Skip to content

Instantly share code, notes, and snippets.

@kaizu
Created January 19, 2016 03:42
Show Gist options
  • Save kaizu/51c721a525c9ac4bc782 to your computer and use it in GitHub Desktop.
Save kaizu/51c721a525c9ac4bc782 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pylab as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"gene_length = np.linspace(0, 4500, 51)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VNXd8PHvb6Igl3BJKgRFAoiIEpAAWp9SMGLhiUEH\nkSW0Kiq6fBT7LMHaViKvEDRen3ah+Hp7rVZFFLCKxiaNyCUtWustAcKlCEgQEcJrIoHoSwyZ/f4x\nM2GSmTOZmcxM5vL7rDWLZO9z9pw5kB87v73P3mKMQSmlVOKydfQFKKWUiiwN9EopleA00CulVILT\nQK+UUglOA71SSiU4DfRKKZXg2gz0IvKCiFSLyBaPst4iskZEdorIeyLS06MuX0R2icgOEZnsUT5a\nRLaIyBci8nj4P4pSSilfAunR/xn4z1Zl84G1xphzgfVAPoCInA/MAM4DLgeeFhFxnfMMcIsxZigw\nVERat6mUUioC2gz0xpgPgO9aFU8FXnZ9/TJwletrO7DCGHPCGFMF7AIuEpEMINUY86nruFc8zlFK\nKRVBoebo+xhjqgGMMYeAPq7yM4H9HscdcJWdCXztUf61q0wppVSEhWswVtdRUEqpGHVKiOdVi0hf\nY0y1Ky1z2FV+ADjL47j+rjKrcp9ERP/jUEqpEBhjpHVZoIFeXC+3IuAm4FHgRuAdj/LlIrIEZ2pm\nCPCJMcaISJ2IXAR8CtwALG3jYgO8tPCpKamhckqlV/mI4hEcKz9G1X1VXnWDCgfRPbu7z/MyCzLZ\nV7DPZ3uA5XtZ1bVu7yVe4iZuClt77b2+aL5XsO29xEv8sfiPMXt9sfJeL/ESiwoW6b1oo72Sa0v4\n/bW/Z+sVW73qsv6aBeCz7qxFmexf7N2ev3Oy/prFZ8eOcdqvvM87/nomQHPdpVzqdQwENr3yNeCf\nOGfKfCUis4FHgEkishO4zPU9xpjtwCpgO1AC3GFORuxfAy8AXwC7jDGlbb13pBiHoaakhqrCKmpK\najAO5yUeKz/m8/j6inpSR6f6rOue3Z203DTS7ektytPt6WQuyPRZnpabZnmOv7pYby+Wr73L0C4x\nfX2x8l5dhnZJynvR6z97syfn1BZ1e3JO5cz8s3yWn3Z2Fz65CD78WYsqPvwZfHIRlnWvXucI+pxP\nLoLPLOo+/6n4rGtNYnGZYhExkbou4zBsnbaVmqKa5rJ0ezpZq7OoLa21/B8/LTfN8jyxCcZhqC2t\npb6ivjn4+yt3X0uwdZ7lT21/ikeXPRq29sJxfdF8r2DOWfrxUhYvXhyz1xcr7+W+T7FyfU1NDt5/\nYx+HPqsjY2xPJl2TSUqKzbJObMK0LZVU/62WIbth9xDoe3kaq0c6e+1WdaW1tVyxuZKLPqG57pOL\nYNGgTBbv3edV/qvSEs674w4WflnlVffA2YMwxvism5jWi/W1R4I654GzB5HdvbvP6/vrBc7P5a77\nOP9Sn6mbpAv0/tIzoQbzjlJWVkZOTk6HvX880XsVmEjdJ4cxlNbWUn7sGKNTU8lNS8PmesTGqs5h\nDNO2bqWo5uTPoz09ndVZzjSHr7pb+/Xjyq3e6Y/iEc6AOKXS+2e/eMQIyo8d476qKq+6y3r1Yt2R\nI17lNx86xPRJkyzbs3qvgsxMCvZ5p2Daur7ctLTA7sWlvgN9qIOxcctfeiY972TP3lcwF5uQnpdO\nel66zzaiTQNX4PReBaa998lX0AbfQdlfwF6dlUVpbW2LcoCimhpKa2ubv25d1/MU3yGtor7ectyv\nor6e0am+U7Pje/b0GeinT5pEbloa9vR0r2t3f2ZfdQsyMymvrw/qHPd/fO57UlFfT3b37i3+s3TX\nTfH5KZIw0PvLtUPsBXOlYk2wPfBb+/ULOmC72/fFX9C2kt29u986q6DtLzAHGnxb14VyDoBNhLz0\ndPLSvWOTu85K0gV694BM6/RMWm5aB16VUrEllHSKVQ883L1sf0F7xumnU3fiRFh7zO0Nvq3rQjmn\nvZIu0ItN/KZnlEomwaZa/KVTrHrgVkLtZfsL2u4gGc4ec6SCbzQl3WCsUskmlFSL1YCm1aBl4SDn\nzBBfg4nvZmXx/MGDQefo3ddoFZj91SUrEdFZN0olqlBTLb4C86y+fVlWXe1V7i+YBzIzRAN25FkF\n+oRO3binQx4rP0bq6FRN0ai419GpFn/plLby2dHOS6uTEjbQ+3swSoO9ikehzGrxN3PFarDT34Bm\newYnVcdJ2EBfW1rbIsgD1BTVUFtaq1MnVUyzSsOEMqvF38wVq955WwOaGszjT8IG+rYejFKqI4WS\nU4+VVIuKPwkb6Nt6MEqpjhLKXPTS2lpNtaiQJWyg1wejVEcLNgXTVk49f8AATbWokCRsoNcHo1RH\nCiUF01ZOXVMtKlQ6j16pdvLVc7eao96eVQp1brlqS1LOo1cq0qx67mMteub+UjCB5NSVCoUGeqUC\nEGy+fbTFOi6BpGA0p67CTQO9Um0IJd9uE/G7IJcGcxVNGuiVcglllozV4OmY1FQWZGZqCkbFBA30\nShH6LJm28u3aa1exQAO9SjpWs2SC7bUHkm9XKhZooFdJJdyzZEDz7Sr2aaBXSSUSs2SUinUa6FVC\nshpY1VkyKhlpoFcJx9/Aqs6SUclIl0BQCaekpkaXGFBJSZdAUAkn2PRMRX09eR7LAWvPXSULDfQq\nLoWSnsl2Dbhqvl0lG1tHX0B7GYehpqSGqsIqakpqMA5N+SQDf/Pe3bsqefIcWFUq2cR1j143AE8O\nvlI0mp5RKnBxHeh1A/DEZ5WiubVfP5/Ha3pGKW9xnbrxtwG4SgxWKRpA0zNKBSiue/S6AXjiCHYG\nzebvv9f0jFIBiutArxuAJ4ZQZ9BoekapwMT9A1PGYXQD8DinDzgpFR4ReWBKRPKB64EmoBKYDXQD\nVgKZQBUwwxhT53H8zcAJYK4xZk173h9AbEJ6XroOvsYxnUGjVGSFHOhFJBO4FRhmjPlRRFYCvwLO\nB9YaYx4TkXuAfGC+iJwPzADOA/oDa0XkHF3rIHlY5eH1ASelIqs9PfqjwI9ANxFxAF2AAzgD+yWu\nY14GyoD5gB1YYYw5AVSJyC7gIuDjdlyDihP+8vDuB5ysVo5USrVPyIHeGPOdiPwR+Ar4AVhjjFkr\nIn2NMdWuYw6JSB/XKWcCH3k0ccBVppKAvydZNT2jVGS1J3UzGLgLZy6+DnhDRK4DWqdiQkrNFBQU\nNH+dk5NDTk5OSNepYkNbeXhNzygVvLKyMsrKyto8LuRZNyIyA5hkjLnV9f0s4GJgIpBjjKkWkQxg\ngzHmPBGZDxhjzKOu40uBRcYYr9SNLlMc36z2ZLWaWaPBXanwiMSsm53AfSJyGtAAXAZ8CtQDNwGP\nAjcC77iOLwKWi8gSnCmbIcAn7Xh/FYOscvFvDh+ueXilOkh7cvSbReQV4HOc0ysrgP8DpAKrRORm\nYB/OmTYYY7aLyCpgO9AI3KHd9sRjlYtf8913modXqoPE/QNTKrYUVlVxX1WVd/mgQSzIzIz+BSmV\nRHSHKRVWoc6JV0pFnwZ6FTSdE69UfNHUjQqav7Vp8tLTm3v7motXKro0daPCRufEKxVf4nrjEdUx\nNA+vVHzRQK8sOYyhpKaGwqoqSmpqcLjSabr5tlLxRXP0yid/A642Ec3DKxWDrHL0GuiVT20NuCql\nYo9VoNfUjfLJ34CrUiq+aKBXPumAq1KJQwO98kkHXJVKHJqjT3JWSxl41umAq1LxQQdjlZe2ZtYo\npeKLDsYqL/6291NKJQ5dAiGJtbWUQbAGDhzIvn372ntZqoNlZmZS5WOpaRW/NNAnsXDPrNm3bx+a\ncot/omm7hKOpmyThazkDnVmjrDz++OMsX768oy9DhYn26JOAv0FX3d5P+dKnTx8OHz7c0ZehwkQD\nfRLwN+jqXk5YlzVQKnFp6iYJ6HIGSiU3DfRJQJczcBo4cCBdu3alR48e9OvXj9mzZ/PDDz8EfP6P\nP/7IzTffTM+ePTnjjDNYsmSJ3+Nfe+01Bg4cSGpqKldffTVHjhwJuK1NmzYxduxYunXrxoUXXsjm\nzZub67Zt20Zubi6nn346KSkpXu87b9480tLSGDduHN98802L65k3b17An1clDg30SSAWBl0dDigp\ngcJC558OR/TbEBGKi4s5evQo5eXlfPbZZxQWFgZ8/qJFi9izZw/79+9n/fr1PPbYY6xZs8bnsdu2\nbeP2229n+fLlVFdX06VLF+bMmRNQW42NjVx11VXccMMNHDlyhBtuuIGpU6dy4sQJAE499VRmzpzJ\niy++6PW+n376KRUVFVRXVzNu3DgeeeQRAOrq6vjjH/8Y1OdVCcQYE3Mv52WpcGpyOEzxt9+awqoq\nU/ztt6bJ4Qj7e1j9vTU1GWO3GwMnX3a7szxQ4Whj4MCBZt26dc3f/+53vzNXXnllwOefccYZZu3a\ntc3fL1y40PzqV7/yeey9995rrrvuuubv9+zZYzp16mTq6+vbbOu9994z/fv3b9HegAEDzHvvvdei\nbPfu3cZms7UoW7lypbn33nuNMcaUlpaaKVOmGGOM+e///m+zYsWKgD4nYJYvX26WLFkS0PEqdrh+\nBr1iqvboE4jVjlBA8z6uCzIzm/d1jZbSUigqallWVOQsj2Ybnvbv309JSQnZ2dn8+te/pnfv3qSl\npTX/6f561KhRABw5coSDBw8ycuTI5jYuuOACtm3b5rP9bdu2ccEFFzR/P3jwYDp37swXX3zRZlvb\nt29vUdfWe3kaPnw4Gzdu5Pjx46xbt47hw4fz+eef88UXXzBz5szAb5BKKDrrJkHE8ro15eW+yysq\nIC8vem0AXHXVVZxyyin07NmTK664gnvvvZfOnTvz1FNP+T2vvr4eEaFnz57NZT169OCYxUB3fX19\ni2M9j2+rLX/ntmX48OFcffXVXHzxxZx//vksXbqUqVOn8uKLL7J06VLefPNNBgwYwFNPPUWPHj3a\nbE8lBu3RJ4hYXrdm9Gjf5dnZ0W0D4J133qG2tpa9e/fy5JNP0rlz54DO6+4auD569GhzWV1dHakW\nA93du3dvcazn8W215e/cQMybN49Nmzbx2muvsXLlSi655BKampr405/+xPr16xk2bBgPP/xwQG2p\nxKCBPkHE8hTK3Fyw21uW2e3O8mi2AfhcomHOnDmkpqbSo0ePFq/U1FRGjBgBQK9evejXr1+L2S+b\nN29m+PDhPt9n+PDhLY7ds2cPjY2NDB06tM22hg8fzpYtW1q0t2XLFsv3slJdXc2f/vQnFi5cyNat\nWxk5ciQpKSlceOGFVPrYJlIlLk3dJIhYnkJps8Hq1c58ekWFsxeem+ssj2YbVp555hmeeeaZNo+b\nNWsWhYWFjBkzhoMHD/L888/zyiuv+Dz2uuuu42c/+xkffvgho0aNYuHChUyfPp1u3bq12VZOTg4p\nKSk8+eST3HbbbTz77LPYbDYmTpzY3H5DQwMNDQ0YY2hoaEBE6NSpU4truPvuu1m8eDGnnXYagwYN\n4tNPP+X7779nw4YNDB48ONTbpeKRrxHajn6hs26C1uRwGPuWLYYNG5pf9i1bIjK7xkqs/70NGjSo\nxaybYDU0NJibb77Z9OjRw2RkZJjHH3+8RX337t3NBx980Pz966+/bgYMGGC6d+9upk2bZr777ruA\n29q0aZMZM2aM6dq1qxkzZozZvHlzc11VVZUREWOz2YzNZjMiYgYNGtTi/PXr15srrriiRdm8efNM\n7969zX/8x3+YAwcOWH5OdNZN3MJi1o1uPJJAOnpHKNemB1F7PxUZIsLy5cs5fPiwPmAVZ6w2HtHU\nTZzxt/WfewqlrlujlPKkgT6OxPIUSqVU7NJZN3EklqdQKqVilwb6OBLLUyiVUrFLA30cieUplEqp\n2NWuQC8iPUXkDRHZISLbROSnItJbRNaIyE4ReU9Eenocny8iu1zHT27/5SeXWFiFUikVf9o7GPsE\nUGKMuUZETgG6AfcCa40xj4nIPUA+MF9EzgdmAOcB/YG1InKOzqMMnE1Et/5TSgUt5EAvIj2A8caY\nmwCMMSeAOhGZClziOuxloAyYD9iBFa7jqkRkF3AR8HFb72UchtrSWo6VHyN1dCppuWmILTmDm06h\nVEoFqz09+kHAtyLyZ+AC4DNgHtDXGFMNYIw5JCJ9XMefCXzkcf4BV5lfxmHYOm0rNUUnZ5uk29PJ\nWp2V0MHe33x5pZQKRnty9KcAo4GnjDGjge9x9txbp2JCSs0UFBRQUFDAPbPuYV3RuhZ1NUU11JYm\n7pRC93z5KZWV3FdVxZTKSqZt3dpifXkVvHjaSvC2225j2LBhpKSkeK2ns27dOgYPHswZZ5zBypUr\nm8vr6uoYM2YM33//fcCfScW3srKy5lhZUFBgfaCvdRECeQF9gS89vv858FdgB85ePUAGsMP19Xzg\nHo/jS4GfWrTdvHbD3gf2mg1s8HpVFVaFdY2IWFL87bct1qxxv4q//bajL80v/Kx10+RoMsVfFJsH\n/v6AKf6i2DQ5gtgaKkxtDBw40Kxfv94YY8w333xjsrKyTH5+fsDnz58/30yYMMHU1dWZHTt2mIyM\nDK9dn9y2bt1qUlNTzQcffGC+//57c+2115pf/vKXAbf19NNPm/Xr15sLL7zQvPzyyy3aHjFihNm+\nfbvZvHmzSUtLMw7XekZz5swxf/nLXwL+PFbQtW7iFhZr3YScujHGVIvIfhEZaoz5ArgM2OZ63QQ8\nCtwIvOM6pQhYLiJLcKZshgCftPU+qaMt1vvOTtwphf7my8djbt5hHExbOY2inSe3iLKfa2f1zNXY\nJLBfKsPRBpxcprhfv35cfvnlbN26NeBzX3nlFV555ZXmZYz/67/+i5deeonJk70nkL322mvY7XbG\njRsHwAMPPMB5553H999/T7du3dpsy72/rK/18n/44QfOO+88ADp16kRNTQ1ffvklVVVVTJ8+PeDP\no5JHe+fR34kzeG/Cmad/CGeAnyQiO3EG/0cAjDHbgVXAdqAEuMO4f+r8SMtNI93eMril29NJy03c\nKYWJNl++dHdpiwANULSziNLdge8DGI42PMXyVoJt6dOnD1u2bGHz5s2kpKTQq1cv5s2bx5NPPhnK\nrVBJoF3TK40xm4ELfVT9wuL4h4GgtrYRm5C1Oova0lrqK+rpnt094WfduOfLt17TJl7ny5cf9L0P\nYMXBCvLOCWwfwHC0AfGxlWBbnn32WebOncvx48dZtmwZzzzzDJMmTeKHH34gNzeXxsZGFi1axIQJ\nEwJqTyW+uFjUTGxCel466Xnxl7YIRaLNlx/dz/c+gNn9At8HMBxtgHMrwUsvvTSoc6DlVoI/+clP\ngPBsJRhIW62NHDmSDRs2AHDo0CHuvvtuPvroIyZMmMDSpUvJyMhgwoQJ7Nu3L+jPqRKTLoEQo9zz\n5RdkZpKXnh63QR4gd0gu9nNb7gNoP9dO7pDA9wEMRxsQH1sJBuOuu+7iwQcfpHPnzlRWVjJmzBgy\nMzNpbGzk22+/Dbo9lZjiokefqJJlrrxNbKyeuZrS3aVUHKwgu182uUNygxpEDUcbVmJtK0GAxsZG\nmpqaMMbw448/0tDQQKdOnRCPfx/vv/8+DQ0NXH755YBzHGDdunX079+fH3/8kfQ4HLhXEeJrKk5H\nv4jxLenCIRa2/gu3WP97i6etBHNyclpsF2iz2czf//73FudnZ2eb/fv3N5etW7fODBw40Jxxxhlm\n1apVIX9OdHpl3EK3EowtJTU1TKms9CovHjEiLqdQgm4lmCh0K8H4ZbWVoOboO4iuLa+UihYN9B0k\n0ebKK6Vilwb6DqJryyulokVn3XSQRJsrr5SKXRroO5CuLa+UigZN3SilVILTHn2EJctDUUqp2KWB\nPoLcG4i0XpxsdVaWBnulVNRo6iaCSmtrWwR5gKKaGkprE3d3LKVU7NFAH0H6UFRsiaWtBN944w3G\njRtHt27dmDhxYovzjh49Sm5uLmlpacyaNavF08a33XYbb7/9dsDXrBRooI8ofSjKg8MBJSVQWOj8\n0+GIehsiQnFxMUePHqW8vJzPPvuMwsLCgM9ftGgRe/bsYf/+/axfv57HHnuMNWvW+Dx227Zt3H77\n7Sxfvpzq6mq6dOnSvGsUQHp6OnfddRf5+fle5z733HOMHj2a6upq9u7dy+rVqwH46KOPOHjwIFdd\ndVVQn1spzdFHUKJtIBIyhwOmTYMijx2i7HZYvRpsAfY1wtEGsbOVoLsX/8ILL3idu3fvXqZNm8ap\np57K+PHj+fLLL3E4HPzmN79hxYoVAV+vUm7ao48g90NRxSNGUDhoEMUjRiTnQGxpacsADc7vS4PY\nBjAcbXjoyK0E25KVlcXatWs5fvw4GzduZPjw4SxdupS8vDwyMzND+rwquWmPPsL0oSig3Pc2gFRU\nQF6A2wCGow1iYyvBttxyyy3ceeedXHzxxUyZMoWRI0dy3333sWHDBubMmcOOHTuYMGEC999/fwCf\nWCkN9CoaRvveBpDsILYBDEcbxMZWgm3p3Lkzzz33XPP3M2bM4KGHHuLVV1/FGENZWRmTJ09mzZo1\nPtNGSrWmqRsVebm5zny6J7vdWR7NNoiNrQSDUepKTU2ePJnKykrGjh0LwNixY9myZUtQbankpT36\nMNEnYP2w2ZyDpqWlzlRLdrYzQAcxiBqWNix0xFaCDoeDxsbG5i0DGxoaSElJ4ZRTTv5IHj9+nPz8\nfEpKSgAYNGgQZWVl3HjjjXz44YfMnTu33Z9dJQlf20519IsY35KutUTcFjAUsf73FktbCb700kte\nWwXOnj27RXsLFy40f/jDH5q/r6urM5MnTza9evUy119/vXFE6N8XupVg3EK3EoycRNwWMBS6lWBi\n0K0E45duJRhB+gSsUiqWaaAPA30CVikVyzTQh4FuC6iUimU66yYMdFtApVQs00AfJvoErFIqVmnq\nRimlEpwGeqWUSnAa6JVSKsFpjj4IusyBUioeaY8+QO6NvqdUVnJfVRVTKiuZtnUrDn0SNG5EcyvB\nQ4cOMXXqVM4880xsNhtfffVVi/r/+Z//4fTTT2fEiBEt1rT/8MMPufrqq4P/cEr50e5ALyI2ESkX\nkSLX971FZI2I7BSR90Skp8ex+SKyS0R2iEhcra+qG33Hv2huJWiz2bj88st56623kFa/9R06dIg/\n//nPVFVVcfvttzN//nwAmpqa+O1vf8sTTzwR+odUyodw9OjnAts9vp8PrDXGnAusB/IBROR8YAZw\nHnA58LS0/gmIYbrMQfs4jKGkpobCqipKampC+k0oHG241+IJdSvBhQsX0qNHD4YNG9a8laAvffr0\n4fbbb2fs2LFe6/989dVXZGdn061bN37xi1+wd+9eAJYsWcLUqVM566yzgv5cSvnTrhy9iPQH8oAH\ngd+4iqcCl7i+fhkowxn87cAKY8wJoEpEdgEXAR+35xqiRZc5CJ077dV679xgtlUMRxue3FsJTp8+\nnV//+te89tprzYuyufsfxhgyMzPZtGmT5VaCb7/9dtDvPWTIECorK6mrq+P9999n+PDhfP3116xa\ntYp//vOfQbenVFvaOxi7BPgd4LlnWl9jTDWAMeaQiPRxlZ8JfORx3AFXWVzQjb5D5y/tFegDZuFo\nA6K3laA/aWlpLFiwgIkTJ5KRkcGzzz7L3LlzefTRR3nrrbd4+umn6d27N0899RRnnHFG0O0r1VrI\ngV5EpgDVxphNIpLj59CEGK3UZQ5C5y/tFWiQDkcbEL2tBNsyc+ZMZs6cCUBxcTGnnXYao0aN4oIL\nLmDHjh28/fbb3H333bz++ushta+Up/b06McBdhHJA7oAqSKyDDgkIn2NMdUikgEcdh1/APBMPvZ3\nlflUUFDQ/HVOTg45OTntuNTw0GUOQhOOtFe4Ume+1sufM2cOr776qtegqTGGgQMHUllZ2WIrwcsu\nuwzwv5VgoI4fP86CBQsoLS1l165dDBgwgG7dunHhhRfy8MMPt6ttlfjKysooKytr87iQA70x5l7g\nXgARuQS42xgzS0QeA24CHgVuBN5xnVIELBeRJThTNkOAT6za9wz0Kr6FI+0VydRZJLYSBGhoaODE\niROAM6A3NDTQuXPnFscUFhYye/ZsMjIyANi5cyeHDx9m/fr1DB48uB2fSiWD1p3gxYsX+zwuEg9M\nPQKsEpGbgX04Z9pgjNkuIqtwztBpBO6Iq22kVMjCkfYKRxvtneS1ePFi5syZQ2ZmJl27dmX+/PlM\nmjSpuT41NZXS0lLGjRsHQJcuXRARRIRhw4YhIjQ1NTUfv3PnTt5//33+9a9/AZCRkcH8+fMZPnw4\nffv2ZeXKle26XqXcdCtBFTa6lWBi0K0E45duJaiUUklK17ppRdezUUrFHYcDSkstqzXQewj3QzlK\nKRU27mBeXg6jR0NuLthszvJp06CoyPJUDfQewvVQjlJKhZWvYG63w+rVzuDvJ8iD5uhb0PVslFId\nyuGAkhIoLHT+6XA4y30F86Kikz38NmiP3oOuZ6OUirhgUjDuXrtVMK+ocLbRBg30HnQ9G6VU2PgK\n6BBcCsbda7cK5tnZznbtds3RB0rXs1FKhYVV7/zWW4NPwVRUQH6+dzC320/+NuD+j2LKFJ9NaKBv\nRdezUUoFzCoNY9U779nTdzv+UjDZ2S2DeUXFyZ68zTXMarNBXp7lZepgrEoa7d1K8I033mDcuHF0\n69aNiRMntqg7evQoubm5pKWlMWvWrBZPCN92220hrVuvYoTVAKm71z5lCtx3n/PPadOc5QEMkLbg\nmYLx5O61w8lgvmCB809b4OFbA71KGu3dSjA9PZ277rqL/Px8r7rnnnuO0aNHU11dzd69e1m9ejUA\nH330EQcPHuSqq64K2+dQEeIroPsL5qHk1GfMsA7m7l57cbHzGoqLnd8HEdCtaOpGRYVxGGpLazlW\nfozU0amk5aYhtuDGPsLSRju2EnT34l944QWvur179zJt2jROPfVUxo8fz5dffonD4eA3v/kNK1as\nCOoaVQeIVk49L8/5aisF4ycNEwoN9CrijMOwddpWaopOzmZKt6eTtTor4EAdjjY8BbuVYFuysrJY\nu3Yt48frSOPPAAAR4klEQVSPZ+PGjSxYsIClS5eSl5dHZmZm0NenIiRWcuoRCOb+aKBXEVdbWtsi\nQAPUFNVQW1pLel5gg97haANC30qwLbfccgt33nknF198MVOmTGHkyJHcd999bNiwgTlz5rBjxw4m\nTJjA/fff3673UQEI5zx1K1bTGn3l1KMY0K0kZaDXhcui61i57yeO6yvqAw7S4WgDQt9KsC2dO3fm\nueeea/5+xowZPPTQQ7z66qsYYygrK2Py5MmsWbOGyZMnh/39k1I05qnPmAF1dW1Pa/TVa48hSRfo\ndeGy6Esd7fuJ4+7ZgT9xHI42IPStBINR6lpFcPLkydxxxx2MHTsWgLFjx7JlyxYN9OGQ4Dn1cEu6\nQK8Ll0VfWm4a6fZ0r/x6Wm7gTxyHow0rgW4l6HA4aGxspLGxkaamJhoaGkhJSeGUU07+GB0/fpz8\n/HxKSkoAGDRoEGVlZdx44418+OGHzJ07t93Xm1SSNKcebkkX6P0tXKaBPjLEJmStzqK2tJb6inq6\nZ3cPesZMWNpo529sy5YtY/bs2c3tdO3alRtvvJEXX3yx+ZiHH36Y66+/nn79+gHOOfTXXHMNffr0\n4YorrmDatGntuoaEpDn1iEu6rQRLamqY4uNX8eIRIzTQt5NuJZgYIrKVYCjB3OqR/uJi55++6t59\nF55/3nd77veLg5x6qKy2Eky6Hr0uXKZUlAW7lrrm1MMu6QK9LlymVAT56rmHGsyTOKcebkkX6EEX\nLlOqXYJNw7hmHXlpK5gncU493JIy0CulQhRKGibUYB5H89RjnQZ6pZQ3Y+Drr52LawUyrdFfGsZm\nCz2Ya689LDTQK6W8rVwJ+/eDe52f9mxpN2aMc2ldDeYdRgO9Usrbzp3QtevJ70Pd0s6z567BvMNo\noFdhk5mZ2e6HklTH6+vv6dJAt7TTnHpMSboHplTkPf744/Tp06ejLyO5GAO7d8PBg9CvHwwZAiLO\n8pUrnT10t3PPhZkzYeNG2LDBu62RI2HLFg537co8zyWai4udPfIEf+gonukDUypqTj/9dA4fPtzR\nl5E8jHEG7P37T5addRZceikcOOAs90zD7N/vDNLdu7csdxswABoaON3zPwed1hjXErpHr8sRq4Rj\n9UCS1VIB5eXOLfBaKyx0pmGspkqC9trjUNL16HU5YhW3ovVAkj5dmjQSNtDrcsQqLkXzgSTQNEyS\nSNhAr8sRq5gW7DrrkXogSSWFhA30o1N970iU3T24HYmUClk411nXB5JUOyTsYKzm6FWHCvc668XF\nzuBt1ab20BXWg7EhB3oR6Q+8AvQFHMDzxpilItIbWAlkAlXADGNMneucfOBm4AQw1xizxqLtsM66\n0eWIVURFayZMEmycodonEoE+A8gwxmwSke7A58BUYDZQY4x5TETuAXobY+aLyPnAcuBCoD+wFjjH\nV0TXB6ZUzAllJszChd7tFBY6A7TVfwL6QJJqB6tAjzEmLC/gbeAXwL+Bvq6yDODfrq/nA/d4HP83\n4KcWbRmlYkZTkzF2uzHOR5OcL7vdWV5c3LLc/Soo8F1eXOy/PaXawRU7vWJqWAZjRWQgMAr4lyvI\nV7ui9SERcT8LfybwkcdpB1xlSsUGnQmjElS7A70rbfMXnDn3ehFpnXPRHIyKfToTRiWwdgV6ETkF\nZ5BfZox5x1VcLSJ9jTHVrjy+e9GTA8BZHqf3d5X5VFBQ0Px1Tk4OOTk57blUpU4Kdl9TXZpXxaiy\nsjLKysraPK5d0ytF5BXgW2PMbzzKHgVqjTGPWgzG/hRnyuZ9dDBWRUo4B091JoyKE5GYdTMO+AdQ\niTM9Y4B7gU+AVTh77/twTq884jonH7gFaCQK0ytVkgplDntBgfPVms6EUXEk7IE+kjTQq4BY9dpL\nSoKfw37//fDZZ/owkoprCbt6pS5FnAR8BXSI7uCpUnEsrnv0usxBErBKw9x6K1x5pffxuoyASmIJ\n2aPXpYgTSLBz2HVfU6UCFteBXpciThChzGG3EsiGGjrtUSWZuA70uhRxnAnlyVOrnPqMGVBXpxtq\nKBWAuA70uWlp2NPTvXL0uWlpHXhVKqyDp1ZpGHcQ1xSMUm2K68FY0KWIY064B091DrtSAdN59Cq8\ngp3DPmsWLFvmXR7Ik6dKqYAk5Kwb1UGiPXiqlGoX7dEra6E8eQq+6959F55/XnvtSkWQ9uhVcEJd\ntlcHT5WKOdqjT3bh7LXr4KlSHUp79MkuGlMedQ67UjFJe/TJQKc8KpUUtEefDKK1Xgxor12pOKKB\nPlHolEellAVN3cQbnfKolLKgqZtEoFMelVIhiIsefVLuIuWr526136kOniqliOMefULvImWVhrHq\nuY8d67sdHTxVSvkR84E+YXeR8peGsZolY7U2uw6eKqX8iPlAH/e7SIWy2YZVvt1m0167UipoMR/o\n43oXqVAHT6167mPGwIIF2mtXSgUl5gdj4yZHH87B09xcXZ9dKRW0uB2MtYmwOisrtneRCvfgqebb\nlVJhFPM9+pgS7MNKBQXOV2s65VEpFQFx26OPGaHk23XwVCkVAzTQtxbKLBkdPFVKBchhHJTuLqX8\nYDmj+40md0guNrGFpc6KBnpP4V5iwB3UtdeuVNSEO5CGsz2AaSunUbTzZKywn2tn9czVYa1rLTlz\n9LqrklIREY1gGc1A+uaMN5m+anrY2rt19K1c+br3HhDF1zpjzJTXvGNMUHUFaI4eiEyvHbTnrjpU\nLPRiHcYRlWDZViBt3bMt2lnUnNYItu7BfzwY1vZ6dva9B0TFwQoMvju3odZ5SuxAbzW3Pdhcuy4x\noPzQXqyzrnR3aVSCZTQD6cavNoa1PSvZ/bLDXucpcQO9LgyW8LQXG1u92PKDvn8jDnewjGYgHT9g\nPOv2rgtbezOGz6Cuoc7r79D9H7b9XHtY6lqL/0Af7CwZ7bUHLBYCqVUdaC/W/X2s9GJH9/P9sxXu\nYBnNQLpgwgLKD5WHrb28c/LIOyeP0t2lVBysILtfdot/6+5/U6HWTSnwMY5IvAT6YJfzTYC57dFK\nBwTbU42lQS3txfoX7V5s7pDcqATLaAfS9gZfX3Xu62zNJrZ21VmJeqAXkVzgccAGvGCMedTvCaEs\n59uOue2x0IuNVjrAX3tWPdVEHdTSXuzJulADs7+gGIlgGa1A2t7g27rOqt8ajjorUQ30ImID/jdw\nGfAN8KmIvGOM+XfrYx+7+SXmPn0tndevDX45X1e+3XHlldjefbe52HHlldhyczlh4MEjsLHJMP4I\nLDDOG+EwDq5aMY13vzj5flcOtfP2L53BMti6t2a+ydUrpwfdXrTSAf7as+qpJuqgVnt6sVcOtXv9\nPS6YsIDPD5Z7lbuDpa9zQq3LOyeP3LPzeHBlKRt3VzB+SDYLrjkZ9N68ZnVQdafYbEGf467D2GBX\nHqY8D0YDZwPip9zfOSHWhTuQhrM9sO63hrOutWj36C8Cdhlj9gGIyApgKuAV6C/680Be+KSYm6dv\n4TQfDTV9Xg6jRpHiq27kBRgDAwbDqGsh+xBUZMCm0+HLEw4G3TOdQ72cd2XdLnj2t3b2/8EZYD1/\niADe/aKIki9Km78Opu6BsgdDaq/ikO8g+499voNl+TfWAdFfnb/2RmX47qle0Nc68PmrG9ffdyAN\ntb3pw2bw/j/qmv8eATKO2Jk8OLf562Dq7vnZAp59pzz49owNVqyGHaWQUQGHsuG8XLjGonymKwqE\nsc5xjY3p06GoKA/IYx1QvvJkEJh+tS2oujffhOnTgzvHXzBythf54BaJ9wp3e7feat1vdX8djrrW\noh3ozwT2e3z/Nc7g79P523qzpL+DfB91K441sbsORp0LU3eeLH/nXNhUB6ws5WDvdznYG/421F37\nLrkPP9jiBxbgUK8iHlxZyp4ffAfYVRsrwCJY+qtbttF3IG2rvbO7+g6yTVXjAe9g2XTAOiD6rfPX\nXn0u/NsOwzzu1b/tsDv35NdB1BkWwL/Lw9Ze+ao8Dj2RB0NOBr1Du3NZM8kZEA89sTqoukd72YI+\nx133bpENyINdzl/R390FDz7ou9z9gxnOugcfDG/wiPX24vnae/rOOFJRAVbPiIZa5ylmB2Nf4iUA\n9u44TNNZ8L88/nt451x4uZsNx5ebWDwTcnef7LWXDoHL9m7G6snaLd9thN7e5R/sqaAfFnn9g37m\nqvqrqxoPA70DaVvtCb6DrO3/LoDTvYOlLSXX+Zft6xx/dX7a24QNVrYMbuzOZXOWzdlekHX/nGiD\n9eFr78OJNuf/lbtOBj3w+Ifv+rU+0LqNG4M/x98PmcX/8RH5gQ73e8V6e/F87Vay/YQEf3UpKWVU\nVpa12X60A/0BYIDH9/1dZV5u4iYA3r3oMxae/zf+2SqYLzpnDOBMvfxtqGevHX5+dnZzXWsje4/n\n7z56sT8/O5sxPXNZ9qp3QJxxvbNnGWzd9cMW8ICPXmxb7dnEBou8g9sli2xsWOxR/mUKfPN7xvzV\n9Wu9j3P81Xm11/ocH8Gt+R9dkHXjx8O6deFuDy/WPxRlZGfnWFWG0J7/unC3F733KmP8+By9F220\nl5JSxsiROUG3N2MG1NVZT/rzNyHQV93vf58D5FBf765b7PuNjTFRewEpwG4gE+gEbALO83Gc2cAG\n89Twt0x9/f8zGfPshgKaXxnz7KbxRJNpPNEUdN3/a2i0PKepyZgr7U2Gc4oN4wsN5xSbK+3O8lDq\nGhtDb89uN8bZL3C+7HZjGhtbly8ydrvxe05w7bV9Tqy8V7DtDR26KKavL1bea+jQRXovAmhv4cJF\n7br24mJjCgudfzY1mWbtrXOGdO/YG/VFzVzTK5/g5PTKR3wcYx6d/WfnrJvTOnGiycGDK0v5YE8F\nPz87mwUzczklxdnrDKXO3zn+1iYLpS6S7W3fXsCyZQUxdX0ddS/aOufjjwtYvLggZq8vVt7LfZ9i\n9fpi5d/Z/fcXUFAQ+n2KFKuNRwLqiUf75bws1ZZFixZ19CXEDb1XgdH7FJhYvU/ESo8+ECISexel\nlFJxwPjo0cdkoFdKKRU+yblal1JKJREN9EopleBiKtCLSK6I/FtEvhCRezr6eqJNRF4QkWoR2eJR\n1ltE1ojIThF5T0R6etTli8guEdkhIpM9ykeLyBbXfXw82p8jGkSkv4isF5FtIlIpIne6yvV+eRCR\nziLysYhUuO7VQ65yvU8+iIhNRMpFpMj1fWLcJ18jtB3xwvmfjnuO/ak459gP6+jrivI9+DkwCtji\nUfYo8HvX1/cAj7i+Ph+owPnQ20DXvXOPuXwMXOj6ugT4z47+bBG4VxnAKNfX3YGdwDC9Xz7vVVfX\nnynAv4Bxep8s79VdwKtAkev7hLhPsdSjb17wzBjTCLgXPEsaxpgPgO9aFU8FXnZ9/TJwletrO7DC\nGHPCGFMF7AIuEpEMINUY86nruFc8zkkYxphDxphNrq/rgR04n7TW+9WKMeYH15edcXaovkPvkxcR\n6Q/kAX/yKE6I+xRLgd7XgmdndtC1xJI+xphqcAY3oI+rvPX9OuAqOxPnvXNL+PsoIgNx/ib0L6Cv\n3q+WXOmICuAQUGaM2Y7eJ1+WAL+DFisOJsR9iqVArwKj82E9iEh34C/AXFfPvvX9Sfr7ZYxxGGOy\ncf7GM15EctD71IKITAGqXb8lej9ZelJc3qdYCvQBL3iWZKpFpC+A69fCw67yA8BZHse575dVecIR\nkVNwBvllxph3XMV6vywYY47izBmPRe9Ta+MAu4h8CbwOTBSRZcChRLhPsRToPwWGiEimiHQCfgm0\nsZx+QhJa9iiKwLWUJ9wIvONR/ksR6SQig4AhwCeuXy/rROQiERHgBo9zEs2LwHZjzBMeZXq/PIjI\nT9wzRUSkCzAJ5yCi3icPxph7jTEDjDGDccae9caYWcC7JMJ96ujR4FYj3rk4Z0/sAuZ39PV0wOd/\nDecWiw3AV8BsnKvnr3XdlzVAL4/j83GO9u8AJnuUjwEqXffxiY7+XBG6V+OAJpyzsyqActe/nzS9\nXy3u0wjXvakANgO/dZXrfbK+Z5dwctZNQtwnXQJBKaUSXCylbpRSSkWABnqllEpwGuiVUirBaaBX\nSqkEp4FeKaUSnAZ6pZRKcBrolVIqwWmgV0qpBPf/AcU+i7MUDgsOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f5613359550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for P in (0.0001, 0.001, 0.01, 0.1, 1):\n",
" S = (1.0 - (1.0 - P * 0.01) ** gene_length) * 1000\n",
" plt.plot(gene_length, S, 'o', mew=0, label='P={:g}%'.format(P))\n",
"\n",
"plt.legend(loc='best', shadow=True)\n",
"plt.ylim(-20, 1000)\n",
"plt.xticks(range(0, 4500, 1000))\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment