Created
March 7, 2017 12:15
-
-
Save karino2/7fe94db32b19d74b01707a00d1242cbf to your computer and use it in GitHub Desktop.
GANの論文の4.1にある(3)の式変形が分からない
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells":[{"cell_type":"markdown","metadata":{},"source":["# GANの論文の4.1 (3)が分からない\n\nhttp://jbbs.shitaraba.net/bbs/read.cgi/study/12706/1488719043/15\n\nで読んでて分からなくなったのでここにメモを書く。"]},{"cell_type":"code","execution_count":1,"metadata":{"collapsed":false},"outputs":[{"data":{"image/jpeg":"/9j/4QC8RXhpZgAATU0AKgAAAAgABgEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIA\nAAITAAMAAAABAAEAAAESAAMAAAABAAEAAIdpAAQAAAABAAAAZgAAAAAAAABIAAAAAQAAAEgAAAAB\nAAaQAAAHAAAABDAyMTCRAQAHAAAABAECAwCgAAAHAAAABDAxMDCgAQADAAAAAQABAACgAgADAAAA\nAQKAAACgAwADAAAAAQCLAAAAAAAA/9sAQwACAQEBAQECAQEBAgICAgIEAwICAgIFBAQDBAYFBgYG\nBQYGBgcJCAYHCQcGBggLCAkKCgoKCgYICwwLCgwJCgoK/9sAQwECAgICAgIFAwMFCgcGBwoKCgoK\nCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK/8AAEQgAiwKAAwEi\nAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQE\nAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Sl\npqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8B\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUh\nMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJ\nSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2\nt7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/fyi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAoqCx1PTdTEp03UILgQTGKbyJQ/lyDGUbB4YZHB55qegAooooAKKKKACiikV0ZiquCVOG\nAPSgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivGtC/b2/Zn8Uft46x/wTj8NeLbi++J3\nh3wKPFmv2FrZs1tptk01tEkc02cJOwu4JBHjPlyKxI3KCAey0UUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVleEfHXgb4gWN1qfgLxnpWt21jqVxp15PpGoR3KW\n95byGKe3do2ISWORWR4zhkYEEAjFatfib+31+1Hcf8EdPiD+3x8APAs0ukw/Gb4daZ8UPhBZadcP\nD9i1jWbhPDmu3EUxcv8Aa/tksN+kScKsLYCKooA/Xn9pL9pP4G/sgfBHW/2jP2j/AB7F4b8HeHUh\nbV9YltJ7jyfNmSCJVit0eWVnlkjRURGYs4AFbXwq+KHgb43fDHQvjD8M9Xkv/D/iXSYNS0a8mspr\nV5raZA8bNDOiSxNtIykiq6nIZQQRX57/ALXXwBX9iz/glZ+yH+zbr14smneBPjn8IdM8bT3MrTQz\nLDq9obuR/MZsRNcgsEyVUFVUBQANT9tzQPDv7eH/AAUb8Sfsn/tYfE8eG/2YfgP8IrDxr8TdJ/4S\n6bQk8SazqNxdiza/uYpInbTLO3sZ5ztljVbgRGTeAoQA/ROvOfDX7Yn7IHjP4qy/Arwf+1V8OtV8\nbQX15ZTeENO8aWM2qR3NoxS6hNokxlEkLArIm3MZGGArgv8AgnR+2V+xX+1V8H5fA37Fv7Seo/E/\nS/hbFZeGtY8S6tDeyXE80VuFjeW8uoIlvpXRA7zxlwzNuJy3P5m+OP2Yv2Zl1P8A4KqfDDx94Y0q\nPxV8MfEVv8YPCHxJtrBINc8P6rqOgS63YyWl9GFuIzb3duwVI5BkTSqP9c+4A/YL4z/tEfA39nS2\n8O33x0+J2l+F7bxZ4otvDmgXWsTeVDd6pcRyvBa+YRtR3EEm0uVBYBQdzKD2dfOf7Nuh6P8A8FGP\n+CUHw6sf22PAlj4li+LHwZ0S68e6VfWoijvJ7vT4JppVVNpt381vNjaPa8LhGQqyKw5T/gij8TPi\nX48/4Ju6F4W+IvjaTxV4q+HHiDxF4DvPEV+GQav/AGLq13p9rcNIS7Sb7aC23y/MzP5hOTnIB9b0\nV+T/AIx/bw/4KGv4g1b4a/tPf8Fzf+CfXwH1HQLmaDUx8NzJ4h1m3uYiVe2ns9a1CERMrKQU27wR\njBPFfpT+zh8f/g/+1L8EtE+OvwH+KGneMfC+sxzLYeJNJjZLe9eCaS2nZFblQJoZVwc4Knk9SAZ3\n7YX7T/w9/Yp/ZX8dftX/ABSEj6J4F8OXGq3VrDIqS3jopEVtGW+USTSmOJM8bpFzUH7H3xS/aO+M\n3wE0z4hftU/s1x/CnxffO8lz4Oi8TR6v9lgYhoS1xHHH+82MFdCilZEccjaT4X/wcAfA3xd+0X/w\nRj+O3w38D+W2o2/hSHX0hljZhcRaTfW+qzQBVIJaSKyeNQP4nFfS3wD+NPgf9pL4FeEP2hvhpcSy\n+H/G/hix13RmuFCy/ZruBJ4xIoJCuFcBlycMCM8UAdbRXzr/AMFUP2ydZ/YU/Yw1f41+EJdIj8RX\n2u6R4c8N3PiB8WNne6lfw2a3k43Jvit0lkuWj3IJBAULxhjIvnn/AASJ/bq+Mf7YWsfGf4dfEH4h\n+D/ihoPwo8ZWOieF/jt8PNGk07RvGvnWMdxdRJbtcXEYntJWCSSwztDItxCUUAb5AD7Noorxj/go\nZ+2d4U/4J5fsU+PP2yPGHhG71+28GaZFJa6FYymOTU724uYrSztfMCP5SyXM8CNLsfy1cvtbbtIB\n7PRXxt+0R/wWJ+HX7H3wV0+0/ad8B6Tof7Qmt6eH8O/s86V46tr/AFDVribVxpVl5F4I0U288rxz\nCVolkWATt5DtbyxjR/af+OP7Q37M3/BSr9nxpfi1JdfCf41X2r+CvE/hDU7W0MGia1Hpr3+l3dhL\nFbJdM80lrcwSiaWSPEqFUQgEAH0P8bf2hvgD+zP4TtvHf7Rfxr8L+BtFvNUh0201XxbrkGn2813L\nuMcCyTuqs7BHbaDnajt0ViOxGCMg1+Ov/B1j4+0HQfHfwI8DfEPVrSPwvqvww+N93LZ6kqtBLrEP\ngmSDSpNrZHnLc3u2JsZWSVSCDg1+s3wZ0fVvD3wb8K+H9euJZr6x8N2FveSz/feVLdFdm/2iwJPu\naAOkrzj4M/tc/s5/tEfE/wCIHwf+CvxITX9c+FurQ6V44Sz066Ftp99J5v8Aoy3bxC3uZUaGVJUg\nkkaCRDHKI3+WvRUlikZ0jlVjG21wpztOAcH0OCD+Ir8jvhL+2L8a/wBk/wD4NYvFv7b/AMF7+xtf\niDJ4r8WX39tajYi5EV3qHxBvrKa+eNjiWWKKcyIH3KWiQOrqCpAP1zor4s/Yy/aO/ad+D/8AwUJ8\nY/8ABLP9sD4rN8S7hvAa/EX4R/FF9Js7C71Hw+b1bK407U4bRY4ftttO6BJYYgs8W6RxE2EMn7M3\n/Ban9mnxv+yHZftgftleO/AnwS0bxT4m8T23gDTfEXjeJ7vW9M0a9ezmuBE8cTtc+bG4a3hEpG+H\nDM0qqAD7Pr5//wCCi37ZfxC/YF+DFp+07YfAGXxx4B0HVIz8U5NJ1Ux6roGjuwRtTtbXyWW9WEnf\nLGZIisYLA7Q7J43+1B/wUW+NfgvTv2Sv2vfgNrOhv8I/j/8AEbwj4S1HwJ4r8NNba28PiSOWS31J\nL5Lxkjkt0ELfY1gff++Jmxt2evf8Fc/EHh/wx/wSg/aO1TxPewQ2jfA3xVb/AOkT+Wsss2lXUMUQ\nbs0kkiRr3LOAOaAPdvCfivwz488Kab458F67a6po+s6fDfaVqVlKJIbu2mQSRTRsOGRkZWBHBBBr\n5u/Yk/bz8X/taftq/tQfAKXw7pEPhP4H+MdF8P8AhrVbKGVbq9nlsGfUVuS0rIxjuo3VCix4QgMC\nwLHxn9lL9uDU/wBj79gz9j/9kTw1+zr4u+Knxh8a/AnRryw8A+FLuwtZtP0yy0q0NzeXtzqFxBBZ\nxJvSFPMcebN+6X5s48i/4IPftN6Xe/shftl/8FGPhZ8EvF3xCm8SftW+LNc07wp4ShtZNZ1LTfJ0\n+4t4YY5J0ikkjiu5HMayMzgMsQlcojgH6yUV8c/sn/8ABW/4dft3fte+A/hR+y5aR6l4A8R/s7XX\nxJ1vX7uyc3NjdPrNvpdnpTskpit50eHVvPjYSEtbp5bBVZn7v9sf/grd/wAE2P8Agn7rqeE/2uv2\ntvDvhXW5IY5h4fjiudR1JYpCQkjWdjFNOiNg4dkCnBOeKAPefCHjLwd8QvDVr4z8AeLNN1zSL5C1\nlqmj30dzbXChipKSxsVcBgRkE8gjtXy5/wAFoPi14v8ABH7IGk/A34afEHVPCvir47/FHw18LfD/\nAIl0df8ASNL/ALXvlS9uEbrE66fFfFJB8ySbGUggGvnz/g1u/aW1Hxz/AME3/h/+zHafsq/FHQNO\n8D+EprqT4j+JvDkdj4f125utUupvJ02ZpfMvCFlJaRY9gKOGYEp5nsv/AAWx0TV4fBn7OPxejtoz\nonw8/a/8Ba14ru5nCrZafNc3Gleec9QtxqVvn0zntQB9Dfspfsa/su/sNfDi4+En7Jnwc03wV4dv\nL6K+u9M0ppCk91HZWtj9ocyMxaVoLK3EkhO6V1aWQvLJI7+m0V+LX/B2D/wUG+JlnoHgH/gmV+y/\n4G8ZX3i7xj460+81a50/w/cG31SW1MNxZaNalosahK91Pp9xItuzeV5cCNlptoAP1O+H/wC3N+yH\n8V/2pPFP7Fvw1+O2j638TPBOkLqXirwvp3mSPptuZVhPmShPJ8xZHRXiDmSMyJvVdwyz49/tj/Dj\n9n74y/Df4Aan4I8Y+JvFfxQ1SaDRtL8G+H3vjp1jBJbx3erX77lS0sLd7u1EkrEtmddqPhtv5X/8\nG13w1+C2rft7fE74k+B/BXirwlqvwz+E1h8O7rSvG3gnUNO8QeJ7uXUP7T1fxLrkkqyQQ3lzqBMc\nNr9qlnS3g2MqpAjP9q+B/wCzPFP/AAcRfEbUrhXS98M/sneHNKsnz0ju/EGp3MzrngZMduD6+Wuc\n4oA+1a4K+/af+AWl/tK2P7IOqfEi1tviJqnhiTxDpnhy5gmje90+OUxSSQysghldGGWhVzKqEOyB\nCGP44/D/AOGfwh+DH/Bwz8M/Cv7FXwC+KfxNg+DmuHR/2jP2g28Wal4r1jUdX1vSruytoNUMzi1t\noLeVhJdyRJiPYw2wtb7H+2P+C+iyfBP4LfCX/gpD4dYWmsfs6/G7w/rV7qNvtS6m8PaldJpGraak\njKdsd1HdwrIO4jB/hFAH1r+1b8bov2Zf2VfiR+0nNo51BPh/4B1jxK1grYNyLGymujED23eVtz71\n+T3/AAalWHxWH7Rv7T/iv41fFS98W+K/Fvg/4V+MvEmtXkrO15c6/pOo60hO4/KYoL2GAgYXMR2g\nKFA/SD/grCjyf8Epf2lI0UszfADxkAAOSf7Eva/K7/ggV+2B8K/+Cc//AATt8JftlftqeZHqP7T/\nAMa9C+HXhHWbW4tYvsugaNp0WiafeXzXE8YhsrNrK7WWQFmRXRtpD0AfuhRXz14m/wCCq/8AwT40\nX4LW/wAd/Cn7TOheNtG1LxMPDWhW3w4kbxDf6zrbKGTS7S008SzT3TKyN5ar8qOsjFUO+tb9kL/g\noX+zL+234i8X/D/4Oa1q9t4v+HYsF+IHg7xDok1nqHhyW9WZreC5yDD5xFvLvijkd4WUxzCOQFAA\neYfs6+NP2jf2lf8Agpv8cfE8/wC0nq2l/C74J+ItK8G+Hfh7oun2Qstbu5tDhv8AU7nUZJ7Z7hpE\nuL+1WFoJoQi2jAhxK+7074wftr6P8If27/g3+w/d/D64vbn4waF4n1C28QR36ommNpENrN5bQlCZ\nRMs8nzBl2GJRtcOSnjn/AAS7aPwr+2t+258JNU1OGXWLL4/WGvzwI2Wjs9U8OaXNasfqsTr9Ub0r\njP29pPFmo/8ABdz9kvTPhnNp48SWHws+J91p/wDa8cjWcU0mnWsVs9wIyHMXnKA4UhtoOCDQB+g1\nfK37bn7Z/wC0N8IP2yPgj+xJ+zd4Q8Hza78adD8YXMPiLxqbqS00abRrO1uYS8Fs6POkpmeNlDoV\nyrgnaVbzLVP2cf8Ag41+Ml3Npnjj/gpP8CPhHYMvy3vwn+ENxrN0cdtms3BVM92DEjtTv201a2/4\nLy/sMWU97JPJH4T+KIaaVVDSH+ybAbjtAXJxk4AHoBQB7L+zX+218Sdc/aCuv2Jf20/gxZfD74sQ\neH/7c8O3Gg6u+o+HfHGlxskVze6VdSRRSRywzOomsLhFnhWWJwZo282voJvEfh1PESeEH1+yGrSW\nTXiaYbpPtDW6uqNMI87jGHZVLYwCwGckZ/PvVPit4f8A+Ci//Bdb4UX/AOy3qlvrvgj9kbRfFU/x\nN8dWM3madPruu2C6fBoVtKoKz3EKI1xMULRpt2Myypsb5j0e5+Nfi79jb9oD/gp/4Ljv7rxr4y/a\nX1nRvi3458J3tlp/jDwR8JdIvBDc6TpF3eTwx2kyQ6fA3+sjO25887pYY3AB+1tcF8Hv2oPgD+0D\n4x8aeBfgr8SLbxFffDzW00fxdJptvM1rZagU3tardFBBPLHysqQu5hcGOQI4K1+Nnhf9qj4tfs4f\n8Euv2m/+CiH7Inh62+DfwLHgCx0L4M/Byz1T7V4kg1TVJ7Kxi8YaxM9xPLZXpS4SWGNJQJ4GjlkE\njRxXE9n/AIK2/Fv9pf8A4I96T8B/2Rv2KdU+J/h228IeBbHSPhhJ4A8TeG7iy8Y+JgJxdHUPCJtn\n1TU47nLCW6M4ghubiOWOGScDzgD9wrq/sLDyvt17FD50oih82QL5khzhFyeWODgDniuN+NX7Rvwb\n/Z1Xw/cfGbxNc6NaeJ/ENtoemamdFvJ7JL65kWK3iubmGF4bISyukSSXDxI8jqgYswU/A3/BaP4q\nRaj/AMEkPgz+378SvhVZ6X8YfCPjv4c+MvBHgvULF4NSfxHLqFhLdaFbJcotyshiN1vhCeYUtCXT\n92dvZf8ABzbrzy/8Ef8Axh8G/CmqN/wnXxH8YeE/D/w40a0ci81jWT4gsLqO2tgOTL5dtNIOmPLP\nOcZAPrT9sH4C+L/2nv2aPFHwN+H/AO0D4s+F+u61bQto3jvwRem31HSbqC4juInVhgvEzwrHNFlf\nNgklj3Jv3DyL/gjd+2L8Vf2z/wBh+x1/9o+1gtfi54A8San4D+MFhAsS/ZvEelTmC4LCECIPLGYL\nhli/dK1wVT5VFfU9fnx/wRY8V6RD8X/26vHdhqlraeArT9rLX2jvpZljgiv7eytRqsrZICqGWJjI\neGHOSBmgD9B6/Hn/AINtPDF3+0x/wUJ/bb/4KnXd/c6xofiz4r3XhX4feILu7DSSafHdy3cluYyS\nyJHaNoapn5do2jOw45X9oKw8K/t+f8E+/jh/wXZ/bz8UeJ7Lwba+G9TT9kv4dNrmoafb+FoopJLL\nStYngsLmLzdU1DUWhb5mdUjMQ8ySPyxD9R/8Gq+g6RpP/BCj4S6rp9jDFdaxqPiW71SWNAHuJxr+\noQB5D/E3lQxLk87UUdqAPsz47/ta/sn/ALLH9lf8NO/tN+Afh3/bpnGi/wDCc+LrLSf7Q8ny/O8n\n7VKnm7PNi3bc7fMTONwz1PgH4ifDz4r+E7Xx58LPHmj+JNDvk32WsaBqcV5a3C/3o5oWZHHuCa+X\n/wDgq98Wf2KPgZ4f8GfEn9vr9gH/AIWv8Oo7q9s9a8eTfDex8T2nw+ikNuxuL23lWS5htJzEu+WC\nKRQ1rGHG5oVb4U8P/C79hLXv+C0Hwc07/g360Ow0LW9P1RfFX7R/jr4ba3M/g5PB88Sv/Ys1orvZ\nNPeDAhjt0T7PJ5cm3dGXtgD9o6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAr5A/4Kd/8Eb/AIBf8FR/il8Ffir8V/E0+mXfwe8Zrqc1pHpsdxB4j0p5YJbnSrgFkZFk\ne2h2yhm8tWnAjYy7l+v6KAPmL/gsr+yF42/bq/4Jj/FL9nL4Wk/8Jfe6NDqng9EKK82q6ddRX9rb\nq8jokbTSWyweYzBU87ceAa+QvCOpeO/+CrPjHw//AMFOv+CXHxy+Gfh/486B8MB8Of2h/gd8ZtCv\nLjSmgnmec6dqdvFtu7RoLyO9EcwjP2lUKb1SOVJP1aqKCxsrWea5trOKOS4YNPIkYDSsAACxH3jg\nAc9hQB+Tf/BKP4ieLP8AgkN8Nv2iPAv7b3jrXPGupv8AtPeHtIt9Q0jSma88U+K/EWm6O10un28p\nR7oeZcefhPneCJ5Fj3HYeo/b0/4I6ftU/tb/APBTLxLL4P8AFej6D+zd8cNC8I3P7Q9yLorq2sye\nHZ7oQ6NbKhEkaXMb2m+cFdgiY7/k8mf9JfGPw0+HnxD1HQNW8deDNO1a48K64NZ8OS6hbLKdO1AW\n89st1Fu+5KIbmdAw5AlbHrW5QB8y/wDBT34//tF/sx/soReDP2Ev2eNf8X/FLxtexeEPhvZ+G9ED\n6f4bup4pFTVL+Qo1vaWdoieZ+9HlsyxowWMySR9d/wAE4P2N9G/4J8/sL/Dv9j3R9dbVH8H6EY9W\n1Uu7C/1O4mku7+4Xf8ypJdz3Dqp5VXVe1e2UUAeTad+wP+wbo/j+/wDitpH7EvwmtfFGq3s15qfi\nO3+HmmJf3lxK5klmluBB5kkjuSzOzEsxJJJOa9P0TQ9E8M6NbeHfDWj2un6fZQLBZ2NjbrFDBEow\nqIigKigAAAAACrVFAFHxNr3hzwr4Z1DxR4w1e0sNJ02xlutUvr+VY4La3jRnkkkZiFVFRWLE8AAk\n18U/8G1ej+OdC/4IY/Aex+Idpcw376JqdxbpdfeNjNrF9LZMP9lrV4GX/ZK169/wU7/ZT+OX7cX7\nLT/spfB/4u2XgvSPGfiKxsfifq7iUX0vhMszalaae6BlS7nURwgzK0RikmVh8wI/KjwD+3xF8Hf+\nCzWg/D79q79sk2X7Kn7P9541PwnvL/4fW3hrRo9b0jS30u40S0WMNLqS6ZaX81rBJzLNMuIw5kXe\nAfeX/BaL4K6t+1t8VP2TP2Qpvhq2u+GNe/aJtfE3jd77TDc6WdJ0PTr27nsr0FWj2XKv5apJ8shU\nrzmvjr9vX/gr1+x14R/b3+Av/BLv9iDV9U+F/hr4MftGWd78Ur/wNZw6L4eSz0/z5NQ0lYLKRHlh\n82SdbiNoViZ43x5xBI/ZH4UfE/wN8cPhV4b+Nfwx1k6j4b8XaBZ614fv2tpITdWN1Ak8EpjlVZI9\n0bo211VhnBAIIr4T/au/4Np/+CfH7SmreIPFvhK68S/D/wASeOPirL418eeKPD9/9pvtVa4hvY7u\nyia7EiWcUpv7mQGNSEd87WVUVQDnvFf/AAdGfsL6H8K7bxjZfCH4ixeJdS17wzYaJ4H1qwtUvtUg\n1m3hvory2+w3F2LhIrC4tp5Iog8yPd2sLxpJMNrf+C0n7b37In7W/wDwQ6+NHxL/AGZfjx4e8eaL\n4U8XeFIPEU3hy8FybN7fxdpRk3oPm2FYndJMbJYx5kbOhDHlPGv/AAa1/CvRP2GviT+x98EP2wPi\nBc2+valovij4ft42u4JG0PxRplle2aTS3NtbozWk8E9pAY0iDwLZIyNJwg6H/gjd/wAES/2k/wBi\n/wCC/wAXv2a/2/8A4h+AfiX4F+MPg3SdN1bTfDzXUc9m9ta3GmSWAnaCGWa1GnLYrHNvR43jfZGh\nzNIAU/8AgsT+yd+3r/wUY/bU8D/Dn9j34Q+HPDOnfAddE+JH/CyviLYyxaV408QQ37/2boUdxbxN\nOYbaA6jNI0bOoe7COsBaOaTU8AfFD4y/8FL/APgsN8NvCHifw3oVjoH7Hmg3utfGBvDOsHVNGm+I\nGq2clla6PBNJFG0z2Fu08xmVf3c5mhcKyoz/AHL+yf8AskfBH9in4Tf8Kb+A+l6rDpT6hJfXVxru\nvXWp3l3cOkcfmS3N1I8jkRxRRqC2FSJFAAUVd/Zv/Zb/AGef2QPh1J8Kf2avhTpnhPQrjVrnVLy0\n04OzXd7cNumuZ5ZGaSeVsKN8jMwVEQEKiqAD8w/+DpP4EeN/21PEXwN/Zm/ZM+CqfEf41+E9R1Lx\n3L4e/tG1ggsPCkSxQXUl801zCYorm6W0jjAZTMba4VDuTFfkZ4B/4Kmf8Fnf2C/2CPg9p/wU/bd8\nK+G/AGu6brA8F+E9Ih0q/wBZaF9V1D7bfXyXFtLNbgXZlRJJXRWGwwh/LmZP66VtbVLp71LaMTSR\nqkkoQbmVSxVSepALMQO24+pz+eH7b3/BCH4Z+KPhTq/ww/4Jl/Dn4f8AwTvvjB4vtrP47eNdPgnh\n1OXwdI7zalp+llEkFv57rAGtE8i2mRTHJ8nQA+Kf+DRXx3q/xt/bF+P3xc1b9ovxNrCf2UkMPh6W\nx1P7Lr1xPdxSXfifUZZA9qmo3EkSFEed7jbcXSIqW9ugHpeieL/hP4G/4Itfts/8E1vjFeSxeJPh\n/wDE7x74V+H3geWzkl1nWG1O4m1Xw1LbWKK88y3VxcCaN0Qr5cUkpIjjeQfrX+z1+zx8Ef2T/gxo\nX7Pv7O3w20zwr4R8N2S2ulaPpUAREUctI5+9LM7ZeSZy0kjszuzMzMalz+yp+zDeftDW/wC1ndfs\n/eEJPibaac1hbeO30C3OrR27IYygudnmD92WjznIRmQHazAgHxz/AMEef2J/2zJPiC//AAU7/wCC\nnOr28Hxd8Q/DPT/Bfg/wJp8TRw+DPDETR3BguNxJkv7ieNZ5iSTExdQVDmKL5F1v/glJ+2b8cf2t\nvHf/AARI+IcHivwj+yRffEPxB8Y1+I/hy1dBrGnXzWjWXha0uJIpraB7TUZZ5nhmy8wgM4jQJE0n\n7fUUAfkT+wN+zv4z/a5/bJ+HPwRvfjhrPxJ+Af7AVxc6UvjTxDYNbJ4++JALqnk2ykxfZtFhdYoH\nyXhdECPNHcGUep/8FWtd17/gp5+1n4W/4IcfBYX03hW11DTPF37VniWwcLDo3h2KRbqy0JpBzHeX\n8iRSKFIkRFilCyRGbZ+ifhbwl4T8DaInhrwR4X0/R9OjllljsNLs0t4VeWRpZHCRgKGeR3djjLM7\nMckkmex0fR9Mubu903Sra3m1C4E9/LBAqNcyiNIxJIQMuwSONNxydqKOgFAH5bf8FSv2Lf8Agpz8\nSP8AgpzqHjb9g/4M2cGh/E/9ly2+Ed98WLrxLa2lr4EtJdfnu9TnFnvFxPMLUwLD5SqVabejExMo\nxP2Qv2JP+Ch//BL/AFH9oz/glr/wT58NSWeh+MrGy8b/ALP/AMbPHOnNc6JpF3LFY6fq9tqc8MTh\nb9UhElrF5Miu0PmvH5bOtfrbRQB+I3/BPD/giz/wV8/4JpftN/En9nn9lbxN4U0X4a/EC78PN4h/\naO1m8t7nWH0yziZrq30rSi0v2a9kmuro7rqOSFBs2yMyLI37C/Gz4IeFfjR8O/FPhC4httN1XxN4\nRvtAXxNBYRveWUNxDLGGRzhiEaUuE3Abh75rtKKAPNf2NP2crL9j39kX4cfsq2Hig62nw+8FaboD\na0bEWv8AaD2tukT3Pkh38rzGVn2b327sbmxuPlv/AAWm8E+CPiB/wSH/AGiNF8f28cllZ/CPW9Wt\nTK+3yr+wtZL2xlU/30u7e3dcc7lGOa+nK+QP+CvH7PH7RX7bXg74a/sNfDPwZO3w4+IPxBtZ/jx4\nqXUYoE0/wrpzpeS6evzifz76ZIYY3hVgoSQSbUctQB79+yR8TvF/xu/ZM+Gfxp+IOi/2dr3i74fa\nLrWtaf5LRfZbu6sYZ5otjcptd2XaeRjB6V83fE79nj4sfG7/AIL8fDr4wfED4X3F58K/gx+z3qOp\neCvEcluyW9t4z1fVGsrmISAgTyDTLUN5Z3CLej4DOjV8ef8ABQL46f8ABdD4Sf8ABabwh+yh+yL8\ncNZ8eaT4s1ez8aaJ4HW48O2NhbeFYLhhqNrqMgsGu7C2VkFtFdytJ525hF5twPKr9laAPyQ8Mfts\nf8Fk/E//AAclS/sJxfF2wv8A4OaBr91qHi3TvCfw7s7zS9F8PTaTNd6VFqGoBnu7S9nMYjbzntx9\noKvGk0EiRn2z4/6u37M//BxJ8L/ij401qLS/Cn7Q/wCz9qPw00jUYGWM23ibTNSOqQmaSUeWrTW9\nz5FuvzNLKNgQ4Ge4sf8Aggx/wTq0f9s67/b58P8AhzxtpvxM1DxyfFd7rOn/ABB1KFJ7xrj7RJE8\nSy7Gtnk4aAjZs/dgBPlr379rf9j/APZj/bi+DU/wP/aw+F1j4o8MG9i1COC6uJbeWxu4d3l3VvcQ\nOk1tMoZwJI3VtrupJV2DAJXPgr9mv/glx/wWG/4JLaFc+CP+Cdn7Wnwk+LPgHUvFN1rWr+CvjL4L\nk0XU5JLiVDLN/a+mmSS9vHjRUNxcjaoRcRlVWMWf+Ch/xavf+Cwn7UOnf8EY/wBl6xn1XwR4P8Ya\nXrX7WfxBspAdK0azsbpbhPDMM5UibUJriFdwXmFoMFX8u6W3+vPjX/wUm/Yv+DZHg8/GSPxR4muw\n9vp3hT4eqda1e5nC/wCqWO33iOQg5XzmQHB5ODXxvqf7UPxK/YE/Z5sPhh+zZ+y78Ov2afBrQzXH\nh/RPHV9Nq/i3xI8i4W6j021zL9sd4wkkuoOwZ2TzJQBmuKtmGFoptyvbe2tvXovm0fonD3hVxrxF\nVpRp4b2Sq/A6r9nz+dOD/eVUuvsoTtq3ZJte2f8ABY2//al/aI8MaB/wSz/ZD8M6vYar8cra6tvi\nJ8TptDkk0nwd4OQrHqTmdgIpb25SX7NFbKS5WWRiYCYpa/Mj/gtf/wAEBvgr+xr+zh8KPG+qfthf\nGXXPgt4Q+MOj+Hr3SvEF9Be2vw18I6tczNq19brHbjfI119l2vsB5ijdZiEZf2r/AGAdd/at8Vfs\no+HPFH7Z1pFb+OdRWa5uoBZJbTR2zyM1us8MYCxTeUV3IACvAcBw4r1Hxr4I8E/EvwfqXw9+I/g/\nS9f0HWbOS01fRdbsI7q0vrdwVeGaGVWSVGBIKsCCDgiuqlUVWmppNXV9d/mfG5xlk8mzavgJVIVH\nRnKDnTlzQk4trmhKy5ou107K61P5Qv2IfCP7Rn/BLm9f/gsv+y9+zva/Ej4f+MPFfin4dfs+6h4t\nv4LLU4dSuJVtdO1f+zlTfePLEt7Abe1wS0F2rvCgQyfqx/wQd+N37LH7Mfj+x/4J9/sxT6x+0F8Y\nfG2rXHir9qX47eH1Mvh7Q9Qe2uZ/Lk1Qh/t5WdUtoRGTHNJcTz+bG7SQi7/wUQ/4IzftN/8ABWT/\nAIKTeFPgp8WvDFv8Lv2NvgV4Ws7bwbF4VvLGOXxHPNbwm4isrWEE2Cx7I7P97GEijs90Knzzj9M/\n2cv2Z/2f/wBkL4RaZ8CP2Z/hLo3g7wppESpaaTotqI1ZgqqZpX5eeZwoLzSM0kjfM7MSSbPNPgT9\nov443/8AwR5/4K5/FD9rLx7+z9448W/DL9p/4faEsWseBfD82rXkfjbQIZ7Oz0UQxHEP2yzlTymk\nwHmAwQsc7x/V/gH9lTWPiZ+098L/APgox8aLddC8eaN8E7zw1rPgeL/SrfTr7UrjT72UxXWUJNu0\nF1bZMf75Zw2UKYf6FooAK+WP+Ci//BI39nj/AIKbeMfAfjb40fFn4meFrvwDZ6zY2g+HHiaLS/7V\nsdUS3ivrK8dreSR4JYrfymSN490c0qsWDDb9T0UAcL+zZ+zJ8AP2PPg1pP7P/wCzL8LNM8IeEdEi\n2WOkaXGQNx+9LI7EvPK5GXlkZpHPLMTzX5Gf8FWv+COv7acPxB8ZfB79nP8Aaz8EfDz9ln9oH4tQ\n/ED4rXvjO+hsofCOsJHGLmIrNcD+04r6dVukt1VU860hjcxIglk/a2sPx/8ADH4Z/FjRYvDfxU+H\neh+JdPgu0uobHX9KhvIY50BCSqkysodQzYYDI3HB5NTLm5Xy7nVgvqX1uH1vm9lf3uS3Nbry30v6\n6H5v+I/2Lv8Agi9oX/BKf4mf8E1/hT+2r8P4pfiPp0l7rvj3xF8Q7O91TWPEaPHc22q38wk3TFbq\nCCRo0CrtDqoUuzH5C8F+EP2Gf2t/ign7bf7e/wDwUn+N/wAFv2i7jRrfwz46b4PeIEns76OwtIrJ\nb7R77T9KnNla3qw/aZbYOCJJ50ZAuC37c237Jf7J9ldR31n+zB8PopoX3QzReDrFWRvUERZB+ld5\nbWlpZxLBZ20cSIoVUjQKAB0AA6Cublxz+1FfJv8A9uR9fHE+GtGWuFxdVf8AYRRpWf8A4TVr/wDk\nvzPyB+J/xD/Y68V/E3Qf+Chf7YH/AAUr0zxz+z3+yhoenzfCD4XwSXMnijxF4jhtoYE1vXlvkhmv\n9Ra5U+QY0WIuUlaSFVuxce8fsB/seftK/tm/tJWH/BYH/gqf4Sk0TxLa20ifs+/AuaV2tvhnpMwO\nby8RgBLrNwhQyM6K0QVdwR1igsvrL4hfsM/sk/FX48aD+0r48+COkXvjPw3N5+nawqNEzzqYTFNc\nLGVW6ki8iPymmD+Vzs25Jr1itqPt7NVbX8r/AJPb72eFnr4blXhPJlWjBx96NZwk4yu9FUgoqpG1\nvedOm7390/PT9vf/AIKKfH39o741+If+CT//AASGsDq3xVS3Fn8UPi8zumh/Cu2myrs9wmfO1PZu\nEcMeTHID954pEj9Ol/4JseH/ANlD/git4/8A+Cc37FekS3OqT/B3xJo+iXV3OkVzreuX2n3KG6nl\nYhUkmuJQckhIwVUbURQPp74b/Cf4V/Brw/L4U+EPw20Lwxplxfz31xYeH9Khs4ZrqZy81w6RKoeW\nRyWeQ5Z2JLEnmt+tTwz8kv2Gf2cf2xv+CiPgv9lz4SftS/sreKvhD8Bf2WvCnhyfV9A+Itglrq3x\nG8aaVpsVpbkWW7zbfS7SVZJw8wAuvMVTE2WNv7b/AME9P+Cf3/BTf/gnR8TNb/Zm+Efxd+Clx+y0\n3xB1DxB4TTWtJ1i88XaNpl5MJ5NFiRZobVVVjIqXUkkzBpGmaOQMLdP0AooA/Pb/AIOG/wBtf9tb\n9lv9nrwr8Iv2Jvgb431jWPirqN3pfiDx/wCDfBdxrsng7TYhCJ3jt4hta8mS4YQCRkUiCcghlDp8\ngf8ABKj4Pf8ABOTwL+1N4I/Zk/Zr+KH/AAUI/Zw8Ra15WoWHgfx/ZjRNA+IF/p1ubi8uJ4HtrqMy\nSwWjmb5oIzGnlx7SVU/uRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeffHz9kr9lX9qyz0rTv2nf2cPBPxAt9Cu3udHg8Z+G\nbXUks5XADtGtxG4XcFXcBw21cg4GPQaKAAAKNqjAHQCivJPgd+3d+yH+0v8AHX4h/s1/Aj422HiT\nxl8KLuG18faVYWtxs0qeRpEEXnvGIJnV4ZUdYXcxOjJJsYYr1ugAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigD4b/aK/4IzeOPjR/wUE8S/tzfDP8A4KR/FH4X/wDCaeD7DQPEui+C\nrGwF6IrTIjjsdSuI5HsbZjtlkgWNt826Qvyqp9i/CjwHN8K/hd4f+Gdx491/xQ+gaNbae3iPxXeJ\nc6nqfkxrH9pu5kRFlnfbudwi7mJOBmt+igD5mg/4Jk6TDq8mpSft6ftMywuxK2EnxiuhCnPQFUD4\nHu5qXV/+CSf7DvjTVovEPxc8G+J/HOpQrhL/AMaeP9X1CT3zvutpz6YxX0pRXL9RwlrOCfrr+Z9r\n/wARH47jNTpZjVpyta9OTpu3rT5W/O+5x/wj/Z7+AvwB0+XTPgh8GvDXhSK5SNbv+wNGhtXudgIQ\nyvGoaUjJ+ZyTyeeTXVT6bptzdw6hc6fDJPb7vs8zxAvFu4O0nlc45x1qaiuiMIwjyxVkfKYrG4zG\n4mWIxFWU6kt5Sk3J6W1bbb001ewUUUVRyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRXyv8Atwf8FNPGH7FPxr0P4Yab/wAE1P2ivi7o+p+Hjqeo+Lfg34D/ALZtbCRppIor\nMgSpum/dM8isybEkhYeZvITyu8/4K3/8FDvi6rQ/sa/8EDPjhqbJEGmuPjXruleBFiycZVLqWYzY\n6lVIbFAH35Xi3/BSH43+J/2aP+Cefxp+P/gjUPsuueEvhfrmpaFdbQfJvorKY2z4YEHE3lnB64xT\nP2Jv+Hj9z4V1zVv+CjMnwdttXutRRvDGjfB+DU2hsLPaSy3dzqEmbiYkgfuoo0XYx3PvAj4T/gt/\n4I1r4hf8Eev2h/Dnh+aRLlPhXqt8PKBLPHaxNdSIAOu5IWXH+1QAn/BHH9kH4Sfsq/8ABOz4K2Hh\nT4X2Gj+Jpvg/oaeJdQFuv2ue4njfUbmKSXG5kF7fXkiqThTKwFfVFef/ALJvxZ8P/H39lL4bfHbw\npo39naZ4z8A6Nrun6ecf6LBd2UVwkXBI+VZAv4V5p/wUA/4KKeFf2GJ/h98OtG+FOpfEH4m/FvxF\nLovw2+H+lazY6a+rXEMYlnkku7+aOC3iRWiXcSzNLcQoqHeWUA+i6K+OfhL/AMFQ/j2/7XXgH9kf\n9sv/AIJqeM/g1f8AxXOrRfDzXbjxzoev2d9Pptk99dRXJ065ZrQ+QmUyH3scAYDMv2NQAUUUUAFF\neb/AH9sX9k39q6+1zTv2Y/2jfB/j6Xwy0K6//wAIjrsF+tg0rzJEsrQsyqWNvNgE5ITd0IJ9FuLi\n3tLd7u6nSKKJC8kkjBVRQMkknoAB1oAfRXkP7ev7V6fsL/sf+NP2t7j4Y3/i618EWMF/qOhaXdLB\nPJaG5ijuJldlYDyYXknII+YREZGcj1fS9T07W9Mt9a0i8juLS7gSa2uImyssbAMrA9wQQR9aAJ6+\nR/g//wAFmv2Vfjh/wUr8Sf8ABNLwR4f8Ttrvh7+07KPxncWCDRdU1nTFt31PSraQOZGntkuUMhdE\nUNHIAeYml+tLq4js7SS8mPyRRl2+gBJ/lX4If8G/7WPxt/bD/Zd8c2oUeI5fhX8Wvi147kebc1xc\n6v4sfQVfnknbYwjJ6hM0AfvnRRRQBxPj79pL9n74VfFPwj8EviV8Y/D+ieLfH01xF4N8P6nqSRXW\nsPAoaVYEY5cqGX6lgBkkA9tXxr8GH8JfFH/gvZ8cfGH2d31X4Wfs/eCvCcEhnJWFdV1HWNVucJ0U\nuILDPciFeegHl/7RH/BU39rD4S/8FifGX7Kvwb+A/i74r6N4V+C+nX2n/CrwfpVhA97qNzcS3Vzr\nl1q126fZYba1t0tY7YFvtE96iqhcAgA/Rqivgr4e/wDBQt/+Ci/7anwE+HH7Knxo8TeDPAusfAyf\n4z+JrePSrI3mt241mx06z0S7MizfZ0Eg1JZ/s75ZolCyFRub69m/aI+FMX7TFt+yRHrcs3jafwPP\n4tl06G3ZktdKjvIrNJZpB8sZlmkdYlPMgtrgj/VNQB1Hi2/8SaV4T1PVPB3h6LVtWttPml0vSp74\nWqXtwqMY4WmKP5Ku4VTJtbaGztOMHyj9hr9r+y/bK+FWt+JdS8Fx+GPFvgnxxq/g34geE49UN8uj\na1p1wYpokuDFEZ4ZIzDcRS+Wm+K4jJVSSBwXwz+Ofxx0r/gsh8UP2S/HHxUfXvBl/wDBLw3478Ga\nI+i21sPDTtqOo6ZeW6zRr5t0JntYrgtMzFWYogVRg+ZfCi/0v4L/APByf8Vvg/4P0+SK0+Mn7Lmg\nfEHxO7vlH1bSdZuNEjZB/DutJYgwHUx5PJFAH3jRXPfFv4q/D/4EfCfxJ8b/AIr+IBpXhjwhoN5r\nXiLUzbSzfZLG1heeeXy4laSTbHGzbUVmOMKCSBWj4S8VeH/HfhPTPHHhLUlvNL1jT4b7TbtUZRPb\nyoJI3AYAgFWBwQDzyKANCiiigAooooAKKKKAKuua5ovhjQ7zxL4k1e2sNO0+1kub++vJljhtoY1L\nPI7sQERVUksTgAEmvn3/AIJ9f8FUv2Ov+CnkPjOb9lHxLrl6PA+pQwal/bnh64sPtdrcPcJaajbe\naMS21wbS58snbKPJYSRxnAPn/wDwcNfFrxH8E/8AgiX+0B4y8LNGLm88GJoMvmoCPs+q3tvplx17\n+TeSYPY4NcB/wSR8Hj4a/wDBSP8Aam+Cui+H3s9C+Gfw1+C3grR3P3XSy8OXs5QHOSUW9iBz6igD\n9C6KKKACiuJ/aV+OXhn9l/8AZv8AHn7SvjPT7m70nwB4N1PxFqNnZFPPuIbK1luHii3sqmRhEVUE\ngFmGSOtfJv8AwR7/AGUvF/jP4O+B/wDgp3+178XfHHi343/FDw8fEl00/jbU4ND0HTNUjE1to9no\n6TraR20Vu8B2TRyuLjfIHyE2AH3RRXztZ/tp+NL7/grfe/8ABOqD4cWJ8O6f+z/D8QLjxYL1vtK3\n0utNp6WPk9PLMUby7+uVweCM/RNABRXFftJ/HTwr+y7+zl46/aW8cWN1daP4A8H6l4h1K0sNvn3E\nFnbSXDxRb2VTIwiKqGIG5hkjrWX+yj+0loP7UvwA8EfGeHRB4e1Hxn4H0vxO/hK81KGe9022voFm\ni8zym5UhuHwM4OQpBUAHpNFFFABRRRQAUV8Uf8FPvjh8Uv2Kf2rP2bf2vdL+JWrf8K81z4hp8Lfi\nb4PlvAumfZdcBNprTAoViltLu1iLSk7mjcxKUEjk/a9ABXlH7P8A+3J+yb+1T8V/iR8Ef2fPjJZ+\nJvEvwh1iDSviHYWVlcoukXkrXCpCZpI1inO61uFbyXcI0TKxUjB7v4neM4vhx8MvEPxEngEqaDod\n3qLxk4DiCF5CPx2frX45/wDBlj8Hp9I/Zp+OX7SGo67BfXvjPx9pWmXcsM5kJez0xL4lm/v7tacM\nOodXB6UAftRRRXCn9pP4Lf8ADTifsexeMFl+IDeCJPF0uhxW0jfZ9IW7jsxcSyBfLjLzybUQtvfy\n5CAQhIAO6ooooAKKKKACiiigAooooAKKKKACiivlH4e/8FAPj7+1H+1B4s+FH7F37Lui678Ofhn4\nzbwv8QPiv448bvpFvLq1tJENRsNJsoLK6nvZbZJcGWb7NA8qOiyEASMAfV1FFeN/H7/gol+wJ+yp\n4qHgP9pL9sz4b+Cte8hJzoXiLxdaW18InzskNu0gkCNg4Yrg4ODxQB7JRTYpI5o1mhkDoygqynII\nPQiqniPw9oni/wAOX/hLxJp6XenapZS2l/ayEhZoZEKOhwQcFWI49aALtFfI3/BHjxj48i+Fvxa/\nZg8eazqOpj4FfHrxF4H8NaprOry395daAv2fUdKE883zyPFZ6hDb5bJItxyetfXNABRRRQAUUUUA\nFFFFABRRRQAUUUUAc18YvjJ8Jv2evhhq/wAaPjl8Q9K8LeFdBthPrGva3drBbWqFwilnY4yzsqKO\nrMyqASQD8hz/APBfz9jLx1osWtfscfBT48/tCxPqL2U03wa+DOq3VtbSqcEyXd9Ha22zPG5JW9cY\n5r7du7Oz1C2azv7SOeJ8b4pkDK2DkZB4PIqSgD5n/Y0/aq/4KHftA/FrUtI/aa/4JbXfwU8BpoD3\nmheKtY+K+l6xfX9350Kx2sunWSl7UtC8shZnOww7DkuMfRfiTw5oHjHw5f8AhDxXo9vqGl6pZS2e\no2F3EHiuYJUKSROp4ZWVmUg9QTV2igD4D/4IieLfEf7NGofE3/gi98YNYuLvxD+ztrAm+H+r37Dz\nfEXgXUXe40u63ZHmzQF3tp/LRYoiIIwS27Hmf/BVD9tH9kz9lb/guF8BPij+2J8RF8M+H/g38C/F\n3ivRLiO2muLjU9U1i4t9GSyhgiDNLI0MVwwUDA2szFVQsPRv2t55vh3/AMHG37JHin4fWajVPiH8\nKvHvhbx/cJHvZ9CsbeLU7FW/55qL8khuMlyuTnFMvbSK9/4OurdbmNZFt/2CPNjVxkK//CaEbhno\nenPtQAfsN/Bf9p39vX9t+1/4K+ftw/CzVvhzoPg7Rr7Rv2a/hDrsjxajolneKYr3XtViBxDfXUP7\noQHIjiO1gxjilb7r+HnxI+HPxe8F2PxH+Evj/RfE/h7U0Z9N13w7qcV7Z3aq7IzRTwsySAOrKSpO\nCpHUGvzE/wCCw3/BV39qrw78Lf2qfhb+zf8Asqxav8NfhN4O/wCEP+IfxIPiNrfUbPWtd0iTyLjT\nrcR7JobF7qz+05cSg3KsibUZz2X/AATL/a7/AGJv+CU3/BPf9l79gz9qj4/w+HfiV4t8DadqNn4T\nm0S+uL23udavDcJDdR28D/Yv9Jvjbhrjy1ZopMEiNyoB+kdeN/8ABRf4g+JfhJ/wTt+OvxX8GXrW\n2seGfg34n1bSrhDgxXNtpV1NE4PYh0U/hX5T/syf8FIv+Ckvjb9vnxt+098XPjt4j8KfCOz/AGpd\nV+FmnfCa8sNM1G51w2yFodGg05VVdKns7ZZry/1h9TWEnYixzhCr/cnxp/bF+Gn/AAUh/wCDfz4z\n/tbfAHwx4jtfD/jb4CeP49F07xFYxRagWtrPVLFg0UEsy5aW3coFdiVZScElQAer/wDBJjw5b+Ef\n+CVP7OegQaPFYtD8DfCjXNtDEEAnfSbZ5mIHG5pGdmPUsxJySTX5Nft8/BPwlpn/AAWY8A/8EWP2\nNvjN4xsPhP8AGO407U/2ivh7q3je81PR4n/tCfXp47eS7kmn0+/vbWxuJJFR1E4uIiVIZq/Xv/gm\nr4r07xz/AME3fgP400uMR2+p/BnwxcxxBw3lB9KtmKEjjKk7T6EGvkPwL/wQn8XfFr9mnxD4p/ap\n+OH9g/tNeK/jqfiqPi54Jk/tE6BqtnNNFo1rb/aoo2uLC1sWEa2kmEQyyBCFVCAD7b/a2+E3hv41\nfshfEn9mu51CLTLXxj8Mtc0EC2Ko1vbXFhLas8a9AEEy9sDK+orxr/ghP8cH/aJ/4I5fs/8AxIms\n7iGWH4dWmhXBupGeSaXSmfS5JyzcnzHsmkyf7/U9T8dftR6j+1B8KJNX/wCCQX7Pf7YPjT9oH9rv\n9orT0HxQ+JetLHYaP8MvB4DQy3y6dbP9m0ZPIuZfKhgzPJLcGUyFzYwyfp7+zJ+z58PP2TP2c/Bf\n7MnwpszD4f8AA3hqz0XTDJGiyTJBEqGaXYqq00jAySOANzuzHkmgDrPEkckvhu/ihBLtZShQO52N\niv5aP+CVXxi/aH/Zu/Zd+H//AApD4sweEfjT+0v8UdB+E/wV1u98OxXtx4U8FWmrSXGtarCJInR7\nW41jUhEyOMu9pclSTbnZ+2H/AAUG+Pn7U/7anxJ1/wD4JQf8E8/C/iLQbmd4dM+Ofx81DSZbbSvA\nul3EEc89lp8kgX7fq01pPFsWHIiW6jbzI23y23wN/wAFN/8Agnt+yF/wQb/bJ/ZP/bW/ZL/ZW8Z6\n34c0zxV4htNd0611m91SS+1g6bD/AGDpcPntJ9ne4u/t8o8tCS8k7bWCRxqAfoSn/BxH/wAExtd+\nIvivwh8LvHPifxtoPw/8MahrfxA+I3hTwxLN4a8OR2qSFIJ72VoxLLcvEYrYW6zJPIyor5Nek/8A\nBPv/AIKq/Aj/AIKM+L/HXw3+Gvwp+I3g3xR8NLbTH8a+HPiP4dj0670yW/kvRb27LHPKDIY7Lzjg\n7RHcQ4Yv5qR/nP8AGD/gnJ8f/wBnz/g18/aE1f4vaTpGm/Fn4ua+vxb+J+hWjw6da6Uh1ewv5tKg\nDBUiMVlasPIAb9+8kEZkBQtnf8Gu/wC1H8a/iv48+IfjPwJ+yjf+LdS+MnxP1Dxd8fPjLe6kNL0X\nwu8iyTWei2KmOV9VuVM7ytGpiEAvlVvlUSMAfZ//AAT7V0/4Luf8FBftjTiV0+ExtlmDbTbjw3cj\nMeeCvmeaDjjdnvmvmD/gst+1F8cP2bf+CpPjX9lv9lj4fale/Ef9rH9m3w14M8C6hYqyQ2mr/wBv\naxaz3s0yuGgFvp9zNIJUDeW6xOyhA7D7B/a2+EP7a37P/wDwUV0H/goh+xZ8Av8AhbWl+J/h0vgL\n4rfDS28X2Oh3Ijtr2S907XLeW9KQXEsPn3lu8ckitsmjCAgu0fa+G/2BPDnxg/bk8C/8FWfjzB4k\n0H4l+GPh/P4e0b4eDxDaaho+gRXD3JeXclorNetFclJXilMYJaNXmjRJGAPnv9ib9m74VfsY/wDB\naLw5+yZ4U1g3Nz4F/wCCfXhzSNLuXtxG+ow2/inUEvbtlBIRpJzBIyg4DTHsBXJfsf8Awh/4KIfs\n5/8ABWv4t/tqt/wT9MfgD9prxJaaVb6dYeJrZL3wbFpl/HbHV9XR2xGl5aHUdREdt9oJnMEDNGZv\nMX63/bY/YU+KPxx+O3w3/bG/ZS/aCt/hv8Wfhol7p8N9q2gNqej+JdDvTG1zpOp2sc8EssPmQxSx\nskymJwzKN5SSP6P0WLWYNGtYPEV/bXWoJbRrfXNlatBDLMFG944mkkaNC2SELuVBALNjJAPkj/gm\nl8NPjp8TvjL8WP8Agpl+1B8O9Z8Ha78Wbmx0X4deAfEqeXqXhTwVpfmiyhu4SP8ARLy7uLi7vZ7c\nPIIzNGNwYOq+dfsy6jZ/tT/8HFnx0/aU8EAnw58DPgfpHwfutQjl8yDU9ZutTfWrsRsBhXtdotpY\n8kq+CfvAD0b/AIKu/wDBRvXP2UPDOi/sr/soaMPGH7TfxfLaX8JPA9i0MklkzrKH12+WQkQ2FqsU\nshd1KyNCVOI0nlh9F/4JqfsMeGv+Cd/7I2i/s/WXiSXxD4jnuZ9b+IXjK8LPdeJ/EV2RJfajPI+X\nkZ3ARWkLOIoolZmK5IB8hf8ABZf/AILWf8E9rb9jv9oD9iv4a/E7VvH/AMUb74deKvDl94R8BeGr\nvUJdFlW2urO7ub6YIsFrb2rhnnZpNyxoWVHGM+4f8EbvGP8AwUi+Jv7Nnhf4h/tjeCPhv4M8EXXg\nPSI/h14R8OvdX3iA2y20SpfapfGf7KDLGglS3gh3KtwokdHjZD13/BVrwN4X0D/glH+1DN4O8I6f\nY3Or/Bfxbe6m+nWKRPe3B0i53TSlFBkkKqAWbJIA54r0z9ijRNU8MfsW/Cbw1rlo8F7p/wAMtBtr\nuB1w0csenwK6kHoQQR+FAEH7cn7R0f7H37FvxQ/am+z2U8/gLwHqmtWFpqM3lw3d3BbSPb27EEHE\nswjjwDklwByRX4i/8EEf+Chv/BSTxD/wVE+H37E/jf43av4z0nxZp+vfEL9oCbW7eG8ng1G/0dZb\nS3S4bLWkFqsWiRfZohF5F1d3sDqyrGsX2L/wd4+BvjB4p/4JDaz4m8G/F+10Dwn4a8RaZe+MdAMc\nguPE5kv7a1s7RXVwvlRS3DXboytue1hYYKZr5a/4IXeBf+CgX/BPrw3rHxevP+CInxA+Jfxq+Nk8\nes3vxS1f4gaXptlJo175V3FA80vmGyzIzTzxsnnNIVEi5ijRAD90vif8SPBfwa+GPiH4w/EfWk07\nw94V0O71jXdQlBK2tnbQvNNKcc4WONm/Cvm39kj9vb4m63+wpcf8FDv+Chdl8PPhd8PNc0W28WeE\n59N1u5nn0/QL0lrG31ASRlZb1opLPabdiZ5bvyVt43RRN1H/AAVvaQf8Emv2kzjDf8KF8XZAOf8A\nmD3eaz9a/ak+Ev7D3/BIfTv2rfHs9q/hnwP8FdMv4bdZlVNQcafDHaWcTNxvuJnhgjzwWmQd6AOu\n+AH7d/wI/aj+N2tfCD4D6jN4htND+HXhnxhdeKrJo/sP2bXVu5dPtyrOJkne2tVutrRgCKeMkgkK\nfC/2r4LX9j7/AIK2/Aj9qzwlqFtpGifHy6ufhT8WLYsVj1e+jsri+8N3hjQAPdRzW91aec+5hDdq\ngwq18cf8EW9W/bv/AOCSX7Ml9+xV41/4JP8Axf8AGfxY8deI4PEmjeKdDitz4RFvd6Zp0VvbanrE\n0wOmtZLBJbyQCKQIYP3ZcSBq+lP2v/E837fX/BZb4IfsMfDjRzqnhz9mrXIvix8bPEEUbLDpOq/Z\nJo/D2mpICR9okkme4eFgC0BDIx8uVQAbf/BzvaT33/BB/wCOsNtGzMtpoEhCjJ2p4h01mP0AUn6C\nl/4Is/EWb4mWn7V/7Z3xF1ewt9P8UftM+IYdO12SZY7V/D2h2VlpdpOZWIURpFaSZYnaNrHPWvZ/\n+Cv+i+CfEH/BJz9orTviD5Q0wfBbxJMzzIG8ueLTriW3dVLKGkWZImRdwy4UZ5r8bfhJq3/BV34B\n/wDBPr9mf9gjx58AX+En7PvjD4j6R8LfHkXiXULC88Q/E3/hLtQvZ9SitQsTHS7OO2mulSUFLgF4\nSskhEgiAP6Afhv8AFL4XfGbwlD4++D3xI0LxVodyzLb6z4b1aG+tJWU4YLNC7IxB4ODxR8PPif8A\nDX4u6DN4p+FXj/R/Eem2+pXWnz3+iahHdQx3dtM8FxAXjYgSRyxujLnKspBr+aLxd8Af2rv+CJnx\nM/bO+Fv7Af7emrT+B/APw48M23je9j8LwW9wNX12+hstLsBIJT5F5DZ3dxc/2jAFYmF02RuwaP8A\nXb/gn9+198JPhd+23D/wRk/ZM8I+ELX4R/Aj4eJ4f1bxjPq0Fvdax40XZPLplhAsg+2TrAt9c3zK\njyLOJjKYioM4Bsf8HMfibU/CX/BCr47alpF5JDNPp2i2JeJypMdzrun20i8dmSV1I7gkV9s+CfCG\ng/D3wXpPgDwtZrb6ZommW+n6fAo4ighjWONR9FUCvk3/AIOCfhBqfxx/4IqftA+C9JMYlsfAx8QM\nZWwPL0m5h1WTHvssmwO5wK+hP2S/jfY/tN/sqfDn9o3TinleOfA2k68FjPEZu7SOdk9ipcqR2II7\nUAfGPwm+KPgmT/g4Y/af+LXjzxzpmheHvg9+z74P8N6/q2uX8draWQvJptWEkkspVI0CPksxAG6v\n0OR0lQSRuGVhlWU5BHrX5jfsffAP9n39u7/gpn/wUk0H43fDuw8XfD/xX4j8BeEdW0fUlbypp9I0\nWSK42uhDxyR3Co6SIyvG6KysrAEe4/Db/ggj/wAEzvhZ8Q/C/wAQtD+H/je+PgPWrPVvAOi658WP\nEF7pvhq8tnV4ZbS2lvSvDIvyyeYpAxjHFAHQ/wDBcLVIdG/4I6/tFXc77Vf4UatADnvLC0Y/Vx+d\nfDn7UX7CX7I37EH/AAQT8J/t9fCHwnD8Lvjp8Lvhr4f8T+HvizoEkn9uTeILtLNJLa8uJCz6hbXM\ntw1obW682COGby0jSNFUfYf/AAcHWeo3/wDwRR/aBg0uIvKvgjzGCn/lml1C8h/BFY/hXy5+xd4b\n8Yf8F5viv8Ov2hviN4V1PSP2SP2eriyHwv8AD+qxGFviX4tsYRbya1PH3sLSQSRxJ0d/MRjzcwIA\nfTX/AAVO/a5/aM+Bf/BLTS/EfgdrXwZ8b/ixc+GfBPhiKQM0WjeItbmhhn2sCSrW0bXkiOd2HgQk\nNyD6z4vvbv8A4Jof8E9Xf4X/AAw+Jvxruvhr4Wt4LDQrC7k1fxN4nm8xI2meSUlpZGd2nlKg7IxJ\n5UR2pEfnT/g440aTS/2SfhF+0TqV+tt4e+Df7UfgXxn4tncgCPTY7yWxdiSRgCS/hPfp+I9q/wCC\nov8AwUm8Cf8ABOT4IWep2nh+bxd8U/HN4dF+D3wy0yJ5r7xVrTlUjjWOP5hbxtLE00nAVWVFJkli\nRwCP9kP/AIK8fsTft4/FzR/g/wDsqeLtU8VXWqfDA+ObvVbPTwLLRrX7etithfOz77fUGl80i2KE\n+XA7lgpjMk/xF/be8b/CH/gq/wDDv9hjx94V0aLwT8X/AIY6nqPgDX4GmOoy+JtJmebUbGZQxjFv\n/Z0kE0b7VIkjlUs+9Qn5d/8ABKZf28v+CJ/iz40fBT4o/wDBKP4w/GT45/FnxNpGr6f468C6Qq+E\n9VkntRM1pe6w2LawS2ury93zJG67nfdsRUavo74feOPiL+3/AP8ABeP4NadFqWhardfsXfD3X5/j\nj4t8LTvPoreMvEVj9gm8PWDNGj+XatHIyPJmTbbSxTBZomLgHsP/AAcw2fh+8/4IXfHNvEeqvZRW\n+n6LcWtzH94XUeu6e9uoOON8wjTPo55HWvtT4e6hrurfD/RNV8T2og1K50i2l1CFTxHO0SmRfwYk\nV+en/BbTW5P22/2lfgR/wRM+HU015L498X2fjr42Qw+Z5Fh4H0mZpWiuiqMF+13MapCTx59tErbf\nNQn9IgAo2qMAdAKAOW+OWkeHvEHwO8YaB4t1yPTNKvfC2oW+palMcJaW720iySsewVSWP0r86v8A\ng0H8KfDzw5/wRc0bV/Bes291qOu/EDXb7xXFD961v1mS2SN/9o2dvZSf7sq181/8Fgf2kP2g/wDg\noX+0544/Za/Z9+OHiyx0GLx1bfA34V+BvCWuy2lp4s8WyxibxbrGrrZyR3c2n6PYXEULxSb7YSyw\nysGi+0xS/oP/AME5/wDgldq3/BLj48+MtA/Zn+I9gfgB400TTrs+ANVjnfUNE8S2ltBZyX1tPuKS\nRXkMIkuBIN/mpFsIVSCAcl/wU7/bb/ak/wCCV/x/8G/tqfFz4yaZr37MniHxJb+DPFHw70vwVHHq\nPhp7i0klg10X5naW7cXMEqSRgRxLbyRqkLzAzN0P/BDn4W+P9c/Zt1f/AIKNftD28TfFT9qTUofH\nOvtFKskem6G8ZXQNJgdSc29vp7xugbMivcyhyWGa+Nv+DqnxR8X/ANs1NO/4Jl/ssacutXvgDwJq\n/wAZ/i7BbPiSy03T4Hg0+BSCd8sjz3Dm32+Y2LZl4YV7r4P/AODg7/gnT8M/2S/hb8Mv2QI9X+Mv\nxO1fwHptn4J+CHwz0ua51QTw2KD7LdsqNHYJD5eJS250RHdY5QhoA/SuivG/2Ebb9tCb9nu28Yft\n83WiW/xH8S6lcatqHhbw0ySWHhS2lKi20iKZRm4aGFEMspaQNcSTbJHjEbH2SgArzqf9rP8AZ0tv\n2rrf9iGb4n2g+KF14LfxZD4W8ibzDpCXItjcebs8oHzTgRF/MKqzhSqsw9Frx39sD9hP9nf9t/Qd\nFtvjFpGq2PiDwndTXfgfx54R1mbSfEHha6ljEck+n39uRLAWUJvjJaKTy4/MR9i4APYqK8n/AGU/\n2fPiv+zP4cu/hx4x/au8YfFjQgySaHq3xJW1m16wO0CSCa8tIIEvYWIDoZIhNGS6tLMrRrD5z+3p\n+y7+2l8Sfih8Ov2of2J/2m5tH8UfDPU2c/CzxXqs1p4P8X2VykkN7HqBs4WuPtXlPG1vM4nigeHi\nAGV5VAPp6ivGfgt8b/2tbn4D+JPin+1n+x1B4P17QILmax8G+AfGq+KL3Wo4Yi/7gm1tEWWVgEii\nZiSSN7J1Ph/w5/aG/wCChv7HPxDh1X/go/p8PjH4bfEQzapD4t+H/hpph8IdQYNJ/wAI/qSWkZkv\ndJWJQsWtbN4nWUXKxxSRPGAfa1Fcv8KvjD4G+Nvh9vF/w3l1G70cymO21S70a5s4LwAKwltjcxob\nmBlYMlxEHhkHKSNg11FAEV9e2emWM2pahcLFBbxNJNK5wqIoJLH2ABNfEH/Btrouv6Z/wRP+Dus+\nLr6a71jxDFrmu6pfXLbpbua91u/ufNdjyzMsiEk8mvtXxV4c07xh4W1LwhrAY2mqWE1nchDhvLkR\nkbB7HDGviz/g3Y8eahq3/BLHwz8B/GdvFaeNPgh4k1r4a+PtLibcun6rpV9Ihh342yH7PJayFlJX\nMmM5BoA+4q/L79u79lj4F/8ABSb/AILQaH+wt4n+GPhvSPBng/4fWXxR+OfiDStEtYdY8e3CXgsd\nJ0C7vPKWf7HGkAmkIeRXjCxDyXjikT9Qa/I//gsp+w+//BaL9snT/wBkD4U/sJXWg6h4MW0h8eft\nXeOdBvrG20nSg4uBpuhhZI01qdvOmUiUSQQmSQqFZxcRAH61abe6bqWmwajo95DcWlxCklrPbSB4\n5I2GVZWXhlIIII4INTVxX7N/wA+G/wCyl+z94P8A2afhDYS2/hrwR4dtdG0dLh1aZ4YIwgklZVUP\nK5Bd3AG52ZsDNZf7Yn7UHw7/AGKf2VPHf7V/xUu4o9F8DeG7nVJ4ZLlITeSopEFpGzkL5s8xigjB\n+9JKijJIoA+aP+CTWtxeNv2wv23/AB34Zvkn8Ot+0bHo1u6EYGpafoenW2oLgd1lCKfdTX3BXx9/\nwQn/AGa/iN+zp/wTg8Na98d1lb4mfFjVb/4k/Ey5ubdobibWdal+1N58bIjRzpbm2hlQj5ZIXA4A\nr7BoAKKKKACiiigAooooAKKKKACiiigAooooAKraxrGj+HdHuvEPiHVraxsLG2e4vb28nWKG3hRS\nzyO7EKiKoJLEgAAknirNeO/txfsUfDj/AIKAfBBP2d/jB8QvGui+FbjXLa98Q2HgnX/7NbxBaRBw\n+lXsgjZ3spt/72OMxu2xNsi45APkb/gmVrupf8FKf+CmfxP/AOCymm6LdWvwo0jwavwo+Ad5e2jw\nN4jsLe/e51TWhHIdyo94hihfCs0ZaN1R4XWvt4fswfAYftTt+2qPAKf8LMbwEPBR8TG/uN39hC9N\n99jEHmeQB9pJk8zy/MPCl9oC10nw6+HngT4ReANH+Ffww8KWWh+HfD2mQ6domj6bCI4LK1hQJHFG\no6KqqAPpWzQB+Wn7V/8AwRC/bW/an8c/F79lp/2k/CPhf9mX4yfF6T4meJtR0pryXxjLqR0q1gTS\n3hkj+xPYJfWdrcj5/MxAgyCAB8r6p/wS+/4LnfHj/goB4p8VaN8JfAuiXfw7/aL0/wCIVv8AE/4l\nX8lppHxEg0WGysPC9sltp6XE0Udtaw6jcMsbgA6pLE7JJHGG/fOigD+evxR/wSV/4LoH9qDUvBPg\n/wCCsEcWtfHP4s6vbfGu78Rafb2kFp4utNN0u5117G1ujLG40+G7eGAKskc1ycA+VtP60f8ABHP4\nFftBfs//APBN/wAI/smfta/s+eHPBuq+A7OXw0LLQdbh1Ky8QWUf/MUPloBEbpnld4ny5Ys7bTJs\nX6sooA/Pv9nz/ghr8RfgLJYfs9j/AIKV+PNY/Zd0PV5b/RP2f5fDNhbmRJLh7htOv9Zj/wBKv9Oa\nSWTzLNlWOVG8uTcu4N9l/tLa1+0JoHwI8RX37KfgjRNf+Ib2Qg8KWPibUTa6bHdyusS3N26gubeA\nOZ5I4x5kiRNGmHdSO5ooA+Zv+CZX/BOLQf8Agn/8ONe1jxp4/m8f/GD4j6sdb+LnxR1G3CXXiHUS\nWKoo58m1hDskMIwqhmYKpcgfTNFFABRRRQB+Zv8AwX9Pxg/bn8b/AAs/4Iafs5y3NjqPxjvV8UfF\nbxSto8sHhzwbplyhaaRdoVzLdiPYPMTMttHCxX7UrD74/Zm/Zu+Df7H3wA8L/sz/AAA8IQ6J4S8I\naUlhpNjCoyVBLPNIwA8yaWRnlkkPzSSSO7ZLE13VFABRRRQAUUUUAYtt8N/hzZfEC5+K9n4A0WLx\nRe6amnXniOPTIlv57NHLpbvcBfMaJWJYRlioJJAzzW1RRQA2eCC5ge2uYVkjkUrJG6gqykYIIPUH\n0qDRtG0bw5o9r4e8O6TbWFhY26QWVlZQLFDbxIoVI0RQFRQAAFAAAAAqzRQB+cX/AActfDyw+Pf7\nOn7Pv7KWtarc22l/Ff8Aa18G+F9c+yuVZ7C4W/8AO5H93arj/aVT2zXsX/BVf9qPxx8DYfhB+zx8\nJ/2itG+EOo/Fbx1Pa6z8StZt7No/DHhrSdNutW1W5hN8r2kc7Q2kdujXEbxqLlmwGVXX62uLKyu5\nIpbq0ila3l8yBpIwTG+0ruXPQ7WYZHOGI7mvzX/4OCPifc/HnUPhz/wR3+DH7MvhX4jfE/45NdT2\n2r+MtFF5ZfDrSUVrafxGoYApcxpLcGGRGyhhfIctHFKAdV/wSy+I/wC07/wVW/Yi+Mk/7X/iux8Q\n/Bv4iXeteD/hR4hj0CPTNZ8R+HCLuwutXuo4SsUInL7YYRDG8XkSbzMGSVs//glv8ZPDF78DPD3/\nAARK/wCCjPwJuJ/ip8LNOj0NdC1j4d3l74c8WaBosyf2V4gtbmS2e0a18u3tMSTtG/2qHARZGRa9\n4/4Jj/8ABM7TP+CZnwxufhxpH7XXxa+Jlvd6NpGnw2XxD8RJc6ZoaWEU0YXSLJI1XTopBN88YaQs\nIYcsShZvpugD5/8A+CkXxv8A2vPg1+z7FpH7CX7Pl948+KfjPWE0Dws5jUaX4cllildtX1OVztjt\nYFjJwc+ZK0UePnJEH/BM7/gnr4D/AOCcn7Op+GuneJrvxV438TapN4h+KfxD1Zi994s8QXLGS6vZ\nWbJCbyVjjydqAFi8jSSyfQ9FAHx5/wAFb/gx8Wf2zIPhP/wT28NfDvVrj4e/E3x5HqPxp8Ww2PmW\nOmeGdFeLUX06SUOrQXOoXK2lvCyhvlW4JBCnPaf8FNv+Cfl7/wAFDfgt4R8C+EPj3e/DPxX8O/ib\no/jzwL4xsdBh1Qabq+necIHks5mRLhAJ3OxmA3BSdygo30fRQB+T/wC3j8FP2L/+CO//AASK8Q/s\nU3Xgu7+PHxT/AGlPEs1hZaR4yvZJ9a+JvjO/njb+0rgQOkwitp2tpB5LKyMLdPOFxcfaH9k/4IZf\n8EJ/gX/wSV+C9p4u8V6Vp3ib44+INPVvGPjV4hINN3qC2l6aWGYbVDw0gAkuXBd8IIYYfszxj+z/\nAPBD4hfFvwj8d/HPwv0jVPF/gFL9PBviC9tQ9zo4vY0iuvIY/cMiRqpPXGQCMnPYUAQ6jp2n6vp0\n+katYxXNrdQtDc288YdJY2BVkZTwwIJBB6g1+bP7JGmftu/8ERPFrfsTeJ/2avFnxk/ZYl8SyS/C\nr4kfDnT21TXfAlnfXbyPper6XCpu7yCCaZ5PtcKyMIiWAbcLa2/SyigD5n/YF/4J+eIf2Ivi/wDH\n34h3vxuj8Tab8afi5f8Ajmw0lfD4tJNFkvCDLBJP5zm6ACxqh2oECMQMyMB9MUUUAfDv/BWv4Vft\nI/t7+OfBP/BLX4QP4h8L/DrxnA+vftA/EjTbbyxa+GoJdkWi2s8kbRm7v5wylQS0cVuzOkkTyI32\nB8IfhN8OPgH8KfD3wQ+EHhaHRPC/hPRbbSdA0m3d3W0tII1jij3SMzuQqjLuzMxyWJJJPRUUAedf\ntb/ss/B79tz9mfxf+yh8etHmvPCvjXSGsdTW1dUngIZZIbmFmVlWaGZI5o2ZWCyRISrAEH5J+DX/\nAATi/YO/4J1ftTaX+2J+1D/wUY8ffED4haN4RutG8G3v7RXxM0++k0WxkbEsmno8EMqzGMyQs6s2\n5Z5ht/eGvvuvLbD9iD9jTT/E9/42/wCGXfA9zrOqapcajf6vqXhy3u7qa6nleaWUzTIzgl3Y4BwM\ngAAAAZ1PbW/d2+f9f5HsZPHIPbSlmsqvKtlSULyfnKcrRtp9md+y3Pmb9r//AIKSfsU/tSfBXWf2\nUPgF/wAFGtS+HfizxpcWmj23jLwn4H1G/vLOGW7iW5jtW8lUjmmg82BLhWLQtMJU+ZFqD4w/FD9i\nL/g3H/YE8Mfs+fs2fC2fV/FOv3f9k/Cv4caaPtGvfETxNKIoTc3BiUNKzO1uZ7gKFjUxQxICba3b\n62/aI+N/gz9lL9n/AF7406/4a1G/sfDlggsfD3huwM99qt3JIkFnptlAn+tubi4khtoYhjdJMi8Z\nr5R/4Jw/8E6fi7eftAat/wAFZP8Agpra2eqftEeL7M2vhjw1Fci6074U6AQ4i0fTyMo1yY5ZBcXK\nfeaWVUJ824luVSjXV/aST9E1+bf6Gmd4jhqvKn/ZGGrUUr83ta0K3M9LOPJQocttbp897rVW13v+\nCRH/AATw+JH7MOg+Kv2wP21dUtvEf7TPxsu01T4neIFm85NHgwv2XQLMhmSO2tUCqfKJV3UDfJHD\nBt+zKKK1PDPgz/gmH/wQp8B/sBftC+Mf2ufjH+0Jqfxl+JniLV9TuNC8Sa5oiWKaBBqFw9zetDAs\nsqteXMkjedd5VmQCNFjQyCT7zoooA8a/Z6/YX+Cv7Nf7RHxg/al8H6n4g1Txn8b9bsNQ8Yal4g1J\nZxDHY25t7OytUSNBDbwo0m0HfId+GkZUjVO0+Gv7O37PXwX13VfE/wAHPgP4O8Kalr0nma5qHhrw\n1a2M+ovuL7p5II1aY7mZsuTyxPUmuxooAKKKKACiiigAooooAKKKKACiiigAr4Q+N/7F37en7I/7\nanjf9vj/AIJax+B/Fdh8VrSyf4u/BDx5fSaZHqepWaGKHVNJv4kZLW6eM7ZUnXy3zI7GR2jEX3fR\nQB4D+x58Qv8AgpT8WNfvfGf7Zv7OXw8+EfhxdLEOl+CtF8XS+JNbmv8AzQWuZ7+JILSC3EYKrAkc\n0jtJuMsQj2S+/UUUAFfm5+3T4i03/gr7+3r4W/4JU/CDUBq/wo+EPiez8YftVa3bEvYTy2zs+meE\ni6vtnlmuI2kuYiAIlhVlfzYJIh+hnjrwTovxG8I3vgrxDeatb2d/CY55dC1670u7Vf8ApndWcsU8\nJ/2o3U+9YX7P37OfwJ/ZT+F1l8GP2dfhfpfhPw1YMzxabpUJUSStjfPM7EvPM5ALzSs0jnlmY80A\ndoAAMAYHtRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR\nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBhfEL4o/C/4RaB/wlfxZ+JGheGNLEqxf2j4h1aGyg3t\n91fMmdVyccDOTXhXir/grZ/wTj8M+IU0KL9oqw1zVSxhtrbwro95qryliPkje0hkQ5KjgNzgU/Rf\n+CVX7H8Px91j9or4g+HdV8e61q7SFLT4h6iNYs7DdI0mIIrhCQF3FVDs+wdMHJPv/hrwn4U8F6Wu\nh+DfDGn6TZJ9y002zSCJfoiAAflXJ/t07/DH75frH9T7vl8N8vhBS+s4yTSb5XTwsVJrWK5oYmUl\nF6N2hzdEt382al+3/wDtCePml0j9mL/gmp8VtZvYpyj33xFt4PCmn+XtO2aOS7dpJhnHyeWhx3B4\nqp/woX/gqr8eIzL8bP2yPC3ws0yUGOXw78IfDZuriaFsMC+o358y3nX7u6FSvGRnPH1dRR9VlP8A\niVG/Je6vws/vbHDjXCZdG2T5Zh6Mv56kfrNT/wArudJPs4UYSW97pNfKz/8ABLNphm5/4KS/tTM5\nHzFPixsBP0FtgfSvbP2Zf2efCP7KvwV0v4HeCPEuu6vYaXLcyJqPiW/FzeTvPPJO7SOqIv3pCAFV\nRgDOSSx72irpYWhRnzQjZ7HmZxxrxPn2B+p47EOdLmUuXlhFc0VJJ+7FXspSS9WFFFFdB8sFFFFA\nBRRRQAUUUUAFFFFABRRRQAyS3t5njkmgR2iffEzKCUbBXI9DgkZ9CR3p9FFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR\nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=\n","text/plain":["<IPython.core.display.Image object>"]},"execution_count":1,"metadata":{},"output_type":"execute_result"}],"source":["MeatPieImage()"]},{"cell_type":"markdown","metadata":{},"source":["(3)式の二行目への変更が分からない。\n\n積分変数をzからxに置き換えると、変わっているのは\n\n$p_z$ が $p_g$になってる事と、Dの中のg(z)がxになっている事。"]},{"cell_type":"markdown","metadata":{},"source":["$p_z$はzの事前分布だが、引数を入れる場合は値zを事前分布が取る確率だろう。\n\n$p_g$はジェネレータGによって得られるサンプルの分布。"]},{"cell_type":"markdown","metadata":{},"source":["$p_g(x)$はなんぞや?というと、まずzがえられる確率を考えて、そのzでg(z)を求めたらたまたまxに一致する、と考えると、"]},{"cell_type":"code","execution_count":1,"metadata":{"collapsed":false},"outputs":[{"data":{"image/jpeg":"/9j/4QC8RXhpZgAATU0AKgAAAAgABgEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIA\nAAITAAMAAAABAAEAAAESAAMAAAABAAEAAIdpAAQAAAABAAAAZgAAAAAAAABIAAAAAQAAAEgAAAAB\nAAaQAAAHAAAABDAyMTCRAQAHAAAABAECAwCgAAAHAAAABDAxMDCgAQADAAAAAQABAACgAgADAAAA\nAQFAAACgAwADAAAAAQBgAAAAAAAA/9sAQwACAQEBAQECAQEBAgICAgIEAwICAgIFBAQDBAYFBgYG\nBQYGBgcJCAYHCQcGBggLCAkKCgoKCgYICwwLCgwJCgoK/9sAQwECAgICAgIFAwMFCgcGBwoKCgoK\nCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK/8AAEQgAYAFAAwEi\nAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQE\nAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Sl\npqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8B\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUh\nMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJ\nSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2\nt7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/fyi\niigAoorlPjj8c/g/+zR8JNb+Onx6+IWm+F/Cfh2zNzq+tatcCOGBMhQMnlnZiqIi5Z3ZVUFiAQDq\n6K/JL9sf/g7o/Yb8BfB6xu/2CtA1L4u/ELxBfS2OkeG7jTrqwjspQVVZbgMnmShi67I4gTIQV3IQ\nSMj/AIIk/wDBa/8A4KU/tH/8FKvFn/BOf/gpl8JNB0LxFD4QOv6dbaTo5s7rRpPKtblLSdVmkGxr\na6VsP+9jdQjncSFAP2EooooAKKKKACiiigAoqK1vbK+VnsruKYI5VzE4YKw6g46H2qWgAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvw8/4PY/\n2l73wt+zp8Kf2S9C8QeW/i7xDda3rNhFJ801tZoqQ71Bzt82bIyMExnHK8fth421LxLovgrV9Z8G\n+HBrGr2mmXE2l6SblYRe3Kxs0UHmN8se9wq7jwN2T0r+M3/gs7c/t6+IP2+9V8Sf8FDAlv8AFDxH\npdtqFz4Shu0uU8NWlwZPsmmJsZo02QeW4VGOPNBJ3ljQBQ/4JiftMar+x/4z1H4n/An4NweNvjv4\nhC+HfhDbXem/bF0G5nIWXVIrfnzroBligBG0MZGbIUq39Ef/AAQN/wCCJ/xM/YL1nxR+2/8AtueP\nj4p+PvxMtGGtTNcG4Gj280izzQtMf9dPJIiGRl+QeWFXIyT+Uv8AwT7/AOCE3/Bx5+yp48g+O/7L\nPwj8FeBde1LSkGm+M/EmraDqE9nbTKCfJjnFy1s7KQGYQrKBlcjkH9R/+CcX/BLf/guD4T/ab0n9\noz/gpv8A8Fatd8Q6Vok/2mP4d+BfEd2dO1SUDCJdq0FvD5IyS0aRHcQBuoA/USiivyC/4LB+Ovjh\n+29/wW4+BX/BG7wp8cfE/gj4faj4fn8T+Pj4S1R7K51WNYrqbynljIYqIrRkVeQGmLYJCkAH6+0V\n5drUa/sVfsYSWfwy8FeI/HC/DHwCsGi6It4bnVNaWxtQkcZlfJkmkEYy5BJYk4J4P5CfHH/g7A1/\n4v8A7Cvinwh8DfgtqHw2/aQ1Lxjp3hLQPDGtP5r2seoJMyanEZUTmMRbNrr8kk0LHKtQB+3ujeKP\nDHiO5vrLw94isb6bTLr7NqMVpdJI1rNtDeXIFJKPtIO04OCD3q1fWdvqNjNp12rGKeJo5AjlSVYE\nHDKQQcE8ggivnf8A4Jbf8E+PC3/BN39lSy+DcPiKbxD4u1e6bWviL4wvJnluNf1uZV8+5d5CXZRt\nVE3c7FGeSa+jcgd6APxo/wCCd3iDUv8Agmd/wcgfFT/glx4Y8Q6wnwq+JnhyPxN4J0HVdZuL9LK9\nFqlwWjluXeUsVS5jYsxLCJdxYqCP2Xr8Rv8Agp5dSeA/+Dw39kzxJoeY5tW+H+mQXZjPL+deeILR\nyfbyiB+FftzQAUUUUAFFFFABRRRQAUUV88f8FK/+CnH7Mf8AwSn+AcHx+/aam1maz1DVF03RdI8O\n2K3F7qN0Ud/LjV3jRQERmLO6gAdzgEA+h6K/GD4i/wDB4BpvgubSfifB/wAEwfiXb/CjWb9bbTPG\nniK8SxkvwcFmhTy3iZgu47RK2cD5hnj9i/AvjDRfiL4H0f4g+G5HfTtc0q31CwaRdrNDNGsiEjsd\nrDigDUoorz/47ftX/swfsuppL/tHfH7wp4JGvXf2XRj4m1qGz+2zf3I/MYbj9KAPQKKjtLu01C0j\nv7C5SaCaNZIZYmDK6kZDAjqCOc1JQAUUUUAFFfGv/Bef/gob44/4Jmf8E2/E/wC0F8JxbDxjfXtv\noXhS4u4FljtLy5Lj7SY2+VzGiO4VgVLKMgjIL/8Aggl44/be+Kf/AAS+8DfFb9vnxy3iDxl4na41\nTTdSnWD7RJo8zhrMzGABC5TLdAwVkVvmBoA+x6KKKACiiigAor4T/wCCt3/BdL4Z/wDBLLV7fwHZ\n/s5+M/iR4mXSYta12DQbJ4bDQ9JafyftNzdshRWZgVVADyPmZARu+nP2Mv2vvgl+3n+zN4Y/aq/Z\n919r7w34osBNCk6hZ7KcHbNaToCQk0UgZGAJGVypZSGIB6hRRRQAUUUUAFfy3ftFfDVv+Cmv/B3n\nffC+FBf6T/wt6wttXGzdGdL0G0hN2vPADRWEq56bn6EnB/p/8Y+I9P8ABvg/VfF+rXKw2ulabPeX\nMzn5UjijZ2Y+wCk1/PT/AMGjfwx1j9qj/gpj8c/+CjHjCxkdtPguhbTyrkJfavdSSuoPTIhicccg\nNjoaAP6J1VUUIigADAAHAFLRWd4u8X+E/h/4Wv8Axv468S2OkaPpdq9zqOp6lcrDBawqMtJI7kKq\ngDkk0AaNfjh/wVRv4P2Yf+Dn79kH9pu8kEVl4x0Wfw1d3DjCoXNzZkZ74W+U/iK+5f2V/wDgtX/w\nTa/bY/aTuf2Uv2Zvj5/wkvi220+6vUjt9HuktbmC3ZVleK4dBHIBu4wecHHSvjn/AIO+vg/r1t+x\nx8Lv27PAEOPEPwQ+KlndrcDI8uzuyFLEj/p7t7AAejt+IB+uFfzRf8Hd/g34cfs0f8FYvhV+0r8N\ndPtF8S6t4Zstd8Qacows1xYX7JbzOAOPMSLYT38mv6D9H/ax+Ctv+xzpf7a/jPxva6T4Fu/Aln4p\nuNavJAI4bKe1S4VzjqSrgADJJIAyTz+JH7Cn7OUH/By7/wAFWfi5/wAFEf2lPA96f2f/AAvplz4V\n8B6ZqQMcl1vjkhtVQDIWSKKSS7kKk+XNNEo3ckAH7m/s0/tCfDP9rH9n/wAKftI/B7WBe+HPGGiQ\nalpk2fmVJFBMbj+F0bKMvZlI7V438Z/2tBr3/BSb4Y/sA/CvVfP1W10m98cfEprduNN0mGNreygk\nx/FcXMwYL2W3yeHUn8g/2Rf+Cm3xV/4NgvHfxb/4Jk/tweAte8aeE9Ijude+BmpabGIjqZlkIjiL\nv8sVvPw7uN5gljlULJuGPsz/AIJReE/iV+yj+y/8eP8Agu3/AMFOLG40r4kfE/T5/Eeq6VcQmOTQ\nvDdjCz2OnRRudySSHGIyckC3UjcGyAfO3jDU5P23v+D0nw/Focgu9H+BnhhLe5lQ7hH9jsbiVlPZ\nSt9qJGP9k+9furX4k/8ABot8DPiJ8aPGHx5/4K5/GqwA1L4m+KZdL8PyPklh5zXV/IhPWMSSW8Ks\nO8Eg7V+21AHN/GX4g3nwk+D3ij4q6f4F1bxNP4b8P3mpw+HdBiEl9qjwQvKLW3UkBpZCmxASMswr\n8sNT/wCDtTwD4FkbT/jH/wAEpP2iPDV8jbTbTaHCRn6zNEex7V+udebfHv8Aaz/ZV/Zj1bw3on7R\nfxs8N+E7zxfqY0/w1Brt4sT6hckgbIwfdlBJwBuGTzQB+WWs/wDB1r8d/i1dJ4b/AGKP+CL/AMW/\nFeoXZCWl1rwljjViSBujtbeUEdOTKtfod/wTR+Nf7ff7QPwCn+JH/BQX9mPRvhT4luNTZdI8L6Zf\nvPN9iCgiafc7eW5YkBMhgEJIGRW58dv+CjH/AAT6/ZYeS1+PX7X3w+8L3MWfMsL3xFB9qXGesEbN\nIOn92vLvgp/wXi/4JQ/tG/GrSv2ffgl+1VZ+IfFOuXn2XSdP0/R7xvtUmCcK3lYxgEljgAAkkCgD\n69ooooAK/IX/AIOzfC3hvx3pn7JngTxzZi50DWf2hLSx1q1kkZI5raURxyKxUgjMbSDIIIBOCK/X\nqvxv/wCD022vrH9gf4VeONGu5ra/0T4wQzWd1BkPE5sLvDBh90hlQg+oFAHzT+0pJa/8HB3/AAXn\n8IfsH/CKGO1/Zv8A2fd8F5FoMQitDaWrIL2SPy8Kvnyxw2cWMBI03KMlgf6HtJ0rTNB0q20PRbGK\n2s7O3SC1toV2pFGihVRQOgAAAHtX5w/8GwP/AATM0j9gz/gnrp3xd8ZaAqfEb4vwQa74hupR+8tr\nAgtYWYz90LHIZW9XmbOQq4/SagAr+fz9sD4E6P8A8F5P+Dnfxl+xj8RvFV/b/Db4M/DW9sWbTpzu\nhnjtI0knQfdWVdT1GLIOdy2ihuMgf0B1+E3/AAb1Xk3iv/g4u/bY8Z6s+68fUNeGSc4V/EIJA9h5\naDH0oA/ZD9jv9n/U/wBlD9lfwP8As1at8VNU8aSeCvD0GkR+JdaiRLm9ihG2IuE4ysYRAeSQgLFm\nJJs/tHftVfs2fsgfD9vij+078avD/grQw5jjvte1BIBO4GdkSk7pXxztQE+1egV+F/8AwUc8Zfsr\nfHT/AIOg/Dnwi/4Ka+NNC074M/C34WjUtF0nxpc+VpOo6hLF5oEgf5HDO+Sp4f7IEOR8pAP17/ZF\n/be/ZR/bz+HFx8V/2SfjPpnjHQ7O/ayvbrTw6NbTgA+XJHIquhKkMMgZBBGRXwT/AMFbP+Ct/wDw\nVY+DX7ZKfsD/APBND9gC98V67NoEGor411XS57q1kEm7cYVUpCqR8KzySfe4wO/yL4Z/4Kr6H8YP\n+C6fg39l7/gh0bTwd4C8beO7K5+LGtWeixG18YGztxHMYYZUP2W0js7cohiEZdyZDxjP9Amxd2/a\nM4xnHNAH8+n/AAXk8af8FVfF3/BCXSn/AOCrXwe8JeF/GcXxt0xdNbwrqsUxvLM2V+d08UDyRQsr\nAAbZW3A8qhHzfsP/AMEp5LbSv+CW3wGlvrtIo1+EmgFpJnCgZsojyT9a5n/gs5/wTeX/AIKofsEe\nI/2XtK8UwaN4hFxFq/hPUbxSbePUrcOYkm2gssTh2jZlBKh9wVsbT+O/xM+H/wAZ/wDgoZ/wVd+C\nP/BAj4x/FXUNO+FXwK+HmkWXjnSfC2oNEmq6jZaTFLfTb8Zc+YUt42Yfu0DOqqztkA/oz68iivKv\n2N/2VvB37C37M2jfs1/D/wAZ+JvEOh+GFuRpd14o1H7ZerA80kqW/mEDckYYRoOyqo7V8Uwf8HRH\n7Cr/ALK3xf8A2gNT+G3jTSPEnwf16PSNR+GeuwwW2rahPPcm2tniPmMixlw3mE/PCI5Mo+E3gH6V\n8AZzUdrdWt9brdWVzHNE4+SSJwyt9COteJXnia8/b8/4Jv3Xiv4Z+JNc8AXHxY+FUs2janblW1DQ\nnvrFjHIpVgDJGZAQQRyvBHUfmX/wZuftMfE7xL8FPi5+xX8RPF02qWfwv8TJN4aS4UbrWC6luDco\nD1KtcI0gBJwZG5waAP10+PfwT8FftDfBXxd8EvHOlwTab4w8N3ejaiZIQxMM8Tx8+uN24D1Ffjf/\nAMGb3xO8X+Ab79o3/gn345vpBN8PPF8N9ZWUz58mQzXFleBR2AktYSeOr1+4Nfg3/wAEV52+GP8A\nwdkftf8Aw0scRWOu2/i28aAHA81tesLtWA9hNLx23UAfvJRRRQAUUUUAct8c/hVpnx3+B3jD4G61\nrd7ptn4y8Lahod1qOnMouLWK7tpLdpYiwIEiiQspIIyBkGvCP+CSP/BLT4S/8Ei/2VX/AGbPhj4y\nvPE1zqOv3Gs+IPE2oWKW82oXUipGv7tGYRokUUSKu5ujNnLGvqCigAr8b/8Agot8bvg7+3//AMFa\nvGX7CP7bX7Slj8Nf2b/2cPDFh4n8b+GdR1lNPm+IOqSQR3kcR3urTWsKSxsURWJMfyjMiOn7IV8K\n/wDBaL9gj/gmb42/Zx+JH7eH7WP7Mvh/XvE3gnwBeXMOvzyS29xM0EEgtYXaJ18394yqqtnJYKOw\noA/LP/ghV+2H/wAE9Pg//wAFHfjb/wAFIf2gvjLoXgnTfHHiWTwJ8FfCy2Lq0Oly3MLRFIIkJgt4\nLa2sLYOdqqCyk1+3/wDwUw/ZYi/bl/4J9fE/9mOxjjmuvFnhGePRixG03qDzrVgTwP3yR4PbrX4w\n/wDBp5/wRT+FPxp8HTf8FM/2svh1DrdmmsyW/wALNC1OLNmJLeXbPqRiPEpWVDFGGyqtHIcEhSv9\nCoAUbVGAOgFAH4e/8EWv2sf2Rv2+f+Cdml/8EA/29tN8Sr8Q9KvtR8L3vhSGyuoblLHTZWu45ZJ0\nXFt5BiMBDkENEqkc1+w37Mv7MvwO/Y6+B2h/s6/s6+Bbbw94U8PWvk6fp9uSxJJy8kjt80kjtlmd\niSSa0PDXwG+Bvgv4lax8ZfCHwe8NaZ4t8QoE13xLYaLBFf6goxgTTqgeQfKpwxP3R6CusoA5/wAb\n/CT4TfE280zUPiV8L/D/AIguNEvBd6NPrmjQXb2FwCCJYGlRjE4IB3Lg8Dmvxm/4OUf22/H/AO2v\n8cfCX/BA39g+OTXPGPivXbWT4k3VrLi3s1BEsNlI4zhYwPtU7HhFSMcsWC/pV/wVA+LP7enwx/Zr\nm0r/AIJz/s7v44+JPia6/snSr+W/tYLTw15itnUrgXDqJFjAyqjIL7dwIyD4L/wRD/4IkWv/AATn\nsNc/aZ/af8Xr48/aG8fyyT+LPFs87Tpp8crb2tbZ3G5mZstLMcFzhQAqgEA+tv2I/wBlDwB+w1+y\nb4J/ZS+GqhtM8HaHFZfafLCm7n+9PcMB0aSVnc/73frXqdFFABXhX7fv/BN/9kf/AIKZfBwfBj9q\n74djVLS2uPtGk6vYyCDUdLm7vb3ABaPcBhl5VhjcDgY91ooA/Oj4Nf8ABqr/AMEWfhDKl1qPwA1b\nxhMhyX8X+Jri4VvqkRjT8hX19+zh+wd+xV+x9NPd/sv/ALLvgvwTdXUAhur/AEHQoobqaMY+R59v\nmMuQDtLEZ5616zRQAUUUUAFfm3/wdg+BIPGX/BFnxnqzL+88O+JNG1OJgOhF0Ij+ktfpJXzR/wAF\nkP2bvFH7XP8AwSx+NfwD8CaFNqev6t4GuZ9A022TdLeX9qRdW8EY7vJJAqD3cUAa37M3iX4m/tA/\n8Er/AAZ4h+EXjWDw/wCM/E/wTs18P+Ib+0+0RadqsmlqkN08WR5ipOQ5XuFxX4AfsHfGf49eGf8A\ng5a0cf8ABR3/AIKe6RfP8LtQ1W28S+NNY8a/YNFuJY7GaAabam6MMQRriVEaMIgbZKQGIDN+4P8A\nwRov/ih8NP8AgjJ8KZf2g/AWreFNd8LfD101TStesJLW7t4rXzdjSwyAPGTGittYA4PSvxa/4IA/\n8Etf2Nv+Cw6ftHftXft5+H9QGmw+MoptJ1K08Ryad9gnumuru7ZpFYIQqvD/AKwEDdnigD+lrQtd\n0LxRotr4k8M61a6jp99As9lfWNws0NxEwyro6Eq6kEEEEgivwf8A+CLUi/s/f8HW37VvwJ8SS/Z5\nPEsXiWfSkk4MxOqWmoQAZ9bWV3+i1+x/7C37Pv7L/wCyz+yp4X+B/wCxveW9z8O9Igm/sG6tddOp\nxziSZ5JZBc72EmZWcnBwDkADGK/GD/guvaan/wAEuv8Ag4g+Bn/BVzQrN4PDnjB7OLxXOg2rJJbx\nHTb5Wbpl9OlixnoULc9gD9+q+cP24P8Agkp/wT5/4KMavp3ib9rX9n2x8QaxpNv9nsdbhupbW7SD\ncW8oywspdMkkK2cZOMZOfoXRNZ0vxHotp4h0O9jubK+to7i0uImyssTqGVge4IIP415f+3j+0Tpf\n7JH7FfxM/aR1W+SAeEvBt9fWzu2M3KxMIFHuZSgA96AP5wv2EvAmlap/wdXx/DL/AIJ66TF4R8Fe\nDPiBqOlW40VfMSPQ9MieC9cyPuLC4MMgMhOW+0BQcECv6l6/Bv8A4Mt/2Oby4sfit/wUe+IGlNLf\n69dDwx4WvrlSWMfmC51GUMfvb5fsq56/unH8Rr95KACv5/8A9mDUR8Jf+D134iab4um8uTxOdUh0\n3zeDJ5+lQzRgevyRt+Vf0AV/Pv8A8HLvhLxx/wAE5/8AgtD8A/8AgsJ4J0R7nQ72505dbjt8qZr7\nS5sXFu7dFFxp8qRr6+VL6UAf0EEgDJPA71/GD/wWK1iL46f8FL/2l/jL8DdEkbwVYfENxrFxZcwB\n/ONsJ3xxiS4SQg+r471/Th/wVp/4KXeEP2XP+CPfiz9t/wCC3iSHUJfFHhWC1+HWowMCr3upxlLW\n4+sSu0xQ9fJKnFfEP/Bt3/wRu+EnxT/4I7+PPEn7XnhU6u/7TbO1yJWIuLXR7aQiymSQ5Kzm5WS7\nV/8AriSMqcgH6Gf8E0v2q/gD8RP+CcXwS8YeFPGmlJFrPwuik0zS0uk82T+zrdYr5FTOT5EkbJJ/\ndbg8kZ/Kn/gzYt7zxF+1b+1N8TNNiJ0e+uLJLeYHgu99eSqP++CDUPxy/wCCb3wr/wCDYL9kv4x/\ntQQftcah498X/Ebwre+Avg/oN1oq2L6ZLqJX7TdnE0gkeOKGORnVY1PkIpGXUD6r/wCDRP8AYu8T\nfsyf8EwpPjX490p7PV/jD4gbXbS3lj2yJpUSCCzZs8/vNssy9iksZ7mgD9Ua/Bf/AII/XUXxS/4O\n7f2rfHnh4CSw0XTvFcE86fc8yHVtNsSM9yXRz77Se1ftd+098cPDn7Mv7N3jj9obxbdRQ6f4N8LX\n2r3DzPtU+RC7hSf9pgq/iK/G7/gzH+E/iXxin7Qn7enjqCWe/wDHHie30y21G5GXldZJry8YNjnd\nJcQ7vdBQB+5dFFFABRRRQAUUUUAFfhx/wdo/tQ/Fv4yfGP4Pf8EZfgRcXi3nxG1Gx1fxLBZ5zfLN\ndvbWNuwH3o1ljmmZem6KMn7or9x64PxL+y9+zh4z+PGhftP+Lfgn4d1H4g+GNPlsfD/i6801Hv8A\nT7eTdvSKUjKg7n5HIDuBjc2QCf8AZu+CHg79mf8AZ88Hfs+eANKgs9I8H+G7PSbKC2QKgWGJULY7\nliCxPUliTya7WiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzPG3hTS/HngrV/AutoWstZ\n0y4sbtVYgmKaNo3GRyOGPIr+dDwB/wAGon/BYrSdS1/9kuL9rfw34a+BeseJDqGpTWPiG4kXVVXE\ncc0tjHEnmTeUq/K7BARwT1r+kKigDxP/AIJ3/sK/Cj/gmz+yD4X/AGQPg5qmo6hpXhyOZ5tU1aXd\ncX91PK0087AfKm6RzhFAVRgc4JPkn/BdL/gmVpf/AAVO/wCCf+v/AAX0e2iTxz4fkGu/Dy+kbb5e\npQqwMDH/AJ5zxNJCc8Auj8lBX2PRQB+PP/Br3/wV3k+Jvwz/AOHVP7YOuSaN8XPhYk2m+HU8QP5N\nxrGnW8pT7H85G66tRiLZ99oY1bDFJGr6v/4L4/sB/tZ/8FLv2DV/Za/ZM+KOg+HL6+8YWF54li8R\nTSw2+qaZCszG2MsUcjJic282NvzeTtJAJzwX/BU3/g3X/Z8/4KB/GK0/a4+C3xP1L4PfGewnhn/4\nTDw5bhodQmiI8qa4hUq3nJgATIysQAG3YGPtj9mjwB8a/hl8F9I8H/tDfHI/ELxbbW4XVvE66JDp\nyXLgAfJBDwgwOpJJJJ4yAADk/wDgnd+xx4S/4J/fsTfD79kfwlLDOPCPh6G31XUIIyo1DUWG+7us\nHkCSdpHAP3VKr2r2iiigAr55/wCCon/BO74Wf8FQ/wBjbxF+yt8Srv8As+4vUF34a19IRJJo+pxZ\nMNwF/iXJKuuRuR2AIOCPoaigD8L/ANkj/ggN/wAFhD4Lt/8Agm1+3l8b/APif9k+11qG/ext9Qmn\n1O18mUyp/ZcixRTWruSyFZXeFFlkKxsxBr9pPgR8D/hh+zP8GPDn7P8A8F/DY0nwr4S0iHTdD077\nRJN5FvEu1VLyMzufVmJJNdZRQB+Gv/BQ/wDYx/aa/wCC73/BexfgDr/hTXPD37PP7PtvZWXiLXry\n0eO21Kd1S7u1tiw2yXE5lS2BUkJFbiQjJ2v+3nhjw14f8FeGrDwd4U0mGw0zS7OK00+ytk2x28Ea\nhEjUdgFAA+lXq534uWvxVvfhdrtl8D9U0ey8XTabKnh688QQyS2VvdEEJJMkZDOinnaDzjFAH4s/\n8HYX/BRrxX461/wr/wAEWf2XfEMLeJPHOq6fJ8QmjukjURzSj7DpkkjHEQkkMVxJnBCxxZO12Dfq\nT/wS6/YV8G/8E3P2FPA37JXhO4S6uND0zz/EOqKP+Qjqs5827n/3TIWVB2jVFycZr5i/YU/4Nxf2\nYPgd4q8V/tBft06xB8f/AIt+OdUXUNd8TeKtOxaWk4uUus2kDMxRvNjQ+YzFtqhBtQsrfo3HGkUY\niiQKqgBVA4AFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR\nQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==\n","text/plain":["<IPython.core.display.Image object>"]},"execution_count":1,"metadata":{},"output_type":"execute_result"}],"source":["MeatPieImage()"]},{"cell_type":"markdown","metadata":{},"source":["が言えそうだな。\nこれでxからzへの積分変数の置き換えで、g'が出て来る以外は揃えられそうだが。"]},{"cell_type":"markdown","metadata":{},"source":["dg(z)/dz って何か言えるのかしら?1になれば(3)が成り立つと言えるが、、、"]}],"metadata":{"kernelspec":{"display_name":"Python 2","language":"python","name":"python2"},"lanbuage_info":{"codemirror_mode":{"name":"ipython","version":2},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython2","version":"2.7.11"}},"nbformat":4,"nbformat_minor":0} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment