Created
March 7, 2017 12:32
-
-
Save karino2/af893b200a46bc72a56ceff1d25be477 to your computer and use it in GitHub Desktop.
先程分からなかった(3)の変形が分かった!
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells":[{"cell_type":"markdown","metadata":{},"source":["https://gist.github.com/karino2/7fe94db32b19d74b01707a00d1242cbf の続き。\n\nあ、分かったかも。"]},{"cell_type":"markdown","metadata":{},"source":["まず元の式"]},{"cell_type":"code","execution_count":1,"metadata":{"collapsed":false},"outputs":[{"data":{"image/jpeg":"/9j/4QC8RXhpZgAATU0AKgAAAAgABgEaAAUAAAABAAAAVgEbAAUAAAABAAAAXgEoAAMAAAABAAIA\nAAITAAMAAAABAAEAAAESAAMAAAABAAEAAIdpAAQAAAABAAAAZgAAAAAAAABIAAAAAQAAAEgAAAAB\nAAaQAAAHAAAABDAyMTCRAQAHAAAABAECAwCgAAAHAAAABDAxMDCgAQADAAAAAQABAACgAgADAAAA\nAQIOAACgAwADAAAAAQBtAAAAAAAA/9sAQwACAQEBAQECAQEBAgICAgIEAwICAgIFBAQDBAYFBgYG\nBQYGBgcJCAYHCQcGBggLCAkKCgoKCgYICwwLCgwJCgoK/9sAQwECAgICAgIFAwMFCgcGBwoKCgoK\nCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK/8AAEQgAbQIOAwEi\nAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQE\nAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Sl\npqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8B\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUh\nMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJ\nSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2\nt7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/fyi\niigAor4d/wCCsf8AwX2/Yp/4JIappvw6+J9rrPjHx/q9qt3beCfCgiM9rasxVbi7lldUt0YqwQfM\n74yE25YbP/BIr/gsl8Of+Ct9r8QrXwx+z/4t+HmsfDq70wano/izYZJ7XUIppbSdSoGCywSEoRwp\njYMwcGgD7JooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+T/wDgqT/wWZ/Yr/4JH+C9N1f9\no3XtR1XxHrvzaB4G8LRRT6rexBirXJSSSNIYFIIMkjKGIKoHYEAA+sKK8U/4J8ft9/s+/wDBTH9l\n3SP2rf2b7++OialPNaXmm6vCkV7pV7CQJbW4RHdVkUMjDazKySIwJDCva6ACiiigAooooAKKKKAC\niiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKzfF/jLwd8PPDF54\n2+IHizTdD0bToTNqGraxfR21taxg43ySyMERckcsQKANKioNK1XS9d0u21zQ9SgvLK8gSe0u7WZZ\nIp4nUMkiOpIZWBBBBIIORU9ABRRRQAUEhQWY4A6k0V+Un/B21/wUc8S/scfsEab+zf8ACHxjLpXj\nP4z6hNp09zZTbLi10C3QNfujA5QytJb2+e6TTYOVyAD9IPgl+1H+zN+0w+uRfs6/tA+D/HDeGdQF\nj4gHhPxDbX/9nXBziObyXbyydrYz12tjO047uvwT/wCDHH4SX1p4N/aC+PV3HJ9mv9S0DQbBxkKX\ngjvLi4HoTi5tvpk+tfvZQAUUUUAFFFFABRRRQAVyvx0+L3hT9nz4H+L/AI9+Opdmi+C/DF/ruqsG\nCn7PaW8k8mCe+2M49zXVV8K/8HLXxLvPhZ/wQ5+OOr6bc+Xc6npWmaNHhsF0vdVtLaZf+/Mkv5Gg\nD8+/+DX/APZFb/go1+1D8Wf+C4f7aukx+J/Eb+O5bTwVBqkXm29pqhRJ57tEcEf6NDLa29t/DEN+\n0Bo0K/uH4C+Bnwd+FvjTxZ8Rfh38OtM0jXPHepw6h4v1Sytws2rXMUKwRyTN1YrGoUdhyepJPxz/\nAMGy3wssPhT/AMEP/gxa29oqXOvWOpa5fyBQDNJdaldSIxx1Ih8lPogr7xoAKKKKACiivHv26v26\n/wBm/wD4Jy/s36v+07+074vOm6Fpm2G0s7VRJe6tePnyrO0iLDzZn2njIVVDO7KiMwAPYaK/Jv8A\n4JB/8HP2nf8ABUn9v6+/Y/1n9l2LwPpmraPe33gfVP8AhIWvLqd7VRI8F0ghVAzwiWUMhwhi2fvN\nwev1koAKK8U/4KK/tqeBf+Cd37E/j39sHx7bpdQ+EdGMmm6Y0uw6lqMrCGztARkjzJ3iUsAdqlnx\nhTX53/8ABCrQv+C9v7WPjfwb/wAFPv2rv239P/4VN47fVbi7+Et7ppUzaaySR2U1pCkQjtlM4Do2\n/eYY1ZjL5xFAH690UUUAFFFfmX+3h/wcj6F/wTq/bzs/2Y/2jv2A/iLo/wANbnU1sF+Ml+7QW16w\njgea4sLY25W+t4ftEYkaO4Egyf3ZbCMAfppRVTw/r+h+LNAsvFPhjVre/wBN1K0iurC+tJQ8VxBI\noeORGHDKykEEcEEVboAraxq+leHtHutf1y/itbKxtnuLu5nfakMSKWd2J6AKCSfQV/Gp+0R40+Kf\n/BY39rj9pD9vXxtql3HoHg/wrqHihY5ZsfYNMS4h0/R9OjLZUEPc2u5QAXCTsMM2a/qb/wCCzfxT\nuvgv/wAEk/2gviBp928F1F8KtXsrOeM4aKe7t3tI3X0KvOpHuK/mw/Yk8Oad8Ov+Dcb9sv42SMqX\n3jjx14I8GWEzAZC2uoRX88a5/vRzc+yD0oA/V7/gybt7lP8AgmF8R7p3k8l/jpfLGpPy7ho+kbiB\n64K5+g9K/Yqvy3/4M+PAb+D/APgjJZeIXtfLHin4k65qiv8A89Qhgst352ZX/gNfqRQAUUUUAFFF\nFAHBftTftA+EP2Tv2ZvHf7Tfj0FtJ8CeE7/W7yFXCtcLbQPIIUJ/jkZVRR3ZwK/n+/4J4/Bn/g4J\n/wCCyieL/wDgrT8GP+Cjdz4H1vTfiBHZ+E/Bmr65qVr4f1GODy5bi0WC3MkUVlEkkUQjaGX7Q/m+\nYysGkb9Kv+Dq7xrq3g7/AIIb/E+z0iYxnXNV0DTZ5F6iJtWtpXHtkRbT7MRXXf8ABtX4B0v4ef8A\nBDz4HadptuqtqOjahql1JgZllutUu5ixPfAdVHsoHagD7W8JjxUvhTTV8dPYNrY0+H+120oOLU3W\nweaYRJ84j37tu75tuM85qLxx468DfDDwfqHxC+JfjPSvD2g6Ratc6rreuahHaWllCv3pJZpWVI0H\ndmIA9a1a/Ob/AIOub68s/wDghj8TorW7eNbjWvDsUwQkeYn9sWrbT7ZVT+AoA/QPwJ498B/FLwbp\n/wARPhh420nxFoGr2y3Gla3oWoxXdnewt0kimiZkkQ44ZSQfWtavze/4NNr68vP+CHPw9hurt5Vt\nvEXiGKBXJIjT+1bhto9BuZj9WNfpDQAUUUUAfMv/AAUm/wCCuH7F/wDwSg0TwfrP7XHiTWbdvHGp\nz2mh2egaQbydktxGbm5ddy4hi86EMQS5MqhUbnHz3+0h/wAHRX/BOr9ln4vS/DD4kfCj40zaassQ\ntfHem+BoW0K+hlRZI7m2nlu45LmB0ZWWSOJg6kFdwIJ+DP8Ag+YuGbxp+zbaY4TTPFbg/wC9JpI/\n9lr92fht8FPhL4e/Zu8Ofs82ngWwuvBek+ELDQ7Pw/qsIvLc6fBbJDFBIs27zVEaKDvznHOaAOa/\nY3/by/ZA/wCCgfwz/wCFsfshfHTR/GOlxFE1CKykaO706RhkR3VtKFmt3IBwJFXdglcjmvXa/Df/\nAIKz/wDBIH4l/wDBIvx7/wAPmP8AgiXcXfhA+EJGu/ib8MrBnl06TTC264nigJ+aywP39rysS4mh\nMXlfL+pP/BMT/goT8Kf+CoX7Gfhv9rb4V2T6eNS8yz8QaDNMJJdG1SHAuLR2GNwG5XRsDfFJGxC7\ntoAPf6KK8++E/wC1p+yn8e/G+ufDX4GftK+BfGPiDwx/yMWi+F/FVpf3WmfOY/38UEjNFh1KncBh\nhg88UAeg0UUUAFFNlligiaaaRURFLO7HAUDqSe1fmdf/APBxz4e+N3/BQnQ/2I/+CbX7IniT476T\nZ+JLWw+I/wARvD9w0emaLay3C28l3bssUiywRFtxuJWhhfyyEZ1YSgA/TOiiigAorN8XeMvB3w98\nN3PjHx94s03RNJsk33mqavfR21vbrnG55JGCoM9yRVjRNb0XxNo1r4j8N6xa6hp99bpcWV9ZTrLD\ncROoZJEdSVdWBBDAkEHIoAtUVkfEG88cad8P9b1D4Z6JZal4jg0i5k0DT9SujBb3V6sTGCKWQAmO\nNpAiswBKgk4OMV8A/wDBPX/gun45+On7eWv/APBLr/goJ+yanwR+NemWn2nRtPt/E0eqWGtAW63L\nQxyooCyfZ289NryI6JINyum1gD9Fa+Sv+C1X/BNzxz/wVa/Yen/ZN8BfG208D3U3iex1abUb/S3u\n4buO2ExFs6pIhUGR433/ADYMQ+U5yPrWigD+ez/g3j/4KSftW/8ABPL/AIKA33/BC/8A4KI6/d/2\nauqtoHgpdVu/OHhzV0BeC1t5m+Z7G9jZfJXlQ725jVVlfP8AQnX87f8AweRfsz69+z/+118Hf+Cm\nnwd36XqWsoml6nqllGFa31nSpFubC6Y95WhYoD2WwX05/d/9kP8AaG8Oftcfsp/D79p/wosaWXjv\nwdp+tpBHJu+zPcQJJJAT/ejcvG3oyEUAei0UUUAFfyq/8Hh/xln+JH/BYN/hymoF7f4ffDnR9J+z\ngnbFNP52ou2P7zJeRZPoqjtX9VVfxmf8FatR8aftw/8ABdv4veFfAUH2/W/FHxsk8HeHoyxxcS29\nymj2oyM/KfIjwfQ9O1AH9B3/AAadfs+SfAr/AIIt+EPEt9ZGC9+I/iTVvFV1G6Yba8wsoGPqGt7G\nBwfRxX6S1xn7OfwT8K/s0/s9+Cv2d/A8YXSPBHhXT9D08hApeK1t0hDkD+Jtm4nuSTXZ0AFFfPv/\nAAUO/wCCnv7HH/BLb4YaZ8Uv2u/H13pkGu3z2egaXpWmSXl7qcyLvkWKNOAEUgs7siDco3bmUH5g\n+E//AAdif8ER/ibN9l1/4/eIvBczSbIk8WeCL8B/ffZpcIg93ZaAP0horzv9nf8Aa7/ZV/a68Mf8\nJh+y/wDtD+EPHVgIw00nhjXYLt7fPRZo0YvC3+zIFYdxXolABRRRQAV+Yn/B3jPqUP8AwRX1+Ox3\neVL490FLvB/5Z+e7DP8AwNY/0r9O6+FP+Dlr4T3Pxf8A+CH/AMbdJ0608270bS9P12AgfcWx1K2u\nJm/78RzfnQB6f/wRVtdMs/8AgkF+znDpJHlH4OaC74IP7xrONpOn+2W9/XnNfTlfB/8AwbNfF+z+\nMf8AwRE+DV3HdiS78O2GoeH7+PdkwvZ6hcRRqfrB5DY7Bx+P3hQAUUV5R+2j+21+zV/wT8+AWqft\nG/tR/EW10DQNOUpbRuwa51O62MyWdrFkGed9h2oOgBZiqqzAA/Kb/g8d/wCCg3jn4WfB/wAB/wDB\nOj4Ja9qVrr3xLmOs+LBpEzLPNpMUjQW1lhPmZbi63kgdfse3kORX52fso/Cz9qT/AIOGf2x/hH+w\nd4o+LOtXHwk+A3ge107W/EEd29xHBZWyol7exvIMPcXk4EFuzruWBYCyEQyA/LX/AAUK/wCCj3xo\n/wCCh37aXir9sj4zWaaZql/phsfB+gx2aTwaNppVkt7dWkAOUhnlmW4A3m4YSqEyCnvf7G//AAWn\n8Pf8Ew/+CZvjD9k/9jr4Pazpnx0+JWqT/wDCffFLW2iiXSIFEkEFvYRRs0jvFEXKPLs8ua4mfa2F\nFAH1J/wS6+GnwZ07/g791bwp+x54btIvhz8Of7d06zj0kboLS1stAbSnffk+YDdlVMpJMjybySXJ\nP9JNfij/AMGif7Pv7E3wB8G+I/ES/tP+APGH7RPjvSfteseGvD3iCC+uvDmgQzJi2DxsRI7zNHLO\n0bMoP2df+We5v2uoA/FT/g9f+M+uaL+yP8G/2YtAvnWTx58QbrUp7WNwDdR6dbLGqH1XzdRibB43\nKp7V+vPwZ+F2jfs6/s8+F/gt4A0XzbHwT4QstH0iwgZYzJHaWywxxgnCqSI1GTgc5Nfhr/weGawt\n9+3l+yZ4TvXJtrdru4ZS4x++1OxRuO3EI5749q/fygD+fTSvgF/wdAf8F4PG3iTxz8SvjDrX7MXw\nzsdbn0638I6hNqWgAIv3oY7SCNbnUgocBp7lljZt4QjaY1+dvhn8I/2jP+CCf/Bwf8HP2Zfhl+2F\nd/EzU/F2s+HLX4j2um2s1rDcxaxfNbzadcQPcS+dKtu0V1HK5GGmifaNuT+5v/BfH9s/4h/sG/8A\nBK34ifHT4L/FDRPCvjlo7PTPCN/rOGke5ubqOORbSIq3m3S2/wBokjBBVTHvf5Eav5d/2C/2ovjP\n+yN+2j8Pf+Cun7Qvwb8S/E3w1YfEC5g1PxJ4hluJRqmpi0/fhb2QlXvoYrlLiNZGOWRM8AlQD+0+\nvgj/AIOVf2IrD9tj/gkh8QF0/TIpfE3w0tW8b+GZ2Ql1awjke7iXHJ8yzNygXoX8s4JUV946depq\nenQajFDLGs8KyLHPGUdQwzhlPKkdwehqPXNE0jxLod54b1+wju7HULWS2vLaZcpNE6lXRh3BViCP\negD8w/8Ag0k/bf1P9qr/AIJcQ/BPxnqj3PiH4K6x/wAI2ZJXDPJpMiedpzH0CIZbZRj7tovXmv1G\nr+cj/g1H17Wv2QP+C1Px+/4J+ajqZewn03WNLkA587UdB1byYm+nky3v5iv6N6APhn/g5WvXsP8A\nghf8eZ45GUto2lR5Trh9asEI+hDYPtX83upfGW38F/8ABufoXwCtL1I7zx3+13rWsXCKw3yWml+G\n9IiKkdl87UYm+qjnqK/pF/4OT/D+peJv+CGXx603SkZpY9D0y7YIMny4NYsZ5D9NkbZ9q/lR/Ys+\nCXxK/bu/aQ+E37Bnhi/uBaeIfHHkwLGdwsVu2g/tC+2nj5LW0R2x1W2HWgD+tr/ggz8EJv2eP+CN\nvwC+HN3aNBPN4Bg1y5idcMkmqSSamysD0YG7II7EY7V9b18I/wDBcX/gqof+CJP7F3hLxn8Hfg/p\nHiHWNZ8QW3hrwxoeq3kkNnZWsNrLI8zCP55FRIY4gisvMykthdrfQP8AwT//AGyNN/bb/YW+HH7Z\nGseGofCn/CdeHor240m4vw6WlxveKSNJWC713xsVJAJUjIByKAPbaKBgjINfDP7en/Bxb/wSx/4J\n4fEy7+Cfxb+LOq+I/GWmcav4b8BaT/aE2nPjiKeVpI4I5fWIyb143KuQSAfc1FfDfw5/4OIf+CZ3\niD9l3SP2sfjj4w8U/BzQfEPii50Lw/pfxP8ADEsOp6pJBFbyvdW9tYm6aW0C3MQNypMatuVmUjn7\nW8L+JvDnjbwxp/jTwfrlrqek6tYw3umajYzCSG7t5UDxyxupIdGRlYMOCCDQB+Z3/B3xcSwf8EW9\naijDYm+IOgpJt6Y82VufbKj8cV75/wAG/O8f8EVv2ffMnEh/4QNPmVs4H2ibA/AcfhXjv/B2d4Rf\nxJ/wQ+8e6wqk/wBgeJ/D1+cLnAbU4bXPt/x8113/AAbC+ONP8c/8EMfgu9nMDLpNvrOmXkecmOSH\nWb0AH6xmNvo9AH3vX5wf8HYjKv8AwQ2+IwOfm8QeHQMKT/zFrfr6dK/R+vzX/wCDtPV7bTP+CIHj\nqynPzah4p8PW8PP8Q1KKX/0GJqAIf+DT/VtK0X/ghb4N1nWdShs7Oy8ReI5ry7u5BFFDGuoTMzs7\nEAKF5LE4GDnoa+kfGn/Bar/gkJ4AtprnxD/wUj+EMggdllj0rxraX8gKnBAjtXkY/gOe1fFP/BB/\n9ivwB+3b/wAGwWjfslfGTxDruleG/iFqGuLdah4YvVt76FIfEEsiGN3R1/1tqAysrK6FlIIY1jL/\nAMGTf/BMkagsr/tMfHA2oUBoV1fRw5OBk7/7MwBnJxt747ZIB7X8c/8Ag7A/4IofBrTZJ/DHx38Q\n/EK9Qf8AIM8D+D7tnbr0lvltoD07Sd69v/4JCf8ABWj4cf8ABYL4HeKPjl8Mvgv4k8HWHhnxhLoX\nk+IJYpftm2GKZJUeIlQ2yZN8fOwkDc4IavAvgt/waTf8EWfhJqcWq+JPhZ4w8eyQsGjTxp4xmMe4\nd2jsVtlf6MCp7iv0C+B/wF+CX7M3w0sPg5+z38KtD8HeF9MDfYtD8PadHa28ZY5Z9qAbnY8s5yzH\nkknmgD8F/wDg+W/5H79nDj/mEeKef+2ul1/QN4V/5FbTuMf6BDx/wAV/Px/wfKyRn4g/s4xBhuXR\n/FJI7gGXTMfyP5V/QN4Skjl8KabLEwKtp8JUr0I2CgDG+OMngmH4H+MJviVcQxeHU8LagdeluApj\nSyFtJ57Nu42iPcTnjHWvxP8A+DG/xn4tvvgz+0L8OryNhoWl+JfD2o6c5Jwbu6t72K5HpnZZ2v5i\nvR/+DrX/AILN+B/2d/2d9Z/4Jp/AbxPFqHxI+ImmfZPG8tjMGHhzQ5R+9hlIyPtF3HmMRdVgeR22\n74i/0T/wbOf8E5/F/wDwTt/4Jm6ZZfFzQzp/jv4laq3ivxLYTRlZtOjliijs7KTIBDpBGruhGUln\nlXnbkgHzl/wdf/8ABTP4x/C3RPBf/BKj9kXVL6Hx78Y445PEs2kzGO7/ALKnuGtLXT4WBBVrydZU\ncgg+XCUOVmOPVP2av2Bv+Cff/Br/APsOeJP28PH39qa548sPAVtpnjXXV1B2bXL6W4R1sLC3YiOF\nZbowxqSCRHCjuflkY/A37Rt+Pj//AMHt/hzwz4vkEth4Y8e+H4tKhlXiH+z9ChvkAx/09K7j3ev0\nO/4Osf2Pf2oP2yv+CXtt4c/Zc8Iaj4l1Hwj8QbHxFrfhjRoGlvNRsI7W9t28mJMtO8b3McnlKCSq\nsQCVAIB8ofsmfAj/AILdf8HEGqT/ALaP7RH7a/jH9m74IXNy7fD7wl8Obu5s5tQiVsLLEscsRljU\njP2y5Z2dw3lRqhG33D4Rf8FMvhj/AMEa/wBrfTP+CWH7R3/BQL4j/tR+I/G/jXSNN0Ga60WC41Dw\nB9sZYBBqmoSXbSXzyyzRSLCqmSGJSSPnjR/irxv/AMHaX7UvwR/ZU8OfsY/AT/gmuPhf4v0fwfZe\nGtD1fxHrlzeNaJBbrZxy22nNY27GQGP5A7yKrqAyyYIP1F/wb7/8G5/xD/Zz+Klv/wAFKf8AgpRf\nJq/xTv8AdqnhfwpeztdTaJeXJLy6jqEr/wCt1A72wgLCJnZ2ZpdvlAHdf8Hbn/BR3xZ+yb+xLpH7\nInwa1ma18ZfHG4udPvZ7Inz7fQYQovFTbyGuHmhtx/ejecDkAj1f9j/4P/Af/g3C/wCCKZ+Jfj74\nZaxq2s6RotnrnxP/AOEX01bjUtX1u7eKHyQSVAhgkmSBWYhUijLn5mfd+a3/AAU3M37fn/B4F8O/\n2WvGzmbw14F8QeGNJjs2JaOezt7Rddu0K/w+Y008THrtAPYY/Wj/AILZeN/+Cw/hD4AeGrD/AII6\nfDiw1nxfqviQ2/iTUpxp73Ol2QiZkeGPUXW3IeTCu7h9gAwvzFlAPzx0z/g7f/bF+Avx90W//wCC\nhf8AwTIuvAnwm8b6cuoeERY295DrsVi05j+2F7xlhv1ARz5axWxOUYNtZd37T/s4/tFfBf8Aa3+B\nnh39o/8AZ78cW/iHwf4qsPtei6tbo6CVNzIysjgPHIjo6OjAMjoykAgiv5av+CkX/BU//gsD4d8E\n+Lf+CaX/AAWa+EngzxnqV3pwvLJvEGj6bFq3hu7cMbTUbK70Z1gVlIPBVvMiZ42O2Q1+lv8AwZPf\nF/QNf/YK+JnwOl+Jv2/WvDfxLOp/8Iy8c27SdPvLK3SGVXZQhSae1uzsRjtaNmYAyDIB9A/8HPP7\nE3wu/aX/AOCZ/jD4++N9T8QPq/we8M6hq/hnSrPXJYNMnuJmgR57q3TieSKNGMRJG1mYHcrMpT/g\n1D+O1l8aP+CKHgXw2L157/4fa9rHhnU2km3kMt497CvPKhba9t1A7BeOK+s/+Ck+g+DfFH/BOX46\naB8QZYo9FufhB4kXUpZpAixRf2bcEybjwu3G4N2IB7V+QH/BjT428V3vgn9oz4bXDSPomm6p4Y1K\n0Bb5Irq5j1KKbA7lktIMnt5Y9aAP3qr8Af8Agtfqlx8Hf+Dt39lDxz4VuHgutch8DJqEisuXS58Q\n6hpsw9g1uNvPqecYx+/1fzk/8Fm/H+j/ALTX/B2n8Avhx8H7w6pqHgXxF4E0DWmtFEi21zBrUup3\nHTgiGC6DP12lHBxtIAB/RtRRRQB+Xf8Awd+/DrR/Gn/BGPVfFWoWivceEfiDoep2MuzJjeSWWybB\nxwCl2w7dq6z/AINSPG+p+Mf+CHXw20/VJzIdA1nX9MgduvlDVbmZR+Am2j2AHasD/g7q8baN4U/4\nIo+JtA1O7SOfxL430DTdPR2wZZkujeFVHc+XaStj0UntTv8Ag0V8M6roP/BFDwzquoQMkOteN9fv\nLFm6PEt39nJHt5lvIPqDQB+mtfjD/wAF8v8Agvx8dvh78fLb/glJ/wAEoYZ9V+L2rX8GmeJfFGjw\nLdXGm3c5wmlWCMChuyGUyzHIgB2jEgdofu3/AILZf8FFYP8Agl7/AME6vGH7SWkSWz+LbkR6H4At\nLpQyTazdBxE7KSN6wxpLcsufmW3ZcjIr87/+DRX/AIJlT/8ACHa5/wAFgf2lrG51bxv471G+tvAN\n7rTmaZLRpWW+1Ul8sZ7mfzohITu8uOQglZzkA8X+K/8AwSH/AOC8X7C37JHif/go/wDGP/gtL4k0\nHxJ4M8OP4h1fwynjnV9QaWVAGjsZJ5Zvs9xI8hWLYUkiZmCguCCfnb/g18+HOl/tof8ABeQfHP4p\nQRyXfh3Tdf8AiCbQLvil1GSZIEzuJOI5dR85TkndCme9fr9/wdnftK/DT4Hf8Eg9f+GXizSrTUde\n+JniDT9F8K2dzkmCaGdbya9ABB/cx25Ct0WWWHIIOD+WH/BlVbpN/wAFYvG0jbcw/AXVXXPXP9sa\nIvHv835Z/EA/qDooooA8O/be/wCCbf7E3/BR7QvDfhz9s34I2/jC18I6q+oaCsmp3do9tK6qsi77\nWWNnjcIgeNiVbYpIyoI+TPjb/wAGnP8AwRR+L8TP4a+B/iTwBctHtN14K8ZXYOcYDeXfG5iBHsgB\n7gmu8/4L2f8ABQz9uv8A4Jrfsv6D8ef2Kv2ZdO8eRpr7Dx1qer6Zd3troGmRxF/NlitJopI1kb5f\ntDN5cQUhhl0I4v8A4JM/8HLf7D3/AAUuudJ+D3jef/hV3xbvgsKeEdfug1lq0/Axp96cLMWJG2CQ\nRzEkhVkC7yAfAHx9/wCDK/8AaM+HHiOXx1+wR+3fpl1Las02l2XjKzuNJvrcgcIt7Zearuf73lQj\nnnAya6P/AIN1/wDgrb/wUH+G3/BRy8/4Izf8FGvGGq+JroTarpWj3nim+F5qmg6vp0Mtw9s16WY3\nVtJDbzhd7SEN5PlsEJU/qv8A8FYP+Cqv7PP/AASb/ZivvjT8W9VgvvEuoQzW/gPwVFcAXev34XhQ\nBzHboSjTTkbY1IA3O8aP+MX/AAay/sj/ALQ/7d//AAU38Xf8Fm/2hJJn07w9q+r3MeryRFE1rxLq\nUMsc0UK9BDb291KzAHCGS3VQfm2gH9H1FFFABXK/HT4S+G/j98DfGHwI8YIG0nxn4W1DQtSBUN/o\n93byQScHr8shrqqKAPxA/wCDNL4xa/8ADrSP2gv+Ca3xQk+x+JPh/wCNxrUWmSuS6uxOnaiqg8hY\nprK2zwObj1Jr9v6/Br4D+V+zp/wfC+Pfh54Eh+yab8Q9Gu/7SijIxKbrwxba1OWwP4ry2L/XBr95\naACvIf2t/wBgz9jn9u7SvDuj/tf/AAK0nxvZeEdX/tXQrbV5plitrnbtZmWKRRKjLw0Um6NgBuU4\nr16vl3/gtb8ftd/Zf/4JK/HX4z+F9Saz1Sy8BXNjpl4gO63ub5lsIpVx0ZXuVYHoCATxmgD+bv8A\n4J3fsXaF/wAFif8Agvt4i0iy8LWy/DBPiRrXjLxTaWMKpaW/h2DUXeCxQRgKscpe2tFCY2pKWUYS\nv6Jv2w/+CC3/AASc/bftry7+K/7Ifh7R9dvtRkv7nxZ4GtU0XVJrmQ5klmmtlUXJY5J89ZBklsbi\nWr4F/wCDIf4H2OhfskfGX9pGWyAu/E3xAtPD0czx/N5OnWSXHyk/wl9TOccEoM/d4+uf+Dkzx3/w\nUD8Df8E3NUn/AGEJf7HhmvGf4n+N7bWVs7vwz4ciglluLmAhll+YoiOYBJOELLHGzOGUA9H/AOCc\nf/BEL/gnf/wSr8S6r8Qf2YPh7qbeKdasjp934q8U6w17eraNIjm2iO1I4kZ0QnYgZyi7i20AfXVf\nw0/tP674c1nQNB1fSv27fE/xYv7iaaSfTtd0rUIH0UKcAySXczqZJMggQmRcZ3OpAVv7Cf8AgkL4\nL+O3w8/4Je/BTwh+0r4qfWPGdr4Bsm1W+kv/ALU+yQGS3iabLCVo7d4Yi4ZgShIZhgkA/Hb/AIPZ\nLfVfBP7SX7NnxdtbJWCaPrSWzsTiSW0vLKYqcYPHnp3/AIu3f+gSw8W+HNQ8Hw+PU1eBNJm01b8X\n0sgWJbcx+Z5hY4AXZ8xJ6Cvx4/4PWvgHf+OP2Bvhv+0Lpenmd/AXxEayv3Uf8e9nqVs6tIf9nz7S\n1T6yL719rf8ABGH41+BP28v+CL3wm1PWJ/7Tt7v4aReD/F0DTMsj3NlAdNu1cqQyNJ5TSAgg7ZVY\ndQaAPwt/bE/aP+O//B0l/wAFefDf7M/wa15vDXwe8ParLZeG5b+cLDZaYsn+la1MjECS8uEQeVAO\nQPKiB4lkb+jv4DfsMfspfs5fsxeFv2QvAHwY0SfwN4PjhOlaVrWnxXga6jcyfbZPNUh7lpS0plxu\n3sSMdB+Lv7U//BkZNHJfeJf2G/22ljkErSaX4a+JOjlQg3EqrajZ5IwMDP2U5IzxXgdyP+DtH/gi\nRImv6lc+PPFngPSbshvOu18Z6DNCMZ3qGkubGEn+I/ZmyTggk5AP6eKK+Cf+Df8A/wCCwXxQ/wCC\nw37OPij4jfF79n+38Ha34M1yDTLvUtEkmbSdZeWIylrYTFniePAEkReTaJIm3/PtXj/+Djn/AILT\neDP+CaH7Lmo/A34T+LYpfjf8Q9HltfDVlZygy+HrKXdHJq82D+7KgOsAPLzDcAyxSYAPzN/4I06w\nnxe/4O7vif8AE34byCbQn8cfEbU5bi3+ZJbGSa8ijlyBgK8k0DZ9WAyc8/0sV+JX/BnD/wAEzfFX\nwU+DXif/AIKQ/GHw9LZar8SrFNH8BW93CVmGhpKss94dwzsuZ44tnTKWocbllU1+2pIUFmOAOpNA\nHyf/AMFyvjj8DPgF/wAElPjb4k/aAUT6PrXgS+8PWWmJOI5tQ1C/he2tYYjgkP5rq+4K2xY3kIIQ\n1/On/wAGtf7UH7E/7I3/AAU3k+KH7Z3jC08NRT+B7/T/AAb4o1eUR2Gl6lK8O9p3x+6MlstxEsrE\nIPMKnJdSvu3/AAXP/bd+Lf8AwXt/4KY+EP8Agl3+wKV17wT4V8RvY6bfWjlrTV9XwyXusSyKCBZW\nsXmIkgBGxZ5FLCZFH3/8cv8Agzy/4JsfFj4S+CfCfgbxn4p8CeKfCnhu20vV/FOgCGVPEsqL+8vL\ny1mUr57uWbdE8eA20hgqbQD8l/8Ag53/AOCsvgf/AIKX/toaZ4E/Z/8AEw1T4X/CmzuNO0HVYSRD\nrOozupvb6PP3oj5UEMbfxLAZFO2UV8W+Kfjj8a/2q/Dnhz4dfGf9ouz0zwr8NfCS6d4R0vXbq5Gn\n2EUEJ2wW1raxTMbi4dfmlEeGkkBlkRAGX9E/+DgD/gg3+z7/AMEe/wBi/wCHPjP4M+MfEfi3VvE3\nxAnsPFHifxEkC7QLKSS1t4I4kAgQiO4ZgWcuQCThEC4fjP8A4Ipf8E+vBv8AwQO0f/gsDe/tI+Px\nr+teFoYrDwkZrD7LdeI3unsGt42+ziTyUuI5pWTJfyYXG/I30AeMfsZf8HC3/BQP9h39hTxl+w98\nLPF32uz13ZF4P8TareSyXngq3dJVu49PGflMm6NoyTtgdXdULSZX9rf+Dff/AIJUfs3f8E8/2CYP\n+Ckf7YemaRe/Ejxh4Wbxr4i8X+KYluD4V0ZoTdxpE8oJik8jE88oxIZHKEkRrn+Y6f4N/E63+Ctt\n+0M/g+8Pg678Tz+Ho9dWEm3GpxW8Ny1sX6B/JmRwp5IDEfdNfph/wVl/4OX/ABJ+21+x3pX/AAT+\n/Zb+Et/4M+H/APYOmWPizXNeuUOq6yLRY8WyRwOYra3LxKWG6RpAAP3a7lcA8O/az+Ov7Rn/AAcW\nf8Fi7TT/AId6fdRnxp4gh8O/D3R7nc8fh/QYXciaVVJ2hIvOvLgjPzNLt4Civ65v2evgp4R/Zp+A\nHgv9nTwDJcPongXwpp/h/SXu5N8rW1nbpbxs57sVjBJ9c1+c3/BtL/wRG8P/APBOH9n23/ay+PGm\nRz/GX4i+H4ZrpLmEL/wimlShZl09NwyJ2wj3D8YZViAxGXk+gtD/AOC3P7IHxU/4KQeG/wDgmj+z\nJPc/ErxTfrfzeL/E3hq4jfRfDEFrayzP5tyCRcSmRIodkQKK8wDSK4KEA1v+C7Pwtj+MX/BGz9oX\nwfJbGX7N8NL7WUQdS2m41BSPcNag/hXxZ/wZY/F3/hMP+CZ3jf4R3dyXuPB3xWuXhQvnZa3llaSI\nAO2ZY7k/j9a/Wn4meAPD3xY+GniD4VeLYDLpXiXRLvStSjA+/b3ELwyDn1V2r+c3/g1n/aGvP+Ca\n/wDwVb+K/wDwTC/aXuU0W88b3/8AYNtLeOY4/wDhItJuLhIIV34AW5inuQjZ/eMIFXdvWgD+k2vy\ni/4PJtfk0j/gj5p+nxqxXVfi9otq5U8AC11CfJ9RmEfjX0t/wUv/AOCovg/9ln4p/DT9hb4R3H9t\nfG341+KtO0XQtIsXDN4e0y5ulhudaugMmNIovNaJSP3jxsfuRyEbf/BY3/gmbbf8FV/2Frz9kix+\nIkPhbUI9f07V9E1u8smu47ea2dlYOm4Md8EsybgcguCcgEEA5j/g3T+Hl58L/wDgiJ8AvDV9btE9\nz4TuNWCsuCUv9Qur5G+hW5U57gg96+065r4L/CbwZ8Avg34W+Bfw6sWttA8HeHLLRNFgZsmO0tYE\ngiBPc7I1ye5rpaACiiigD+eX/g+Tt51+Jv7Ot00ZEb6H4mRHxwWWbTiR+AZfzrS/4KLf8Hed5rXg\nO3/Zh/4JM+AtUl1y8srfTG+Jut6Z+9WVkEe3S9PYMzyFiAss4BByBAxKuP1k/wCCnX/BHz9jX/gr\nf4e8J6J+1ZZ+IoZ/BN7cz6DqvhbVktLmJLgRi4gYyRSo0cnkwkgruBjG1ly2Y/2Gf+CKf/BMr/gn\nPrC+Mf2Yv2ZdNtPFAiKf8Jfr1zNqeqKCCG8qa5Zvs24cMIBGGHUGgD80v+CCn/Btn8RIPiTZf8FK\nv+CtVhe6l4yutS/tzwz8P/EkzXN2t67mUanrLSZL3G8+YtuxJViGmO8GJf3VoooA/mo/4OBE8Y/8\nEuf+DkTwJ/wUls/DU17oXiK40HxZHFFhFu/sEcWnalYox4ErQW6MTzj7Yh56V+2//BQH/gq7+zP+\nwZ/wT8b9vbVvEVtr+la7pFtN8ONOs59reKLy7gM1nDE38KMn713wdkSO2CQFPI/8Fy/+CSvh3/gr\nv+xrJ8I9L1bTtG+IPhi9Oq/D3xHqMLGK3utu2W1mZAXW3uEARyoO1kik2v5QVv5cP27vGv7dl3r/\nAMPv+CXn7RWmX02sfs+29x4O0PwlpU7Xpmvbm+luN8axbhNK6TWtsnl5DR20IXqcgG34Z/4KO+L7\nD9p3xJ/wVD+Pp034hfHnXNWa98BWGsW/n6X4auQdq6rPAWKn7MqrFYWWWCsnny7VhgW6/oc/4Nov\nG3/BWv42/sv+Kf2lf+CnPxQ1LW9K8c3thefCuy13TrW2vIrJUnNzebIIkKW9wZLfykcfdgZ1UJIr\nP8o/8EDv+DWXTfhe+l/tj/8ABUjwHZ6j4iHl3XhL4TaiiT22mcBludUXlJp/7tqcpH1k3OdkX7po\niRIIokCqowqqMAD0oA/my/aD1uL9mf8A4PYtL8afEa6Frp+sfEfQxaXt0cRtHqmhQWUTbjwFWWfY\nSeAUPpX3h/wc2f8ABc74jf8ABMnwVov7K/7LcS2vxS+IGhS6i/ii4iV18OaX5rwLPCjZWS5kkjmV\nCwKxiJmIJK48q/4O+P8Agln46+NPgHw1/wAFMP2c/C2o3/ij4e2a6V46tdFgd7ltGWSSa31BFjG7\nNrK8vmMORHOHJCwkiP8AZZ+Hv7BH/B1V+yl4Q8N/twQ+NfCv7Rvwe8OLpviPW9CxYXmoWu5V+2oZ\n4Jbe5t5n2yPGUEkM0kgXYkitIAfmd/wTK8Bf8Eh9P8Un9un/AILTftwjxfrM+oyajZ/CDTNP1PWt\nQ1q63bvtGsXccTRkMfn8gzfPkCWQfPC39EP/AART/aG/4JW/tIfs3634r/4JYfCXRvBWg2fiD7N4\nt0HT/Cy6VcRah5alHnCj9+GjKlJNzDblflZWRfj7wb/wZTf8EzNE12PUvGH7Q/xj1u0ibP8AZ39q\n6bbJL7O6WBfH+6VPvX058Rv2Sdd/4Iwf8E1PGPhb/gh7+xtD4k8bXuqR3S6TqOrS3dzcTzBYH1Bz\nPJuujAixlbZWRcAkD7+4A+QP+Duz/grf4X+Df7P0v/BMb4I+MY5vG/juOKX4iPp9z8+i6ICJVtJC\np+WW7ITKHn7OH3LtnQn6D/4NZf8Agnj4j/YT/wCCZ1p41+KOgyaf41+L+or4o1azuYSk1jp5iWPT\n7WQHkMId05UgMjXbIRlTXxP/AMEcP+Dab9pv41ftPXH/AAUN/wCC1Ol3Mly+uNrdn4F16+jur/xF\nqjS+b9r1TYWSO3VvmFsTukICuqRqUl/SD/gtv/wWu+Cv/BIH4DCcJZeIvix4ms5B4D8ENKcNglDf\n3m0ho7SNgehDTOpjQjDyRgHKf8F+f+C5HgD/AIJMfAs+BPhveWOsfG/xhp7/APCIaDIRImkW5LId\nWvF7RKwIijPM0ikD5ElZfjb/AINQv+CTnxOn8War/wAFlv2zNPvbnxL4uW6k+Go14lry5F4zm916\nXf8ANunDvHCx5eOWaTBWSNj4H/wQ6/4I7/Hv/gsz+0/f/wDBWX/gqVPf674FvNba/trbXUKP45v4\nyFRFjAATTINoQhcI3liBBsWTb/SXZWVlpllFpum2kVvb28SxwQQRhEjRRhVVRwAAAAB0oAlo4Azm\nkZlRS7MAAMkntX4D/wDBwp/wcrp4sj1r/gnJ/wAEwvEsmqXGqu+jeNviToTNIZy7NFJpmklMmRnJ\n8t7pMghisOSRIAD59/4ONv8Agoj4n/4LFf8ABQXwZ/wTj/YcMninwx4R8Rf2Ro50tw8PiTxLcP5M\ntyjLkNbwJmJJfu4+0S5MbA1/RJ+wp+yt4Y/Yc/Y1+HX7JPhK5S4tvA3hW102a8jTaLy6C7rm5x2M\ns7SykdjJX5vf8GyP/BBS/wD2B/BI/be/a/8AByw/GLxRp5j8O6DeLmTwfpkq/Mrjol7OD+86tFHi\nLKs0y1+vFAH8+P8AwedfEvxj8XP2rf2d/wBgfwjdlGutPl1n7OzkR3F5qV8NOtWcY/g+yzgH0mev\n3h+AXwX8Efs3fAvwj+z78NrAW2g+C/DdlomkwgYIgtoVhQt6sQgLE8liSck1/P1/wcdeIND8Af8A\nBzX+zf8AED4w6lFpnhLS7LwJfX2qX0oWCDTYPEt49zKzN8qKm2YtngAZPWvoT/gvz/wcwfs/+Evg\nNrP7HX/BNT4w2njbx94xtn0vWfG/hO4M1j4fspVKyfZLqP5bm7kVtiNAWWLcz7xIqrQB8of8FHvH\nviP/AION/wDg4N8J/sQ/BXV7m4+FXw51CXRJdWsX3RR2FvKJNd1dGwyqZGjW3hb7knk2vQyVy/8A\nwbg63a/sTf8ABx74t/Zs+Ic62F3qg8W+AUN22wfa7e8W5RMnu503aufvF1AySM/qL/wbE/8ABG/V\nP+CbX7Lt38ff2gfCn2L4w/FC1ik1OzuU/feHtHUh7fTj/cldsTTjjDeXGwzBk/GX/Byx/wAEcv2v\nvA/7d+hf8FTv+Cbfwk8V+IL7W9Qs7/xHafD/AEea+1LQ/EVkVMOpJb26NIYpUiiZnVCFmhkZyPNX\nIB/QbRX4p/sIf8FGv+Dqr9ueO2+EJ/Yn8E/DWBZfI1v4x/Ej4f6npYsIfl3TRWVxcot3cAH5UjiM\nZbAYIoZh+yPw28L6/wCCfh9pHhLxV4+1DxRqdhp8UOo+I9VhhiuNTnC/vLh0gRIoy7ZbZGqoudqg\nAAUAbE9vBdQPa3UCSRSIUkjkUFXUjBBB6gjtX89//B1V/wAEj/8Agmh+yv8AC+3/AG1fgZ4v034U\n/EjXddSO1+HOkxH7H4rfeDPPa20Y/wBAkhVhI8qBbc4VCqyyqzfsD/wVW/4KafBX/glB+yNqX7TP\nxbtJNUvZLgab4Q8L2swjm1zVHR2jgDkHyowsbSSSkHYiHAZiiN/N9+yz8Ffj9/wcV/t/6j+1V/wU\nV/aZ0bwT8OrS9QeIfEGs65Bp0FvZoxaPQ9DiuX27gGwWG4RBzNKZJZFWYA+VfAfx80j9tD9rvwHr\nP/BV/wDaq+IF94JsIrPSNc8Uxo+ralY6RboRHBCrtlQx4aQCRwZHlMczkq/9RX7IX/BYT/g38+E/\nwt8H/syfso/tieAPDnhzT1t9I8M6B9nvLEI0r4Xf9qhRt7yMWkllOS7s8jZLE0fi3/wTH/4N5f2y\nfhd4U/Zgn8P/AAim/wCEV0tNN8Gv4G8aWttrNnACxCLNbT+dchneRys/mq0kjuQXYsfMvhJ/wZ/f\n8El/hH8bdC+MsPiT4q6/HoGqxahB4W8ReJbGXTLmWJw6JMsVhHM8YZRlPNG7oxIyCAfqdRRRQAUU\nV8d/8F4P+Cgg/wCCbf8AwTK8c/G3w7rgs/GWtwDw14AZSPMGr3iSKk6A8EwRLNc85B8gAg5wQD8r\n/wBhjxaf2/P+Dzzx5+0h4BKzeH/h0+ul7mIbo5rXT9IHhtJVZRyJJ5kkUnqrdTxX9Clfip/waV/s\nReP/ANnL/gnP8R/+Chlv8PV1n4hfFG3ux4C0q/n8k3un6esot4zI4HlC7vvNDMcgpFA+cV4rbf8A\nBYP/AIO8PiFHPpXhD/gnt9kuLp51je1+EN2s1ltnkhJK3FwwQK8bqGlUg7c/MDkgH9Cteafti/sn\n/CT9un9l/wAX/slfHSPUD4W8aaatnqcmk3Kw3UOyVJopoXZXVZI5Y43XcrLlBuVhkH8Z/wDg3r/4\nLyf8FJP2sP8Ago74i/ZN/b2+Kfh/xJoB8PX85vE0rS7FdBvbW4ihUR3FiiR3EUryeT8zSbneIo+M\nh/3joA8T/wCCfH7Af7P/APwTM/Zf0v8AZQ/ZuTV5NA028ubybUPEF4lxfahdTvuknneOONC5ARQE\njRQqKAOCTmf8FRP2yvgn+wT+wb8Qf2jfjxoen61pFjoctja+FtTjSSLxFe3KtDBprRsCHSZm2yAq\nwWLzHIKqa9/r42/4LZf8EiNM/wCCyH7NegfAuf4/XvgC98M+Kk1zTtTj0f8AtG2mcQTQNHNbedCW\nO2Y7XEgKHPDBiKAP5vP+CS3/AATz/ZJ/4KafF3x740/bN/bV+G/wG0CT7UnhjRYvEumadd3WsXB8\nyKO0sLuYMLC3V+ckb/kijclZWj/rI/ZE8DfCr4VfspfDz4R/A/x9B4n8I+EPBemaB4f1+31CK7W+\ntbG2jtY5fNiJR2KxDJXjOQMdK/EmP/gxms/+EVaOX/gprJ/bXnZSVfhWPsoj/ulP7T37uh3bsDpt\nPWv04/4Imf8ABKe7/wCCP/7JOpfs4al8f7vx/dax4uuNeub86abK1tGkhghENvAZZCo226szFvmZ\njwMDIB6p/wAFIv2PtE/b8/YP+Jn7ImsG3SXxj4Ymt9Hurtcx2mpxkT2Nw2Odsd1FA5xyQpHevwz/\nAODX/wD4Kc6L/wAEzfjv8Qv+CUX/AAUD1JvAUWpeMGfQ7rxA/lwaN4jjK2l1Y3EhJWJJ1ihKSkiI\nNCcsfOBr+jqvhf8A4Kff8G9X/BPf/gqZ4pl+LfxO0LV/CHxEmgggn8c+DrpYri8ii2qi3MEivDcE\nRjyxIVEgXaN5VFUAH3QMEZBorJ8AeDtP+HXgLRfh7pN/dXVroWk22n21zfyK88scMSxq8jKqhnIU\nFiAASTwOla1AHxX/AMFu/wDgrl8Of+CPH7JH/CeWOk2OqfEPxXLNYfDjwrL8sVzcqA015OFIP2aA\nOjPtwXeSOMFfM3r+Rn/BHb/gg7+1T/wVo/aJH/BUr/grjJrMngfxLeJ4htbDXmMWoePGfDQHygAb\nTS9gUqQEEkIjSBRE4lX9sf2i/wDgkr+xR+19+2H4a/bN/ak8EX3jrWfBvh5dK8MeFfEV6JvD9iRc\nNObv7CECzzkuynzmkjICZj3Rxsv0tQBX0jSNJ8P6Ta6BoGl29lY2VulvZ2dpCscVvEihUjRFACKq\ngAKAAAABXk/7f/wB+Lf7VP7E3xH/AGcvgX8Yv+EE8V+MPC8+m6R4oMLuLRnxvRthDosse+FpEy8a\nyl1VmUKfYKKAPgb/AIIXf8EKfhN/wR8+Ft9r/iLWLDxd8YPFMHk+KPGVtbssNrahwy6fYiQB0twy\nq7uQHmcBmAVI0T75oooA+QP+C63/AAT41b/gpf8A8EzvG37PXgmzgm8ZWBh8Q+BBOQA2q2ZZlhDE\ngKZ4XntgxICm4DHgGv5TtB8Qf8FD/wBoHwL4L/4I16D4O8S6h/YPxJvtR0L4cSadJDewaxdxxwyJ\nOkuPJjhCTyDeEWL7VdO7bWJX+3CqMPhbwvb+IZfFtv4bsE1WeEQz6kloguJIxjCNIBuKjA4JxwKA\nPhj4GfsB/sTf8ErP+CHcvwC/bY8GeFfF/g3wZ4YufEvxSbWdLjurXVdXYGaZ4klXLyCTZbWzYEhE\ncAGGr+aL9jX4r/sXXv8AwUBvv2zv2tvAWnaB8MPCGsSeJtP+FHhS0R21e4SXOmaDaxtgNErBGmnm\nwrQ28vmOZZkWT9Ov+Dx3/gqfH4m8TaV/wSq+DniFjaaNLb678VJ7aUFZror5ljprYOf3asLmRTwW\nkt+8Zr4m/wCCJH/Bvn+0N/wVq8Rx/FLxdeXfgb4K6bf+Tq3jGS3zc6u6H95aaZG4KySD7rTtmKI5\nz5jqYiAdf+0z/wAFSf8AgtF/wcVfG24/Zl/Zm8D69Y+Eb4kR/DD4f3DxWUdqWIEusX7FFmX7uXuG\njt9wGyNWPP7E/wDBvd/wb7n/AIJH2+t/H348+PtO8S/FrxZoyaZNHosZOn+H7AyJLJbQyyKrzyyS\nRxmSXCLiNVVcBnf7f/Yv/YZ/ZX/4J8fBW0+A37J/wnsPDOiQBXvZoU33mqXAUA3N3cEb7iY4+8x4\nGFUKoVR61QAV+R3/AAX5/wCDcfxb/wAFBPixZ/ty/sKeMdL8LfF+0ht01/TtQuXs4dfa32i2vI7q\nME297EiqgYja6xxfNGY8v+uNFAH43f8ABDL/AIN5P2q/2Zv2xbj/AIKU/wDBUH4yR+KviXaQ3Mfh\nvTW16bWbkXM0P2d9Qvr6fJlkEDSRxxqXwHDlwVCj9kaKKACiiigAooooAKKKKACiiigArjJv2b/2\nc7n4yr+0VcfAHwZJ8QEt1t18cP4YtDrAiC7BGL0x+ftC/KF34xx0rs6KACiiigAooooAKKKKAIdQ\nTUJdPni0m6hhumhYW01xAZY45MHazIGUuoOCVDKSMjcOo/FTVf8Ag1b/AGkv2nv+Co9x+1z/AMFL\n/wBtzRfix4DuboahqkGnabdaXqOqtGw8jSha5kisbBV4PlXDuEGxQGczL+2NFAFDwt4X8M+BvDOn\n+C/Bfh6y0nSNJsorPTNM022WG3tLeNQkcUUaAKiKoChQAAAAOlX6Kiv7G11Owm0y+jLw3ETRTIGI\n3KwIIyDkcE8jmgD8DP8Agub/AMFdv2vP+CjX7Qmsf8EdP+CPXg3xH4is7a9l0j4j+JPCUbGTWpgz\nRT2K3AIS106NtyTXDsiykMu4QqTN9Rf8EIP+Dan4Y/8ABNiSx/ag/avuNK8a/Gt4Q+mx28fm6Z4Q\n3DkWpdQZrrBw1yQNuSkQA3SSfpj8Kfgz8HvgN4Og+H3wQ+Fnh/wjodqqrb6R4a0iGytkCqFGI4VV\nc4AGcZ4rpaACiiigD5E/4Kvf8EV/2QP+Cv8A4V8P2H7Qd1r+heIPCbzf8I/4s8J3EMV5DFLgyW0o\nmikSaFmVW2lQysuVZdz7vN/+Cdn/AAbSf8EyP+CdHjyz+Mvh3wrrfxD8cadKsuleJPiHdQ3Q0uUd\nJLW2hijgjcHBWR1eRCMq681+gdFABRRRQAUUUUAfBH/Bef8A4ImTf8FnPhZ4J0jw3+0C/gbxH8PL\n3ULjRzeaa13p2oreJAssdwiOjo4NtEUmXfsDSrsbflfy70P/AIMff2prhyPE37eHgK0XsbHw3e3B\nPPo7R9q/o7ooA/nB8f8A/BkF+1ZpHhS41D4Xft0eBNb1mNd1tpuseHbzToJiOxnja4KH0/dkc8kd\na+zf+DcP9gX/AILgfsO/Grx34c/4KGfEbUZPhND4VSw8JeH9U8fR65FLqS3MLRXViiyytZwJAtyj\nowhLmWL922zK/rjRQAUUUUAFflP/AMHCP/BGH9uX/grt+0l8F9L+FHxW8P6V8JPDkE8XiuDUr545\n9MuZrgGe/jhCMLp2tljjjXI2ujAlVkZq/ViigDm/g58JfAHwC+Efhr4HfCvQk03w34R0K10fQ7BD\nkQWtvEsUSk9WO1RljyTknkmvwT/4O1f2MvA/7Lnxaf8A4Kg/Dz9tnxh4Z+JXxTvbPQIPAGmkxi8t\nbSxiguJobmGeKS3tkjggMiFJQ01wn3d+R/QhX8tH/Bxf+0D4D+PX/Bw9/wAKr/a88Vanpnwi+Fcu\ng6PqEFnbTSzf2WbWHUr/AMiGMg/aLh7mSFJMjI8gswVMqAesf8EJ/wDg1k8P/tV/CDwB+35+2z8T\nNRsfDOtXY1fRfhhp+l+XLq2nxy5t5rq8Z8xwz7S4jjj3NC6MJVL/AC/0f1+JGt/8HqX7AHw78PR+\nD/gN+w78R7nTdHtorPQrG+n03SrdLaJVSNAsU0/koqDCqAcAAcdv07/4Jk/t++B/+Cnn7Gfhz9sT\n4f8Aw91nwxY69PeW0mja3hpIJ7a4eCTZKoCzxlkJWRcZ5BCsrKAD3yiiigAooooAKKKKACiiigAo\noooAKKKKACiiigAooooA/BG0/wCDRT4//HP/AIKneM/2gP2z/wBoLQNX+EOuePdR8SXDaLf3J13x\nBFcXT3CWcqtCq2md+yWRZHICkR8srp+6vw8+HfgL4R+A9J+F/wALvCGn6D4e0KwjstH0bSrVYbez\nt412pHGigBVAHStmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Wv21P+CK3/AAS/\n/wCChnxDg+Lf7WP7K+n6/wCKIbdLd9fsNXvtLurmJBtRJ3sZ4jcBVwqmTcVUAKQOK+paKAPlv4c/\n8ERP+CPvwptLOz8Jf8E4/hVJ9gKm2n1vwrDqkwI6Fpb0Su5HXLMTnnrX0t4a8MeGfBegWvhTwb4d\nsdJ0uxhEVlp2mWiQQW8Y6IkaAKi+wAFXqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo\noAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9k=\n","text/plain":["<IPython.core.display.Image object>"]},"execution_count":1,"metadata":{},"output_type":"execute_result"}],"source":["MeatPieImage()"]},{"cell_type":"markdown","metadata":{},"source":["を、サンプリングして和を求める事で近似しよう。\n\nすると、zを$p_z$からサンプリングして、そのzを使ってlog(1-D(g(z)))を求めて足す訳だ。"]},{"cell_type":"markdown","metadata":{},"source":["それはまったく同様に、$p_g$からxをサンプリングしてlog(1-D(x))を求める事と同じと言える気がする。\n \nこれを突き詰めると積分変数の置き換えでちゃんと証明出来る気がするが、感覚的には一対一に対応する置き換えなので、平気な気がする。"]}],"metadata":{"kernelspec":{"display_name":"Python 2","language":"python","name":"python2"},"lanbuage_info":{"codemirror_mode":{"name":"ipython","version":2},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython2","version":"2.7.11"}},"nbformat":4,"nbformat_minor":0} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment