Skip to content

Instantly share code, notes, and snippets.

@jxnl
Created July 22, 2016 22:11
Show Gist options
  • Save jxnl/1f88ffefb4c24968b0a84909ffaa27db to your computer and use it in GitHub Desktop.
Save jxnl/1f88ffefb4c24968b0a84909ffaa27db to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pylab as plt\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# For Data Hackers Question\n",
"\n",
"This is just a pathological case that I think you should think about when you do SVD. "
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x11426c630>"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAECCAYAAAD0JMwBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFItJREFUeJzt3W1sZGd5xvH/euOKlwREKUkEacNSmhQFgrEopcW8lC0i\ny0uCVHQLUkqTqPlQSotolJIEofYTIlAEgcIHQogAkcJdC9HSYgRZEJWhQQGT7bQJJgIDCS8LlJcs\nQgqOd/thxoN349m1zzzrc57J/yet4md2fHxl4tw+c80zx7uOHDmCJGnyTLUdQJJ0cjjgJWlCOeAl\naUI54CVpQjngJWlCOeAlaUKdstU7RsQNwIuAg5l5/uC2NwMvBu4Fvg5cmpn3nIygkqTt2c4Z/I3A\n84+57VPAeZk5A9wJXF0qmCRpPFse8Jm5CPzkmNtuzszDg+UtwFkFs0mSxlCyg78MWCh4PEnSGIoM\n+Ih4PbCamTeVOJ4kaXxbfpF1lIi4BHgB8Nyt3H///v1e/EaSGti7d++u7dx/uwN+1+APABFxAXAl\n8KzMvHerB5mdnd3ml915y8vLnHvuuW3HOCFzllNDRjBnabXkXFpa2vbnbLmiiYibgC8A50TEtyPi\nUuCdwKnApyNiKSLeve0EHfXDH/6w7QhbYs5yasgI5iytlpxNbPkMPjMv3uTmGwtmkSQVtGunrwe/\nf//+IzVUNJLUJUtLS9vu4L1UgSRNKAf8CIuLi21H2BJzllNDRjBnabXkbMIBL0kTyg5ekipgBy9J\nGnLAj1BLL2fOcmrICOYsrZacTTjgJWlC2cFLUgXs4CVJQw74EWrp5cxZTg0ZwZyl1ZKzCQe8JE0o\nO3hJqoAdvCRpyAE/Qi29nDnLqSEjmLO0WnI24YCXpAllBy9JFbCDlyQNOeBHqKWXM2c5NWQEc5ZW\nS84mtvw7WSPiBuBFwMHMPH9w2yOAjwBnA98EIjN/dhJySpK2aTtn8DcCzz/mtquAmzPzXOAzwNWl\ngrVtbm6u7QhbYs5yasgI5iytlpxNbHnAZ+Yi8JNjbr4IeP/g4/cDLymUS5I0pnE7+NMz8yBAZn4f\nOH38SN1QSy9nznK6nnFtDZaWdvOhD93H0tJuDh9uO9Hxdf3xXFdLzia23MFv0c7uuZQeQA4c2M2+\nfaexuvowpqePsLBwiNnZtbZjqcPGPYM/GBFnAETEmcAPtvJJ8/Pzw48XFxeP+gnalfV6L9eVPKPW\n67d1JU/Nj+fc3Fyn8hy7XlmZYnW1vw16dXUXKytTncp37Lrrj+f6eqMu5Nlsvby8TBPbeqNTRDwW\n+HhmPmmwvhb4cWZeGxGvAx6RmVcd7xi+0UlqZmlp/Qx+l2fwD0An9Y1OEXET8AXgnIj4dkRcCrwJ\neF5ELAN7B+uJcOxP9q4yZzldzzgzs8bCwiHe+c4fsrBwiJmZbg/3rj+e62rJ2cSWO/jMvHjEX/1x\noSySjmNqCmZn1/jFL25hdnZyt/apHK9FI0kV8Fo0kqQhB/wItfRy5iynhoxgztJqydmEA16SJpQd\nvCRVwA5ekjTkgB+hll7OnOXUkBHMWVotOZtwwEvShLKDl6QK2MFLkoYc8CPU0suZs5waMoI5S6sl\nZxMOeEmaUHbwklQBO3hJ0pADfoRaejlzllNDRjBnabXkbMIBL0kTyg5ekipgBy9JGnLAj1BLL2fO\ncmrICOYsrZacTWz5d7IeT0RcDbwCWAN6wKWZ+csSx5YkNTP2GXxEnA1cDjwlM8+n/0PjZeMet21z\nc3X8UmNzllNDRjBnabXkbKLEGfw9wC+Bh0bEYeAhwHcLHFeSNIaxz+Az8yfAW4FvA98BfpqZN497\n3LbV0suZs5waMoI5S6slZxMlKprHAa8FzgYeDZwaERcf73Pm5+eHHy8uLh71ALve3rrX63Uqj+uT\nv+71ep3KU/u6hsdzeXmZJsbeBx8RATwvMy8frP8M+P3MfPVm93cfvCRtX5N98CU6+GXgDRHxIOBe\nYC9wa4HjSpLGUKKDPwB8APgycADYBbxn3OO2bePTpC4zZzk1ZARzllZLziaK7IPPzLcAbylxLElS\nGV6LRpIq4LVoJElDDvgRaunlzFlODRnBnKXVkrMJB7wkTSg7eEmqgB28JGnIAT9CLb2cOcupISOY\ns7RacjbhgJekCWUHL0kVsIOXJA054EeopZczZzk1ZARzllZLziYc8JI0oezgJakCdvCSpCEH/Ai1\n9HLmLKeGjGDO0mrJ2YQDXpImlB28JFXADl6SNOSAH6GWXs6c5dSQEcxZWi05myjyO1kj4uHAe4En\nAoeByzLziyWOLUlqptQZ/HXAJzLzCcCTgTsKHbc1c3NzbUfYEnOWU0NGMGdpteRsYuwz+Ih4GPDM\nzLwEIDPvA+4Z97iSdDKtrcGBA7tZWZliz57DzMysMTVhpXWJf509wI8i4saIWIqI90TEgwsct1W1\n9HLmLKeGjGDOUg4c2M2+fadx+eWnsm/fadx22+62IxVXYsCfAswC78rMWeAXwFXH+4T5+fnhx4uL\ni0d9I7je3rrX63Uqj+uTv+71ep3KU+t6ZWWK1dX+rsPV1V2srEx1Kt/G9fLyMk2MvQ8+Is4A/isz\nHzdYzwGvy8wXb3Z/98FL6oKlpf4Z/OrqLqanj7CwcIjZ2bW2Y43Uyj74zDwI3BUR5wxu2gvcPu5x\nJelkmplZY2HhENdf/3MWFg4xM9Pd4d5UqZcU/gb4UETcRn8XzRsLHbc1G58mdZk5y6khI5izlKkp\nmJ1d44wzPsvs7OS9wAqF9sFn5gHg90ocS5JUhteikaQKeC0aSdKQA36ErveH68xZTg0ZwZyl1ZKz\nCQe8JE0oO3hJqoAdvCRpyAE/Qi29nDnLqSEjmLO0WnI24YCXpAllBy9JFbCDlyQNOeBHqKWXM2c5\nNWQEc5ZWS84mHPCSNKHs4CWpAnbwkqQhB/wItfRy5iynhoxgztJqydmEA16SJpQdvCRVwA5ekjTk\ngB+hll7OnOXUkBHMWVotOZso8jtZASJiCvgScHdmXljquJKkZkqewb8GuL3g8Vo1NzfXdoQtMWc5\nNWQEc5ZWS84migz4iDgLeAHw3hLHkySNr9QZ/NuAK4Gd3ZJzEtXSy5mznBoygjlLqyVnE2MP+Ih4\nIXAwM28Ddg3+HNf8/Pzw48XFxaMeYNfbW/d6vU7lcX3y171er1N5al/X8HguLy/TxNj74CPijcAr\ngPuABwOnAR/NzFdudn/3wUvS9jXZBz/2LprMvAa4BiAing1cMWq4S5J2jvvgR9j4NKnLzFlODRnB\nnKXVkrOJYvvgATLzc8DnSh5TktSM16KRpAp4LRpJ0pADfoRaejlzllNDRjBnabXkbMIBL0kTyg5e\nkipgBy9JGnLAj1BLL2fOcmrICOYsrZacTTjgJWlC2cFLUgXs4CVJQw74EWrp5cxZTg0ZwZyl1ZKz\nCQe8JE0oO3hJqoAdvCRpyAE/Qi29nDnLqSEjmLO0WnI24YCXpAllBy9JFbCDlyQNOeBHqKWXM2c5\nNWQEc5ZWS84mxv6drBFxFvAB4AzgMHB9Zr5j3ONKksYzdgcfEWcCZ2bmbRFxKvBl4KLM/Opm97eD\nl6Tta6WDz8zvZ+Ztg49/DtwBPGbc40qSxlO0g4+IxwIzwBdLHrcNtfRy5iynhoxgztJqydlEsQE/\nqGfmgdcMzuRHmp+fH368uLh41APsenvrXq/XqTyuT/661+t1Kk/t6xoez+XlZZoosg8+Ik4B/h1Y\nyMzrjndfO3hJ2r4298G/D7j9RMNdkrRzxh7wEfEM4E+B50bEVyJiKSIuGD9auzY+Teoyc5ZTQ0Yw\nZ2m15Gxi7H3wmfl5YHeBLJKkgrwWjSRVwGvRSJKGHPAj1NLLmbOcGjKCOUurJWcTDnhJmlB28JJU\nATt4SdKQA36EWno5c5ZTQ0YwZ2m15Gxi7H3wbVpbgwMHdrOyMsWePYeZmVljyh9ZkgRU3sEvLe1m\n377TWF3dxfT0ERYWDjE7u1bk2JLUJQ+4Dn5lZYrV1f6/7+rqLlZWqv7XkaSiqp6Ie/YcZnq6/wxk\nevoIe/YcLnbsWno5c5ZTQ0YwZ2m15Gyi6g5+ZmaNhYVDR3XwkqS+qjt4SXqgeMB18JKk0RzwI9TS\ny5mznBoygjlLqyVnEw54SZpQdvCSVAE7eEnSkAN+hFp6OXOWU0NGMGdpteRsosg++MEv2X47/R8Y\nN2TmtSWOK0lqbuwOPiKmgK8Be4HvArcCL8vMr252fzt4Sdq+tjr4pwF3Zua3MnMV+DBwUYHjSpLG\nUGLAPwa4a8P67sFtVaullzNnOTVkBHOWVkvOJlp5kXV+fn748eLi4lEPsOvtrXu9XqfyuD75616v\n16k8ta9reDyXl5dpokQH/3TgHzLzgsH6KuDIqBda7eAlafuadPAldtHcCjw+Is4Gvge8DHh5geNK\nksYwdkWTmWvAq4FPAf8LfDgz7xj3uG3b+DSpy8xZTg0ZwZyl1ZKziSL74DPzk8C5JY4lSSrDa9FI\nUgW8Fo0kacgBP0ItvZw5y6khI5iztFpyNuGAl6QJZQcvSRWwg5ckDTngR6illzNnOTVkBHOWVkvO\nJhzwkjSh7OAlqQJ28JKkIQf8CLX0cuYsp4aMYM7SasnZhANekiaUHbwkVcAOXpI05IAfoZZezpzl\n1JARzFlaLTmbcMBL0oSyg5ekCtjBS5KGHPAj1NLLmbOcGjKCOUurJWcTY/1O1oh4M/Bi4F7g68Cl\nmXlPiWCSpPGMewb/KeC8zJwB7gSuHj9SN8zNzbUdYUvMWU4NGcGcpdWSs4mxzuAz8+YNy1uAPxkv\njiSplJId/GXAQsHjtaqWXs6c5dSQEcxZWi05mzjhGXxEfBo4Y8NNu4AjwOsz8+OD+7weWM3Mm7by\nRefn53npS18K/OrBXX+a1JX1uq7kGbXu9XqdylP741nDutfrdSpP7esaHs9HPepRNDH2PviIuAS4\nHHhuZt57ovu7D16Stq/JPvhxd9FcAFwJPGsrw12StHPG7eDfCZwKfDoiliLi3QUydUItvZw5y6kh\nI5iztFpyNjHuLprfKRVEklSW16KRpAp4LRpJ0pADfoRaejlzllNDRjBnabXkbMIBL0kTyg5ekipg\nBy9JGnLAj1BLL2fOcmrICOYsrZacTYy1D16TZW0NDhzYzcrKFHv2HGZmZo0pTwGkatnBa2hpaTf7\n9p3G6uoupqePsLBwiNnZtbZjScIOXmNaWZlidbX//bO6uouVFb89pJr5f/AItfRyJXPu2XOY6en+\nM7rp6SPs2XO42LFreDxryAjmLK2WnE3YwWtoZmaNhYVDR3XwkuplBy9JFbCDlyQNOeBHqKWXM2c5\nNWQEc5ZWS84mHPCSNKHs4CWpAnbwkqShIgM+Iq6IiMMR8esljtcFtfRy5iynhoxgztJqydnE2AM+\nIs4Cngd8a/w4kqRSSpzBvw24ssBxOmVubq7tCFtiznJqyAjmLK2WnE2MNeAj4kLgrszsFcojSSrk\nhAM+Ij4dEf+94U9v8M8LgWuAv99w9229wttl8/PzbUfYEnOWU0NGMGdpteRsovE2yYh4InAz8Av6\ng/0s4DvA0zLzB6M+b//+/Tu7L1OSJsR2t0kW2wcfESvAbGb+pMgBJUljKbkP/ggTVNFIUu12/J2s\nkqSd4TtZJWlCOeAlaULt2G90iogLgLfT/6FyQ2Zeu1Nfe6sG78r9AHAGcBi4PjPf0W6q0SJiCvgS\ncHdmXth2ns1ExMOB9wJPpP+YXpaZX2w31f1FxNXAK4A1oAdcmpm/bDcVRMQNwIuAg5l5/uC2RwAf\nAc4GvglEZv6stZCMzPlm4MXAvcDX6T+m97SXcvOcG/7uCuAtwG9k5o/byLchy6Y5I+KvgVcB9wH/\nkZlXHe84O3IGPxhE/wQ8HzgPeHlE/O5OfO1tug/428w8D/gD4K86mnPda4Db2w5xAtcBn8jMJwBP\nBu5oOc/9RMTZwOXAUwb/M50CvKzdVEM30v//ZqOrgJsz81zgM8DVO57q/jbL+SngvMycAe6kuzm7\neMmV++WMiOfQ/4H5pMx8EvCPJzrITlU0TwPuzMxvZeYq8GHgoh362luWmd/PzNsGH/+c/jB6TLup\nNjf4hnwB/bPjToqIhwHPzMwbATLzvrbP4Ea4B/gl8NCIOAV4CPDddiP1ZeYicOzW44uA9w8+fj/w\nkh0NtYnNcmbmzZm5/pvbb6H/XplWjXg8oWOXXBmR8y+BN2XmfYP7/OhEx9mpAf8Y4K4N67vp6OBc\nFxGPBWaAztUJA+vfkF3eBrUH+FFE3BgRSxHxnoh4cNuhjjV478ZbgW/Tf7PeTzPz5nZTHdfpmXkQ\n+iclwOkt59mKy4CFtkNspqJLrpwDPCsibomIz0bEU0/0Cb7IuomIOBWYB14zOJPvlIh4If1u7jb6\n7z3o6vsPTgFmgXdl5iz9dz0ftzNsQ0Q8Dngt/U770cCpEXFxu6m2pcs/5ImI1wOrmXlT21mONTjh\nqOWSK6cAj8jMpwN/B+SJPmGnBvx3gN/asF6/rEHnDJ6izwMfzMx/bTvPCM8ALoyIbwD/DPxRRHyg\n5UybuZv+mdGXBut5+gO/a54KfD4zf5yZa8BHgT9sOdPxHIyIMwAi4kxg5KVB2hYRl9CvErv6A/O3\ngccCBwbvxj8L+HJEdPFZ0V30vzfJzFuBwxHxyON9wk7torkVePzgxazv0X8B6+U79LW3633A7Zl5\nXdtBRsnMa+ifdRARzwauyMxXtpvq/jLzYETcFRHnZObXgL1080XhZeANEfEg+js+9tL/nu2KY5+l\n/RtwCXAt8OdAV05Ejso52Dl3JfCszLy3tVT3N8yZmf8DnLn+Fx275Mqx/90/BjwX+FxEnANMZ+b/\nHfcAO/VO1sF/7Ov41TbJN+3IF96GiHgG8J/0t8kdGfy5JjM/2Wqw49gw4Lu6TfLJ9F8Inga+QX+r\nXKtb+jYTEVfSH5prwFeAvxhsCGhVRNwEPAd4JHCQfpXwMeBfgN+kv+sjMvOnbWWEkTmvAX4NWB9C\nt2Tmq1oJOLBZzvVNAIO//wbw1A5sk9zs8fwg/d01M/RPRK7IzM8d7zheqkCSJpQvskrShHLAS9KE\ncsBL0oRywEvShHLAS9KEcsBL0oRywEvShHLAS9KE+n+B0ZxEs0w0NgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x114197048>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter([1,10, 1+4, 10+4], [1, 10, 1-4, 10-4])"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"a = np.random.multivariate_normal([1,1], [[1,0], [0,1]], size=30)\n",
"b = np.random.multivariate_normal([10,10], [[1,0], [0,1]], size=30)\n",
"c = np.random.multivariate_normal([1+4,1-4], [[1,0], [0,1]], size=30)\n",
"d = np.random.multivariate_normal([10+4,10-4], [[1,0], [0,1]], size=30)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X = np.vstack([a,b,c,d])"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1143ad588>"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAECCAYAAAD0JMwBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH0ZJREFUeJzt3XtsXNWdB/DvPEwwMbOlqW2ipkscscK0SfAaEYJwK6rs\no0GVgNo9arupQC1RRIOE2CJBWDWp0UYp/YPHlizq2iwiQNWcOMpS1KQCvEuFNzJL69o1amJFikMh\nG4LJAn4lwZ6Z/WMeZ+b6zsx9zZy5934/UlXP2HN98/Pld8/9nd89N5JOp0FERMET1b0DRERUHUzw\nREQBxQRPRBRQTPBERAHFBE9EFFBM8EREARW3+oNCiFUA9gFoBZAC0Cel/BchxBUA9gO4CsApAEJK\n+UkV9pWIiGywM4JfBPCPUsovAbgJwHYhRDuAhwC8JqW8BsB/Atjh/W4SEZFdlhO8lPJ9KeVo9utZ\nAMcArAJwG4Dnsj/2HIDbvd5JIiKyz1ENXgixGkAHgGEArVLKs0DmJACgxbO9IyIix2wneCFEE4AB\nAPdlR/LGtQ649gERUR2wPMkKAEKIODLJ/Xkp5UvZt88KIVqllGeFEFcC+KDcNgYHB3kCICJyYNOm\nTRE7P28rwQP4dwB/klI+WfDerwDcBeBRAHcCeMnkc0U6Oztt/tpgmpiYwDXXXKN7N+oCY6EwFgpj\noYyMjNj+jJ02yZsB/AOAcSHEH5ApxTyMTGKXQojvAXgHgLC9FyE1NTXFgzeLsVAYC4WxcMdygpdS\n/jeAWIlv/403u0NERF6J1Ho9+MHBwTRLNERE9oyMjNiuwXOpAiKigGKC12hoaEj3LtQNxkJhLBTG\nwh0meCKigGINnojIB1iDJyKiPCZ4jVhfVBgLhbFQGAt3mOCJiAKKNXgiIh9gDZ6IiPKY4DVifVFh\nLBTGQmEs3GGCJyIKKNbgiYh8gDV4IiLKY4LXiPVFhbFQGAuFsXCHCZ6IKKBYgyci8gHW4ImIKI8J\nXiPWFxXGQmEsFMbCHSZ4IqKAYg2eiMgHWIMnIqI8JniNWF9UGAuFsVAYC3eY4ImIAoo1eCIiH2AN\nnoiI8pjgNWJ9UWEsFMZCYSzcYYInIgoo1uCJiHyANXgiIspjgteI9UWFsVAYC4WxcIcJnogooFiD\nJyLyAdbgiYgojwleI9YXFcZCYSwUxsKduO4dIAqrZBIYG4thcjKKtrYUOjqSiHLIRR6yXIMXQjwD\n4OsAzkop12ff2wVgK4APsj/2sJTyN+W2wxo8UcbISAybN1+OhYUIGhrSOHJkBp2dSd27RXXKSQ3e\nzgj+WQA/A7DP8P5jUsrH7PxSIgImJ6NYWMj897qwEMHkZLTqCZ5XDeFi+U8rpRwC8JHJt2ydUUhh\nfVEJYyza2lJoaMhcQTc0pNHWlgKQiUUymRnhHzzYgJGRGFKpytuz8pmxscxVw9atTdi8+XKMjsYc\nbadWwnhceMmLGvy9QojvAvgdgB9KKT/xYJtEgdfRkcSRIzNFo+mcXCK2U76x8hkrVw1OfjfVJ7cX\nZ/8KYI2UsgPA+wAslWoGBgbyXw8NDRWdpcP0uqurq672R+frrq6uutqfWryORoH5+d+itfW/0NmZ\nKZUMD7+FxcW/xvh4bEkirrQ9s+Rt/PkVKz4uumpYseLjJds7duxi0XaOHbvo+t+buyp48cVFvP76\nXP6qoNLnc+9VI/5+ej0xMQEnbN3oJIS4CsDLuUlWq98rxElWotJyE6+PPHIeO3c22hpFW5m0TaWA\n0dHyNXgnk7+VavucUHav2pOsQKbenv8FQogrpZTvZ19+A8DbNrcXaoUj17BjLDJyo/C9e5eht/c8\nGhvTWLcuWVS+yTEm1fXrl5Z8zBJvZ2eybHItVzoqpVJZx+mEMo8LdywneCHELwDcAmCFEOLPAHYB\n+KoQogNACsApANuqsI9EoVE48RqJpPNfGyWTwNGjMQwPx5FIALt3N6K/f25J8jYbOV93XbLsaDsa\nRcWTgFGlBJ77d+X2IzehTNVlOcFLKb9j8vazHu5L6HBkojAWGbnR87lzEWzZ0lRyRDw2FkNPj0rc\n/f1zOHcuglQKRcnaLPHOzaHos16USyolcCdXBQCPC7fYAUtUA1ZbD3Oj5+npiOkka44xcR8/HsOW\nLU1L2h6NrZgtLSkMD8fLbtuJXALv65vFkSMzSxJ47t/V3b2Qn1Cm6mOYNTJ2C4RZ0GNhpf88Z2ho\nqGSPPJA5WbS0FH8/kUjnk3XhySQeT+PwYZV4p6cjSCRQcttOVSuBB/24qDauRUNUA3YnGSv1yN93\n33L09p7HzAywdm0SDz54WT5Zm014dncvAMgk/h/9aFn+sxs3Lloul5D/MMFrxPqiEvRY2JlkzMWi\n1ETn5GQUp07F8PDDlwEAnnpqFrt2nc+fCA4daih5MunoSKK/fw6Tk1Fs2KAmWOt1CYOgHxfVxgRP\nVANOJxnNGE8W7e0pyx0rpTpkePdqMNXBOTq8WF9Ugh4LOzXqSrGoNKFZ6ftmzEpI9SDox0W1cQRP\n5DNmo/BSNzRZxT71YOIzWYkCwO1SAFaWMCC9arFUARHVUOHIvKUlhenpCFauTC9JwG7Xlrd692q9\nTsaSOf5pNGJ9UQl6LOyssV4Yi8L++Z6ey/HuuzHTPvpyffNestPP74WgHxfVxhE8UQ047VIxjsxn\nZiKmI3SzLh23o22zz+t4ChU5xwSvEXt8laDHwk5iLIyFcfIzkUibjtDNSixu6/JmJ6VaT8YG/bio\nNiZ4ohpwmhgLR+a5Gryb1ke3K0TecceCZ/38VH1M8BpxrWsl6LGwc6NTYSycLN2bU+6kYqV8Y/Z5\nN/vjRNCPi2pjgieqAa8To5UE7faZr17efUt6MMFrxJGJwlgoVmJhJUGXO6lYKd/UerRuhseFO2yT\nJPIht0sL1KqtkvRigteIPb4KY6FYiYXbBO1kvRodeFy4wxINkc8ks7n48cfn0NycRmtrCmvX2kvw\n9VB+oepjgteI9UWFsVAqxcKs/h7U5QJ4XLgT0MOCKLjqdWlfqj88MjRifVFhLJRKsbBaf7ez/k29\n4nHhDks0RD5jtT+dT2kiJniNWF9UGAulUiysTpAGYWEwHhfuMMETBZSfntJUrXXmw75+fYj+qfWH\n9UWFsVC8ioWuXncntf9S68y7jUWt16+vNxzBEwWUrl53J7X/apWTglCmcoMjeI1YX1QYC8XvsXDS\nxlmqM8htLMK+JANH8ETkKSe1f7crV5aqtYd9RUwmeI241rXCWCh+j4WTpFqqnGQWC7NkXqosFPYl\nGZjgichT1U6qZsncq1p70LpumOA18vMozWuMhVKvsdCR/MxG7+fORfDAAxeQSKSxd++y/P540RL6\n9ttRvPVWDNPTUXz4YQTxeBrr1/u3bs8ET0SW1MOdsWNjMWzZ0pTfh97e+fzJxota+wcfRLFz52X5\n7b/wwiwA/yZ4H198+B97vxXGQqnXWFRjkTOznvnC915/fa6oj964D4lEOn8l0dmZRHf3Qr727sTU\nVKRo+1NTEbf/RK04giciS6pxZ6zZVQGAgveWF10pGPehvT21JJk7LSUlk8AXvpDCjh3zSCSAn/98\nGdrb/Tt6B2wkeCHEMwC+DuCslHJ99r0rAOwHcBWAUwCElPKTKuxnINVrrVUHxkKp11hUo+Ww1FVB\nqQnTSvuQTAJHj8YwPBxHIgHs3t2I/v45S6WksbEYenrUyebAgfp90pVVdkbwzwL4GYB9Be89BOA1\nKeVPhRAPAtiRfY+IAqYa3TGlrgpKXSlU2gdjku7tPW+5o8Z4spmaiiIa9XeCt1ypklIOAfjI8PZt\nAJ7Lfv0cgNs92q9QqNdaqw6MhRKmWJitl1P43v79p22Noo1JemYGlktJQbzr1W0NvkVKeRYApJTv\nCyFaPNgnIvIBL9omzUbkSReD5sIrgtWrk7jhhsV82afS/gXxrlevJ1nTHm8v0Oq11qoDY6H4JRZW\n2iadnASKe9GvwGc/u2i5F70wSbe0pIrKNZXaOoN416vbBH9WCNEqpTwrhLgSwAdWPjQwMICenh4A\n6nI0d1DzNV/ztT9em02QfvrpMC5c+CLOnfsM2tpSmJ2dxTe/uTKfZPfvP414/A9ltz8395WiXvR9\n+6axfj0s7d/Ro5nX3d1dOHiwYcn+zc//tm7iZ+d1c3MznIik09YH3UKI1QBellKuy75+FMD/SSkf\nzU6yXiGlLDvJOjg4mO7s7HS0s0Hj9zVHvMRYKH6JxchIpRbHNB5/fA733tuU/0xf3yy6uxeKtmMc\n5R8/Hi36zFNPzeI73yn+jNP98/PofGRkBJs2bbLVmG+nTfIXAG4BsEII8WcAuwD8BMABIcT3ALwD\nQNj55UTkX2Y160OHikfNzc3pir3zxlLPwYMzS3rdvdq/sLE1gvcCR/BEwTUyEsPddy/Htm0XMT0N\n3HTTIhKJNE6ciJWswR882ICtW9WI/fnnZ7ByZTowC355paojeCKiSjo6knjyybklk5vGskwhYy/8\nypXpwE126sLzokZh6neuhLFQ/ByLaDSzYJedNWvMeuFz69G8+OJi0XNdnTzvNcw4giciT9lds8as\nPVFNkCaKJkhHR2O49VZ1dXD48Ayuv54j/VKY4DXyQ6dErTAWit9j4cXk5pkzETzyyHlMT2dWjDxz\nJnNFMDFRfHUwMRFlgi+DCZ6IPOXkhiFjq2QikcbOnY1FC38BWNKV09zMeyvLYYLXyC/9zrXAWChh\njIWxVfKJJ+aWLPwFJNHamkJv7zxmZqJIJFJobWURvhwmeCLSznhX7Oc+Z94/v3ZtCouLSUxOZt5b\nu5YJvhwmeI3CNkorh7FQwhgL48Rsa2vKtI4fxPViqokJnoi0M07Mrl2byidzco598Br5ud/Za4yF\nEsZYlHqmahhj4SUmeCKigOJaNEREPsC1aIiorn36KfDmmzGcPBnDmjVJ3HRTEvEKWciLJ0eFFcOk\nEeuLCmOhBDkWb76ZeSj2/fcvR0/P5Th6NFb254eGhvI98lu3NmHz5ssxOlr+M6QwwRNRzZw8GTMs\nRFY5WZs9OYqsYaQ0CmO/cymMhRLkWKxZk0RDQ2ber6EhjTVryrdBdnV15Xvkc5+ptHgZKazBE1HN\n3HRTEgcOzGByUtXgK+GTmZzjCF6jINda7WIslCDHIh4HvvKVJO6881N8+cuVJ1iHhoZK9shTZQwV\nEVFAsQ+eiMgHnPTBcwRPRBRQTPAaBbnWahdjoTAWCmPhDhM8EVFAsQYfcLzNmygYuBYNLWF8FFru\n6fREFHwcy2lUi/qiX27zZq1VYSwUxsIdjuADxKwcY3wUGm/zJgoP1uADZGRkaTmmoyOJ0VHW4In8\njjX4kDMrx+QeUMy6O1H4cCynkdf1RT+vusdaq8JYKIyFOxzB+4SVdkc7q+5ZbZ9kmyWRf7EG7xNm\n9fVc2cVJEi63PSc/R0TVxRq8z9hJzKXq64C1Xnfj7zpzJlJye1Z/LxHVN15sa/TGG3OWnzVZrr5u\npdd9bCyGu+9ejg8/jGJwMI7ly9NYvTppuj2rv9dLrLUqjIXCWLjDEbxGp08vszw6Lldft9LrPjkZ\nxbZtF7FzZ2P+5w4cmMHUVPl6fUdHEocPz2BiIorm5jTi8TRSKbAOT+QDTPAaXXvtMss3IeWeamN2\nArAyudrWlsLJk8Uj/ampKLq7F8ruYzQKRCLA/fcvr2odPsjPIbWLsVAYC3c8SfBCiFMAPgGQArAg\npdzgxXaDzqtnTZZL/oW/a24ORSeUlpaUpdE46/BE/uTVCD4F4BYp5UcebS8Ujh4dQldXV02SZTQK\n3Hxz5oHHb74ZRyIB3HffcvT3z1X8/bVY7mBoaIijtSzGQmEs3PEqwUfACdu6F40CU1NR7NlzWf49\nK6NxPtWeyJ+8SvBpAK8KIZIA/k1K2efRdgNNx8jEyWjcSgnILY7SFMZCYSzc8WrUfbOUshPArQC2\nCyH4V3EgmczcWHTwYANGRmJIuayEmG0vNxrv65vNL0ZGRMHkyQheSnkm+/9TQohDADYAKNnAOjAw\ngJ6eHgCqzzV3pg7T68Ie366uLtMblubnf2t7+/H4MlxyyUacOxfBli1Nptvr7ra/vcnJKFas+BiN\njX/CjTfe4Gk8jDGph7+Prtfj4+O455576mZ/dL5++umnsW7durrZH12vm5ub4YTrpQqEEJcBiEop\nZ4UQywG8AqBXSvmK2c9zqQLFOIF08GADtm5tyr/u65ut2MZoJre8wAMPXMCePY2ebc9pm6SVO3Y5\nmaYwFgpjoehaqqAVwCEhRDq7vRdLJXcqZjxwK9XHrS5tkGtrTCTSnnS/uG2TtLKUAv8jVhgLhbFw\nx3WCl1JOAujwYF9Cr1K3itXnq+ZOFHv3LkNv7zwSiTTa2513v7htk2QfPZEevJNVI+Plp1m3SuGo\nPZFIo7U1hffei5VNlGYnCjdLC7htk7RyguCluMJYKIyFO0zwdc44au/tncfDDy8vSpRmpRsv2xqd\ntEka9+nVV6dx4kSMffRENcQEr5FxZGKWqI3ljUQijb6+2aJEabV0U0tm+1RugpejNIWxUBgLd5jg\n64hZUjSWN9rbU0uSt/EkMD6eWXZY59OXWHcn0o/LC2hkXOvaLClauTHJuGb7hQuRiuvLA8U3Qv3+\n9zH88Y9Rz26ysruOPNf9VhgLhbFwhyN4zQrLMi0tKaxencSpU7F8UrS6UuSRIzMYH4/hwoUI9u5d\nZmnUXHjFsHp1Ert3z+PkyRg+/DCCeDyN9eudZ3muX0OkHxO8Rl1dXUtuIrLyEA6j3L1qmdG7+rrS\nqLnwimHbtou46y511+sLL8wis0ioM3YnZllrVRgLhbFwhwles8nJKFpbU9i+/SKmpyO4eDGCO+5Y\nsFw7TyaBo0dj6Om5vCg5r1iRrniCKKzvT0/D8DAQWzfMEVEdYg1eo6GhIbS1pbB9+wXs3NmIPXsa\nsWVLU8XaeaGxsRiGh+NFyXl6OoLOzsoTrIX1/Y0bF4tq5u3t1Xn2aimlaq1eL8DmB6w7K4yFOxzB\na9bRkcTx4847TjI3QMHRnaaFZZRUCkU183XrkhgZqbwsQrXVYwsokV8wwWuUqy+2tztfCqCtLYXd\nuxvR23seMzPAxo2LjiY0jTVztwuM2VWq1hrGdkvWnRXGwh0m+DrgpuOkoyOJ/v45TE5GsWGDdyPt\nekmstXhcIFFQMcFrlFtnw80Tk6r1tKVqJ1bjXbsLC8P5NeYLhbHdkuuvKIyFO0zwZKraidVYW9+/\n/4umP2fnBGZ1OeVabYdINyZ4jep5ZFLt57AaS0Dnzn0GgP2HkRTyakJW98RuPR8XtcZYuMNxCWlh\ndymDSpJJmHYjOWE2/0DkRzxyNQpzj69xjZ2FhWHH28rd7HXhQgR79sxh1aqkq5OG1ycfu8J8XBgx\nFu6wRENaGEtAQ0MXHde+x8aK7+Tt75/DpZdWvpO3lDBO7FIwMcFrxPqiYrYuj9Xat7Gkcvx4FJs2\nLTqeGK32/EMlPC4UxsIdlmiobjitfRtLKk5v9iIKGiZ4jYJQX/RqrZjcujzG2reV7Rvr+Tff7O+2\nxiAcF15hLNxhiYZc8bKl0Kz2PTpaefu5ksp11yUxNhbDoUMN7F8nAhO8VkGoL3q1pEEuFtddl8xv\n1+72dfeveyUIx4VXGAt3mODJFa+XNDAm6QMHZixvv17WzyGqF7yA1SgI9UUrz4y1IheLpXe4RtDb\nO48dO87jkUfmEY+nS25Dd/+6V4JwXHiFsXCHI3hyxeuWQuMVQVMT8P3vL89/v69vtuSzYtetS2Jg\nYAYnT8awZk0S69dz9E7hxgSvEeuLSi4WxonWTz9NFyX8lpbSo/Lx8eIbnliD9z/Gwh0meKorxiuC\nX/86nn2YSQSJRBrT08XPii28+zWRSKO1NYX33ouxBk8E1uC18nt90cvnpZaKxcqVaezalXle7c6d\njVi5srgGn5uU3bq1CVu2NOEHP7gAgDX4oGAs3OEInhyrRVtipXVhjJOyiUQazz8/g0QinW+1ZD88\nhRUTvEZ+ry962ZZYKhaVJnGNk7Lt7ZlRu5/74f1+XHiJsXCHCZ4cq4fnpZqN8A8damA/PBFYg9fK\n7/VFr3rgAeexyI3wu7sX0NmZKcXY7Yf3ci7BC34/LrzEWLjDETw5pntZ3VLsruc+OhrDrbeqks7h\nwzO4/vr6+jcROcERvEasLypexiJ34rn99swzXg8dKj8yn5gonkuYmND7nwWPC4WxcIcjeAosq10+\nzc3FN1M1N5deDoHITzxJ8EKIrwF4ApkrgmeklI96sd2gGxoa4gglqxqxsNrl09qaQm/vPGZmokgk\nUmht1VuE53GhMBbuuL4WFUJEATwF4O8BfAnAt4UQ7W63S/6ne/LSONl69dVJ0/1ZuzaFDRuSWLMm\niRtuSGLtWn/eIEVk5MUIfgOAE1LKdwBACPFLALcBOO7BtgMt6CMTOzdClYqF0wdxA0snW5PJiOn+\n1NtkcdCPCzsYC3e8SPCfB/Buwev3kEn6FHJe3Ajl5m5ZY+I+eJD98RQuWiZZBwYG0NPTA0D1uebO\n1GF6XdjjWw/74/VrsxuhSv28MSa57x87dhELCwkAmaR87NhFzM8PF30+Hl+GSy7ZiMnJKFas+BiN\njX/CjTfegGQSeOONOZw+vQzXXrvM1v7ofD0+Po577rmnbvZH5+unn34a69atq5v90fW6ubkZTkTS\naXcdA0KIjQB+LKX8Wvb1QwDSpSZaBwcH052dna5+Z1AEfQIplcr0mFspr5SKxchI5RF8qZ8xvv/q\nq9NYXIw4KvfUUtCPCzsYC2VkZASbNm2KVP5JxYsR/FsArhZCXAXgDIBvAfi2B9sNvKAfuHZq26Vi\nYeWmpVKlIOP7J07E8ne8Grmp9Xst6MeFHYyFO64TvJQyKYS4F8ArUG2Sx1zvGRGsnSRKrYljZ62c\noDywm6iQJzV4KeVvAFzjxbbChJefiptYlBrl21myoJ4e2M3jQmEs3OGdrOR7pUb5Zu+XKsXUw8qY\nRF5zPclqFydZSadSE7J2JoSJdNA1yUrkG7lSzKpVSWzffhHj4zEAmXJOPd3sROQFjlE04lrXSq1i\nkSvFbN9+ETt3NuL++5dj8+bLMToaq8nvt4LHhcJYuMMET4FTbg2c3MTrpZeml0yqVvoskd+wRKMR\nuwMUL2NRruUxN/EKwHRStR7aJXlcKIyFO0zwFDhWWh5LtVDWU7skkVss0WjE+qLiZSysPJPV7Fmu\nVj9bbTwuFMbCHY7gKXDsPpPVq88S1Rv2wRMR+YCTPniWaIiIAooJXiPWFxXGQmEsFMbCHSZ4IqKA\nYg2eiMgHWIMnIqI8JniNWF9UGAuFsVAYC3eY4ImIAoo1eCIiH2ANnoiI8pjgNWJ9UWEsFMZCYSzc\nYYInIgoo1uCJiHyANXgiIspjgteI9UWFsVAYC4WxcIcJnogooFiDJyLyAdbgiYgojwleI9YXFcZC\nYSwUxsIdJngiooBiDZ6IyAdYgyciojwmeI1YX1QYC4WxUBgLd5jgiYgCijV4IiIfYA2eiIjyXCV4\nIcQuIcR7QoiR7P++5tWOhQHriwpjoTAWCmPhTtyDbTwmpXzMg+0QEZGHvCjR2KoJkdLV1aV7F+oG\nY6EwFgpj4Y4XI/h7hRDfBfA7AD+UUn7iwTaJiMiligleCPEqgNaCtyIA0gD+CcC/AnhESpkWQvwz\ngMcAfL8aOxpEAwMD6Onp0b0bdYGxUBgLhbFwx7M2SSHEVQBellKuL/dzg4ODte3LJCIKCLttkq5K\nNEKIK6WU72dffgPA25U+Y3cHiYjIGbc1+J8KIToApACcArDN9R4REZEnan4nKxER1QbvZCUiCigm\neCKigPKiD74iIUQPgB8DuBbADVLKkYLv7QDwPQCLAO6TUr5Si32qF0KIXQC2Avgg+9bDUsrfaNyl\nmsoub/EEMoONZ6SUj2reJW2EEKcAfILMnNaClHKD3j2qLSHEMwC+DuBsrhtPCHEFgP0ArkJmnk+E\n4V6bErGwnStqkuABjAO4A8DPC98UQlwLQCCT+FcBeE0I8VdSyrBNDIRyuQchRBTAUwA2AfhfAG8J\nIV6SUh7Xu2fapADcIqX8SPeOaPIsgJ8B2Ffw3kMAXpNS/lQI8SCAHdn3gs4sFoDNXFGTEo2UckJK\neQJLlzW4DcAvpZSLUspTAE4ACNWoJSusraMbAJyQUr4jpVwA8EtkjomwiiDEZVMp5RAA48ntNgDP\nZb9+DsDtNd0pTUrEArCZK3QfTJ8H8G7B69PZ98LmXiHEqBCiXwjxF7p3poaMf//3EM6/f04awKtC\niLeEEFt170ydaJFSngWA7D03LZr3RzdbucKzEk25JQ2klC979Xv8iMs9kEU3SynPCCGakUn0x7Ij\nOVLCVr4tZDtXeJbgpZR/6+BjpwF8oeD1qux7gWIjNn0AwnQyPA3gLwteB/Lvb5WU8kz2/6eEEIeQ\nKWGFPcGfFUK0SinPCiGuhJpgDB0p5VTBS0u5QkeJprCG9CsA3xJCXCKEaANwNYD/0bBP2mQP2hxL\nyz0EyFsArhZCXCWEuATAt5A5JkJHCHGZEKIp+/VyAH+HcB0LOREszRF3Zb++E8BLtd4hjYpi4SRX\n1OROViHE7cjMCH8OwMcARqWUm7Pf24HMZcYCwtkmuQ9A0XIPuZpjGGTbJJ+EapP8ieZd0iI7wDmE\nTAkiDuDFsMVCCPELALcAWAHgLIBdAP4DwAFkrvTfQaZN8mNd+1grJWLxVdjMFVyqgIgooHR30RAR\nUZUwwRMRBRQTPBFRQDHBExEFFBM8EVFAMcETEQUUEzwRUUAxwRMRBdT/A74vB7xlRp4gAAAAAElF\nTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11427f748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X[:,1], X[:,0])"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.decomposition import TruncatedSVD"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"svd = TruncatedSVD(n_components=1)\n",
"X_new = svd.fit_transform(X)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x11407d128>"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFqNJREFUeJzt3W+MneV55/HvzJjQEP4IimeIHDAGEsOSoqylpaxqbdIl\nKbAbyWnlXo33ReLsKkVNaFa7+2KBrZIUrVS8L7IkQtmwLevCKilcsdqGRgkiIdmu3AiK5CUxwbFM\nYxtj8B8K+B8ktmfOvjhnfM+Mz/x5/Mxhxuf5fiTL8zznvs/c8/Mzc825r3OOB1qtFpIkzdXgQi9A\nknR2sXBIkiqxcEiSKrFwSJIqsXBIkiqxcEiSKlkyH3cSEbcC99EuRA9m5oYuY74C3AYcAz6Vmf+v\nc/5B4KPA/sy8YcL4i4FHgeXALiAy89B8rFeSdOZqP+KIiEHgfuAW4HpgXURcO2XMbcDVmfle4Hbg\nf0y4eWNn7lR3At/PzJXAD4C76q5VklTffGxV3QjsyMzdmXkCeARYM2XMGuBhgMx8GrgoIkY6x5uB\n17vc7xrgoc7HDwEfm4e1SpJqmo/CsQzYM+H4pc65mcbs7TJmquHM3A+QmfuA4ZrrlCTNg7OpOe57\no0jSIjAfzfG9wBUTjt/TOTd1zOWzjJlqf0SMZOb+iLgMODDT4CeffNLCIkln4Oabbx6oMn4+Cscz\nwDURsRx4Bfg4sG7KmMeAzwKPRsRNwBvj21AdA50/U+esBzYAnwS+NdtCVq1adSbr7zvbt29n5cqV\nC72MRcEsCrMozKLYsmVL5Tm1t6oycxS4A3gC+CnwSGZui4jbI+L3O2O+A+yMiBeAB4DPjM+PiG8A\nPwLeFxEvRsSnOjdtAD4SEduBm4F76661KQ4ePLjQS1g0zKIwi8Is6pmX13Fk5uPAyinnHphyfMc0\nc//NNOdfAz48H+uTJM2fgX75/ziefPLJlltVklTNli1bKvc4zqZnVUmSFgELRx/avHnzQi9h0TCL\nwiwKs6jHwiFJqsQehyQ1mD0OSVLPWTj6kPu3hVkUZlGYRT0WDklSJfY4JKnB7HFIknrOwtGH3L8t\nzKIwi8Is6rFwSJIqscchSQ1mj0OS1HMWjj7k/m1hFoVZFGZRj4VDklSJPQ5JajB7HJKknrNw9CH3\nbwuzKMyiMIt6LBySpErscUhSg9njkCT1nIWjD7l/W5hFYRaFWdRj4ZAkVWKPQ5IazB6HJKnnLBx9\nyP3bwiwKsyjMoh4LhySpEnscktRg9jgkST1n4ehD7t8WZlGYRWEW9Vg4JEmV2OOQpAazxyFJ6jkL\nRx9y/7Ywi8IsCrOox8IhSarEHockNZg9DklSz1k4+pD7t4VZFGZRmEU9Fg5JUiX2OCSpwexxSJJ6\nzsLRh9y/LcyiMIvCLOqxcEiSKrHHIUkNZo9DktRzFo4+5P5tYRaFWRRmUc+S+biTiLgVuI92IXow\nMzd0GfMV4DbgGLA+M5+daW5EfAH4NHCgcxd3Z+bj87FeSdKZq/2IIyIGgfuBW4DrgXURce2UMbcB\nV2fme4Hbga/Nce6XMnNV549FY45Wr1690EtYNMyiMIvCLOqZj62qG4Edmbk7M08AjwBrpoxZAzwM\nkJlPAxdFxMgc5lZq2EiSem8+CscyYM+E45c65+YyZra5d0TEsxHxZxFx0TystRHcvy3MojCLwizq\nWajm+FweSXwVuCozPwDsA74024RNmzad+njz5s2TLg6PPW768datWxfVehbyeOvWrYtqPQt1vH37\nds5E7ddxRMRNwBcz89bO8Z1Aa2KDPCK+BvwwMx/tHP8M+CCwYra5nfPLgb/JzBumW4ev45Ck6hbq\ndRzPANdExPKIeAfwceCxKWMeAz4BpwrNG5m5f6a5EXHZhPm/Azw3D2uVJNVUu3Bk5ihwB/AE8FPg\nkczcFhG3R8Tvd8Z8B9gZES8ADwCfmWlu567/W0T8JCKepf3o5D/UXWtTTHxI2nRmUZhFYRb1zMvr\nODpPlV055dwDU47vmOvczvlPzMfaJEnzy/eqkqQG872qJEk9Z+HoQ+7fFmZRmEVhFvVYOCRJldjj\nkKQGs8chSeo5C0cfcv+2MIvCLAqzqMfCIUmqxB6HJDWYPQ5JUs9ZOPqQ+7eFWRRmUZhFPRYOSVIl\n9jgkqcHscUiSes7C0Yfcvy3MojCLwizqsXBIkiqxxyFJDWaPQ5LUcxaOPuT+bWEWhVkUZlGPhUOS\nVIk9DklqMHsckqSes3D0IfdvC7MozKIwi3osHJKkSuxxSFKD2eOQJPWchaMPuX9bmEVhFoVZ1GPh\nkCRVYo9DkhrMHockqecsHH3I/dvCLAqzKMyiHguHJKkSexyS1GD2OCRJPWfh6EPu3xZmUZhFYRb1\nWDgkSZXY45CkBrPHIUnqOQtHH3L/tjCLwiwKs6jHwiFJqsQehyQ1mD0OSVLPWTj6kPu3hVkUZlGY\nRT0WDklSJfY4JKnB7HFIknrOwtGH3L8tzKIwi8Is6lkyH3cSEbcC99EuRA9m5oYuY74C3AYcA9Zn\n5rMzzY2Ii4FHgeXALiAy89B8rFeSdOZqP+KIiEHgfuAW4HpgXURcO2XMbcDVmfle4Hbga3OYeyfw\n/cxcCfwAuKvuWpti9erVC72ERcMsCrMozKKe+XjEcSOwIzN3A0TEI8Aa4GcTxqwBHgbIzKcj4qKI\nGAFWzDB3DfDBzvyHgP9Du5j0ndFR+PGPh9i5c5AVK8b4wAdGGRzsftuv/dooW7d2HzvR8ePw9NND\n/PznQ1x5ZXvMnj2DXH/9KK0WHDgwyP79g6xYMcqFF7bYsWOIlStP8vrrg+zaNcS73z3GhReOcuzY\nIMePD3DgwCDLl7fHPv/8EMuWjXHOOS3GxuD48UEOHhxgeLjFK68MsGzZGG+8McCll45x7NggBw4M\ncsUVo4yOwt697c/55puD7NvXPv/66wMMD49x/PgAu3YNsXz5GMPDo7zvfa1TX+vIyBgDA7BjxxBX\nXz3KjTeO8txzQ2zfPsjSpS1GRsZ4//vHumahama6HucyZrrbJp4fHh6j1WoxNjbA7t1DLF8+ygUX\njPHqq0McPNi+1gYG2tfL8PAYhw4NcOmlLX7xiwEOHYKRkRYnTsDx4wMcPDjA8uVjHDkCv/IrA7zx\nBlxySYsXXxzi8stHOXYMLr64xVtvDXLoUPtaO3lyfO4gl1/e/lwHDw5y5ZVjnDjRnjs8PMY//mP7\n3DnntL9HJn49v/gFPPXUUOeabV/fS5e2GB0dmPX782w3H4VjGbBnwvFLtIvJbGOWzTJ3JDP3A2Tm\nvogYnoe1Lko//vEQt912ASdODHDOOS2++90jrFo12vW2b37zCL/7u93Hjtu8eTOt1gdZu7aM++M/\nfpO7734Xf/InxwD4/OfPO+22r3/9COvXn3/q/J//+VFefHGw69jx+7niijHWrz+fe+55i8997p2n\nxm3ceJTnnlsy7dzJ59/i3HOZ9Lk3bjzKa6+1un4N55zT4tFHj/B7vzf5tpMnR7tm4W+XbXPNYqbr\ncS5jprtt6vm/+IujrFtX/s2/8Y2jfOIT50/6Nx0YGOBzn3sX99zzFvv3t/j858/jnnve4tVX288G\nnXgdbdzYvr977nmLP/iDqdfi0IS5A5Pmnn49tj/vH/7hu7pee+Nfz1NPDU26BjduPMpTTw1Nuq9u\n2fWDeelxnIFKT/3qmPV5w5s2bWLt2rVAaX6Nf6Ms5uOdOwc5caIdyYkT7d9W3nzzbwHYv/83p9w2\ndNrYVatGT7v/f/iHgUnjjhxp/9pz+PDgqXNTb9u7d/I69u4d5PDhwRnvZ+/e9vnDhyd/vpdfnnnu\n5PMDp33ul18eZMmSsa7zu+Vw5Mgg27a9yapVSyblO24x/Xsv1PHWrVtrX4/j47dt+yUnTlx4asy2\nbb/kzTefmnH+7t03TZqze/fkcS++2P16Gb++YGDSx+O3jf/98suDs16L3eZOd51Of+21v56dO//l\nrNf8dN+fi+V46dKlnIn5KBx7gSsmHL+nc27qmMu7jHnHDHP3RcRIZu6PiMuAA7MtZLxowOl7mIv5\neMWK9kPh8d9SVqwYY9Wq9u1btky+7aqrRk8bO/X+Vq9eTavVmjTuwgvb48b/7nbb+PbT+Plly8YY\nHe0+duqcCy9sVZo7+Xyr6+c+//zuX0P76x497bbrrjsXGF3wf8/Fejz1Gplu/EzX47jrrjt30pjr\nrjv31Jjp5p933tCk88uXj8143P73LtcItCZ9DJx2zcx2LXabe/r1WD5v92uv/fWcPDk67eeZ6ftz\nsR1v2bKFqmq/ADAihoDtwM3AK8DfA+syc9uEMf8K+Gxm/uuIuAm4LzNvmmluRGwAXsvMDRHxn4GL\nM3PaHsfZ/ALAsTF49tnu+8VTb7vhhlF+8pPZexwnT8KPfjTEzp1DrFjR3sPds2eQ97+/3ePYt6/d\ne1ixYpQLLmjxwgtDXHvtSV57bXKP4+jR9m9Qc+lxLF3aYt++yT2Oo0cHOXhwco/jqqvavZPZehwr\nV7ZOfa0jI+1vwBdeaPc4fv3X270eexzzb6brcS5jprtt4vnxHsfo6AAvvlh6HAcPDvHqq4NceWX7\nF4CpPY633hrg8OHS4/jlLwd49dV2j+PwYXjnO9s9josvbrFnT+lxXHJJi2PHBjl8eICRkbEJ/ZF2\njwPofN4xjh9vzx3vcaxYMcaSJaf3OI4fh7/7u6FTPZrRURgebheNXbvOnh7HmbwAcF5eOd55Su2X\nKU+pvTcibgdamfk/O2PuB26l/XTcT2Xmlunmds5fAiTtRyq7aT8d943p1nA2F4755r5+YRaFWRRm\nUZxJ4ZiXHkdmPg6snHLugSnHd8x1buf8a8CH52N9kqT543tVSVKD+V5VkqSes3D0Id+HpzCLwiwK\ns6jHwiFJqsQehyQ1mD0OSVLPWTj6kPu3hVkUZlGYRT0WDklSJfY4JKnB7HFIknrOwtGH3L8tzKIw\ni8Is6rFwSJIqscchSQ1mj0OS1HMWjj7k/m1hFoVZFGZRj4VDklSJPQ5JajB7HJKknrNw9CH3bwuz\nKMyiMIt6LBySpErscUhSg9njkCT1nIWjD7l/W5hFYRaFWdRj4ZAkVWKPQ5IazB6HJKnnLBx9yP3b\nwiwKsyjMoh4LhySpEnscktRg9jgkST1n4ehD7t8WZlGYRWEW9Vg4JEmV2OOQpAazxyFJ6jkLRx9y\n/7Ywi8IsCrOox8IhSarEHockNZg9DklSz1k4+pD7t4VZFGZRmEU9Fg5JUiX2OCSpwexxSJJ6zsLR\nh9y/LcyiMIvCLOqxcEiSKrHHIUkNZo9DktRzFo4+5P5tYRaFWRRmUc+SOpMj4mLgUWA5sAuIzDzU\nZdytwH20C9WDmblhpvkRsRzYBvyscxdPZeZn6qxVkjQ/6j7iuBP4fmauBH4A3DV1QEQMAvcDtwDX\nA+si4to5zH8hM1d1/lg0Kli9evVCL2HRMIvCLAqzqKdu4VgDPNT5+CHgY13G3AjsyMzdmXkCeKQz\nb7b5lZo1kqS3R93CMZyZ+wEycx8w3GXMMmDPhOOXOucARmaYf2VEbImIH0aEvx5U4P5tYRaFWRRm\nUc+sPY6I+B4wMuHUANAC/qjL8LrP7R2f/wpwRWa+HhGrgL+OiH+SmUdnmrxp0ybWrl0LlAtj/CGp\nx808HrdY1rOQx1u3bl1U61nI461bty6q9SzU8dKlSzkTtV7HERHbgA9l5v6IuAz4YWZeN2XMTcAX\nM/PWzvGdQCszN8xlfmfOD4H/lJlbpluLr+OQpOoW4nUcjwHrOx9/EvhWlzHPANdExPKIeAfw8c68\naedHxKWdpjoRcRVwDfDzmmuVJM2DuoVjA/CRiNgO3AzcCxAR746IbwNk5ihwB/AE8FPgkczcNtN8\n4F8AP4mILUACt2fmGzXX2hju3xZmUZhFYRb11HodR2a+Bny4y/lXgI9OOH4cWFlh/l8Cf1lnbZKk\n3vC9qiSpwXyvKklSz1k4+pD7t4VZFGZRmEU9Fg5JUiX2OCSpwexxSJJ6zsLRh9y/LcyiMIvCLOqx\ncEiSKrHHIUkNZo9DktRzFo4+5P5tYRaFWRRmUY+FQ5JUiT0OSWowexySpJ6zcPQh928LsyjMojCL\neiwckqRK7HFIUoPZ45Ak9ZyFow+5f1uYRWEWhVnUY+GQJFVij0OSGswehySp5ywcfcj928IsCrMo\nzKIeC4ckqRJ7HJLUYPY4JEk9Z+HoQ+7fFmZRmEVhFvVYOCRJldjjkKQGs8chSeo5C0cfcv+2MIvC\nLAqzqMfCIUmqxB6HJDWYPQ5JUs9ZOPqQ+7eFWRRmUZhFPRYOSVIl9jgkqcHscUiSes7C0Yfcvy3M\nojCLwizqsXBIkiqxxyFJDWaPQ5LUcxaOPuT+bWEWhVkUZlGPhUOSVIk9DklqMHsckqSeW1JnckRc\nDDwKLAd2AZGZh7qMuxW4j3ahejAzN3TOrwW+CFwH/LPM3DJhzl3AvwVOAv8+M5+os9Ym2bx5M6tX\nr17oZSwKZlGYRWEW9dR9xHEn8P3MXAn8ALhr6oCIGATuB24BrgfWRcS1nZu3Ar8N/O2UOdcBQbug\n3AZ8NSIqPZSSJPVG3cKxBnio8/FDwMe6jLkR2JGZuzPzBPBIZx6ZuT0zdwBTi8Ia4JHMPJmZu4Ad\nnfvRHPibVGEWhVkUZlFP3cIxnJn7ATJzHzDcZcwyYM+E45c652Yydc7eOcyRJL0NZu1xRMT3gJEJ\npwaAFvBHXYb3x1O0znKbNm1i7dq1C72MRcEsCrMozKKeWQtHZn5kutsiYn9EjGTm/oi4DDjQZdhe\n4IoJx+/pnJvJXuDyinPYsmXLbEMa4aqrrjKLDrMozKIwi3pqPasKeAxYD2wAPgl8q8uYZ4BrImI5\n8ArwcWBdl3ET+xyPAV+PiP9Oe4vqGuDvZ1pI1echS5LOTN0exwbgIxGxHbgZuBcgIt4dEd8GyMxR\n4A7gCeCntJve2zrjPhYRe4CbgG9HxHc7c54HEnge+A7wmcx0G0ySFoG+eeW4JOnt4SvHJUmVWDgk\nSZXUbY4vKhHxBeDTlGd33Z2Zjy/gkt520729SxNFxC7gEDAGnMjMxryINCIeBD4K7M/MGzrn5vQW\nQf1mmiwa+bMiIt4DPEz7JRZjwJ9m5leqXhv9+IjjS5m5qvOn7y+EiWZ5e5cmGgM+lJn/tElFo2Mj\n7etgolnfIqhPdcsCmvmz4iTwHzPzeuCfA5/t/IyodG30Y+Fo8tNyp317l4YaoD+v8Vll5mbg9Smn\n5/IWQX1nmiyggT8rMnNfZj7b+fgosI326+QqXRv9+E11R0Q8GxF/FhEXLfRi3mZn8vYu/awFfC8i\nnomITy/0YhaBubxFUJM0+WcFEXEl8AHgKWCkyrVx1vU4ZngLlP8CfBW4JzNbEfFfgS8B/+7tX6UW\nid/IzFciYintArKt89un2pr8XPxG/6yIiPOBTbT/y4qjETH1Wpjx2jjrCsdMb4EyxZ8Cf9PLtSxC\nZ/L2Ln0rM1/p/H0wIv6K9lZekwvHXN4iqBEy8+CEw0b9rIiIJbSLxv/OzPF3+6h0bfTVVlXnCx73\nO8BzC7WWBXLq7V0i4h20397lsQVe04KIiPM6v1UREe8CfovmXQ8DnP5WPus7H0/3FkH9alIWDf9Z\n8b+A5zPzyxPOVbo2+uqV4xHxMO09uzHaTym7fXzfrik6T8f9MuXpuPcu8JIWRESsAP6K9kPuJcDX\nm5RFRHwD+BDwq8B+4AvAXwPfpP0GortpP+XyjYVa49tlmix+kwb+rIiI3wD+L+3/RK/V+XM37fcC\nTOZ4bfRV4ZAk9V5fbVVJknrPwiFJqsTCIUmqxMIhSarEwiFJqsTCIUmqxMIhSarEwiFJquT/A3mc\n6lxwfSJGAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1140ab048>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X_new, X_new * 0)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.1"
},
"latex_envs": {
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 0
},
"toc": {
"toc_cell": false,
"toc_number_sections": true,
"toc_threshold": 6,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment