Last active
October 3, 2016 15:56
-
-
Save jxnl/fdd1284986571112b60f094d563a05cf to your computer and use it in GitHub Desktop.
Transformer for collecting values and generating features
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 89, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "\n", | |
| "from sklearn.base import BaseEstimator, TransformerMixin\n", | |
| "from itertools import combinations\n", | |
| "\n", | |
| "from sklearn.feature_extraction.text import CountVectorizer" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 216, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "class CollectCombiner(BaseEstimator, TransformerMixin):\n", | |
| " \"\"\"\n", | |
| " CollectCombiner\n", | |
| " ~~~~~~~~~~\n", | |
| " CollectCombiner is a Transformer for Pipeline objects.\n", | |
| " Usage:\n", | |
| " Initialize the CollectCombiner with a `key` and `value` column names \n", | |
| " Assumes that each row is a has a key and value and then groups by collects\n", | |
| " the values into a list. Afterwards it will generate combinations of the list \n", | |
| " of values to produce n-gram like pairs for vectorization.\n", | |
| " \"\"\"\n", | |
| "\n", | |
| " def __init__(self, key, value, n):\n", | |
| " self.k = key\n", | |
| " self.v = value\n", | |
| " self.n = n\n", | |
| " self.vectorizer = CountVectorizer(\n", | |
| " tokenizer=self._combiner, \n", | |
| " preprocessor=self._I)\n", | |
| " \n", | |
| " def _collecter(self, x):\n", | |
| " return list(x)\n", | |
| " \n", | |
| " def _I(self, x):\n", | |
| " return x\n", | |
| " \n", | |
| " def _combiner(self, elems):\n", | |
| " def combination_generator():\n", | |
| " x = sorted(elems)\n", | |
| " for i in xrange(1, self.n+1):\n", | |
| " for combination in combinations(x, i):\n", | |
| " yield combination\n", | |
| " return list(combination_generator())\n", | |
| "\n", | |
| " def fit(self, X, y=None):\n", | |
| " X_new = X.groupby(self.k).agg({self.v: self._collecter})\n", | |
| " self.vectorizer.fit(X_new[self.v])\n", | |
| " \n", | |
| " def transform(self, X, y=None):\n", | |
| " X_new = X.groupby(self.k).agg({self.v: self._collecter})\n", | |
| " return self.vectorizer.transform(X_new[self.v])\n", | |
| "\n", | |
| " def fit_transform(self, X, y=None, **fit_params):\n", | |
| " X_new = X.groupby(self.k).agg({self.v: self._collecter})\n", | |
| " self.vectorizer.fit(X_new[self.v])\n", | |
| " return self.vectorizer.transform(X_new[self.v])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 217, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>key</th>\n", | |
| " <th>value</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>2</td>\n", | |
| " <td>3</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>2</td>\n", | |
| " <td>4</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>2</td>\n", | |
| " <td>5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>4</td>\n", | |
| " <td>7</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " key value\n", | |
| "0 1 1\n", | |
| "1 1 1\n", | |
| "2 2 3\n", | |
| "3 2 4\n", | |
| "4 2 5\n", | |
| "5 3 6\n", | |
| "6 4 7" | |
| ] | |
| }, | |
| "execution_count": 217, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.DataFrame({\"key\":[1,1,2,2,2,3,4], \"value\":[1,1,3,4,5,6,7]})\n", | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 218, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "c = CollectCombiner(\"key\", \"value\", 2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 219, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>(1,)</th>\n", | |
| " <th>(1, 1)</th>\n", | |
| " <th>(3,)</th>\n", | |
| " <th>(3, 4)</th>\n", | |
| " <th>(3, 5)</th>\n", | |
| " <th>(4,)</th>\n", | |
| " <th>(4, 5)</th>\n", | |
| " <th>(5,)</th>\n", | |
| " <th>(6,)</th>\n", | |
| " <th>(7,)</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>0</td>\n", | |
| " <td>1</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " (1,) (1, 1) (3,) (3, 4) (3, 5) (4,) (4, 5) (5,) (6,) (7,)\n", | |
| "1 2 1 0 0 0 0 0 0 0 0\n", | |
| "2 0 0 1 1 1 1 1 1 0 0\n", | |
| "3 0 0 0 0 0 0 0 0 1 0\n", | |
| "4 0 0 0 0 0 0 0 0 0 1" | |
| ] | |
| }, | |
| "execution_count": 219, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.DataFrame(\n", | |
| " c.fit_transform(df).todense(), \n", | |
| " index=[1,2,3,4], \n", | |
| " columns={v:k for k,v in c.vectorizer.vocabulary_.items()}.values())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 2", | |
| "language": "python", | |
| "name": "python2" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 1 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment