Skip to content

Instantly share code, notes, and snippets.

@jzuhone
Created April 29, 2014 17:20
Show Gist options
  • Save jzuhone/11406626 to your computer and use it in GitHub Desktop.
Save jzuhone/11406626 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:4a3e15e5813c0b202312a517dd042fdb50aa546304d639cdfa729df708e0b236"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import yt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ds = yt.load(\"fits/grs-50-cube.fits\", nan_mask=0.0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [WARNING ] 2014-04-29 13:17:07,408 Cannot find time\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,409 Detected these axes: GLON-CAR GLAT-CAR VELOCITY \n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [WARNING ] 2014-04-29 13:17:07,662 No length conversion provided. Assuming 1 = 1 cm.\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,676 Parameters: current_time = 0.0\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,676 Parameters: domain_dimensions = [325 357 424]\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,677 Parameters: domain_left_edge = [ 5.00000000e-01 5.00000000e-01 -5.06022453e+03]\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,678 Parameters: domain_right_edge = [ 325.5 357.5 85054.97932435]\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,679 Parameters: cosmological_simulation = 0.0\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"dd = ds.all_data()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"extrema = dd.quantities.extrema(\"temperature\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [WARNING ] 2014-04-29 13:17:07,887 Guessing this is a temperature field based on its units of K.\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,888 Adding field temperature to the list of fields.\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,915 Loading field plugins.\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,915 Loaded angular_momentum (8 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,916 Loaded astro (14 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,916 Loaded cosmology (20 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,917 Loaded fluid (56 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,919 Loaded fluid_vector (88 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,920 Loaded geometric (103 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,920 Loaded local (103 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,921 Loaded magnetic_field (109 new fields)\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"yt : [INFO ] 2014-04-29 13:17:07,922 Loaded species (109 new fields)\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"extrema"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
"(-41.0505065918 K, 79.6376800537 K)"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"fc = dd.cut_region([\"obj['temperature'] > 0\"])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print fc[\"temperature\"].max()\n",
"print len(fc[\"temperature\"])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"79.6376800537 K\n",
"26849446\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"pplot = yt.ProfilePlot(fc, \"temperature\", [\"ones\"], weight_field=None)\n",
"pplot.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<img src=\"\"><br>"
],
"metadata": {},
"output_type": "display_data",
"text": [
"<yt.visualization.profile_plotter.ProfilePlot at 0x10c7511d0>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print fc[\"temperature\"].max()\n",
"print len(fc[\"temperature\"])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.873809456825 K\n",
"48690\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"fc._cond_ind.sum()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 10,
"text": [
"26849446"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment