvV7Am49OtngY61qVbTbrVA+hXk271APrVpFs9gHtrMvRpyUREOjPLugLO\nYE3Gp1s9DXSsS7eadKsH0K8m3eoB9KtJt3oA99bEwS0RkSJmWFfAWazJ+HSrp4GOdelWk271APrV\npFs9gH416VYP4OaaBBEReVxiYqIICgoSbdu2FVarVWzYsEEIIcTOnTtF165dRVhYmFi0aJHilM5h\nTcanWz0NdKxLt5p0q0cI/WrSrR4h9KtJt3qE8HxNFiEMuO41ERERERERkRN4WjIRERERERGZHge3\nREREREREZHoc3BIREREREZHpcXBLREREREREpsfBLREREREREZkeB7dERERERERkehzcEhERERER\nkelxcEtERERERESmx8EtERERERERmd7/A7yC6yxJd0IVAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x112141790>"
]
}
],
"prompt_number": 54
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment