Skip to content

Instantly share code, notes, and snippets.

@kaizu
Created August 2, 2019 08:01
Show Gist options
  • Save kaizu/2b3ea87dea37e38e56bd3680a682205c to your computer and use it in GitHub Desktop.
Save kaizu/2b3ea87dea37e38e56bd3680a682205c to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib notebook"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"import numpy\n",
"import matplotlib.pylab as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import ecell4.datasource"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['__all__',\n",
" '__builtins__',\n",
" '__cached__',\n",
" '__description',\n",
" '__doc__',\n",
" '__file__',\n",
" '__loader__',\n",
" '__name__',\n",
" '__package__',\n",
" '__path__',\n",
" '__spec__',\n",
" 'description',\n",
" 'print_descriptions',\n",
" 'whereis']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir(ecell4.datasource)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import ecell4.datasource.sbml"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"ds = ecell4.datasource.sbml.BioModelsDataSource(\"BIOMD0000000469\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('s_0003', 0.1, 'cell')\n",
"('s_0004', 0.1, 'cell')\n",
"('s_0017', 0.1, 'cell')\n",
"('s_0018', 0.1, 'cell')\n",
"('s_0028', 0.1, 'cell')\n",
"('s_0029', 0.1, 'cell')\n",
"('s_0032', 0.1, 'cell')\n",
"('s_0033', 0.1, 'cell')\n",
"('s_0040', 0.1, 'cell')\n",
"('s_0041', 0.1, 'cell')\n",
"('s_0042', 0.1, 'cell')\n",
"('s_0043', 0.1, 'cell')\n",
"('s_0044', 0.1, 'cell')\n",
"('s_0045', 0.1, 'cell')\n",
"('s_0046', 0.1, 'cell')\n",
"('s_0047', 0.1, 'cell')\n",
"('s_0049', 0.1, 'cell')\n",
"('s_0050', 0.1, 'cell')\n",
"('s_0051', 0.1, 'cell')\n",
"('s_0052', 0.1, 'cell')\n",
"('s_0073', 0.1, 'cell')\n",
"('s_0075', 0.1, 'cell')\n",
"('s_0096', 0.1, 'cell')\n",
"('s_0097', 0.1, 'cell')\n",
"('s_0098', 0.1, 'cell')\n",
"('s_0099', 0.1, 'cell')\n",
"('s_0116', 0.1, 'cell')\n",
"('s_0119', 0.1, 'cell')\n",
"('s_0121', 0.1, 'cell')\n",
"('s_0123', 0.1, 'cell')\n",
"('s_0128', 0.1, 'cell')\n",
"('s_0133', 0.1, 'cell')\n",
"('s_0147', 0.1, 'cell')\n",
"('s_0148', 0.1, 'cell')\n",
"('s_0149', 0.1, 'cell')\n",
"('s_0155', 0.1, 'cell')\n",
"('s_0160', 0.1, 'cell')\n",
"('s_0162', 0.1, 'cell')\n",
"('s_0191', 0.1, 'cell')\n",
"('s_0193', 0.1, 'cell')\n",
"('s_0194', 0.1, 'cell')\n",
"('s_0195', 0.1, 'cell')\n",
"('s_0201', 0.1, 'cell')\n",
"('s_0203', 0.1, 'cell')\n",
"('s_0214', 0.1, 'cell')\n",
"('s_0217', 0.1, 'cell')\n",
"('s_0218', 0.1, 'cell')\n",
"('s_0226', 0.1, 'cell')\n",
"('s_0229', 0.1, 'cell')\n",
"('s_0231', 0.1, 'cell')\n",
"('s_0232', 0.1, 'cell')\n",
"('s_0233', 0.1, 'cell')\n",
"('s_0237', 0.1, 'cell')\n",
"('s_0252', 0.1, 'cell')\n",
"('s_0255', 0.1, 'cell')\n",
"('s_0262', 0.1, 'cell')\n",
"('s_0263', 0.1, 'cell')\n",
"('s_0265', 0.1, 'cell')\n",
"('s_0266', 0.1, 'cell')\n",
"('s_0267', 0.1, 'cell')\n",
"('s_0269', 0.1, 'cell')\n",
"('s_0270', 0.1, 'cell')\n",
"('s_0271', 0.1, 'cell')\n",
"('s_0272', 0.1, 'cell')\n",
"('s_0276', 0.1, 'cell')\n",
"('s_0277', 0.1, 'cell')\n",
"('s_0282', 0.1, 'cell')\n",
"('s_0283', 0.1, 'cell')\n",
"('s_0289', 0.1, 'cell')\n",
"('s_0290', 0.1, 'cell')\n",
"('s_0293', 0.1, 'cell')\n",
"('s_0295', 0.1, 'cell')\n",
"('s_0297', 0.1, 'cell')\n",
"('s_0299', 0.1, 'cell')\n",
"('s_0303', 0.1, 'cell')\n",
"('s_0304', 0.1, 'cell')\n",
"('s_0305', 0.1, 'cell')\n",
"('s_0306', 0.1, 'cell')\n",
"('s_0307', 0.1, 'cell')\n",
"('s_0308', 0.1, 'cell')\n",
"('s_0310', 0.1, 'cell')\n",
"('s_0311', 0.1, 'cell')\n",
"('s_0312', 0.1, 'cell')\n",
"('s_0313', 0.1, 'cell')\n",
"('s_0316', 0.1, 'cell')\n",
"('s_0318', 0.1, 'cell')\n",
"('s_0325', 0.1, 'cell')\n",
"('s_0328', 0.1, 'cell')\n",
"('s_0330', 0.1, 'cell')\n",
"('s_0331', 0.1, 'cell')\n",
"('s_0332', 0.1, 'cell')\n",
"('s_0333', 0.1, 'cell')\n",
"('s_0334', 0.1, 'cell')\n",
"('s_0335', 0.1, 'cell')\n",
"('s_0336', 0.1, 'cell')\n",
"('s_0337', 0.1, 'cell')\n",
"('s_0341', 0.1, 'cell')\n",
"('s_0342', 0.1, 'cell')\n",
"('s_0343', 0.1, 'cell')\n",
"('s_0344', 0.1, 'cell')\n",
"('s_0345', 0.1, 'cell')\n",
"('s_0346', 0.1, 'cell')\n",
"('s_0347', 0.1, 'cell')\n",
"('s_0352', 0.1, 'cell')\n",
"('s_0354', 0.1, 'cell')\n",
"('s_0359', 0.1, 'cell')\n",
"('s_0360', 0.1, 'cell')\n",
"('s_0361', 0.1, 'cell')\n",
"('s_0362', 0.1, 'cell')\n",
"('s_0364', 0.1, 'cell')\n",
"('s_0367', 0.1, 'cell')\n",
"('s_0368', 0.1, 'cell')\n",
"('s_0369', 0.1, 'cell')\n",
"('s_0370', 0.1, 'cell')\n",
"('s_0371', 0.1, 'cell')\n",
"('s_0372', 0.1, 'cell')\n",
"('s_0376', 0.1, 'cell')\n",
"('s_0377', 0.1, 'cell')\n",
"('s_0378', 0.1, 'cell')\n",
"('s_0380', 0.1, 'cell')\n",
"('s_0381', 0.1, 'cell')\n",
"('s_0384', 0.1, 'cell')\n",
"('s_0391', 0.1, 'cell')\n",
"('s_0393', 0.1, 'cell')\n",
"('s_0395', 0.1, 'cell')\n",
"('s_0397', 0.1, 'cell')\n",
"('s_0405', 0.1, 'cell')\n",
"('s_0408', 0.1, 'cell')\n",
"('s_0411', 0.1, 'cell')\n",
"('s_0412', 0.1, 'cell')\n",
"('s_0420', 0.1, 'cell')\n",
"('s_0421', 0.1, 'cell')\n",
"('s_0435', 0.1, 'cell')\n",
"('s_0445', 0.1, 'cell')\n",
"('s_0446', 0.1, 'cell')\n",
"('s_0451', 0.1, 'cell')\n",
"('s_0453', 1.0, 'extracellular')\n",
"('s_0454', 0.1, 'cell')\n",
"('s_0457', 0.1, 'cell')\n",
"('s_0467', 0.1, 'cell')\n",
"('s_0470', 0.1, 'cell')\n",
"('s_0474', 0.1, 'cell')\n",
"('s_0476', 0.1, 'cell')\n",
"('s_0479', 0.1, 'cell')\n",
"('s_0480', 0.1, 'cell')\n",
"('s_0481', 0.1, 'cell')\n",
"('s_0488', 0.1, 'cell')\n",
"('s_0493', 0.1, 'cell')\n",
"('s_0497', 0.1, 'cell')\n",
"('s_0499', 1.0, 'extracellular')\n",
"('s_0502', 0.1, 'cell')\n",
"('s_0510', 0.1, 'cell')\n",
"('s_0512', 0.1, 'cell')\n",
"('s_0513', 0.1, 'cell')\n",
"('s_0520', 0.1, 'cell')\n",
"('s_0522', 1.0, 'extracellular')\n",
"('s_0526', 0.1, 'cell')\n",
"('s_0530', 0.1, 'cell')\n",
"('s_0533', 0.1, 'cell')\n",
"('s_0536', 0.1, 'cell')\n",
"('s_0539', 0.1, 'cell')\n",
"('s_0542', 0.1, 'cell')\n",
"('s_0543', 0.1, 'cell')\n",
"('s_0545', 0.0, 'extracellular')\n",
"('s_0546', 0.1, 'cell')\n",
"('s_0548', 1.0, 'extracellular')\n",
"('s_0555', 0.1, 'cell')\n",
"('s_0565', 0.1, 'cell')\n",
"('s_0574', 0.1, 'cell')\n",
"('s_0575', 0.1, 'cell')\n",
"('s_0579', 0.1, 'cell')\n",
"('s_0581', 1.0, 'extracellular')\n",
"('s_0585', 0.1, 'cell')\n",
"('s_0599', 0.1, 'cell')\n",
"('s_0600', 0.1, 'cell')\n",
"('s_0603', 0.1, 'cell')\n",
"('s_0611', 0.1, 'cell')\n",
"('s_0620', 0.1, 'cell')\n",
"('s_0621', 0.1, 'cell')\n",
"('s_0622', 0.1, 'cell')\n",
"('s_0627', 0.1, 'cell')\n",
"('s_0653', 0.1, 'cell')\n",
"('s_0654', 0.1, 'cell')\n",
"('s_0657', 0.1, 'cell')\n",
"('s_0659', 1.0, 'extracellular')\n",
"('s_0663', 0.1, 'cell')\n",
"('s_0671', 0.1, 'cell')\n",
"('s_0675', 0.1, 'cell')\n",
"('s_0704', 0.1, 'cell')\n",
"('s_0721', 0.1, 'cell')\n",
"('s_0726', 0.1, 'cell')\n",
"('s_0731', 0.1, 'cell')\n",
"('s_0732', 0.1, 'cell')\n",
"('s_0737', 0.1, 'cell')\n",
"('s_0738', 0.1, 'cell')\n",
"('s_0754', 0.1, 'cell')\n",
"('s_0755', 0.1, 'cell')\n",
"('s_0760', 0.1, 'cell')\n",
"('s_0765', 0.1, 'cell')\n",
"('s_0766', 0.1, 'cell')\n",
"('s_0767', 0.1, 'cell')\n",
"('s_0768', 0.1, 'cell')\n",
"('s_0772', 0.1, 'cell')\n",
"('s_0779', 0.1, 'cell')\n",
"('s_0783', 0.1, 'cell')\n",
"('s_0785', 0.1, 'cell')\n",
"('s_0789', 0.1, 'cell')\n",
"('s_0790', 0.1, 'cell')\n",
"('s_0795', 0.1, 'cell')\n",
"('s_0802', 0.1, 'cell')\n",
"('s_0805', 0.1, 'cell')\n",
"('s_0807', 0.1, 'cell')\n",
"('s_0810', 0.1, 'cell')\n",
"('s_0812', 0.1, 'cell')\n",
"('s_0813', 0.1, 'cell')\n",
"('s_0826', 0.1, 'cell')\n",
"('s_0838', 0.1, 'cell')\n",
"('s_0840', 1.0, 'extracellular')\n",
"('s_0841', 0.1, 'cell')\n",
"('s_0843', 1.0, 'extracellular')\n",
"('s_0859', 0.1, 'cell')\n",
"('s_0860', 0.1, 'cell')\n",
"('s_0861', 0.1, 'cell')\n",
"('s_0862', 0.1, 'cell')\n",
"('s_0863', 0.1, 'cell')\n",
"('s_0867', 0.1, 'cell')\n",
"('s_0875', 0.1, 'cell')\n",
"('s_0896', 0.1, 'cell')\n",
"('s_0903', 0.1, 'cell')\n",
"('s_0910', 0.1, 'cell')\n",
"('s_0913', 0.1, 'cell')\n",
"('s_0920', 0.1, 'cell')\n",
"('s_0929', 0.1, 'cell')\n",
"('s_0936', 0.1, 'cell')\n",
"('s_0937', 0.1, 'cell')\n",
"('s_0941', 0.1, 'cell')\n",
"('s_0942', 0.1, 'cell')\n",
"('s_0945', 0.1, 'cell')\n",
"('s_0971', 0.1, 'cell')\n",
"('s_0976', 0.1, 'cell')\n",
"('s_0979', 0.1, 'cell')\n",
"('s_0984', 0.1, 'cell')\n",
"('s_0991', 0.1, 'cell')\n",
"('s_0994', 0.1, 'cell')\n",
"('s_0998', 0.1, 'cell')\n",
"('s_1005', 0.1, 'cell')\n",
"('s_1006', 0.1, 'cell')\n",
"('s_1009', 0.1, 'cell')\n",
"('s_1017', 0.1, 'cell')\n",
"('s_1018', 0.1, 'cell')\n",
"('s_1019', 0.1, 'cell')\n",
"('s_1020', 0.1, 'cell')\n",
"('s_1021', 0.1, 'cell')\n",
"('s_1022', 0.1, 'cell')\n",
"('s_1027', 0.1, 'cell')\n",
"('s_1028', 0.1, 'cell')\n",
"('s_1033', 0.1, 'cell')\n",
"('s_1038', 0.1, 'cell')\n",
"('s_1040', 0.1, 'cell')\n",
"('s_1041', 0.1, 'cell')\n",
"('s_1061', 0.1, 'cell')\n",
"('s_1068', 0.1, 'cell')\n",
"('s_1072', 0.1, 'cell')\n",
"('s_1075', 0.1, 'cell')\n",
"('s_1081', 0.1, 'cell')\n",
"('s_1082', 0.1, 'cell')\n",
"('s_1083', 0.1, 'cell')\n",
"('s_1095', 0.1, 'cell')\n",
"('s_1098', 0.1, 'cell')\n",
"('s_1099', 0.1, 'cell')\n",
"('s_1100', 0.1, 'cell')\n",
"('s_1101', 0.1, 'cell')\n",
"('s_1105', 0.1, 'cell')\n",
"('s_1106', 0.1, 'cell')\n",
"('s_1109', 0.1, 'cell')\n",
"('s_1110', 0.1, 'cell')\n",
"('s_1112', 0.1, 'cell')\n",
"('s_1113', 0.1, 'cell')\n",
"('s_1119', 0.1, 'cell')\n",
"('s_1127', 0.1, 'cell')\n",
"('s_1131', 0.1, 'cell')\n",
"('s_1138', 0.1, 'cell')\n",
"('s_1141', 0.1, 'cell')\n",
"('s_1151', 0.1, 'cell')\n",
"('s_1155', 0.1, 'cell')\n",
"('s_1170', 0.1, 'cell')\n",
"('s_1179', 0.1, 'cell')\n",
"('s_1185', 0.1, 'cell')\n",
"('s_1189', 0.1, 'cell')\n",
"('s_1193', 0.1, 'cell')\n",
"('s_1204', 0.1, 'cell')\n",
"('s_1211', 0.1, 'cell')\n",
"('s_1212', 0.1, 'cell')\n",
"('s_1214', 1.0, 'extracellular')\n",
"('s_1216', 0.1, 'cell')\n",
"('s_1217', 0.1, 'cell')\n",
"('s_1218', 0.1, 'cell')\n",
"('s_1239', 0.1, 'cell')\n",
"('s_1240', 0.1, 'cell')\n",
"('s_1242', 0.1, 'cell')\n",
"('s_1248', 0.1, 'cell')\n",
"('s_1250', 0.0, 'extracellular')\n",
"('s_1255', 0.1, 'cell')\n",
"('s_1257', 1.0, 'extracellular')\n",
"('s_1258', 0.1, 'cell')\n",
"('s_1259', 0.1, 'cell')\n",
"('s_1260', 0.1, 'cell')\n",
"('s_1261', 0.1, 'cell')\n",
"('s_1263', 1.0, 'extracellular')\n",
"('s_1264', 0.1, 'cell')\n",
"('s_1265', 0.1, 'cell')\n",
"('s_1274', 0.1, 'cell')\n",
"('s_1277', 0.1, 'cell')\n",
"('s_1278', 0.1, 'cell')\n",
"('s_1287', 0.1, 'cell')\n",
"('s_1302', 0.1, 'cell')\n",
"('s_1303', 0.1, 'cell')\n",
"('s_1304', 0.1, 'cell')\n",
"('s_1312', 0.1, 'cell')\n",
"('s_1315', 0.1, 'cell')\n",
"('s_1316', 0.1, 'cell')\n",
"('s_1318', 0.1, 'cell')\n",
"('s_1321', 0.1, 'cell')\n",
"('s_1322', 0.1, 'cell')\n",
"('s_1327', 0.1, 'cell')\n",
"('s_1329', 0.1, 'cell')\n",
"('s_1331', 1.0, 'extracellular')\n",
"('s_1333', 0.1, 'cell')\n",
"('s_1334', 0.1, 'cell')\n",
"('s_1335', 0.1, 'cell')\n",
"('s_1336', 0.1, 'cell')\n",
"('s_1340', 0.1, 'cell')\n",
"('s_1358', 0.1, 'cell')\n",
"('s_1362', 0.1, 'cell')\n",
"('s_1363', 0.1, 'cell')\n",
"('s_1364', 0.1, 'cell')\n",
"('s_1367', 0.1, 'cell')\n",
"('s_1372', 0.1, 'cell')\n",
"('s_1374', 1.0, 'extracellular')\n",
"('s_1390', 0.1, 'cell')\n",
"('s_1391', 0.1, 'cell')\n",
"('s_1394', 0.1, 'cell')\n",
"('s_1397', 0.1, 'cell')\n",
"('s_1399', 0.1, 'cell')\n",
"('s_1406', 0.1, 'cell')\n",
"('s_1407', 0.1, 'cell')\n",
"('s_1411', 0.1, 'cell')\n",
"('s_1412', 0.1, 'cell')\n",
"('s_1413', 0.1, 'cell')\n",
"('s_1429', 0.1, 'cell')\n",
"('s_1430', 0.1, 'cell')\n",
"('s_1432', 1.0, 'extracellular')\n",
"('s_1435', 0.1, 'cell')\n",
"('s_1437', 0.1, 'cell')\n",
"('s_1476', 0.1, 'cell')\n",
"('s_1477', 0.1, 'cell')\n",
"('s_1484', 0.1, 'cell')\n",
"('s_1491', 0.1, 'cell')\n",
"('s_1492', 0.1, 'cell')\n",
"('s_1493', 0.1, 'cell')\n",
"('s_1494', 0.1, 'cell')\n",
"('s_1496', 1.0, 'extracellular')\n",
"('s_1497', 0.1, 'cell')\n",
"('s_1508', 0.1, 'cell')\n",
"('s_1511', 0.1, 'cell')\n",
"('s_1512', 0.1, 'cell')\n",
"('s_1522', 0.1, 'cell')\n",
"('s_1530', 0.1, 'cell')\n",
"('s_1531', 0.1, 'cell')\n",
"('s_1537', 0.1, 'cell')\n",
"('s_1544', 0.1, 'cell')\n",
"('s_1546', 0.1, 'cell')\n",
"('s_1550', 0.1, 'cell')\n",
"('s_1551', 0.1, 'cell')\n",
"('s_1552', 0.1, 'cell')\n",
"('s_1558', 0.1, 'cell')\n",
"('s_1561', 0.1, 'cell')\n",
"('s_1571', 0.1, 'cell')\n",
"('s_1574', 0.1, 'cell')\n",
"('s_1577', 0.1, 'cell')\n",
"('s_1578', 0.1, 'cell')\n",
"('s_1595', 0.1, 'cell')\n",
"('s_1599', 0.1, 'cell')\n",
"('s_1609', 0.1, 'cell')\n",
"('s_1611', 1.0, 'extracellular')\n",
"('s_1612', 0.1, 'cell')\n",
"('s_1632', 0.1, 'cell')\n",
"('s_1643', 0.1, 'cell')\n",
"('s_1644', 0.1, 'cell')\n",
"('s_1668', 0.1, 'cell')\n",
"('s_1670', 0.1, 'cell')\n",
"('s_1672', 0.1, 'cell')\n",
"('s_1674', 0.1, 'cell')\n",
"('s_1676', 0.1, 'cell')\n",
"('s_1680', 0.1, 'cell')\n",
"('s_1690', 0.1, 'cell')\n",
"('s_1719', 0.1, 'cell')\n",
"('s_1725', 0.1, 'cell')\n",
"('s_1731', 0.1, 'cell')\n",
"('s_1732', 0.1, 'cell')\n",
"('s_1733', 0.1, 'cell')\n",
"('s_1734', 0.1, 'cell')\n",
"('s_1735', 0.1, 'cell')\n",
"('s_1736', 0.1, 'cell')\n",
"('s_1742', 0.1, 'cell')\n",
"('s_1745', 0.1, 'cell')\n",
"('s_1750', 0.1, 'cell')\n",
"('s_1751', 0.1, 'cell')\n",
"('s_1752', 0.1, 'cell')\n",
"('s_1754', 0.1, 'cell')\n",
"('s_1755', 0.1, 'cell')\n",
"('s_1762', 0.1, 'cell')\n",
"('s_1765', 0.1, 'cell')\n",
"('s_1768', 0.1, 'cell')\n",
"('s_1776', 0.1, 'cell')\n",
"('s_1777', 0.1, 'cell')\n",
"('s_1791', 0.1, 'cell')\n",
"('s_1792', 0.1, 'cell')\n",
"('s_1799', 0.1, 'cell')\n",
"('s_1804', 0.1, 'cell')\n",
"('s_1806', 1.0, 'extracellular')\n",
"('s_1807', 0.0, 'extracellular')\n",
"('s_1835', 0.0, 'extracellular')\n",
"('s_2072', 0.0, 'extracellular')\n",
"('s_2093', 0.0, 'extracellular')\n",
"('e_0001', 0.001, 'cell')\n",
"('e_0002', 0.001, 'cell')\n",
"('e_0003', 0.001, 'cell')\n",
"('e_0005', 0.001, 'cell')\n",
"('e_0006', 0.001, 'cell')\n",
"('e_0008', 0.001, 'cell')\n",
"('e_0010', 0.001, 'cell')\n",
"('e_0012', 0.001, 'cell')\n",
"('e_0020', 0.001, 'cell')\n",
"('e_0022', 0.001, 'cell')\n",
"('e_0030', 0.001, 'cell')\n",
"('e_0031', 0.001, 'cell')\n",
"('e_0032', 0.001, 'cell')\n",
"('e_0033', 0.001, 'cell')\n",
"('e_0034', 0.001, 'cell')\n",
"('e_0035', 0.001, 'cell')\n",
"('e_0036', 0.001, 'cell')\n",
"('e_0037', 0.001, 'cell')\n",
"('e_0038', 0.001, 'cell')\n",
"('e_0039', 0.001, 'cell')\n",
"('e_0040', 0.001, 'cell')\n",
"('e_0041', 0.001, 'cell')\n",
"('e_0042', 0.001, 'cell')\n",
"('e_0043', 0.001, 'cell')\n",
"('e_0044', 0.001, 'cell')\n",
"('e_0045', 0.001, 'cell')\n",
"('e_0046', 0.001, 'cell')\n",
"('e_0048', 0.001, 'cell')\n",
"('e_0051', 0.001, 'cell')\n",
"('e_0052', 0.001, 'cell')\n",
"('e_0053', 0.001, 'cell')\n",
"('e_0054', 0.001, 'cell')\n",
"('e_0060', 0.001, 'cell')\n",
"('e_0061', 0.001, 'cell')\n",
"('e_0062', 0.001, 'cell')\n",
"('e_0063', 0.001, 'cell')\n",
"('e_0064', 0.001, 'cell')\n",
"('e_0065', 0.001, 'cell')\n",
"('e_0071', 0.001, 'cell')\n",
"('e_0074', 0.001, 'cell')\n",
"('e_0076', 0.001, 'cell')\n",
"('e_0077', 0.001, 'cell')\n",
"('e_0078', 0.001, 'cell')\n",
"('e_0079', 0.001, 'cell')\n",
"('e_0080', 0.001, 'cell')\n",
"('e_0081', 0.001, 'cell')\n",
"('e_0082', 0.001, 'cell')\n",
"('e_0083', 0.001, 'cell')\n",
"('e_0084', 0.001, 'cell')\n",
"('e_0085', 0.001, 'cell')\n",
"('e_0094', 0.001, 'cell')\n",
"('e_0099', 0.001, 'cell')\n",
"('e_0100', 0.001, 'cell')\n",
"('e_0103', 0.001, 'cell')\n",
"('e_0110', 0.001, 'cell')\n",
"('e_0116', 0.001, 'cell')\n",
"('e_0125', 0.001, 'cell')\n",
"('e_0134', 0.001, 'cell')\n",
"('e_0135', 0.001, 'cell')\n",
"('e_0137', 0.001, 'cell')\n",
"('e_0138', 0.001, 'cell')\n",
"('e_0139', 0.001, 'cell')\n",
"('e_0144', 0.001, 'cell')\n",
"('e_0145', 0.001, 'cell')\n",
"('e_0146', 0.001, 'cell')\n",
"('e_0149', 0.001, 'cell')\n",
"('e_0150', 0.001, 'cell')\n",
"('e_0151', 0.001, 'cell')\n",
"('e_0152', 0.001, 'cell')\n",
"('e_0162', 0.001, 'cell')\n",
"('e_0167', 0.001, 'cell')\n",
"('e_0168', 0.001, 'cell')\n",
"('e_0175', 0.001, 'cell')\n",
"('e_0177', 0.001, 'cell')\n",
"('e_0183', 0.001, 'cell')\n",
"('e_0184', 0.001, 'cell')\n",
"('e_0185', 0.001, 'cell')\n",
"('e_0186', 0.001, 'cell')\n",
"('e_0188', 0.001, 'cell')\n",
"('e_0221', 0.001, 'cell')\n",
"('e_0223', 0.001, 'cell')\n",
"('e_0225', 0.001, 'cell')\n",
"('e_0238', 0.001, 'cell')\n",
"('e_0246', 0.001, 'cell')\n",
"('e_0253', 0.001, 'cell')\n",
"('e_0254', 0.001, 'cell')\n",
"('e_0260', 0.001, 'cell')\n",
"('e_0263', 0.001, 'cell')\n",
"('e_0264', 0.001, 'cell')\n",
"('e_0273', 0.001, 'cell')\n",
"('e_0274', 0.001, 'cell')\n",
"('e_0275', 0.001, 'cell')\n",
"('e_0276', 0.001, 'cell')\n",
"('e_0277', 0.001, 'cell')\n",
"('e_0278', 0.001, 'cell')\n",
"('e_0279', 0.001, 'cell')\n",
"('e_0280', 0.001, 'cell')\n",
"('e_0281', 0.001, 'cell')\n",
"('e_0282', 0.001, 'cell')\n",
"('e_0291', 0.001, 'cell')\n",
"('e_0292', 0.001, 'cell')\n",
"('e_0300', 0.001, 'cell')\n",
"('e_0313', 0.001, 'cell')\n",
"('e_0318', 0.001, 'cell')\n",
"('e_0323', 0.001, 'cell')\n",
"('e_0324', 0.001, 'cell')\n",
"('e_0326', 0.001, 'cell')\n",
"('e_0327', 0.001, 'cell')\n",
"('e_0328', 0.001, 'cell')\n",
"('e_0330', 0.001, 'cell')\n",
"('e_0331', 0.001, 'cell')\n",
"('e_0332', 0.001, 'cell')\n",
"('e_0342', 0.001, 'cell')\n",
"('e_0368', 0.001, 'cell')\n",
"('e_0372', 0.001, 'cell')\n",
"('e_0373', 0.001, 'cell')\n",
"('e_0374', 0.001, 'cell')\n",
"('e_0375', 0.001, 'cell')\n",
"('e_0376', 0.001, 'cell')\n",
"('e_0377', 0.001, 'cell')\n",
"('e_0378', 0.001, 'cell')\n",
"('e_0389', 0.001, 'cell')\n",
"('e_0391', 0.001, 'cell')\n",
"('e_0395', 0.001, 'cell')\n",
"('e_0403', 0.001, 'cell')\n",
"('e_0404', 0.001, 'cell')\n",
"('e_0405', 0.001, 'cell')\n",
"('e_0406', 0.001, 'cell')\n",
"('e_0416', 0.001, 'cell')\n",
"('e_0425', 0.001, 'cell')\n",
"('e_0426', 0.001, 'cell')\n",
"('e_0427', 0.001, 'cell')\n",
"('e_0428', 0.001, 'cell')\n",
"('e_0429', 0.001, 'cell')\n",
"('e_0431', 0.001, 'cell')\n",
"('e_0432', 0.001, 'cell')\n",
"('e_0433', 0.001, 'cell')\n",
"('e_0435', 0.001, 'cell')\n",
"('e_0436', 0.001, 'cell')\n",
"('e_0439', 0.001, 'cell')\n",
"('e_0451', 0.001, 'cell')\n",
"('e_0466', 0.001, 'cell')\n",
"('e_0514', 0.001, 'cell')\n",
"('e_0515', 0.001, 'cell')\n",
"('e_0516', 0.001, 'cell')\n",
"('e_0519', 0.001, 'cell')\n",
"('e_0531', 0.001, 'cell')\n",
"('e_0540', 0.001, 'cell')\n",
"('e_0541', 0.001, 'cell')\n",
"('e_0544', 0.001, 'cell')\n",
"('e_0554', 0.001, 'cell')\n",
"('e_0559', 0.001, 'cell')\n",
"('e_0561', 0.001, 'cell')\n",
"('e_0567', 0.001, 'cell')\n",
"('e_0572', 0.001, 'cell')\n",
"('e_0577', 0.001, 'cell')\n",
"('e_0578', 0.001, 'cell')\n",
"('e_0579', 0.001, 'cell')\n",
"('e_0580', 0.001, 'cell')\n",
"('e_0586', 0.001, 'cell')\n",
"('e_0605', 0.001, 'cell')\n",
"('e_0606', 0.001, 'cell')\n",
"('e_0607', 0.001, 'cell')\n",
"('e_0608', 0.001, 'cell')\n",
"('e_0609', 0.001, 'cell')\n",
"('e_0610', 0.001, 'cell')\n",
"('e_0611', 0.001, 'cell')\n",
"('e_0612', 0.001, 'cell')\n",
"('e_0641', 0.001, 'cell')\n",
"('e_0657', 0.001, 'cell')\n",
"('e_0682', 0.001, 'cell')\n",
"('e_0691', 0.001, 'cell')\n",
"('e_0717', 0.001, 'cell')\n",
"('e_0719', 0.001, 'cell')\n",
"('e_0720', 0.001, 'cell')\n",
"('e_0727', 0.001, 'cell')\n",
"('e_0728', 0.001, 'cell')\n",
"('e_0729', 0.001, 'cell')\n",
"('e_0730', 0.001, 'cell')\n",
"('e_0731', 0.001, 'cell')\n",
"('e_0732', 0.001, 'cell')\n",
"('e_0734', 0.001, 'cell')\n",
"('e_0735', 0.001, 'cell')\n",
"('e_0736', 0.001, 'cell')\n",
"('e_0742', 0.001, 'cell')\n",
"('e_0743', 0.001, 'cell')\n",
"('e_0746', 0.001, 'cell')\n",
"('e_0750', 0.001, 'cell')\n",
"('e_0757', 0.001, 'cell')\n",
"('e_0765', 0.001, 'cell')\n",
"('e_0768', 0.001, 'cell')\n",
"('e_0770', 0.001, 'cell')\n",
"('e_0771', 0.001, 'cell')\n",
"('e_0774', 0.001, 'cell')\n",
"('e_0775', 0.001, 'cell')\n",
"('e_0776', 0.001, 'cell')\n",
"('e_0791', 0.001, 'cell')\n",
"('e_0793', 0.001, 'cell')\n",
"('e_0795', 0.001, 'cell')\n",
"('e_0796', 0.001, 'cell')\n",
"('e_0798', 0.001, 'cell')\n",
"('e_0799', 0.001, 'cell')\n",
"('e_0803', 0.001, 'cell')\n",
"('e_0804', 0.001, 'cell')\n",
"('e_0805', 0.001, 'cell')\n",
"('e_0813', 0.001, 'cell')\n",
"('e_0815', 0.001, 'cell')\n",
"('e_0818', 0.001, 'cell')\n",
"('e_0819', 0.001, 'cell')\n",
"('e_0821', 0.001, 'cell')\n",
"('e_0822', 0.001, 'cell')\n",
"('e_0823', 0.001, 'cell')\n",
"('e_0825', 0.001, 'cell')\n",
"('e_0826', 0.001, 'cell')\n",
"('e_0827', 0.001, 'cell')\n",
"('e_0828', 0.001, 'cell')\n",
"('e_0839', 0.001, 'cell')\n",
"('e_0848', 0.001, 'cell')\n",
"('e_0866', 0.001, 'cell')\n",
"('e_0867', 0.001, 'cell')\n",
"('e_0868', 0.001, 'cell')\n",
"('e_0869', 0.001, 'cell')\n",
"('e_0870', 0.001, 'cell')\n",
"('e_0871', 0.001, 'cell')\n",
"('e_0872', 0.001, 'cell')\n",
"('e_0873', 0.001, 'cell')\n",
"('e_0875', 0.001, 'cell')\n",
"('e_0876', 0.001, 'cell')\n",
"('e_0893', 0.001, 'cell')\n",
"('e_0894', 0.001, 'cell')\n",
"('e_0896', 0.001, 'cell')\n",
"('e_0897', 0.001, 'cell')\n",
"('e_0903', 0.001, 'cell')\n",
"('e_0911', 0.001, 'cell')\n",
"('e_0918', 0.001, 'cell')\n",
"('e_0919', 0.001, 'cell')\n",
"('e_0925', 0.001, 'cell')\n",
"('e_0926', 0.001, 'cell')\n",
"('e_0928', 0.001, 'cell')\n",
"('e_0931', 0.001, 'cell')\n",
"('e_0941', 0.001, 'cell')\n",
"('e_0951', 0.001, 'cell')\n",
"('e_0953', 0.001, 'cell')\n",
"('e_0960', 0.001, 'cell')\n",
"('e_0962', 0.001, 'cell')\n",
"('e_0964', 0.001, 'cell')\n",
"('e_0974', 0.001, 'cell')\n",
"('e_0975', 0.001, 'cell')\n",
"('e_0977', 0.001, 'cell')\n",
"('e_0978', 0.001, 'cell')\n",
"('e_0979', 0.001, 'cell')\n",
"('e_0986', 0.001, 'cell')\n",
"('e_0987', 0.001, 'cell')\n",
"('e_0988', 0.001, 'cell')\n",
"('e_0990', 0.001, 'cell')\n",
"('e_0991', 0.001, 'cell')\n",
"('e_0993', 0.001, 'cell')\n",
"('e_0994', 0.001, 'cell')\n",
"('e_1004', 0.001, 'cell')\n",
"('e_1005', 0.001, 'cell')\n",
"('e_1006', 0.001, 'cell')\n",
"('e_1010', 0.001, 'cell')\n",
"('e_1014', 0.001, 'cell')\n",
"('e_1015', 0.001, 'cell')\n",
"('e_1019', 0.001, 'cell')\n",
"('e_1023', 0.001, 'cell')\n",
"('e_1026', 0.001, 'cell')\n",
"('e_1027', 0.001, 'cell')\n",
"('e_1028', 0.001, 'cell')\n",
"('e_1029', 0.001, 'cell')\n",
"('e_1034', 0.001, 'cell')\n",
"('e_1045', 0.001, 'cell')\n",
"('e_1086', 0.001, 'cell')\n",
"('e_1105', 0.001, 'cell')\n",
"('e_1106', 0.001, 'cell')\n",
"('e_1108', 0.001, 'cell')\n",
"('e_1109', 0.001, 'cell')\n",
"('e_1110', 0.001, 'cell')\n",
"('e_1125', 0.001, 'cell')\n",
"('e_1126', 0.001, 'cell')\n",
"('e_1127', 0.001, 'cell')\n",
"('e_1128', 0.001, 'cell')\n",
"('e_1129', 0.001, 'cell')\n",
"('e_1130', 0.001, 'cell')\n",
"('e_1136', 0.001, 'cell')\n",
"('e_1137', 0.001, 'cell')\n",
"('e_1141', 0.001, 'cell')\n",
"('e_1149', 0.001, 'cell')\n",
"('e_1150', 0.001, 'cell')\n",
"('e_1160', 0.001, 'cell')\n",
"('e_1167', 0.001, 'cell')\n",
"('e_1168', 0.001, 'cell')\n",
"('e_1169', 0.001, 'cell')\n",
"('e_1170', 0.001, 'cell')\n",
"('e_1172', 0.001, 'cell')\n",
"('e_1184', 0.001, 'cell')\n",
"('e_1185', 0.001, 'cell')\n",
"('e_1186', 0.001, 'cell')\n",
"('e_1188', 0.001, 'cell')\n",
"('e_1189', 0.001, 'cell')\n",
"('e_1196', 0.001, 'cell')\n",
"('e_1200', 0.001, 'cell')\n",
"('e_1201', 0.001, 'cell')\n",
"('e_1202', 0.001, 'cell')\n",
"('e_1203', 0.001, 'cell')\n",
"('e_1205', 0.001, 'cell')\n",
"('e_1206', 0.001, 'cell')\n",
"('e_1207', 0.001, 'cell')\n",
"('e_1210', 0.001, 'cell')\n",
"('e_1226', 0.001, 'cell')\n",
"('e_1227', 0.001, 'cell')\n",
"('e_1232', 0.001, 'cell')\n",
"('e_1233', 0.001, 'cell')\n",
"('e_1234', 0.001, 'cell')\n",
"('e_1238', 0.001, 'cell')\n",
"('e_1239', 0.001, 'cell')\n",
"('e_1240', 0.001, 'cell')\n",
"('e_1241', 0.001, 'cell')\n",
"('e_1242', 0.001, 'cell')\n",
"('e_1243', 0.001, 'cell')\n",
"('e_1244', 0.001, 'cell')\n",
"('e_1247', 0.001, 'cell')\n",
"('e_1248', 0.001, 'cell')\n",
"('e_1249', 0.001, 'cell')\n",
"('e_1250', 0.001, 'cell')\n",
"('e_1251', 0.001, 'cell')\n",
"('e_1252', 0.001, 'cell')\n",
"('e_1253', 0.001, 'cell')\n",
"('e_1254', 0.001, 'cell')\n",
"('e_1256', 0.001, 'cell')\n",
"('e_1257', 0.001, 'cell')\n",
"('e_1258', 0.001, 'cell')\n",
"('e_1259', 0.001, 'cell')\n",
"('e_1262', 0.001, 'cell')\n",
"('e_1263', 0.001, 'cell')\n",
"('e_1264', 0.001, 'cell')\n",
"('e_1271', 0.001, 'cell')\n",
"('e_1272', 0.001, 'cell')\n",
"('e_1273', 0.001, 'cell')\n",
"('e_1275', 0.001, 'cell')\n",
"('e_1276', 0.001, 'cell')\n",
"('e_1277', 0.001, 'cell')\n",
"('e_1291', 0.001, 'cell')\n",
"('e_1298', 0.001, 'cell')\n",
"('e_1312', 0.001, 'cell')\n",
"('e_1313', 0.001, 'cell')\n",
"('e_1315', 0.001, 'cell')\n",
"('e_1326', 0.001, 'cell')\n",
"('e_1334', 0.001, 'cell')\n",
"('e_1335', 0.001, 'cell')\n",
"('e_1339', 0.001, 'cell')\n",
"('e_1340', 0.001, 'cell')\n",
"('e_1341', 0.001, 'cell')\n",
"('e_1355', 0.001, 'cell')\n",
"('e_1366', 0.001, 'cell')\n",
"('e_1367', 0.001, 'cell')\n",
"('e_1369', 0.001, 'cell')\n",
"('e_1373', 0.001, 'cell')\n",
"('e_1374', 0.001, 'cell')\n",
"('e_1376', 0.001, 'cell')\n",
"('e_1377', 0.001, 'cell')\n"
]
}
],
"source": [
"for x in ds.initial_concentration():\n",
" print(x)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'zero_flux': 0.0, 'ic0003': 0.1, 'ic0004': 0.1, 'ic0017': 0.1, 'ic0018': 0.1, 'ic0028': 0.1, 'ic0029': 0.1, 'ic0032': 0.1, 'ic0033': 0.1, 'ic0040': 0.1, 'ic0041': 0.1, 'ic0042': 0.1, 'ic0043': 0.1, 'ic0044': 0.1, 'ic0045': 0.1, 'ic0046': 0.1, 'ic0047': 0.1, 'ic0049': 0.1, 'ic0050': 0.1, 'ic0051': 0.1, 'ic0052': 0.1, 'ic0073': 0.1, 'ic0075': 0.1, 'ic0096': 0.1, 'ic0097': 0.1, 'ic0098': 0.1, 'ic0099': 0.1, 'ic0116': 0.1, 'ic0119': 0.1, 'ic0121': 0.1, 'ic0123': 0.1, 'ic0128': 0.1, 'ic0133': 0.1, 'ic0147': 0.1, 'ic0148': 0.1, 'ic0149': 0.1, 'ic0155': 0.1, 'ic0160': 0.1, 'ic0162': 0.1, 'ic0191': 0.1, 'ic0193': 0.1, 'ic0194': 0.1, 'ic0195': 0.1, 'ic0201': 0.1, 'ic0203': 0.1, 'ic0214': 0.1, 'ic0217': 0.1, 'ic0218': 0.1, 'ic0226': 0.1, 'ic0229': 0.1, 'ic0231': 0.1, 'ic0232': 0.1, 'ic0233': 0.1, 'ic0237': 0.1, 'ic0252': 0.1, 'ic0255': 0.1, 'ic0262': 0.1, 'ic0263': 0.1, 'ic0265': 0.1, 'ic0266': 0.1, 'ic0267': 0.1, 'ic0269': 0.1, 'ic0270': 0.1, 'ic0271': 0.1, 'ic0272': 0.1, 'ic0276': 0.1, 'ic0277': 0.1, 'ic0282': 0.1, 'ic0283': 0.1, 'ic0289': 0.1, 'ic0290': 0.1, 'ic0293': 0.1, 'ic0295': 0.1, 'ic0297': 0.1, 'ic0299': 0.1, 'ic0303': 0.1, 'ic0304': 0.1, 'ic0305': 0.1, 'ic0306': 0.1, 'ic0307': 0.1, 'ic0308': 0.1, 'ic0310': 0.1, 'ic0311': 0.1, 'ic0312': 0.1, 'ic0313': 0.1, 'ic0316': 0.1, 'ic0318': 0.1, 'ic0325': 0.1, 'ic0328': 0.1, 'ic0330': 0.1, 'ic0331': 0.1, 'ic0332': 0.1, 'ic0333': 0.1, 'ic0334': 0.1, 'ic0335': 0.1, 'ic0336': 0.1, 'ic0337': 0.1, 'ic0341': 0.1, 'ic0342': 0.1, 'ic0343': 0.1, 'ic0344': 0.1, 'ic0345': 0.1, 'ic0346': 0.1, 'ic0347': 0.1, 'ic0352': 0.1, 'ic0354': 0.1, 'ic0359': 0.1, 'ic0360': 0.1, 'ic0361': 0.1, 'ic0362': 0.1, 'ic0364': 0.1, 'ic0367': 0.1, 'ic0368': 0.1, 'ic0369': 0.1, 'ic0370': 0.1, 'ic0371': 0.1, 'ic0372': 0.1, 'ic0376': 0.1, 'ic0377': 0.1, 'ic0378': 0.1, 'ic0380': 0.1, 'ic0381': 0.1, 'ic0384': 0.1, 'ic0391': 0.1, 'ic0393': 0.1, 'ic0395': 0.1, 'ic0397': 0.1, 'ic0405': 0.1, 'ic0408': 0.1, 'ic0411': 0.1, 'ic0412': 0.1, 'ic0420': 0.1, 'ic0421': 0.1, 'ic0435': 0.1, 'ic0445': 0.1, 'ic0446': 0.1, 'ic0451': 0.1, 'ic0453': 1.0, 'ic0454': 0.1, 'ic0457': 0.1, 'ic0467': 0.1, 'ic0470': 0.1, 'ic0474': 0.1, 'ic0476': 0.1, 'ic0479': 0.1, 'ic0480': 0.1, 'ic0481': 0.1, 'ic0488': 0.1, 'ic0493': 0.1, 'ic0497': 0.1, 'ic0499': 1.0, 'ic0502': 0.1, 'ic0510': 0.1, 'ic0512': 0.1, 'ic0513': 0.1, 'ic0520': 0.1, 'ic0522': 1.0, 'ic0526': 0.1, 'ic0530': 0.1, 'ic0533': 0.1, 'ic0536': 0.1, 'ic0539': 0.1, 'ic0542': 0.1, 'ic0543': 0.1, 'ic0546': 0.1, 'ic0548': 1.0, 'ic0555': 0.1, 'ic0565': 0.1, 'ic0574': 0.1, 'ic0575': 0.1, 'ic0579': 0.1, 'ic0581': 1.0, 'ic0585': 0.1, 'ic0599': 0.1, 'ic0600': 0.1, 'ic0603': 0.1, 'ic0611': 0.1, 'ic0620': 0.1, 'ic0621': 0.1, 'ic0622': 0.1, 'ic0627': 0.1, 'ic0653': 0.1, 'ic0654': 0.1, 'ic0657': 0.1, 'ic0659': 1.0, 'ic0663': 0.1, 'ic0671': 0.1, 'ic0675': 0.1, 'ic0704': 0.1, 'ic0721': 0.1, 'ic0726': 0.1, 'ic0731': 0.1, 'ic0732': 0.1, 'ic0737': 0.1, 'ic0738': 0.1, 'ic0754': 0.1, 'ic0755': 0.1, 'ic0760': 0.1, 'ic0765': 0.1, 'ic0766': 0.1, 'ic0767': 0.1, 'ic0768': 0.1, 'ic0772': 0.1, 'ic0779': 0.1, 'ic0783': 0.1, 'ic0785': 0.1, 'ic0789': 0.1, 'ic0790': 0.1, 'ic0795': 0.1, 'ic0802': 0.1, 'ic0805': 0.1, 'ic0807': 0.1, 'ic0810': 0.1, 'ic0812': 0.1, 'ic0813': 0.1, 'ic0826': 0.1, 'ic0838': 0.1, 'ic0840': 1.0, 'ic0841': 0.1, 'ic0843': 1.0, 'ic0859': 0.1, 'ic0860': 0.1, 'ic0861': 0.1, 'ic0862': 0.1, 'ic0863': 0.1, 'ic0867': 0.1, 'ic0875': 0.1, 'ic0896': 0.1, 'ic0903': 0.1, 'ic0910': 0.1, 'ic0913': 0.1, 'ic0920': 0.1, 'ic0929': 0.1, 'ic0936': 0.1, 'ic0937': 0.1, 'ic0941': 0.1, 'ic0942': 0.1, 'ic0945': 0.1, 'ic0971': 0.1, 'ic0976': 0.1, 'ic0979': 0.1, 'ic0984': 0.1, 'ic0991': 0.1, 'ic0994': 0.1, 'ic0998': 0.1, 'ic1005': 0.1, 'ic1006': 0.1, 'ic1009': 0.1, 'ic1017': 0.1, 'ic1018': 0.1, 'ic1019': 0.1, 'ic1020': 0.1, 'ic1021': 0.1, 'ic1022': 0.1, 'ic1027': 0.1, 'ic1028': 0.1, 'ic1033': 0.1, 'ic1038': 0.1, 'ic1040': 0.1, 'ic1041': 0.1, 'ic1061': 0.1, 'ic1068': 0.1, 'ic1072': 0.1, 'ic1075': 0.1, 'ic1081': 0.1, 'ic1082': 0.1, 'ic1083': 0.1, 'ic1095': 0.1, 'ic1098': 0.1, 'ic1099': 0.1, 'ic1100': 0.1, 'ic1101': 0.1, 'ic1105': 0.1, 'ic1106': 0.1, 'ic1109': 0.1, 'ic1110': 0.1, 'ic1112': 0.1, 'ic1113': 0.1, 'ic1119': 0.1, 'ic1127': 0.1, 'ic1131': 0.1, 'ic1138': 0.1, 'ic1141': 0.1, 'ic1151': 0.1, 'ic1155': 0.1, 'ic1170': 0.1, 'ic1179': 0.1, 'ic1185': 0.1, 'ic1189': 0.1, 'ic1193': 0.1, 'ic1204': 0.1, 'ic1211': 0.1, 'ic1212': 0.1, 'ic1214': 1.0, 'ic1216': 0.1, 'ic1217': 0.1, 'ic1218': 0.1, 'ic1239': 0.1, 'ic1240': 0.1, 'ic1242': 0.1, 'ic1248': 0.1, 'ic1255': 0.1, 'ic1257': 1.0, 'ic1258': 0.1, 'ic1259': 0.1, 'ic1260': 0.1, 'ic1261': 0.1, 'ic1263': 1.0, 'ic1264': 0.1, 'ic1265': 0.1, 'ic1274': 0.1, 'ic1277': 0.1, 'ic1278': 0.1, 'ic1287': 0.1, 'ic1302': 0.1, 'ic1303': 0.1, 'ic1304': 0.1, 'ic1312': 0.1, 'ic1315': 0.1, 'ic1316': 0.1, 'ic1318': 0.1, 'ic1321': 0.1, 'ic1322': 0.1, 'ic1327': 0.1, 'ic1329': 0.1, 'ic1331': 1.0, 'ic1333': 0.1, 'ic1334': 0.1, 'ic1335': 0.1, 'ic1336': 0.1, 'ic1340': 0.1, 'ic1358': 0.1, 'ic1362': 0.1, 'ic1363': 0.1, 'ic1364': 0.1, 'ic1367': 0.1, 'ic1372': 0.1, 'ic1374': 1.0, 'ic1390': 0.1, 'ic1391': 0.1, 'ic1394': 0.1, 'ic1397': 0.1, 'ic1399': 0.1, 'ic1406': 0.1, 'ic1407': 0.1, 'ic1411': 0.1, 'ic1412': 0.1, 'ic1413': 0.1, 'ic1429': 0.1, 'ic1430': 0.1, 'ic1432': 1.0, 'ic1435': 0.1, 'ic1437': 0.1, 'ic1476': 0.1, 'ic1477': 0.1, 'ic1484': 0.1, 'ic1491': 0.1, 'ic1492': 0.1, 'ic1493': 0.1, 'ic1494': 0.1, 'ic1496': 1.0, 'ic1497': 0.1, 'ic1508': 0.1, 'ic1511': 0.1, 'ic1512': 0.1, 'ic1522': 0.1, 'ic1530': 0.1, 'ic1531': 0.1, 'ic1537': 0.1, 'ic1544': 0.1, 'ic1546': 0.1, 'ic1550': 0.1, 'ic1551': 0.1, 'ic1552': 0.1, 'ic1558': 0.1, 'ic1561': 0.1, 'ic1571': 0.1, 'ic1574': 0.1, 'ic1577': 0.1, 'ic1578': 0.1, 'ic1595': 0.1, 'ic1599': 0.1, 'ic1609': 0.1, 'ic1611': 1.0, 'ic1612': 0.1, 'ic1632': 0.1, 'ic1643': 0.1, 'ic1644': 0.1, 'ic1668': 0.1, 'ic1670': 0.1, 'ic1672': 0.1, 'ic1674': 0.1, 'ic1676': 0.1, 'ic1680': 0.1, 'ic1690': 0.1, 'ic1719': 0.1, 'ic1725': 0.1, 'ic1731': 0.1, 'ic1732': 0.1, 'ic1733': 0.1, 'ic1734': 0.1, 'ic1735': 0.1, 'ic1736': 0.1, 'ic1742': 0.1, 'ic1745': 0.1, 'ic1750': 0.1, 'ic1751': 0.1, 'ic1752': 0.1, 'ic1754': 0.1, 'ic1755': 0.1, 'ic1762': 0.1, 'ic1765': 0.1, 'ic1768': 0.1, 'ic1776': 0.1, 'ic1777': 0.1, 'ic1791': 0.1, 'ic1792': 0.1, 'ic1799': 0.1, 'ic1804': 0.1, 'ic1806': 1.0, 'cell': 1.0, 'extracellular': 1.0}\n"
]
}
],
"source": [
"params = dict(ds.parameters())\n",
"params.update(ds.compartments())\n",
"print(params)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('s_0453',\n",
" 's_0499',\n",
" 's_0522',\n",
" 's_0545',\n",
" 's_0548',\n",
" 's_0581',\n",
" 's_0659',\n",
" 's_0840',\n",
" 's_0843',\n",
" 's_1214',\n",
" 's_1250',\n",
" 's_1257',\n",
" 's_1263',\n",
" 's_1331',\n",
" 's_1374',\n",
" 's_1432',\n",
" 's_1496',\n",
" 's_1611',\n",
" 's_1806',\n",
" 's_1807',\n",
" 's_1835',\n",
" 's_2072',\n",
" 's_2093',\n",
" 'e_0001',\n",
" 'e_0002',\n",
" 'e_0003',\n",
" 'e_0005',\n",
" 'e_0006',\n",
" 'e_0008',\n",
" 'e_0010',\n",
" 'e_0012',\n",
" 'e_0020',\n",
" 'e_0022',\n",
" 'e_0030',\n",
" 'e_0031',\n",
" 'e_0032',\n",
" 'e_0033',\n",
" 'e_0034',\n",
" 'e_0035',\n",
" 'e_0036',\n",
" 'e_0037',\n",
" 'e_0038',\n",
" 'e_0039',\n",
" 'e_0040',\n",
" 'e_0041',\n",
" 'e_0042',\n",
" 'e_0043',\n",
" 'e_0044',\n",
" 'e_0045',\n",
" 'e_0046',\n",
" 'e_0048',\n",
" 'e_0051',\n",
" 'e_0052',\n",
" 'e_0053',\n",
" 'e_0054',\n",
" 'e_0060',\n",
" 'e_0061',\n",
" 'e_0062',\n",
" 'e_0063',\n",
" 'e_0064',\n",
" 'e_0065',\n",
" 'e_0071',\n",
" 'e_0074',\n",
" 'e_0076',\n",
" 'e_0077',\n",
" 'e_0078',\n",
" 'e_0079',\n",
" 'e_0080',\n",
" 'e_0081',\n",
" 'e_0082',\n",
" 'e_0083',\n",
" 'e_0084',\n",
" 'e_0085',\n",
" 'e_0094',\n",
" 'e_0099',\n",
" 'e_0100',\n",
" 'e_0103',\n",
" 'e_0110',\n",
" 'e_0116',\n",
" 'e_0125',\n",
" 'e_0134',\n",
" 'e_0135',\n",
" 'e_0137',\n",
" 'e_0138',\n",
" 'e_0139',\n",
" 'e_0144',\n",
" 'e_0145',\n",
" 'e_0146',\n",
" 'e_0149',\n",
" 'e_0150',\n",
" 'e_0151',\n",
" 'e_0152',\n",
" 'e_0162',\n",
" 'e_0167',\n",
" 'e_0168',\n",
" 'e_0175',\n",
" 'e_0177',\n",
" 'e_0183',\n",
" 'e_0184',\n",
" 'e_0185',\n",
" 'e_0186',\n",
" 'e_0188',\n",
" 'e_0221',\n",
" 'e_0223',\n",
" 'e_0225',\n",
" 'e_0238',\n",
" 'e_0246',\n",
" 'e_0253',\n",
" 'e_0254',\n",
" 'e_0260',\n",
" 'e_0263',\n",
" 'e_0264',\n",
" 'e_0273',\n",
" 'e_0274',\n",
" 'e_0275',\n",
" 'e_0276',\n",
" 'e_0277',\n",
" 'e_0278',\n",
" 'e_0279',\n",
" 'e_0280',\n",
" 'e_0281',\n",
" 'e_0282',\n",
" 'e_0291',\n",
" 'e_0292',\n",
" 'e_0300',\n",
" 'e_0313',\n",
" 'e_0318',\n",
" 'e_0323',\n",
" 'e_0324',\n",
" 'e_0326',\n",
" 'e_0327',\n",
" 'e_0328',\n",
" 'e_0330',\n",
" 'e_0331',\n",
" 'e_0332',\n",
" 'e_0342',\n",
" 'e_0368',\n",
" 'e_0372',\n",
" 'e_0373',\n",
" 'e_0374',\n",
" 'e_0375',\n",
" 'e_0376',\n",
" 'e_0377',\n",
" 'e_0378',\n",
" 'e_0389',\n",
" 'e_0391',\n",
" 'e_0395',\n",
" 'e_0403',\n",
" 'e_0404',\n",
" 'e_0405',\n",
" 'e_0406',\n",
" 'e_0416',\n",
" 'e_0425',\n",
" 'e_0426',\n",
" 'e_0427',\n",
" 'e_0428',\n",
" 'e_0429',\n",
" 'e_0431',\n",
" 'e_0432',\n",
" 'e_0433',\n",
" 'e_0435',\n",
" 'e_0436',\n",
" 'e_0439',\n",
" 'e_0451',\n",
" 'e_0466',\n",
" 'e_0514',\n",
" 'e_0515',\n",
" 'e_0516',\n",
" 'e_0519',\n",
" 'e_0531',\n",
" 'e_0540',\n",
" 'e_0541',\n",
" 'e_0544',\n",
" 'e_0554',\n",
" 'e_0559',\n",
" 'e_0561',\n",
" 'e_0567',\n",
" 'e_0572',\n",
" 'e_0577',\n",
" 'e_0578',\n",
" 'e_0579',\n",
" 'e_0580',\n",
" 'e_0586',\n",
" 'e_0605',\n",
" 'e_0606',\n",
" 'e_0607',\n",
" 'e_0608',\n",
" 'e_0609',\n",
" 'e_0610',\n",
" 'e_0611',\n",
" 'e_0612',\n",
" 'e_0641',\n",
" 'e_0657',\n",
" 'e_0682',\n",
" 'e_0691',\n",
" 'e_0717',\n",
" 'e_0719',\n",
" 'e_0720',\n",
" 'e_0727',\n",
" 'e_0728',\n",
" 'e_0729',\n",
" 'e_0730',\n",
" 'e_0731',\n",
" 'e_0732',\n",
" 'e_0734',\n",
" 'e_0735',\n",
" 'e_0736',\n",
" 'e_0742',\n",
" 'e_0743',\n",
" 'e_0746',\n",
" 'e_0750',\n",
" 'e_0757',\n",
" 'e_0765',\n",
" 'e_0768',\n",
" 'e_0770',\n",
" 'e_0771',\n",
" 'e_0774',\n",
" 'e_0775',\n",
" 'e_0776',\n",
" 'e_0791',\n",
" 'e_0793',\n",
" 'e_0795',\n",
" 'e_0796',\n",
" 'e_0798',\n",
" 'e_0799',\n",
" 'e_0803',\n",
" 'e_0804',\n",
" 'e_0805',\n",
" 'e_0813',\n",
" 'e_0815',\n",
" 'e_0818',\n",
" 'e_0819',\n",
" 'e_0821',\n",
" 'e_0822',\n",
" 'e_0823',\n",
" 'e_0825',\n",
" 'e_0826',\n",
" 'e_0827',\n",
" 'e_0828',\n",
" 'e_0839',\n",
" 'e_0848',\n",
" 'e_0866',\n",
" 'e_0867',\n",
" 'e_0868',\n",
" 'e_0869',\n",
" 'e_0870',\n",
" 'e_0871',\n",
" 'e_0872',\n",
" 'e_0873',\n",
" 'e_0875',\n",
" 'e_0876',\n",
" 'e_0893',\n",
" 'e_0894',\n",
" 'e_0896',\n",
" 'e_0897',\n",
" 'e_0903',\n",
" 'e_0911',\n",
" 'e_0918',\n",
" 'e_0919',\n",
" 'e_0925',\n",
" 'e_0926',\n",
" 'e_0928',\n",
" 'e_0931',\n",
" 'e_0941',\n",
" 'e_0951',\n",
" 'e_0953',\n",
" 'e_0960',\n",
" 'e_0962',\n",
" 'e_0964',\n",
" 'e_0974',\n",
" 'e_0975',\n",
" 'e_0977',\n",
" 'e_0978',\n",
" 'e_0979',\n",
" 'e_0986',\n",
" 'e_0987',\n",
" 'e_0988',\n",
" 'e_0990',\n",
" 'e_0991',\n",
" 'e_0993',\n",
" 'e_0994',\n",
" 'e_1004',\n",
" 'e_1005',\n",
" 'e_1006',\n",
" 'e_1010',\n",
" 'e_1014',\n",
" 'e_1015',\n",
" 'e_1019',\n",
" 'e_1023',\n",
" 'e_1026',\n",
" 'e_1027',\n",
" 'e_1028',\n",
" 'e_1029',\n",
" 'e_1034',\n",
" 'e_1045',\n",
" 'e_1086',\n",
" 'e_1105',\n",
" 'e_1106',\n",
" 'e_1108',\n",
" 'e_1109',\n",
" 'e_1110',\n",
" 'e_1125',\n",
" 'e_1126',\n",
" 'e_1127',\n",
" 'e_1128',\n",
" 'e_1129',\n",
" 'e_1130',\n",
" 'e_1136',\n",
" 'e_1137',\n",
" 'e_1141',\n",
" 'e_1149',\n",
" 'e_1150',\n",
" 'e_1160',\n",
" 'e_1167',\n",
" 'e_1168',\n",
" 'e_1169',\n",
" 'e_1170',\n",
" 'e_1172',\n",
" 'e_1184',\n",
" 'e_1185',\n",
" 'e_1186',\n",
" 'e_1188',\n",
" 'e_1189',\n",
" 'e_1196',\n",
" 'e_1200',\n",
" 'e_1201',\n",
" 'e_1202',\n",
" 'e_1203',\n",
" 'e_1205',\n",
" 'e_1206',\n",
" 'e_1207',\n",
" 'e_1210',\n",
" 'e_1226',\n",
" 'e_1227',\n",
" 'e_1232',\n",
" 'e_1233',\n",
" 'e_1234',\n",
" 'e_1238',\n",
" 'e_1239',\n",
" 'e_1240',\n",
" 'e_1241',\n",
" 'e_1242',\n",
" 'e_1243',\n",
" 'e_1244',\n",
" 'e_1247',\n",
" 'e_1248',\n",
" 'e_1249',\n",
" 'e_1250',\n",
" 'e_1251',\n",
" 'e_1252',\n",
" 'e_1253',\n",
" 'e_1254',\n",
" 'e_1256',\n",
" 'e_1257',\n",
" 'e_1258',\n",
" 'e_1259',\n",
" 'e_1262',\n",
" 'e_1263',\n",
" 'e_1264',\n",
" 'e_1271',\n",
" 'e_1272',\n",
" 'e_1273',\n",
" 'e_1275',\n",
" 'e_1276',\n",
" 'e_1277',\n",
" 'e_1291',\n",
" 'e_1298',\n",
" 'e_1312',\n",
" 'e_1313',\n",
" 'e_1315',\n",
" 'e_1326',\n",
" 'e_1334',\n",
" 'e_1335',\n",
" 'e_1339',\n",
" 'e_1340',\n",
" 'e_1341',\n",
" 'e_1355',\n",
" 'e_1366',\n",
" 'e_1367',\n",
" 'e_1369',\n",
" 'e_1373',\n",
" 'e_1374',\n",
" 'e_1376',\n",
" 'e_1377')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"constants = tuple(ds.constants())\n",
"constants"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'s_0003': 0.1, 's_0004': 0.1, 's_0017': 0.1, 's_0018': 0.1, 's_0028': 0.1, 's_0029': 0.1, 's_0032': 0.1, 's_0033': 0.1, 's_0040': 0.1, 's_0041': 0.1, 's_0042': 0.1, 's_0043': 0.1, 's_0044': 0.1, 's_0045': 0.1, 's_0046': 0.1, 's_0047': 0.1, 's_0049': 0.1, 's_0050': 0.1, 's_0051': 0.1, 's_0052': 0.1, 's_0073': 0.1, 's_0075': 0.1, 's_0096': 0.1, 's_0097': 0.1, 's_0098': 0.1, 's_0099': 0.1, 's_0116': 0.1, 's_0119': 0.1, 's_0121': 0.1, 's_0123': 0.1, 's_0128': 0.1, 's_0133': 0.1, 's_0147': 0.1, 's_0148': 0.1, 's_0149': 0.1, 's_0155': 0.1, 's_0160': 0.1, 's_0162': 0.1, 's_0191': 0.1, 's_0193': 0.1, 's_0194': 0.1, 's_0195': 0.1, 's_0201': 0.1, 's_0203': 0.1, 's_0214': 0.1, 's_0217': 0.1, 's_0218': 0.1, 's_0226': 0.1, 's_0229': 0.1, 's_0231': 0.1, 's_0232': 0.1, 's_0233': 0.1, 's_0237': 0.1, 's_0252': 0.1, 's_0255': 0.1, 's_0262': 0.1, 's_0263': 0.1, 's_0265': 0.1, 's_0266': 0.1, 's_0267': 0.1, 's_0269': 0.1, 's_0270': 0.1, 's_0271': 0.1, 's_0272': 0.1, 's_0276': 0.1, 's_0277': 0.1, 's_0282': 0.1, 's_0283': 0.1, 's_0289': 0.1, 's_0290': 0.1, 's_0293': 0.1, 's_0295': 0.1, 's_0297': 0.1, 's_0299': 0.1, 's_0303': 0.1, 's_0304': 0.1, 's_0305': 0.1, 's_0306': 0.1, 's_0307': 0.1, 's_0308': 0.1, 's_0310': 0.1, 's_0311': 0.1, 's_0312': 0.1, 's_0313': 0.1, 's_0316': 0.1, 's_0318': 0.1, 's_0325': 0.1, 's_0328': 0.1, 's_0330': 0.1, 's_0331': 0.1, 's_0332': 0.1, 's_0333': 0.1, 's_0334': 0.1, 's_0335': 0.1, 's_0336': 0.1, 's_0337': 0.1, 's_0341': 0.1, 's_0342': 0.1, 's_0343': 0.1, 's_0344': 0.1, 's_0345': 0.1, 's_0346': 0.1, 's_0347': 0.1, 's_0352': 0.1, 's_0354': 0.1, 's_0359': 0.1, 's_0360': 0.1, 's_0361': 0.1, 's_0362': 0.1, 's_0364': 0.1, 's_0367': 0.1, 's_0368': 0.1, 's_0369': 0.1, 's_0370': 0.1, 's_0371': 0.1, 's_0372': 0.1, 's_0376': 0.1, 's_0377': 0.1, 's_0378': 0.1, 's_0380': 0.1, 's_0381': 0.1, 's_0384': 0.1, 's_0391': 0.1, 's_0393': 0.1, 's_0395': 0.1, 's_0397': 0.1, 's_0405': 0.1, 's_0408': 0.1, 's_0411': 0.1, 's_0412': 0.1, 's_0420': 0.1, 's_0421': 0.1, 's_0435': 0.1, 's_0445': 0.1, 's_0446': 0.1, 's_0451': 0.1, 's_0454': 0.1, 's_0457': 0.1, 's_0467': 0.1, 's_0470': 0.1, 's_0474': 0.1, 's_0476': 0.1, 's_0479': 0.1, 's_0480': 0.1, 's_0481': 0.1, 's_0488': 0.1, 's_0493': 0.1, 's_0497': 0.1, 's_0502': 0.1, 's_0510': 0.1, 's_0512': 0.1, 's_0513': 0.1, 's_0520': 0.1, 's_0526': 0.1, 's_0530': 0.1, 's_0533': 0.1, 's_0536': 0.1, 's_0539': 0.1, 's_0542': 0.1, 's_0543': 0.1, 's_0546': 0.1, 's_0555': 0.1, 's_0565': 0.1, 's_0574': 0.1, 's_0575': 0.1, 's_0579': 0.1, 's_0585': 0.1, 's_0599': 0.1, 's_0600': 0.1, 's_0603': 0.1, 's_0611': 0.1, 's_0620': 0.1, 's_0621': 0.1, 's_0622': 0.1, 's_0627': 0.1, 's_0653': 0.1, 's_0654': 0.1, 's_0657': 0.1, 's_0663': 0.1, 's_0671': 0.1, 's_0675': 0.1, 's_0704': 0.1, 's_0721': 0.1, 's_0726': 0.1, 's_0731': 0.1, 's_0732': 0.1, 's_0737': 0.1, 's_0738': 0.1, 's_0754': 0.1, 's_0755': 0.1, 's_0760': 0.1, 's_0765': 0.1, 's_0766': 0.1, 's_0767': 0.1, 's_0768': 0.1, 's_0772': 0.1, 's_0779': 0.1, 's_0783': 0.1, 's_0785': 0.1, 's_0789': 0.1, 's_0790': 0.1, 's_0795': 0.1, 's_0802': 0.1, 's_0805': 0.1, 's_0807': 0.1, 's_0810': 0.1, 's_0812': 0.1, 's_0813': 0.1, 's_0826': 0.1, 's_0838': 0.1, 's_0841': 0.1, 's_0859': 0.1, 's_0860': 0.1, 's_0861': 0.1, 's_0862': 0.1, 's_0863': 0.1, 's_0867': 0.1, 's_0875': 0.1, 's_0896': 0.1, 's_0903': 0.1, 's_0910': 0.1, 's_0913': 0.1, 's_0920': 0.1, 's_0929': 0.1, 's_0936': 0.1, 's_0937': 0.1, 's_0941': 0.1, 's_0942': 0.1, 's_0945': 0.1, 's_0971': 0.1, 's_0976': 0.1, 's_0979': 0.1, 's_0984': 0.1, 's_0991': 0.1, 's_0994': 0.1, 's_0998': 0.1, 's_1005': 0.1, 's_1006': 0.1, 's_1009': 0.1, 's_1017': 0.1, 's_1018': 0.1, 's_1019': 0.1, 's_1020': 0.1, 's_1021': 0.1, 's_1022': 0.1, 's_1027': 0.1, 's_1028': 0.1, 's_1033': 0.1, 's_1038': 0.1, 's_1040': 0.1, 's_1041': 0.1, 's_1061': 0.1, 's_1068': 0.1, 's_1072': 0.1, 's_1075': 0.1, 's_1081': 0.1, 's_1082': 0.1, 's_1083': 0.1, 's_1095': 0.1, 's_1098': 0.1, 's_1099': 0.1, 's_1100': 0.1, 's_1101': 0.1, 's_1105': 0.1, 's_1106': 0.1, 's_1109': 0.1, 's_1110': 0.1, 's_1112': 0.1, 's_1113': 0.1, 's_1119': 0.1, 's_1127': 0.1, 's_1131': 0.1, 's_1138': 0.1, 's_1141': 0.1, 's_1151': 0.1, 's_1155': 0.1, 's_1170': 0.1, 's_1179': 0.1, 's_1185': 0.1, 's_1189': 0.1, 's_1193': 0.1, 's_1204': 0.1, 's_1211': 0.1, 's_1212': 0.1, 's_1216': 0.1, 's_1217': 0.1, 's_1218': 0.1, 's_1239': 0.1, 's_1240': 0.1, 's_1242': 0.1, 's_1248': 0.1, 's_1255': 0.1, 's_1258': 0.1, 's_1259': 0.1, 's_1260': 0.1, 's_1261': 0.1, 's_1264': 0.1, 's_1265': 0.1, 's_1274': 0.1, 's_1277': 0.1, 's_1278': 0.1, 's_1287': 0.1, 's_1302': 0.1, 's_1303': 0.1, 's_1304': 0.1, 's_1312': 0.1, 's_1315': 0.1, 's_1316': 0.1, 's_1318': 0.1, 's_1321': 0.1, 's_1322': 0.1, 's_1327': 0.1, 's_1329': 0.1, 's_1333': 0.1, 's_1334': 0.1, 's_1335': 0.1, 's_1336': 0.1, 's_1340': 0.1, 's_1358': 0.1, 's_1362': 0.1, 's_1363': 0.1, 's_1364': 0.1, 's_1367': 0.1, 's_1372': 0.1, 's_1390': 0.1, 's_1391': 0.1, 's_1394': 0.1, 's_1397': 0.1, 's_1399': 0.1, 's_1406': 0.1, 's_1407': 0.1, 's_1411': 0.1, 's_1412': 0.1, 's_1413': 0.1, 's_1429': 0.1, 's_1430': 0.1, 's_1435': 0.1, 's_1437': 0.1, 's_1476': 0.1, 's_1477': 0.1, 's_1484': 0.1, 's_1491': 0.1, 's_1492': 0.1, 's_1493': 0.1, 's_1494': 0.1, 's_1497': 0.1, 's_1508': 0.1, 's_1511': 0.1, 's_1512': 0.1, 's_1522': 0.1, 's_1530': 0.1, 's_1531': 0.1, 's_1537': 0.1, 's_1544': 0.1, 's_1546': 0.1, 's_1550': 0.1, 's_1551': 0.1, 's_1552': 0.1, 's_1558': 0.1, 's_1561': 0.1, 's_1571': 0.1, 's_1574': 0.1, 's_1577': 0.1, 's_1578': 0.1, 's_1595': 0.1, 's_1599': 0.1, 's_1609': 0.1, 's_1612': 0.1, 's_1632': 0.1, 's_1643': 0.1, 's_1644': 0.1, 's_1668': 0.1, 's_1670': 0.1, 's_1672': 0.1, 's_1674': 0.1, 's_1676': 0.1, 's_1680': 0.1, 's_1690': 0.1, 's_1719': 0.1, 's_1725': 0.1, 's_1731': 0.1, 's_1732': 0.1, 's_1733': 0.1, 's_1734': 0.1, 's_1735': 0.1, 's_1736': 0.1, 's_1742': 0.1, 's_1745': 0.1, 's_1750': 0.1, 's_1751': 0.1, 's_1752': 0.1, 's_1754': 0.1, 's_1755': 0.1, 's_1762': 0.1, 's_1765': 0.1, 's_1768': 0.1, 's_1776': 0.1, 's_1777': 0.1, 's_1791': 0.1, 's_1792': 0.1, 's_1799': 0.1, 's_1804': 0.1}\n"
]
}
],
"source": [
"y0 = dict()\n",
"for key, val, compartment in ds.initial_concentration():\n",
" if key in constants:\n",
" params[key] = val\n",
" else:\n",
" y0[key] = val\n",
"print(y0)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"assert 's_0659' in params\n",
"params['s_0659'] = 2.0"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"()"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuple(ds.assignment_rules())"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(('max', (['x', 'y'], '(x + y + abs(x - y)) / 2')),)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tuple(ds.function_definitions())"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from ecell4 import *"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"with reaction_rules():\n",
" params['EmptySet'] = ~EmptySet #XXX: Just ignore EmptySet\n",
" params.update(dict(ds.assignment_rules(_eval, params)))\n",
" params.update(dict(ds.function_definitions(_eval, params)))\n",
"\n",
" for reactants, products, formula in ds.reactions(_eval, params):\n",
" reactants > products | formula\n",
"\n",
"m = get_model()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"s_0004 > s_0003 | (6.20554969142397e-05 * (1 + (1.0 * log((s_0004 / 0.1))) + (-1.0 * log((s_0003 / 0.1)))))\n",
"s_0097 > s_0341 | (0.0131230753965474 * (1 + (1.0 * log((s_0097 / 0.1))) + (-1.0 * log((s_0341 / 0.1)))))\n",
"s_0913 + s_1531 > s_0543 + s_0116 | (0.000392694941408386 * (1 + (1.0 * log((s_0913 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_0116 / 0.1)))))\n",
"s_0116 + s_1336 > s_0194 + s_1335 | (0.000330916477964549 * (1 + (1.0 * log((s_0116 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0194 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0119 + s_0533 > s_0397 + s_0073 | (0.0104178435779621 * (1 + (1.0 * log((s_0119 / 0.1))) + (1.0 * log((s_0533 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_0073 / 0.1)))))\n",
"s_0121 + s_1411 > s_0397 + s_0075 | (0.00884013797559913 * (1 + (1.0 * log((s_0121 / 0.1))) + (1.0 * log((s_1411 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_0075 / 0.1)))))\n",
"s_0123 + s_1334 > s_0779 + s_1333 | (3.85076520790662e-05 * (1 + (1.0 * log((s_0123 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0779 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0123 + s_1334 > s_1028 + s_1333 | (0.000292408825885483 * (1 + (1.0 * log((s_0123 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1028 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0232 + s_1531 > s_0041 + s_0543 | (0.0402391112803253 * (1 + (1.0 * log((s_0232 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0041 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0237 > s_0193 + s_0539 | (0.000330916477964549 * (1 + (1.0 * log((s_0237 / 0.1))) + (-1.0 * log((s_0193 / 0.1))) + (-1.0 * log((s_0539 / 0.1)))))\n",
"s_0194 + s_0575 > s_0312 + s_0783 | (0.000330916477964549 * (1 + (1.0 * log((s_0194 / 0.1))) + (1.0 * log((s_0575 / 0.1))) + (-1.0 * log((s_0312 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0201 > s_0913 + s_1531 | (0.87986351299776 * (1 + (1.0 * log((s_0201 / 0.1))) + (-1.0 * log((s_0913 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_0203 + s_1336 > s_1335 + s_0032 | (7.97856388884133e-05 * (1 + (1.0 * log((s_0203 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0032 / 0.1)))))\n",
"s_0266 > s_0217 | (0.0624017887496972 * (1 + (1.0 * log((s_0266 / 0.1))) + (-1.0 * log((s_0217 / 0.1)))))\n",
"s_0282 + s_0395 > s_0266 + s_0555 | (0.0624017887496972 * (1 + (1.0 * log((s_0282 / 0.1))) + (1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0266 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0267 > s_0328 + s_0543 | (0.0624017887496972 * (1 + (1.0 * log((s_0267 / 0.1))) + (-1.0 * log((s_0328 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0193 + 2 * s_0861 > 2 * s_0862 + s_0123 | (0.000330916477964549 * (1 + (1.0 * log((s_0193 / 0.1))) + (2.0 * log((s_0861 / 0.1))) + (-2.0 * log((s_0862 / 0.1))) + (-1.0 * log((s_0123 / 0.1)))))\n",
"s_0411 > s_0454 + s_1430 | (0.0343363591697952 * (1 + (1.0 * log((s_0411 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0704 > s_0255 + s_0867 | (0.000123556926891731 * (1 + (1.0 * log((s_0704 / 0.1))) + (-1.0 * log((s_0255 / 0.1))) + (-1.0 * log((s_0867 / 0.1)))))\n",
"s_1674 > s_0979 | (0.0208356871558827 * (1 + (1.0 * log((s_1674 / 0.1))) + (-1.0 * log((s_0979 / 0.1)))))\n",
"s_0269 > s_0270 | (0.052796345817737 * (1 + (1.0 * log((s_0269 / 0.1))) + (-1.0 * log((s_0270 / 0.1)))))\n",
"s_0195 > s_0269 + s_1430 | (0.052796345817737 * (1 + (1.0 * log((s_0195 / 0.1))) + (-1.0 * log((s_0269 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0611 + s_1484 > s_0272 + s_1430 | (0.00539107129442444 * (1 + (1.0 * log((s_0611 / 0.1))) + (1.0 * log((s_1484 / 0.1))) + (-1.0 * log((s_0272 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0621 + s_1484 > s_0195 + s_1430 | (0.052796345817737 * (1 + (1.0 * log((s_0621 / 0.1))) + (1.0 * log((s_1484 / 0.1))) + (-1.0 * log((s_0195 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0542 + s_0147 > s_0539 + s_1038 | (0.00269553564721213 * (1 + (1.0 * log((s_0542 / 0.1))) + (1.0 * log((s_0147 / 0.1))) + (-1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_1038 / 0.1)))))\n",
"s_0542 + s_1038 > s_0539 + s_1033 | (0.00269553564721213 * (1 + (1.0 * log((s_0542 / 0.1))) + (1.0 * log((s_1038 / 0.1))) + (-1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_1033 / 0.1)))))\n",
"s_0575 + s_0271 > s_0542 + s_0783 | (0.00539107129442444 * (1 + (1.0 * log((s_0575 / 0.1))) + (1.0 * log((s_0271 / 0.1))) + (-1.0 * log((s_0542 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0272 > s_0271 + s_1430 | (0.00539107129442444 * (1 + (1.0 * log((s_0272 / 0.1))) + (-1.0 * log((s_0271 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0043 > s_0574 | (0.0492981056959303 * (1 + (1.0 * log((s_0043 / 0.1))) + (-1.0 * log((s_0574 / 0.1)))))\n",
"s_0044 > s_1668 | (0.0492981056959448 * (1 + (1.0 * log((s_0044 / 0.1))) + (-1.0 * log((s_1668 / 0.1)))))\n",
"s_0045 > s_1670 | (0.0492981056959429 * (1 + (1.0 * log((s_0045 / 0.1))) + (-1.0 * log((s_1670 / 0.1)))))\n",
"s_0046 > s_1674 | (0.0385159631070915 * (1 + (1.0 * log((s_0046 / 0.1))) + (-1.0 * log((s_1674 / 0.1)))))\n",
"s_0047 > s_1672 | (0.0492981056959303 * (1 + (1.0 * log((s_0047 / 0.1))) + (-1.0 * log((s_1672 / 0.1)))))\n",
"s_0049 > s_1676 | (0.0492981056959303 * (1 + (1.0 * log((s_0049 / 0.1))) + (-1.0 * log((s_1676 / 0.1)))))\n",
"s_0050 > s_1680 | (0.0385159631070598 * (1 + (1.0 * log((s_0050 / 0.1))) + (-1.0 * log((s_1680 / 0.1)))))\n",
"s_0293 + s_1334 > s_0044 + s_1333 | (0.0492981056959448 * (1 + (1.0 * log((s_0293 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0044 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0295 + s_1334 > s_0045 + s_1333 | (0.0492981056959429 * (1 + (1.0 * log((s_0295 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0045 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0297 + s_1334 > s_0046 + s_1333 | (0.0385159631070915 * (1 + (1.0 * log((s_0297 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0046 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0299 + s_1334 > s_0047 + s_1333 | (0.0492981056959303 * (1 + (1.0 * log((s_0299 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0047 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0303 + s_1334 > s_0049 + s_1333 | (0.0492981056959303 * (1 + (1.0 * log((s_0303 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0049 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0305 + s_1334 > s_0050 + s_1333 | (0.0385159631070598 * (1 + (1.0 * log((s_0305 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0050 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0391 + s_1334 > s_0043 + s_1333 | (0.0492981056959303 * (1 + (1.0 * log((s_0391 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0043 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0217 > s_0265 | (0.0624017887496972 * (1 + (1.0 * log((s_0217 / 0.1))) + (-1.0 * log((s_0265 / 0.1)))))\n",
"s_0265 + s_1333 > s_0267 + s_1334 | (0.0624017887496972 * (1 + (1.0 * log((s_0265 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0267 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0282 + s_0336 > s_0203 + s_0337 | (7.97856388884133e-05 * (1 + (1.0 * log((s_0282 / 0.1))) + (1.0 * log((s_0336 / 0.1))) + (-1.0 * log((s_0203 / 0.1))) + (-1.0 * log((s_0337 / 0.1)))))\n",
"s_0276 > s_0812 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0276 / 0.1))) + (-1.0 * log((s_0812 / 0.1)))))\n",
"s_1336 + s_0289 > s_0276 + s_1335 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_0289 / 0.1))) + (-1.0 * log((s_0276 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_1216 + s_1218 > s_0543 + s_0555 + s_0289 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1216 / 0.1))) + (1.0 * log((s_1218 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0289 / 0.1)))))\n",
"s_0277 > s_0813 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0277 / 0.1))) + (-1.0 * log((s_0813 / 0.1)))))\n",
"s_1336 + s_0290 > s_0277 + s_1335 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_0290 / 0.1))) + (-1.0 * log((s_0277 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0910 + s_1216 > s_0397 + s_0543 + s_0290 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0910 / 0.1))) + (1.0 * log((s_1216 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_0290 / 0.1)))))\n",
"s_0304 + s_1336 > s_0028 + s_1335 | (0.0107821425888488 * (1 + (1.0 * log((s_0304 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0028 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0789 + s_1216 > s_0304 + s_0397 + s_0543 | (0.0107821425888488 * (1 + (1.0 * log((s_0789 / 0.1))) + (1.0 * log((s_1216 / 0.1))) + (-1.0 * log((s_0304 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_1484 + s_1574 > s_0359 + s_1430 | (0.0527963458177373 * (1 + (1.0 * log((s_1484 / 0.1))) + (1.0 * log((s_1574 / 0.1))) + (-1.0 * log((s_0359 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0310 > s_0004 | (6.20554969142397e-05 * (1 + (1.0 * log((s_0310 / 0.1))) + (-1.0 * log((s_0004 / 0.1)))))\n",
"s_0312 + s_0467 > s_0237 + s_0421 | (0.000330916477964549 * (1 + (1.0 * log((s_0312 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0237 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_0342 + s_1333 > s_0313 + 2 * s_0867 + s_1334 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0342 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0313 / 0.1))) + (-2.0 * log((s_0867 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0526 + s_1101 > s_0316 + s_1095 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0526 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (-1.0 * log((s_0316 / 0.1))) + (-1.0 * log((s_1095 / 0.1)))))\n",
"s_0316 > s_0318 + s_1531 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0316 / 0.1))) + (-1.0 * log((s_0318 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_0333 > s_0334 + s_0405 | (3.11662651885034e-05 * (1 + (1.0 * log((s_0333 / 0.1))) + (-1.0 * log((s_0334 / 0.1))) + (-1.0 * log((s_0405 / 0.1)))))\n",
"s_0336 + s_1334 > s_0354 + s_1333 | (0.0213832438061183 * (1 + (1.0 * log((s_0336 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0354 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0347 + s_1336 > s_0346 + s_1335 | (6.17784634458656e-05 * (1 + (1.0 * log((s_0347 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0346 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0367 + s_0467 > s_0368 + s_0454 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0367 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0368 / 0.1))) + (-1.0 * log((s_0454 / 0.1)))))\n",
"s_0369 > s_0201 | (0.87986351299775 * (1 + (1.0 * log((s_0369 / 0.1))) + (-1.0 * log((s_0201 / 0.1)))))\n",
"s_0370 > s_0369 | (0.879863512997714 * (1 + (1.0 * log((s_0370 / 0.1))) + (-1.0 * log((s_0369 / 0.1)))))\n",
"s_1041 + s_1491 > s_0376 + s_0397 + s_0543 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1041 / 0.1))) + (1.0 * log((s_1491 / 0.1))) + (-1.0 * log((s_0376 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0381 + s_0555 + s_1333 > s_0395 + s_1334 | (0.0414265806134143 * (1 + (1.0 * log((s_0381 / 0.1))) + (1.0 * log((s_0555 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0384 + s_0467 > s_0393 + s_0421 | (0.0807006804356794 * (1 + (1.0 * log((s_0384 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0393 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"2 * s_1531 > s_0042 + s_0543 | (0.121101856295072 * (1 + (2.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0042 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"2 * s_0395 > s_0391 + s_0555 | (0.0492981056959303 * (1 + (2.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0391 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_0488 > s_0299 + s_0555 | (0.0492981056959303 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0488 / 0.1))) + (-1.0 * log((s_0299 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_0737 > s_0295 + s_0555 | (0.0492981056959429 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0737 / 0.1))) + (-1.0 * log((s_0295 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_0790 > s_0305 + s_0555 | (0.0385159631070598 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0790 / 0.1))) + (-1.0 * log((s_0305 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_0984 > s_0303 + s_0555 | (0.0492981056959303 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0984 / 0.1))) + (-1.0 * log((s_0303 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_1390 > s_0293 + s_0555 | (0.0492981056959448 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_1390 / 0.1))) + (-1.0 * log((s_0293 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_1632 > s_0297 + s_0555 | (0.0385159631070916 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_1632 / 0.1))) + (-1.0 * log((s_0297 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0395 + s_0467 + s_0474 > s_0421 + s_1217 + s_1430 | (0.0107829736892899 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0474 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1217 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1302 + s_0467 > s_1304 + s_0421 | (0.0409732499715063 * (1 + (1.0 * log((s_1302 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_1304 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_1321 > s_0384 + s_1391 | (0.040973249971501 * (1 + (1.0 * log((s_1321 / 0.1))) + (-1.0 * log((s_0384 / 0.1))) + (-1.0 * log((s_1391 / 0.1)))))\n",
"s_1303 + s_1095 > s_1321 + s_0233 | (0.040973249971501 * (1 + (1.0 * log((s_1303 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1321 / 0.1))) + (-1.0 * log((s_0233 / 0.1)))))\n",
"s_0536 > s_0530 | (0.148949399052035 * (1 + (1.0 * log((s_0536 / 0.1))) + (-1.0 * log((s_0530 / 0.1)))))\n",
"s_0530 > s_1027 | (0.148949399052035 * (1 + (1.0 * log((s_0530 / 0.1))) + (-1.0 * log((s_1027 / 0.1)))))\n",
"s_0397 + s_0467 + s_0785 > s_0454 + s_0789 + s_0783 | (0.0107821425888425 * (1 + (1.0 * log((s_0397 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0785 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0789 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0397 + s_0467 + s_0971 > s_0454 + s_1411 + s_0783 | (0.0176802759511862 * (1 + (1.0 * log((s_0397 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0971 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1411 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0397 + s_0467 + s_0976 > s_0454 + s_0533 + s_0783 | (0.0208356871559117 * (1 + (1.0 * log((s_0397 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0976 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0533 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0574 + s_0860 > s_0488 + s_0859 | (0.0492981056959303 * (1 + (1.0 * log((s_0574 / 0.1))) + (1.0 * log((s_0860 / 0.1))) + (-1.0 * log((s_0488 / 0.1))) + (-1.0 * log((s_0859 / 0.1)))))\n",
"s_1668 + s_0860 > s_0737 + s_0859 | (0.0492981056959448 * (1 + (1.0 * log((s_1668 / 0.1))) + (1.0 * log((s_0860 / 0.1))) + (-1.0 * log((s_0737 / 0.1))) + (-1.0 * log((s_0859 / 0.1)))))\n",
"s_1670 + s_0860 > s_0790 + s_0859 | (0.0492981056959429 * (1 + (1.0 * log((s_1670 / 0.1))) + (1.0 * log((s_0860 / 0.1))) + (-1.0 * log((s_0790 / 0.1))) + (-1.0 * log((s_0859 / 0.1)))))\n",
"s_0860 + s_1674 > s_0859 + s_1412 | (0.0176802759511649 * (1 + (1.0 * log((s_0860 / 0.1))) + (1.0 * log((s_1674 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_1412 / 0.1)))))\n",
"s_0860 + s_1672 > s_0859 + s_0984 | (0.0492981056959303 * (1 + (1.0 * log((s_0860 / 0.1))) + (1.0 * log((s_1672 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_0984 / 0.1)))))\n",
"s_0860 + s_1676 > s_0859 + s_1390 | (0.0492981056959303 * (1 + (1.0 * log((s_0860 / 0.1))) + (1.0 * log((s_1676 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_1390 / 0.1)))))\n",
"s_0860 + s_1680 > s_0859 + s_1632 | (0.0385159631070833 * (1 + (1.0 * log((s_0860 / 0.1))) + (1.0 * log((s_1680 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_1632 / 0.1)))))\n",
"s_0408 + s_0467 > s_0421 + s_0454 | (9.32217621027432e-05 * (1 + (1.0 * log((s_0408 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0454 / 0.1)))))\n",
"s_0376 + s_1552 > s_1550 + s_0371 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0376 / 0.1))) + (1.0 * log((s_1552 / 0.1))) + (-1.0 * log((s_1550 / 0.1))) + (-1.0 * log((s_0371 / 0.1)))))\n",
"s_0454 + s_0467 > 2 * s_0421 | (0.362277497683991 * (1 + (1.0 * log((s_0454 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-2.0 * log((s_0421 / 0.1)))))\n",
"s_0040 > s_0343 + s_0875 | (0.0613899240064973 * (1 + (1.0 * log((s_0040 / 0.1))) + (-1.0 * log((s_0343 / 0.1))) + (-1.0 * log((s_0875 / 0.1)))))\n",
"s_1072 + s_0945 + s_1006 > s_1327 + s_0896 + s_1430 | (0.0407532853976299 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0945 / 0.1))) + (1.0 * log((s_1006 / 0.1))) + (-1.0 * log((s_1327 / 0.1))) + (-1.0 * log((s_0896 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1327 > s_0454 + s_0875 | (0.0407532853976299 * (1 + (1.0 * log((s_1327 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0875 / 0.1)))))\n",
"s_0412 + s_0467 > s_0421 + s_0252 | (0.0343363591697952 * (1 + (1.0 * log((s_0412 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0252 / 0.1)))))\n",
"s_1041 > s_0600 | (0.00577199231356107 * (1 + (1.0 * log((s_1041 / 0.1))) + (-1.0 * log((s_0600 / 0.1)))))\n",
"s_0457 + s_0360 > s_0783 + s_1278 | (0.00787329117099325 * (1 + (1.0 * log((s_0457 / 0.1))) + (1.0 * log((s_0360 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_1278 / 0.1)))))\n",
"s_0526 + s_1101 > s_0457 + s_1095 + s_1531 | (0.00787329117099325 * (1 + (1.0 * log((s_0526 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (-1.0 * log((s_0457 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_0704 > s_0611 | (0.00539107129442444 * (1 + (1.0 * log((s_0704 / 0.1))) + (-1.0 * log((s_0611 / 0.1)))))\n",
"s_1274 > s_1061 + s_0875 | (0.0409732499715002 * (1 + (1.0 * log((s_1274 / 0.1))) + (-1.0 * log((s_1061 / 0.1))) + (-1.0 * log((s_0875 / 0.1)))))\n",
"s_1072 + s_0467 + s_1081 > s_0454 + s_1274 + s_0783 | (0.040973249971501 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1081 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1274 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1072 + s_0467 + s_0451 > s_0454 + s_1068 + s_0783 | (0.033396384611683 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1068 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1072 > s_0470 + s_0543 | (7.97856388811725e-05 * (1 + (1.0 * log((s_1072 / 0.1))) + (-1.0 * log((s_0470 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_1072 + s_0502 > s_1312 + s_1430 | (0.0458199505005817 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0502 / 0.1))) + (-1.0 * log((s_1312 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1072 + s_0467 > s_0332 + s_0421 | (0.230942094325926 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0332 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_1095 + s_1399 > s_0233 + s_1072 | (0.487066600184804 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_1399 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1072 / 0.1)))))\n",
"s_0332 + s_1336 > s_1075 + s_1335 + s_1430 | (0.230942094325926 * (1 + (1.0 * log((s_0332 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1075 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0467 + s_0360 > s_0783 + s_0099 | (0.0131230753965474 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0360 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_0099 / 0.1)))))\n",
"s_0378 + s_1552 + s_0755 > s_0377 + s_0476 + s_0333 + s_1141 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0378 / 0.1))) + (1.0 * log((s_1552 / 0.1))) + (1.0 * log((s_0755 / 0.1))) + (-1.0 * log((s_0377 / 0.1))) + (-1.0 * log((s_0476 / 0.1))) + (-1.0 * log((s_0333 / 0.1))) + (-1.0 * log((s_1141 / 0.1)))))\n",
"s_1264 + s_0420 > s_0454 + s_0479 + s_0579 | (1.68990415703956e-05 * (1 + (1.0 * log((s_1264 / 0.1))) + (1.0 * log((s_0420 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0479 / 0.1))) + (-1.0 * log((s_0579 / 0.1)))))\n",
"s_0481 + s_0945 > s_0480 + s_0783 | (1.68990415703956e-05 * (1 + (1.0 * log((s_0481 / 0.1))) + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0480 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0479 + s_0945 > s_0481 + s_0783 | (1.68990415703956e-05 * (1 + (1.0 * log((s_0479 / 0.1))) + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0481 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0543 + s_0451 > s_0421 + s_0502 | (0.0867932004720827 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0543 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0502 / 0.1)))))\n",
"s_0575 + s_0075 > s_0513 + s_0783 | (0.00884013797559549 * (1 + (1.0 * log((s_0575 / 0.1))) + (1.0 * log((s_0075 / 0.1))) + (-1.0 * log((s_0513 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0575 + s_0073 > s_0512 + s_0783 | (0.0104178435779464 * (1 + (1.0 * log((s_0575 / 0.1))) + (1.0 * log((s_0073 / 0.1))) + (-1.0 * log((s_0512 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0526 > s_1497 | (0.0447994977198517 * (1 + (1.0 * log((s_0526 / 0.1))) + (-1.0 * log((s_1497 / 0.1)))))\n",
"s_0526 > s_0325 + s_1531 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0526 / 0.1))) + (-1.0 * log((s_0325 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_0359 > s_0526 + s_1430 | (0.0527963458177373 * (1 + (1.0 * log((s_0359 / 0.1))) + (-1.0 * log((s_0526 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0395 + s_1399 > s_0536 + s_0555 | (0.148949399052133 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_1399 / 0.1))) + (-1.0 * log((s_0536 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0565 + s_1372 > 2 * s_0543 + s_1512 | (3.08892317225085e-05 * (1 + (1.0 * log((s_0565 / 0.1))) + (1.0 * log((s_1372 / 0.1))) + (-2.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1512 / 0.1)))))\n",
"s_0467 + s_1101 + s_1792 > s_0421 + s_0575 + s_1095 + s_1430 | (0.0222347061711993 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (1.0 * log((s_1792 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0575 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0945 > s_0585 + s_0783 | (3.37980831407913e-05 * (1 + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0585 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1082 > s_1112 + s_0451 + s_1531 | (0.0213211883092039 * (1 + (1.0 * log((s_1082 / 0.1))) + (-1.0 * log((s_1112 / 0.1))) + (-1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_1358 + s_0994 > s_0384 + s_1083 | (0.0343363591698377 * (1 + (1.0 * log((s_1358 / 0.1))) + (1.0 * log((s_0994 / 0.1))) + (-1.0 * log((s_0384 / 0.1))) + (-1.0 * log((s_1083 / 0.1)))))\n",
"s_0467 + s_0539 > s_0421 + s_0510 | (0.0250597549648415 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0510 / 0.1)))))\n",
"2 * s_0600 + s_0467 > s_0421 + s_0603 + s_1430 | (0.00384799487561516 * (1 + (2.0 * log((s_0600 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0603 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0467 + s_0754 > s_0421 + s_0555 | (7.97856388897518e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0754 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0467 + s_0543 + s_0371 > s_0421 + s_0755 + s_1430 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0543 / 0.1))) + (1.0 * log((s_0371 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0755 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0160 > s_0347 + s_0451 | (6.17784634458656e-05 * (1 + (1.0 * log((s_0160 / 0.1))) + (-1.0 * log((s_0347 / 0.1))) + (-1.0 * log((s_0451 / 0.1)))))\n",
"s_1242 > s_0543 + s_1131 | (0.0475389431717989 * (1 + (1.0 * log((s_1242 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1131 / 0.1)))))\n",
"s_1211 > s_1242 | (0.0513869380474194 * (1 + (1.0 * log((s_1211 / 0.1))) + (-1.0 * log((s_1242 / 0.1)))))\n",
"s_0052 + s_1732 > s_1394 + s_1731 | (0.0229099752504581 * (1 + (1.0 * log((s_0052 / 0.1))) + (1.0 * log((s_1732 / 0.1))) + (-1.0 * log((s_1394 / 0.1))) + (-1.0 * log((s_1731 / 0.1)))))\n",
"s_0155 + s_1336 > s_1335 + s_0148 | (0.0513869380474194 * (1 + (1.0 * log((s_0155 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0148 / 0.1)))))\n",
"s_1075 + s_1531 > s_0155 | (0.0513869380474194 * (1 + (1.0 * log((s_1075 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0155 / 0.1)))))\n",
"s_0372 + s_1336 > s_1335 + s_0337 | (0.00371765062874906 * (1 + (1.0 * log((s_0372 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0337 / 0.1)))))\n",
"s_0467 + s_0767 + s_1095 > s_0421 + s_0372 + s_1430 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0767 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0372 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0765 > s_0367 + s_0936 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0765 / 0.1))) + (-1.0 * log((s_0367 / 0.1))) + (-1.0 * log((s_0936 / 0.1)))))\n",
"s_0191 > s_0766 + s_0783 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0191 / 0.1))) + (-1.0 * log((s_0766 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1312 > s_0052 | (0.0458199505005817 * (1 + (1.0 * log((s_1312 / 0.1))) + (-1.0 * log((s_0052 / 0.1)))))\n",
"s_0052 + s_1240 > s_1239 + s_1394 | (0.0229099752501236 * (1 + (1.0 * log((s_0052 / 0.1))) + (1.0 * log((s_1240 / 0.1))) + (-1.0 * log((s_1239 / 0.1))) + (-1.0 * log((s_1394 / 0.1)))))\n",
"s_0318 + s_0368 > s_0767 + s_0783 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0318 / 0.1))) + (1.0 * log((s_0368 / 0.1))) + (-1.0 * log((s_0767 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0017 > s_0282 | (0.121101856295072 * (1 + (1.0 * log((s_0017 / 0.1))) + (-1.0 * log((s_0282 / 0.1)))))\n",
"s_0018 > s_0051 | (0.0402391112803253 * (1 + (1.0 * log((s_0018 / 0.1))) + (-1.0 * log((s_0051 / 0.1)))))\n",
"s_0779 + s_1028 > s_0903 + s_0783 | (3.85076521030325e-05 * (1 + (1.0 * log((s_0779 / 0.1))) + (1.0 * log((s_1028 / 0.1))) + (-1.0 * log((s_0903 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0802 > s_0421 + s_0795 | (0.00362498293358209 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0802 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0795 / 0.1)))))\n",
"s_0810 > s_0807 + s_0783 | (0.00362498293355932 * (1 + (1.0 * log((s_0810 / 0.1))) + (-1.0 * log((s_0807 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0675 > s_1484 | (0.640969334565238 * (1 + (1.0 * log((s_0675 / 0.1))) + (-1.0 * log((s_1484 / 0.1)))))\n",
"s_0812 + s_1336 > s_0910 + s_1335 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0812 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0910 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0813 + s_1336 > s_1335 + s_1492 | (2.77033467884759e-07 * (1 + (1.0 * log((s_0813 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1492 / 0.1)))))\n",
"s_0331 + s_1333 > s_1334 + s_0231 | (3.08892317222495e-05 * (1 + (1.0 * log((s_0331 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0231 / 0.1)))))\n",
"s_0621 + s_1333 > s_0331 + s_1334 | (3.08892317222495e-05 * (1 + (1.0 * log((s_0621 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0331 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0859 + s_1334 > s_0860 + s_1333 | (0.302798412025661 * (1 + (1.0 * log((s_0859 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0860 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0790 > s_0555 + s_0785 | (0.0107821425888423 * (1 + (1.0 * log((s_0790 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0785 / 0.1)))))\n",
"s_1412 > s_0555 + s_0971 | (0.0176802759511998 * (1 + (1.0 * log((s_1412 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0971 / 0.1)))))\n",
"s_0979 > s_0555 + s_0976 | (0.0208356871558925 * (1 + (1.0 * log((s_0979 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0976 / 0.1)))))\n",
"s_0838 + s_1511 > s_1508 | (3.08892317225085e-05 * (1 + (1.0 * log((s_0838 / 0.1))) + (1.0 * log((s_1511 / 0.1))) + (-1.0 * log((s_1508 / 0.1)))))\n",
"s_0467 + s_0863 > s_0859 + s_0783 | (3.08892317229329e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0863 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0867 + s_0337 > s_0133 + s_0421 + s_1430 | (0.0362397868726823 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0867 / 0.1))) + (1.0 * log((s_0337 / 0.1))) + (-1.0 * log((s_0133 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0875 > s_1138 | (0.143116459375637 * (1 + (1.0 * log((s_0875 / 0.1))) + (-1.0 * log((s_1138 / 0.1)))))\n",
"s_0467 + s_0867 + s_1318 > s_0421 + s_1322 + s_1430 | (0.0614208132382477 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0867 / 0.1))) + (1.0 * log((s_1318 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1322 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0903 + s_1028 > s_0826 + s_0783 | (3.85076521030325e-05 * (1 + (1.0 * log((s_0903 / 0.1))) + (1.0 * log((s_1028 / 0.1))) + (-1.0 * log((s_0826 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0395 + s_0653 > s_1287 + s_0555 | (0.0130870610456735 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_0653 / 0.1))) + (-1.0 * log((s_1287 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0663 + s_1335 > s_0370 + s_1336 | (0.879863512997714 * (1 + (1.0 * log((s_0663 / 0.1))) + (1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0370 / 0.1))) + (-1.0 * log((s_1336 / 0.1)))))\n",
"s_0663 > s_0627 | (0.0545285720060003 * (1 + (1.0 * log((s_0663 / 0.1))) + (-1.0 * log((s_0627 / 0.1)))))\n",
"s_0467 + s_1095 > s_0421 + s_1099 | (0.0306260499279916 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1099 / 0.1)))))\n",
"s_0233 + s_1336 + s_0451 > s_1095 + s_1335 | (1.17502637474065 * (1 + (1.0 * log((s_0233 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_1095 > s_0671 | (0.00384799487562186 * (1 + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0671 / 0.1)))))\n",
"s_1098 > s_0345 | (0.000494227707563336 * (1 + (1.0 * log((s_1098 / 0.1))) + (-1.0 * log((s_0345 / 0.1)))))\n",
"s_1099 + s_1336 > s_1100 + s_1335 + s_1430 | (0.0306260499279916 * (1 + (1.0 * log((s_1099 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1100 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1101 + s_0360 > s_1095 + s_0783 + s_0361 | (0.0614208132382202 * (1 + (1.0 * log((s_1101 / 0.1))) + (1.0 * log((s_0360 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_0361 / 0.1)))))\n",
"s_0467 + s_1095 + s_0451 > s_0421 + s_1101 + s_1430 | (0.249469746398485 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1101 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0627 + s_1101 > s_0654 + s_1095 | (0.0130870610456636 * (1 + (1.0 * log((s_0627 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (-1.0 * log((s_0654 / 0.1))) + (-1.0 * log((s_1095 / 0.1)))))\n",
"s_1105 + s_1336 > s_1098 + s_1335 + s_1690 | (0.000494227707563336 * (1 + (1.0 * log((s_1105 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1098 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1690 / 0.1)))))\n",
"s_0467 + s_1095 + s_1690 > s_0454 + s_1105 + s_0783 | (0.000494227707563336 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_1690 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1105 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0913 + s_1333 + s_1430 > s_0307 + s_1334 | (0.787832256050213 * (1 + (1.0 * log((s_0913 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_0307 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0467 + s_0029 > s_0675 + s_0421 | (4.63338475844011e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0029 / 0.1))) + (-1.0 * log((s_0675 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_0920 + s_1411 > s_0121 + s_0397 | (0.00884013797513179 * (1 + (1.0 * log((s_0920 / 0.1))) + (1.0 * log((s_1411 / 0.1))) + (-1.0 * log((s_0121 / 0.1))) + (-1.0 * log((s_0397 / 0.1)))))\n",
"s_0920 + s_0533 > s_0119 + s_0397 | (0.0104178435776096 * (1 + (1.0 * log((s_0920 / 0.1))) + (1.0 * log((s_0533 / 0.1))) + (-1.0 * log((s_0119 / 0.1))) + (-1.0 * log((s_0397 / 0.1)))))\n",
"s_0772 + s_1336 > s_0920 + s_1335 | (0.0192579815535505 * (1 + (1.0 * log((s_0772 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0920 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_1040 + s_0555 > s_0395 + s_0929 | (0.0414265806134066 * (1 + (1.0 * log((s_1040 / 0.1))) + (1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0929 / 0.1)))))\n",
"s_1170 + s_0337 > s_0929 + s_0336 | (0.0634230033724642 * (1 + (1.0 * log((s_1170 / 0.1))) + (1.0 * log((s_0337 / 0.1))) + (-1.0 * log((s_0929 / 0.1))) + (-1.0 * log((s_0336 / 0.1)))))\n",
"s_0936 + s_1333 > s_0937 + s_1334 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0936 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0937 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0937 + s_1732 > s_0941 + s_1731 | (4.63338477495988e-05 * (1 + (1.0 * log((s_0937 / 0.1))) + (1.0 * log((s_1732 / 0.1))) + (-1.0 * log((s_0941 / 0.1))) + (-1.0 * log((s_1731 / 0.1)))))\n",
"s_0937 + s_1240 > s_0941 + s_1239 | (4.63338474145563e-05 * (1 + (1.0 * log((s_0937 / 0.1))) + (1.0 * log((s_1240 / 0.1))) + (-1.0 * log((s_0941 / 0.1))) + (-1.0 * log((s_1239 / 0.1)))))\n",
"2 * s_0941 > s_0214 + s_0543 | (4.63338475820775e-05 * (1 + (2.0 * log((s_0941 / 0.1))) + (-1.0 * log((s_0214 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0467 + s_1101 + s_1799 > s_0454 + s_1095 + s_0942 + s_0783 | (0.0337597140054242 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (1.0 * log((s_1799 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0942 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0945 > s_0191 + s_0867 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0191 / 0.1))) + (-1.0 * log((s_0867 / 0.1)))))\n",
"s_0945 > s_0160 + s_0867 + s_0783 | (6.17784634458656e-05 * (1 + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0160 / 0.1))) + (-1.0 * log((s_0867 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0942 > s_0421 + s_0896 | (0.0337597140054224 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0942 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0896 / 0.1)))))\n",
"s_0543 > s_0474 | (0.0721728976957654 * (1 + (1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_0474 / 0.1)))))\n",
"s_0467 + s_0622 > s_0421 + s_0627 | (0.0545285700240656 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0622 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0627 / 0.1)))))\n",
"s_0467 + s_0657 > s_0421 + s_0663 | (0.912233393077452 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0657 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0663 / 0.1)))))\n",
"s_1109 + 2 * s_1333 > s_1106 + 2 * s_1334 | (0.0131230753965474 * (1 + (1.0 * log((s_1109 / 0.1))) + (2.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1106 / 0.1))) + (-2.0 * log((s_1334 / 0.1)))))\n",
"s_1110 > s_1109 + s_1430 | (0.0131230753965474 * (1 + (1.0 * log((s_1110 / 0.1))) + (-1.0 * log((s_1109 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1095 + s_0263 > s_0233 + s_1110 | (0.0131230753965474 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_0263 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1110 / 0.1)))))\n",
"s_1075 + s_1336 > s_1113 + s_1335 | (0.179555156278507 * (1 + (1.0 * log((s_1075 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1113 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0467 + s_1113 > s_0421 + s_1363 | (0.158233967969303 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1113 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1363 / 0.1)))))\n",
"s_1113 + s_1599 > s_0555 + s_1367 | (0.0213211883092039 * (1 + (1.0 * log((s_1113 / 0.1))) + (1.0 * log((s_1599 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_1367 / 0.1)))))\n",
"s_0325 + s_0435 > s_0283 + s_0783 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0325 / 0.1))) + (1.0 * log((s_0435 / 0.1))) + (-1.0 * log((s_0283 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"4 * s_1493 > s_0998 + 4 * s_0451 | (6.1778463445417e-05 * (1 + (4.0 * log((s_1493 / 0.1))) + (-1.0 * log((s_0998 / 0.1))) + (-4.0 * log((s_0451 / 0.1)))))\n",
"s_1101 + s_0341 > s_0343 + s_0620 + s_1095 | (0.0131230753965474 * (1 + (1.0 * log((s_1101 / 0.1))) + (1.0 * log((s_0341 / 0.1))) + (-1.0 * log((s_0343 / 0.1))) + (-1.0 * log((s_0620 / 0.1))) + (-1.0 * log((s_1095 / 0.1)))))\n",
"s_0620 > s_0263 | (0.0131230753965474 * (1 + (1.0 * log((s_0620 / 0.1))) + (-1.0 * log((s_0263 / 0.1)))))\n",
"s_0352 > s_1006 | (0.0745129994030467 * (1 + (1.0 * log((s_0352 / 0.1))) + (-1.0 * log((s_1006 / 0.1)))))\n",
"s_1006 + s_1333 > s_1334 + s_1799 | (0.0337597140054643 * (1 + (1.0 * log((s_1006 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1799 / 0.1)))))\n",
"s_0096 > s_0493 + s_0543 | (0.00787329117099325 * (1 + (1.0 * log((s_0096 / 0.1))) + (-1.0 * log((s_0493 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0377 + s_1018 + s_1019 > s_1017 + s_1020 | (2.77033467753811e-07 * (1 + (1.0 * log((s_0377 / 0.1))) + (1.0 * log((s_1018 / 0.1))) + (1.0 * log((s_1019 / 0.1))) + (-1.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1020 / 0.1)))))\n",
"s_0860 + 2 * s_0838 + 2 * s_1018 + s_1019 > s_0859 + 2 * s_1017 + s_1020 | (3.96157859771697e-05 * (1 + (1.0 * log((s_0860 / 0.1))) + (2.0 * log((s_0838 / 0.1))) + (2.0 * log((s_1018 / 0.1))) + (1.0 * log((s_1019 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-2.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1020 / 0.1)))))\n",
"s_0860 + 2 * s_0838 + 2 * s_1018 + s_1020 > s_0859 + 2 * s_1017 + s_1022 | (3.60143508877284e-05 * (1 + (1.0 * log((s_0860 / 0.1))) + (2.0 * log((s_0838 / 0.1))) + (2.0 * log((s_1018 / 0.1))) + (1.0 * log((s_1020 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-2.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1022 / 0.1)))))\n",
"s_1020 > s_0378 + s_1019 | (3.87846855703637e-06 * (1 + (1.0 * log((s_1020 / 0.1))) + (-1.0 * log((s_0378 / 0.1))) + (-1.0 * log((s_1019 / 0.1)))))\n",
"s_0860 + s_1022 > s_0859 + s_1021 | (3.60143508877284e-05 * (1 + (1.0 * log((s_0860 / 0.1))) + (1.0 * log((s_1022 / 0.1))) + (-1.0 * log((s_0859 / 0.1))) + (-1.0 * log((s_1021 / 0.1)))))\n",
"s_1021 > s_0380 + s_1019 | (3.60143508877284e-05 * (1 + (1.0 * log((s_1021 / 0.1))) + (-1.0 * log((s_0380 / 0.1))) + (-1.0 * log((s_1019 / 0.1)))))\n",
"s_1083 + s_1017 > s_1041 + s_1018 | (0.000250022705200688 * (1 + (1.0 * log((s_1083 / 0.1))) + (1.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1041 / 0.1))) + (-1.0 * log((s_1018 / 0.1)))))\n",
"s_1027 + s_1335 > s_0233 + s_0543 + s_1336 | (0.148949399052035 * (1 + (1.0 * log((s_1027 / 0.1))) + (1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1336 / 0.1)))))\n",
"s_0051 + s_1095 > s_0233 + s_1119 | (0.0402391112803253 * (1 + (1.0 * log((s_0051 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1119 / 0.1)))))\n",
"s_0042 + s_1336 > s_0017 + s_1335 | (0.121101856295072 * (1 + (1.0 * log((s_0042 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0017 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0041 + s_1336 > s_0018 + s_1335 | (0.0402391112803253 * (1 + (1.0 * log((s_0041 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0018 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_1095 + s_1531 > s_0233 + s_1041 | (0.0805262878673574 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1041 / 0.1)))))\n",
"s_1072 + s_1372 > s_0991 + s_1005 | (0.000315541120488056 * (1 + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_1372 / 0.1))) + (-1.0 * log((s_0991 / 0.1))) + (-1.0 * log((s_1005 / 0.1)))))\n",
"s_1100 > s_0128 | (0.0306260499280044 * (1 + (1.0 * log((s_1100 / 0.1))) + (-1.0 * log((s_0128 / 0.1)))))\n",
"s_1179 > s_0232 + s_0451 | (0.0402391112802679 * (1 + (1.0 * log((s_1179 / 0.1))) + (-1.0 * log((s_0232 / 0.1))) + (-1.0 * log((s_0451 / 0.1)))))\n",
"s_1333 + s_1179 > s_1040 + s_1334 | (0.0414265806134066 * (1 + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1179 / 0.1))) + (-1.0 * log((s_1040 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0328 + s_1095 > s_0233 + s_1127 | (0.0624017887496972 * (1 + (1.0 * log((s_0328 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1127 / 0.1)))))\n",
"s_0149 + s_1734 > s_1204 + s_1733 | (0.00269553564721213 * (1 + (1.0 * log((s_0149 / 0.1))) + (1.0 * log((s_1734 / 0.1))) + (-1.0 * log((s_1204 / 0.1))) + (-1.0 * log((s_1733 / 0.1)))))\n",
"s_1138 + s_1333 > s_1334 + s_1399 | (0.143432000495696 * (1 + (1.0 * log((s_1138 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1399 / 0.1)))))\n",
"s_0991 + s_1399 > s_1138 + s_1372 | (0.000315541120779209 * (1 + (1.0 * log((s_0991 / 0.1))) + (1.0 * log((s_1399 / 0.1))) + (-1.0 * log((s_1138 / 0.1))) + (-1.0 * log((s_1372 / 0.1)))))\n",
"s_1552 + s_1217 > s_1551 + s_1218 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1552 / 0.1))) + (1.0 * log((s_1217 / 0.1))) + (-1.0 * log((s_1551 / 0.1))) + (-1.0 * log((s_1218 / 0.1)))))\n",
"s_0397 + s_1217 > s_0555 + s_1216 | (0.0107826966558221 * (1 + (1.0 * log((s_0397 / 0.1))) + (1.0 * log((s_1217 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_1216 / 0.1)))))\n",
"s_0335 > s_0133 | (0.0383041017619642 * (1 + (1.0 * log((s_0335 / 0.1))) + (-1.0 * log((s_0133 / 0.1)))))\n",
"s_0467 + s_1141 > s_1552 + s_1430 + s_0783 | (0.000124388027294171 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1141 / 0.1))) + (-1.0 * log((s_1552 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0354 + s_1112 > s_1141 + s_0337 | (0.0213832438061183 * (1 + (1.0 * log((s_0354 / 0.1))) + (1.0 * log((s_1112 / 0.1))) + (-1.0 * log((s_1141 / 0.1))) + (-1.0 * log((s_0337 / 0.1)))))\n",
"s_0336 + s_1335 > s_0335 + s_1336 | (0.0383041017619642 * (1 + (1.0 * log((s_0336 / 0.1))) + (1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0335 / 0.1))) + (-1.0 * log((s_1336 / 0.1)))))\n",
"s_1018 + s_1258 + s_1334 > s_0454 + s_1017 + s_1260 + s_1333 | (6.75961662815825e-05 * (1 + (1.0 * log((s_1018 / 0.1))) + (1.0 * log((s_1258 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1260 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_1261 + s_0420 > s_0454 + s_0579 + s_1264 | (1.68990415703956e-05 * (1 + (1.0 * log((s_1261 / 0.1))) + (1.0 * log((s_0420 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0579 / 0.1))) + (-1.0 * log((s_1264 / 0.1)))))\n",
"s_0467 + s_1265 > s_0420 + s_0783 | (3.37980831407913e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1265 / 0.1))) + (-1.0 * log((s_0420 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0585 + s_0579 + 2 * s_1260 > 2 * s_1259 + s_1265 | (3.37980831407913e-05 * (1 + (1.0 * log((s_0585 / 0.1))) + (1.0 * log((s_0579 / 0.1))) + (2.0 * log((s_1260 / 0.1))) + (-2.0 * log((s_1259 / 0.1))) + (-1.0 * log((s_1265 / 0.1)))))\n",
"s_0467 + s_1259 > s_1258 + s_0783 | (6.75961662815825e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1259 / 0.1))) + (-1.0 * log((s_1258 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1725 > s_0600 + s_1719 | (0.0019239974378098 * (1 + (1.0 * log((s_1725 / 0.1))) + (-1.0 * log((s_0600 / 0.1))) + (-1.0 * log((s_1719 / 0.1)))))\n",
"s_1304 + s_1336 > s_1303 + s_1335 + s_1430 | (0.0409732499715063 * (1 + (1.0 * log((s_1304 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1303 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0395 + s_1095 > s_1302 + s_0555 | (0.0409732499715063 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1302 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0467 + s_1333 > s_0421 + s_1335 | (6.1916980210075e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0467 + s_0732 + s_0451 > s_0454 + s_1333 + s_0783 | (0.000315541120476312 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0732 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_1340 > s_0732 + s_0783 | (0.000315541120469206 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1340 / 0.1))) + (-1.0 * log((s_0732 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0360 + s_1537 > s_0543 + s_1340 + s_0783 | (0.000315541120467916 * (1 + (1.0 * log((s_0360 / 0.1))) + (1.0 * log((s_1537 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1340 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0510 > s_0421 + s_0575 | (0.0250597549647999 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0510 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0575 / 0.1)))))\n",
"s_0467 + s_0795 > s_0421 + s_0805 | (0.00362498293358405 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0795 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0805 / 0.1)))))\n",
"s_0467 + s_0896 > s_0421 + s_0945 | (0.10884935857298 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0896 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0945 / 0.1)))))\n",
"s_0467 + s_1733 > s_0421 + s_1792 | (0.0589070115461784 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1733 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1792 / 0.1)))))\n",
"s_0467 > s_0421 + s_1430 | (3.15000000000004 * (1 + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1095 + s_0231 > s_0233 + s_1362 | (3.08892317222495e-05 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_0231 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1362 / 0.1)))))\n",
"s_1083 + s_1367 > s_1082 + s_1595 | (0.0213211883092039 * (1 + (1.0 * log((s_1083 / 0.1))) + (1.0 * log((s_1367 / 0.1))) + (-1.0 * log((s_1082 / 0.1))) + (-1.0 * log((s_1595 / 0.1)))))\n",
"s_0826 + 5 * s_1028 > s_0435 + 5 * s_0783 | (3.08892317229362e-05 * (1 + (1.0 * log((s_0826 / 0.1))) + (5.0 * log((s_1028 / 0.1))) + (-1.0 * log((s_0435 / 0.1))) + (-5.0 * log((s_0783 / 0.1)))))\n",
"s_0283 > s_0229 + s_0543 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0283 / 0.1))) + (-1.0 * log((s_0229 / 0.1))) + (-1.0 * log((s_0543 / 0.1)))))\n",
"s_0502 + s_1391 > s_1081 + s_1430 | (0.040973249971501 * (1 + (1.0 * log((s_0502 / 0.1))) + (1.0 * log((s_1391 / 0.1))) + (-1.0 * log((s_1081 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1394 + s_0360 > s_1397 + s_0783 | (0.0458199505005801 * (1 + (1.0 * log((s_1394 / 0.1))) + (1.0 * log((s_0360 / 0.1))) + (-1.0 * log((s_1397 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1397 > s_0543 + s_1762 | (0.0458199505005801 * (1 + (1.0 * log((s_1397 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1762 / 0.1)))))\n",
"s_0467 + s_1413 > s_0754 + s_0783 | (7.97856388897518e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1413 / 0.1))) + (-1.0 * log((s_0754 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_0467 + s_0033 > s_0599 + s_0421 | (7.97856388897518e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0033 / 0.1))) + (-1.0 * log((s_0599 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_0470 + s_0467 + s_0032 > s_0454 + s_0033 + s_0783 | (7.97856388884133e-05 * (1 + (1.0 * log((s_0470 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0032 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0033 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1095 + s_1429 > s_0233 + s_1151 | (0.0256671508442138 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_1429 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1151 / 0.1)))))\n",
"s_1477 > s_0543 + s_1437 | (0.00884013797559549 * (1 + (1.0 * log((s_1477 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1437 / 0.1)))))\n",
"s_1476 > s_0543 + s_1435 | (0.0104178435779464 * (1 + (1.0 * log((s_1476 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1435 / 0.1)))))\n",
"s_0513 + s_1170 > s_0539 + s_1477 | (0.00884013797559936 * (1 + (1.0 * log((s_0513 / 0.1))) + (1.0 * log((s_1170 / 0.1))) + (-1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_1477 / 0.1)))))\n",
"s_0512 + s_1170 > s_0539 + s_1476 | (0.0104178435779464 * (1 + (1.0 * log((s_0512 / 0.1))) + (1.0 * log((s_1170 / 0.1))) + (-1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_1476 / 0.1)))))\n",
"s_1364 > s_1430 + s_1170 | (0.146909255332631 * (1 + (1.0 * log((s_1364 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1170 / 0.1)))))\n",
"s_1768 + s_1755 > s_1777 + s_1762 | (0.0038479948756196 * (1 + (1.0 * log((s_1768 / 0.1))) + (1.0 * log((s_1755 / 0.1))) + (-1.0 * log((s_1777 / 0.1))) + (-1.0 * log((s_1762 / 0.1)))))\n",
"s_0252 + s_1544 > s_0411 + s_1612 + s_1406 | (0.0343363591697112 * (1 + (1.0 * log((s_0252 / 0.1))) + (1.0 * log((s_1544 / 0.1))) + (-1.0 * log((s_0411 / 0.1))) + (-1.0 * log((s_1612 / 0.1))) + (-1.0 * log((s_1406 / 0.1)))))\n",
"s_0543 + s_1484 > s_1399 + s_1430 | (0.492899539861318 * (1 + (1.0 * log((s_0543 / 0.1))) + (1.0 * log((s_1484 / 0.1))) + (-1.0 * log((s_1399 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0654 > s_0653 | (0.0130870610456735 * (1 + (1.0 * log((s_0654 / 0.1))) + (-1.0 * log((s_0653 / 0.1)))))\n",
"s_0306 + s_1333 > s_0308 + s_1334 | (0.146909255332631 * (1 + (1.0 * log((s_0306 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0308 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0307 + s_0421 > s_0306 + s_0467 | (0.787832256050213 * (1 + (1.0 * log((s_0307 / 0.1))) + (1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0306 / 0.1))) + (-1.0 * log((s_0467 / 0.1)))))\n",
"s_0306 > s_0675 | (0.64092300071826 * (1 + (1.0 * log((s_0306 / 0.1))) + (-1.0 * log((s_0675 / 0.1)))))\n",
"s_0313 + s_0467 > s_0218 + s_0421 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0313 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0218 / 0.1))) + (-1.0 * log((s_0421 / 0.1)))))\n",
"s_0599 + s_0575 + s_1083 > s_1277 + s_0539 + s_0783 | (7.97856388897518e-05 * (1 + (1.0 * log((s_0599 / 0.1))) + (1.0 * log((s_0575 / 0.1))) + (1.0 * log((s_1083 / 0.1))) + (-1.0 * log((s_1277 / 0.1))) + (-1.0 * log((s_0539 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1277 > s_0543 + s_1413 | (7.97856388897518e-05 * (1 + (1.0 * log((s_1277 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1413 / 0.1)))))\n",
"s_0446 > s_0445 | (9.32217621775477e-05 * (1 + (1.0 * log((s_0446 / 0.1))) + (-1.0 * log((s_0445 / 0.1)))))\n",
"s_0098 > s_0097 | (0.0131230753965474 * (1 + (1.0 * log((s_0098 / 0.1))) + (-1.0 * log((s_0097 / 0.1)))))\n",
"s_0099 > s_0783 + s_0098 | (0.0131230753965474 * (1 + (1.0 * log((s_0099 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_0098 / 0.1)))))\n",
"s_0342 + s_0467 + s_0474 > s_0362 + s_0421 + s_1430 | (0.0613899240064973 * (1 + (1.0 * log((s_0342 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0474 / 0.1))) + (-1.0 * log((s_0362 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0362 > s_0344 | (0.0613899240064973 * (1 + (1.0 * log((s_0362 / 0.1))) + (-1.0 * log((s_0344 / 0.1)))))\n",
"s_0467 + s_0162 > s_0421 + s_0342 + s_1430 | (0.0614208132382202 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0162 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0342 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0133 + s_0343 > s_0352 + s_0337 | (0.0745129994030467 * (1 + (1.0 * log((s_0133 / 0.1))) + (1.0 * log((s_0343 / 0.1))) + (-1.0 * log((s_0352 / 0.1))) + (-1.0 * log((s_0337 / 0.1)))))\n",
"s_0344 + s_1072 + s_0467 > s_0040 + s_0421 + s_1430 | (0.0613899240064973 * (1 + (1.0 * log((s_0344 / 0.1))) + (1.0 * log((s_1072 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_0040 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1278 > s_0096 | (0.00787329117099325 * (1 + (1.0 * log((s_1278 / 0.1))) + (-1.0 * log((s_0096 / 0.1)))))\n",
"s_0467 + s_1322 + s_1101 > s_0421 + s_0162 + s_1095 + s_1430 | (0.0614208132382202 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1322 / 0.1))) + (1.0 * log((s_1101 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0162 / 0.1))) + (-1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0467 + s_0929 + s_0361 > s_0421 + s_1318 + s_1430 | (0.0614208132382202 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0929 / 0.1))) + (1.0 * log((s_0361 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1318 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0467 + s_0446 > s_0454 + s_0360 | (0.128552671426845 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0446 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0360 / 0.1)))))\n",
"s_0308 + s_1095 > s_0233 + s_1364 | (0.146909255332631 * (1 + (1.0 * log((s_0308 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1364 / 0.1)))))\n",
"s_0393 + s_0555 > s_0395 + s_1430 | (0.0807006804356794 * (1 + (1.0 * log((s_0393 / 0.1))) + (1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1492 > s_1248 + s_1491 | (2.77033467884759e-07 * (1 + (1.0 * log((s_1492 / 0.1))) + (-1.0 * log((s_1248 / 0.1))) + (-1.0 * log((s_1491 / 0.1)))))\n",
"s_0421 + s_0783 > s_0467 + s_1430 | (0.484650799082247 * (1 + (1.0 * log((s_0421 / 0.1))) + (1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_0467 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"2 * s_0345 > s_1493 | (0.000247113853781668 * (1 + (2.0 * log((s_0345 / 0.1))) + (-1.0 * log((s_1493 / 0.1)))))\n",
"s_1497 > s_0543 + s_1429 | (0.0256671508442138 * (1 + (1.0 * log((s_1497 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1429 / 0.1)))))\n",
"s_1333 + s_1497 > s_0262 + s_0543 + s_1334 | (0.0191323468756361 * (1 + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1497 / 0.1))) + (-1.0 * log((s_0262 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"1.5 * s_1372 + s_1512 > s_1511 | (3.08892317222945e-05 * (1 + (1.5 * log((s_1372 / 0.1))) + (1.0 * log((s_1512 / 0.1))) + (-1.0 * log((s_1511 / 0.1)))))\n",
"s_0405 + s_0445 > s_0408 + s_1430 | (9.32217619764956e-05 * (1 + (1.0 * log((s_0405 / 0.1))) + (1.0 * log((s_0445 / 0.1))) + (-1.0 * log((s_0408 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0116 + s_1333 + s_1362 > s_0543 + s_1334 + s_1530 + s_1430 | (3.08892317222495e-05 * (1 + (1.0 * log((s_0116 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1362 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1530 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0128 + s_1336 > s_1335 + s_1155 | (0.0306260499280495 * (1 + (1.0 * log((s_0128 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1155 / 0.1)))))\n",
"s_0555 + s_1333 + s_1531 > s_0395 + s_0543 + s_1334 | (0.407410405183232 * (1 + (1.0 * log((s_0555 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1334 / 0.1)))))\n",
"s_0555 + s_1531 > s_0395 + s_0867 | (0.0973208185619302 * (1 + (1.0 * log((s_0555 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0867 / 0.1)))))\n",
"s_0555 + 2 * s_0862 + s_1531 > s_0395 + s_0543 + 2 * s_0861 | (0.0150663266603607 * (1 + (1.0 * log((s_0555 / 0.1))) + (2.0 * log((s_0862 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_0395 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-2.0 * log((s_0861 / 0.1)))))\n",
"s_0772 + s_1005 > s_1430 + s_1537 | (0.000315541120467916 * (1 + (1.0 * log((s_0772 / 0.1))) + (1.0 * log((s_1005 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1537 / 0.1)))))\n",
"s_0467 + s_1546 > s_0421 + s_0863 | (3.08892317229329e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1546 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0863 / 0.1)))))\n",
"s_0311 + s_0255 > s_0364 + s_1430 | (0.000123556926891731 * (1 + (1.0 * log((s_0311 / 0.1))) + (1.0 * log((s_0255 / 0.1))) + (-1.0 * log((s_0364 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"2 * s_0364 > s_0311 + s_1546 | (6.17784634458656e-05 * (1 + (2.0 * log((s_0364 / 0.1))) + (-1.0 * log((s_0311 / 0.1))) + (-1.0 * log((s_1546 / 0.1)))))\n",
"s_0467 + 2 * s_0861 > s_0726 + 2 * s_0862 | (0.0036249829336045 * (1 + (1.0 * log((s_0467 / 0.1))) + (2.0 * log((s_0861 / 0.1))) + (-1.0 * log((s_0726 / 0.1))) + (-2.0 * log((s_0862 / 0.1)))))\n",
"s_0575 + 2 * s_0861 > s_0731 + 2 * s_0862 | (0.00374272215765511 * (1 + (1.0 * log((s_0575 / 0.1))) + (2.0 * log((s_0861 / 0.1))) + (-1.0 * log((s_0731 / 0.1))) + (-2.0 * log((s_0862 / 0.1)))))\n",
"2 * s_0861 + s_0945 > s_0760 + 2 * s_0862 | (0.00374272215760098 * (1 + (2.0 * log((s_0861 / 0.1))) + (1.0 * log((s_0945 / 0.1))) + (-1.0 * log((s_0760 / 0.1))) + (-2.0 * log((s_0862 / 0.1)))))\n",
"2 * s_0861 + s_1792 > s_0810 + 2 * s_0862 | (0.00362498293356975 * (1 + (2.0 * log((s_0861 / 0.1))) + (1.0 * log((s_1792 / 0.1))) + (-1.0 * log((s_0810 / 0.1))) + (-2.0 * log((s_0862 / 0.1)))))\n",
"s_0704 > s_0446 | (0.101534797735323 * (1 + (1.0 * log((s_0704 / 0.1))) + (-1.0 * log((s_0446 / 0.1)))))\n",
"s_0721 > s_0704 | (0.107049425956634 * (1 + (1.0 * log((s_0721 / 0.1))) + (-1.0 * log((s_0704 / 0.1)))))\n",
"s_1551 > s_0405 + s_1558 | (6.20554969142397e-05 * (1 + (1.0 * log((s_1551 / 0.1))) + (-1.0 * log((s_0405 / 0.1))) + (-1.0 * log((s_1558 / 0.1)))))\n",
"s_1558 > s_0310 + s_1112 | (6.20554969142397e-05 * (1 + (1.0 * log((s_1558 / 0.1))) + (-1.0 * log((s_0310 / 0.1))) + (-1.0 * log((s_1112 / 0.1)))))\n",
"s_0395 + s_1170 > s_1358 + s_0555 | (0.0343363591698377 * (1 + (1.0 * log((s_0395 / 0.1))) + (1.0 * log((s_1170 / 0.1))) + (-1.0 * log((s_1358 / 0.1))) + (-1.0 * log((s_0555 / 0.1)))))\n",
"s_0270 + s_1336 > s_1335 + s_1571 | (0.052796345817737 * (1 + (1.0 * log((s_0270 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1571 / 0.1)))))\n",
"s_0467 + s_1571 > s_0421 + s_1574 | (0.0527963458177373 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1571 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1574 / 0.1)))))\n",
"s_0768 + s_1333 > s_1334 + s_1578 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0768 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1578 / 0.1)))))\n",
"s_0838 + s_1578 > s_1577 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0838 / 0.1))) + (1.0 * log((s_1578 / 0.1))) + (-1.0 * log((s_1577 / 0.1)))))\n",
"s_0467 + s_0555 + s_1595 > s_0421 + s_1430 + s_1599 | (0.0727081263565024 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0555 / 0.1))) + (1.0 * log((s_1595 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1599 / 0.1)))))\n",
"s_1316 > s_1211 + s_1595 | (0.0513869380474194 * (1 + (1.0 * log((s_1316 / 0.1))) + (-1.0 * log((s_1211 / 0.1))) + (-1.0 * log((s_1595 / 0.1)))))\n",
"s_1095 + s_1315 > s_0233 + s_1316 | (0.0513869380474194 * (1 + (1.0 * log((s_1095 / 0.1))) + (1.0 * log((s_1315 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1316 / 0.1)))))\n",
"s_0467 + s_0945 + s_1609 > s_0412 + s_0896 + s_1430 + s_0783 | (0.0343363591697952 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0945 / 0.1))) + (1.0 * log((s_1609 / 0.1))) + (-1.0 * log((s_0412 / 0.1))) + (-1.0 * log((s_0896 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"3 * s_1336 + s_1612 > s_0994 + 3 * s_1335 | (0.0343363591698208 * (1 + (3.0 * log((s_1336 / 0.1))) + (1.0 * log((s_1612 / 0.1))) + (-1.0 * log((s_0994 / 0.1))) + (-3.0 * log((s_1335 / 0.1)))))\n",
"s_0214 + s_1334 > s_0029 + s_1333 | (4.63338474645892e-05 * (1 + (1.0 * log((s_0214 / 0.1))) + (1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_0029 / 0.1))) + (-1.0 * log((s_1333 / 0.1)))))\n",
"s_0467 + s_1204 > s_0421 + s_0147 | (0.00269553564721213 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1204 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_0147 / 0.1)))))\n",
"s_1599 + s_0148 > s_0555 + s_1315 | (0.0513869380474194 * (1 + (1.0 * log((s_1599 / 0.1))) + (1.0 * log((s_0148 / 0.1))) + (-1.0 * log((s_0555 / 0.1))) + (-1.0 * log((s_1315 / 0.1)))))\n",
"s_0218 + s_0330 > s_0783 + s_1643 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0218 / 0.1))) + (1.0 * log((s_0330 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_1643 / 0.1)))))\n",
"s_0467 + s_1643 > s_0421 + s_1644 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1643 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1644 / 0.1)))))\n",
"s_0467 + s_0738 + s_0116 + s_1018 + s_1336 > s_0330 + s_0454 + s_0543 + s_1017 + s_1335 + s_0783 | (3.08892317229363e-05 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0738 / 0.1))) + (1.0 * log((s_0116 / 0.1))) + (1.0 * log((s_1018 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (-1.0 * log((s_0330 / 0.1))) + (-1.0 * log((s_0454 / 0.1))) + (-1.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_1017 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_0783 / 0.1)))))\n",
"s_1336 + s_1406 > s_1335 + s_1544 | (0.034336359169748 * (1 + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_1406 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1544 / 0.1)))))\n",
"s_1179 > s_0381 + s_0929 | (0.0414265806134143 * (1 + (1.0 * log((s_1179 / 0.1))) + (-1.0 * log((s_0381 / 0.1))) + (-1.0 * log((s_0929 / 0.1)))))\n",
"s_1363 > s_1430 + s_1179 | (0.158233967969303 * (1 + (1.0 * log((s_1363 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1179 / 0.1)))))\n",
"s_0807 + s_0336 > s_0372 + s_0802 | (0.00362498293358012 * (1 + (1.0 * log((s_0807 / 0.1))) + (1.0 * log((s_0336 / 0.1))) + (-1.0 * log((s_0372 / 0.1))) + (-1.0 * log((s_0802 / 0.1)))))\n",
"s_0621 + s_0627 > s_0913 + s_1561 | (0.0271110954536016 * (1 + (1.0 * log((s_0621 / 0.1))) + (1.0 * log((s_0627 / 0.1))) + (-1.0 * log((s_0913 / 0.1))) + (-1.0 * log((s_1561 / 0.1)))))\n",
"s_0913 + s_1561 > s_0446 + s_0721 | (0.0271110954535792 * (1 + (1.0 * log((s_0913 / 0.1))) + (1.0 * log((s_1561 / 0.1))) + (-1.0 * log((s_0446 / 0.1))) + (-1.0 * log((s_0721 / 0.1)))))\n",
"s_0627 + s_0913 > s_0621 + s_0721 | (0.0799383305030384 * (1 + (1.0 * log((s_0627 / 0.1))) + (1.0 * log((s_0913 / 0.1))) + (-1.0 * log((s_0621 / 0.1))) + (-1.0 * log((s_0721 / 0.1)))))\n",
"s_0913 > s_0772 | (0.0195735226740616 * (1 + (1.0 * log((s_0913 / 0.1))) + (-1.0 * log((s_0772 / 0.1)))))\n",
"s_0493 > s_0913 + s_1009 | (0.00787329117099211 * (1 + (1.0 * log((s_0493 / 0.1))) + (-1.0 * log((s_0913 / 0.1))) + (-1.0 * log((s_1009 / 0.1)))))\n",
"s_1009 + s_0451 + s_1531 > s_1185 | (0.00787329117099173 * (1 + (1.0 * log((s_1009 / 0.1))) + (1.0 * log((s_0451 / 0.1))) + (1.0 * log((s_1531 / 0.1))) + (-1.0 * log((s_1185 / 0.1)))))\n",
"s_1552 + s_1336 + s_1189 > s_1407 + s_0333 + s_0738 + s_1141 + s_1335 | (3.08892317229363e-05 * (1 + (1.0 * log((s_1552 / 0.1))) + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_1189 / 0.1))) + (-1.0 * log((s_1407 / 0.1))) + (-1.0 * log((s_0333 / 0.1))) + (-1.0 * log((s_0738 / 0.1))) + (-1.0 * log((s_1141 / 0.1))) + (-1.0 * log((s_1335 / 0.1)))))\n",
"s_0262 + s_1095 > s_0233 + s_1189 | (0.0191323468756361 * (1 + (1.0 * log((s_0262 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1189 / 0.1)))))\n",
"s_0028 + s_1735 > s_0397 + s_1734 | (0.00539107129442425 * (1 + (1.0 * log((s_0028 / 0.1))) + (1.0 * log((s_1735 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_1734 / 0.1)))))\n",
"s_1736 > s_0384 + s_1735 | (0.00539107129442425 * (1 + (1.0 * log((s_1736 / 0.1))) + (-1.0 * log((s_0384 / 0.1))) + (-1.0 * log((s_1735 / 0.1)))))\n",
"s_1336 + s_1742 > s_1335 + s_1750 | (0.0038479948756196 * (1 + (1.0 * log((s_1336 / 0.1))) + (1.0 * log((s_1742 / 0.1))) + (-1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1750 / 0.1)))))\n",
"s_1484 + s_1745 > s_1430 + s_1742 | (0.0038479948756196 * (1 + (1.0 * log((s_1484 / 0.1))) + (1.0 * log((s_1745 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1742 / 0.1)))))\n",
"s_0028 + s_1745 > s_0397 + s_1736 | (0.00539107129442425 * (1 + (1.0 * log((s_0028 / 0.1))) + (1.0 * log((s_1745 / 0.1))) + (-1.0 * log((s_0397 / 0.1))) + (-1.0 * log((s_1736 / 0.1)))))\n",
"s_1287 + s_1792 > s_0783 + s_1745 | (0.0130870610456636 * (1 + (1.0 * log((s_1287 / 0.1))) + (1.0 * log((s_1792 / 0.1))) + (-1.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_1745 / 0.1)))))\n",
"s_1745 + s_1777 > s_1776 + s_1733 | (0.0038479948756196 * (1 + (1.0 * log((s_1745 / 0.1))) + (1.0 * log((s_1777 / 0.1))) + (-1.0 * log((s_1776 / 0.1))) + (-1.0 * log((s_1733 / 0.1)))))\n",
"s_1041 + s_0467 + s_1750 > s_0421 + s_1430 + s_1751 | (0.00384799487562186 * (1 + (1.0 * log((s_1041 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1750 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1751 / 0.1)))))\n",
"s_0467 + s_0671 + s_1751 > s_0421 + s_1430 + s_1754 | (0.00384799487562186 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_0671 / 0.1))) + (1.0 * log((s_1751 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1754 / 0.1)))))\n",
"s_1242 + s_0467 + s_1754 > s_0421 + s_1430 + s_1752 | (0.00384799487562186 * (1 + (1.0 * log((s_1242 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1754 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1752 / 0.1)))))\n",
"s_0603 + s_0467 + s_1752 > s_0421 + s_1430 + s_1755 | (0.0038479948756196 * (1 + (1.0 * log((s_0603 / 0.1))) + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1752 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1755 / 0.1)))))\n",
"s_1734 > s_0149 + s_1762 | (0.00269553564721213 * (1 + (1.0 * log((s_1734 / 0.1))) + (-1.0 * log((s_0149 / 0.1))) + (-1.0 * log((s_1762 / 0.1)))))\n",
"s_0467 + s_1762 > s_0421 + s_1733 | (0.0523634810234329 * (1 + (1.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1762 / 0.1))) + (-1.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1733 / 0.1)))))\n",
"s_0826 + 8 * s_1028 > 8 * s_0783 + s_1765 | (7.61842038009631e-06 * (1 + (1.0 * log((s_0826 / 0.1))) + (8.0 * log((s_1028 / 0.1))) + (-8.0 * log((s_0783 / 0.1))) + (-1.0 * log((s_1765 / 0.1)))))\n",
"s_1765 > s_1430 + s_1768 | (0.0038479948756196 * (1 + (1.0 * log((s_1765 / 0.1))) + (-1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_1768 / 0.1)))))\n",
"s_1791 > 4 * s_0543 + s_0565 | (3.08892317225085e-05 * (1 + (1.0 * log((s_1791 / 0.1))) + (-4.0 * log((s_0543 / 0.1))) + (-1.0 * log((s_0565 / 0.1)))))\n",
"2 * s_1552 + s_1791 > 2 * s_1551 + s_0768 | (3.08892317229363e-05 * (1 + (2.0 * log((s_1552 / 0.1))) + (1.0 * log((s_1791 / 0.1))) + (-2.0 * log((s_1551 / 0.1))) + (-1.0 * log((s_0768 / 0.1)))))\n",
"s_0998 > s_1791 | (6.1778463445417e-05 * (1 + (1.0 * log((s_0998 / 0.1))) + (-1.0 * log((s_1791 / 0.1)))))\n",
"s_0282 + s_1095 > s_0233 + s_1193 | (0.0586202819065749 * (1 + (1.0 * log((s_0282 / 0.1))) + (1.0 * log((s_1095 / 0.1))) + (-1.0 * log((s_0233 / 0.1))) + (-1.0 * log((s_1193 / 0.1)))))\n",
"s_0657 > s_0622 | (0.0656079149963033 * (1 + (1.0 * log((s_0657 / 0.1))) + (-1.0 * log((s_0622 / 0.1)))))\n",
" > s_0451 | (1.49280744931915 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0451 / 0.1)))))\n",
"s_0421 + s_1430 > s_0467 | (12.8512360032879 * (1 + (1.0 * log((s_0421 / 0.1))) + (1.0 * log((s_1430 / 0.1))) + (-1.0 * log((s_0467 / 0.1)))))\n",
" > s_0497 | (0.000720979601425486 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0497 / 0.1)))))\n",
" > s_0520 | (0.000720979601425486 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0520 / 0.1)))))\n",
"s_0543 > | (1.0 * (((0.320567754236931 * (1 + (1.0 * log((s_0543 / 0.1))))) + 0.0 + abs(((0.320567754236931 * (1 + (1.0 * log((s_0543 / 0.1))))) - 0.0))) / 2))\n",
" > s_0546 | (3.46291835458927e-06 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0546 / 0.1)))))\n",
" > s_0579 | (9.82083645361517e-05 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0579 / 0.1)))))\n",
"s_1239 + 0.5 * s_1372 > s_1240 | (0.0229563090982916 * (1 + (1.0 * log((s_1239 / 0.1))) + (0.5 * log((s_1372 / 0.1))) + (-1.0 * log((s_1240 / 0.1)))))\n",
"0.5 * s_1372 + s_1731 > s_1732 | (0.0229563090980402 * (1 + (0.5 * log((s_1372 / 0.1))) + (1.0 * log((s_1731 / 0.1))) + (-1.0 * log((s_1732 / 0.1)))))\n",
" > s_0657 | (1.0 * (1 + (1.0 * log(2.0)) + (-1.0 * log((s_0657 / 0.1)))))\n",
"s_1484 + s_0657 > s_0663 + s_1531 | (0.0221586919261637 * (1 + (1.0 * log((s_1484 / 0.1))) + (1.0 * log((s_0657 / 0.1))) + (-1.0 * log((s_0663 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
"s_1484 + s_0622 > s_0627 + s_1531 | (0.0110793449722376 * (1 + (1.0 * log((s_1484 / 0.1))) + (1.0 * log((s_0622 / 0.1))) + (-1.0 * log((s_0627 / 0.1))) + (-1.0 * log((s_1531 / 0.1)))))\n",
" > s_0838 | (0.001143178607316 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0838 / 0.1)))))\n",
" > s_0841 | (0.00108153866040612 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_0841 / 0.1)))))\n",
" > s_1212 | (0.00120163266904248 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1212 / 0.1)))))\n",
" > s_1255 | (9.57150633208474e-05 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1255 / 0.1)))))\n",
"s_1248 > | (1.0 * (((2.77033467884759e-07 * (1 + (1.0 * log((s_1248 / 0.1))))) + 0.0 + abs(((2.77033467884759e-07 * (1 + (1.0 * log((s_1248 / 0.1))))) - 0.0))) / 2))\n",
" > s_1261 | (1.78686587096806e-05 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1261 / 0.1)))))\n",
"2 * s_1776 > 2 * s_1765 + s_1725 | (0.0019239974378098 * (1 + (2.0 * log((s_1776 / 0.1))) + (-2.0 * log((s_1765 / 0.1))) + (-1.0 * log((s_1725 / 0.1)))))\n",
"s_1334 + s_1335 > s_1333 + s_1336 | (1.06213701401227 * (1 + (1.0 * log((s_1334 / 0.1))) + (1.0 * log((s_1335 / 0.1))) + (-1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_1336 / 0.1)))))\n",
" > s_1329 | (4.47409051412934e-05 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1329 / 0.1)))))\n",
" > s_1372 | (0.0230335321771807 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1372 / 0.1)))))\n",
" > s_1430 | (0.131013836759781 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1430 / 0.1)))))\n",
" > s_1494 | (0.027038466512633 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1494 / 0.1)))))\n",
" > s_1609 | (0.0349372447626834 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1609 / 0.1)))))\n",
" > s_1804 | (4.72342063565976e-05 * (1 + (1.0 * log(1.0)) + (-1.0 * log((s_1804 / 0.1)))))\n",
"s_0229 + 2 * s_0467 + s_1333 > s_0226 + 2 * s_0421 + s_1334 + 2 * s_1430 | (3.08892317453432e-05 * (1 + (1.0 * log((s_0229 / 0.1))) + (2.0 * log((s_0467 / 0.1))) + (1.0 * log((s_1333 / 0.1))) + (-1.0 * log((s_0226 / 0.1))) + (-2.0 * log((s_0421 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-2.0 * log((s_1430 / 0.1)))))\n",
"s_0766 > s_0765 + s_1430 | (9.26676951688061e-05 * (1 + (1.0 * log((s_0766 / 0.1))) + (-1.0 * log((s_0765 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_1333 + s_1530 > s_1334 + s_1522 | (3.08892316991383e-05 * (1 + (1.0 * log((s_1333 / 0.1))) + (1.0 * log((s_1530 / 0.1))) + (-1.0 * log((s_1334 / 0.1))) + (-1.0 * log((s_1522 / 0.1)))))\n",
"s_0346 > s_0311 + s_1430 | (6.17784634458656e-05 * (1 + (1.0 * log((s_0346 / 0.1))) + (-1.0 * log((s_0311 / 0.1))) + (-1.0 * log((s_1430 / 0.1)))))\n",
"s_0003 > | (1.0 * (((6.20554969142397e-05 * (1 + (1.0 * log((s_0003 / 0.1))))) + 0.0 + abs(((6.20554969142397e-05 * (1 + (1.0 * log((s_0003 / 0.1))))) - 0.0))) / 2))\n",
"s_0334 > | (1.0 * (((3.11662651885034e-05 * (1 + (1.0 * log((s_0334 / 0.1))))) + 0.0 + abs(((3.11662651885034e-05 * (1 + (1.0 * log((s_0334 / 0.1))))) - 0.0))) / 2))\n",
"s_1407 > | (1.0 * (((3.08892317229363e-05 * (1 + (1.0 * log((s_1407 / 0.1))))) + 0.0 + abs(((3.08892317229363e-05 * (1 + (1.0 * log((s_1407 / 0.1))))) - 0.0))) / 2))\n",
"s_1550 > | (1.0 * (((2.77033467995043e-07 * (1 + (1.0 * log((s_1550 / 0.1))))) + 0.0 + abs(((2.77033467995043e-07 * (1 + (1.0 * log((s_1550 / 0.1))))) - 0.0))) / 2))\n",
"0.000223 * s_0133 + 2.6e-05 * s_0378 + 0.000223 * s_0226 + 0.00026 * s_0380 + 0.5137 * s_1041 + 0.000223 * s_1552 + 0.2958 * s_1061 + 0.2411 * s_1068 + 0.2411 * s_1072 + 54.12 * s_0467 + 0.000122 * s_0480 + 2e-06 * s_0476 + 0.005205 * s_0497 + 0.005205 * s_0520 + 0.000576 * s_0555 + 2.5e-05 * s_0546 + 0.1335 * s_0575 + 0.000709 * s_0579 + 0.09158 * s_1083 + 0.02617 * s_0726 + 0.02702 * s_0731 + 0.02702 * s_0760 + 0.02617 * s_0805 + 0.000223 * s_0859 + 0.006715 * s_0838 + 0.007808 * s_0841 + 0.2632 * s_1101 + 0.2632 * s_1095 + 0.6126 * s_0929 + 0.2151 * s_0945 + 0.09474 * s_1106 + 0.2905 * s_1119 + 0.1952 * s_1494 + 0.4505 * s_1127 + 0.3432 * s_1131 + 0.1537 * s_1141 + 0.008675 * s_1212 + 0.000223 * s_0336 + 0.000691 * s_1255 + 7e-06 * s_1261 + 0.001831 * s_1333 + 0.000447 * s_1335 + 0.01301 * s_0451 + 0.000323 * s_1329 + 0.06382 * s_1437 + 0.07521 * s_1435 + 0.1853 * s_1151 + 0.000223 * s_1508 + 0.2211 * s_1155 + 0.000223 * s_1522 + 0.000223 * s_1546 + 0.2158 * s_1170 + 0.000223 * s_1577 + 0.004338 * s_1609 + 0.000223 * s_0337 + 0.000223 * s_1644 + 0.2537 * s_1179 + 0.05684 * s_1185 + 0.1379 * s_1189 + 5.5e-05 * s_1765 + 0.1441 * s_1792 + 0.4232 * s_1193 + 0.000341 * s_1804 + 0.01946 * s_1033 + 0.01389 * s_1719 > 53.95 * s_0421 + 53.95 * s_1430 + 0.7739 * s_0783 | (1.0 * (((0.138516734183571 * (1 + (0.000223 * log((s_0133 / 0.1))) + (2.6e-05 * log((s_0378 / 0.1))) + (0.000223 * log((s_0226 / 0.1))) + (0.00026 * log((s_0380 / 0.1))) + (0.5137 * log((s_1041 / 0.1))) + (0.000223 * log((s_1552 / 0.1))) + (0.2958 * log((s_1061 / 0.1))) + (0.2411 * log((s_1068 / 0.1))) + (0.2411 * log((s_1072 / 0.1))) + (54.12 * log((s_0467 / 0.1))) + (0.000122 * log((s_0480 / 0.1))) + (2e-06 * log((s_0476 / 0.1))) + (0.005205 * log((s_0497 / 0.1))) + (0.005205 * log((s_0520 / 0.1))) + (0.000576 * log((s_0555 / 0.1))) + (2.5e-05 * log((s_0546 / 0.1))) + (0.1335 * log((s_0575 / 0.1))) + (0.000709 * log((s_0579 / 0.1))) + (0.09158 * log((s_1083 / 0.1))) + (0.02617 * log((s_0726 / 0.1))) + (0.02702 * log((s_0731 / 0.1))) + (0.02702 * log((s_0760 / 0.1))) + (0.02617 * log((s_0805 / 0.1))) + (0.000223 * log((s_0859 / 0.1))) + (0.006715 * log((s_0838 / 0.1))) + (0.007808 * log((s_0841 / 0.1))) + (0.2632 * log((s_1101 / 0.1))) + (0.2632 * log((s_1095 / 0.1))) + (0.6126 * log((s_0929 / 0.1))) + (0.2151 * log((s_0945 / 0.1))) + (0.09474 * log((s_1106 / 0.1))) + (0.2905 * log((s_1119 / 0.1))) + (0.1952 * log((s_1494 / 0.1))) + (0.4505 * log((s_1127 / 0.1))) + (0.3432 * log((s_1131 / 0.1))) + (0.1537 * log((s_1141 / 0.1))) + (0.008675 * log((s_1212 / 0.1))) + (0.000223 * log((s_0336 / 0.1))) + (0.000691 * log((s_1255 / 0.1))) + (7e-06 * log((s_1261 / 0.1))) + (0.001831 * log((s_1333 / 0.1))) + (0.000447 * log((s_1335 / 0.1))) + (0.01301 * log((s_0451 / 0.1))) + (0.000323 * log((s_1329 / 0.1))) + (0.06382 * log((s_1437 / 0.1))) + (0.07521 * log((s_1435 / 0.1))) + (0.1853 * log((s_1151 / 0.1))) + (0.000223 * log((s_1508 / 0.1))) + (0.2211 * log((s_1155 / 0.1))) + (0.000223 * log((s_1522 / 0.1))) + (0.000223 * log((s_1546 / 0.1))) + (0.2158 * log((s_1170 / 0.1))) + (0.000223 * log((s_1577 / 0.1))) + (0.004338 * log((s_1609 / 0.1))) + (0.000223 * log((s_0337 / 0.1))) + (0.000223 * log((s_1644 / 0.1))) + (0.2537 * log((s_1179 / 0.1))) + (0.05684 * log((s_1185 / 0.1))) + (0.1379 * log((s_1189 / 0.1))) + (5.5e-05 * log((s_1765 / 0.1))) + (0.1441 * log((s_1792 / 0.1))) + (0.4232 * log((s_1193 / 0.1))) + (0.000341 * log((s_1804 / 0.1))) + (0.01946 * log((s_1033 / 0.1))) + (0.01389 * log((s_1719 / 0.1))))) + 0.0 + abs(((0.138516734183571 * (1 + (0.000223 * log((s_0133 / 0.1))) + (2.6e-05 * log((s_0378 / 0.1))) + (0.000223 * log((s_0226 / 0.1))) + (0.00026 * log((s_0380 / 0.1))) + (0.5137 * log((s_1041 / 0.1))) + (0.000223 * log((s_1552 / 0.1))) + (0.2958 * log((s_1061 / 0.1))) + (0.2411 * log((s_1068 / 0.1))) + (0.2411 * log((s_1072 / 0.1))) + (54.12 * log((s_0467 / 0.1))) + (0.000122 * log((s_0480 / 0.1))) + (2e-06 * log((s_0476 / 0.1))) + (0.005205 * log((s_0497 / 0.1))) + (0.005205 * log((s_0520 / 0.1))) + (0.000576 * log((s_0555 / 0.1))) + (2.5e-05 * log((s_0546 / 0.1))) + (0.1335 * log((s_0575 / 0.1))) + (0.000709 * log((s_0579 / 0.1))) + (0.09158 * log((s_1083 / 0.1))) + (0.02617 * log((s_0726 / 0.1))) + (0.02702 * log((s_0731 / 0.1))) + (0.02702 * log((s_0760 / 0.1))) + (0.02617 * log((s_0805 / 0.1))) + (0.000223 * log((s_0859 / 0.1))) + (0.006715 * log((s_0838 / 0.1))) + (0.007808 * log((s_0841 / 0.1))) + (0.2632 * log((s_1101 / 0.1))) + (0.2632 * log((s_1095 / 0.1))) + (0.6126 * log((s_0929 / 0.1))) + (0.2151 * log((s_0945 / 0.1))) + (0.09474 * log((s_1106 / 0.1))) + (0.2905 * log((s_1119 / 0.1))) + (0.1952 * log((s_1494 / 0.1))) + (0.4505 * log((s_1127 / 0.1))) + (0.3432 * log((s_1131 / 0.1))) + (0.1537 * log((s_1141 / 0.1))) + (0.008675 * log((s_1212 / 0.1))) + (0.000223 * log((s_0336 / 0.1))) + (0.000691 * log((s_1255 / 0.1))) + (7e-06 * log((s_1261 / 0.1))) + (0.001831 * log((s_1333 / 0.1))) + (0.000447 * log((s_1335 / 0.1))) + (0.01301 * log((s_0451 / 0.1))) + (0.000323 * log((s_1329 / 0.1))) + (0.06382 * log((s_1437 / 0.1))) + (0.07521 * log((s_1435 / 0.1))) + (0.1853 * log((s_1151 / 0.1))) + (0.000223 * log((s_1508 / 0.1))) + (0.2211 * log((s_1155 / 0.1))) + (0.000223 * log((s_1522 / 0.1))) + (0.000223 * log((s_1546 / 0.1))) + (0.2158 * log((s_1170 / 0.1))) + (0.000223 * log((s_1577 / 0.1))) + (0.004338 * log((s_1609 / 0.1))) + (0.000223 * log((s_0337 / 0.1))) + (0.000223 * log((s_1644 / 0.1))) + (0.2537 * log((s_1179 / 0.1))) + (0.05684 * log((s_1185 / 0.1))) + (0.1379 * log((s_1189 / 0.1))) + (5.5e-05 * log((s_1765 / 0.1))) + (0.1441 * log((s_1792 / 0.1))) + (0.4232 * log((s_1193 / 0.1))) + (0.000341 * log((s_1804 / 0.1))) + (0.01946 * log((s_1033 / 0.1))) + (0.01389 * log((s_1719 / 0.1))))) - 0.0))) / 2))\n"
]
}
],
"source": [
"show(m)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"ATP = \"s_0467\"\n",
"ADP = \"s_0421\"\n",
"AMP = \"s_0454\""
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"from ecell4_base import *\n",
"from ecell4_base.core import *"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"w = ode.ODEWorld()\n",
"for key, value in y0.items():\n",
" w.set_value(Species(key), value)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"# sim = ode.ODESimulator(w, m, ode.RUNGE_KUTTA_CASH_KARP54)\n",
"sim = ode.ODESimulator(w, m)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"sim.set_absolute_tolerance(1e-12)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"#sim.set_maximum_step_interval(0.01)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"# obs = FixedIntervalNumberObserver(1.0, [ATP, ADP, AMP])\n",
"obs = FixedIntervalNumberObserver(0.1, [ATP, ADP, AMP])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"# sim.run(30, obs)\n",
"sim.run(100, obs)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"# obs = run_simulation(6.0, model=m, y0=y0, species_list=[ATP, ADP, AMP], return_type='observer')"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show(obs)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show(obs)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"data = numpy.array(obs.data()).T"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"plt.plot(data[0], (data[1] + data[2] / 2) / (data[1] + data[2] + data[3]), 'r-')\n",
"plt.ylim(0.3, 0.5)\n",
"plt.xlim(0.0, 100.0)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment