Last active
May 1, 2017 01:45
-
-
Save karino2/b489a3795588965a33555e26d0cf16c6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {"cells":[{"cell_type":"markdown","metadata":{},"source":["https://arxiv.org/abs/1701.00160\n\nこのペーパーには、7章に練習問題が付いている。\nその1問目から分からない、という話。"]},{"cell_type":"markdown","metadata":{},"source":["# 7.1 The optimal discriminator strategy\n\n$J^{(D)}(\\theta^{(D)}, \\theta^{(G)}) = 1/2 E_{x~p_{data}} log D(x) - 1/2E_x log(1-D(G(z)))$\n\nを$\\theta^{(D)}$に関して最小化したい、というのが一般的な問題だが、ここでさらに、D(x)がxと独立に自由に決められる場合を考える。\nこの時、最適なDは何になるか?"]},{"cell_type":"markdown","metadata":{},"source":["# 8.1ペーパー内にある略式回答(が分からない)\n\n8.1に回答があって、JをDで汎関数微分してイコールゼロで解くと\n\n$ D^*(x) = \\frac{p_{data}(x)}{p_{data}(x) + p_{model}(x)}$\n\nとなる、と書いてある。でも期待値の汎関数微分とか良く分からない。"]},{"cell_type":"markdown","metadata":{},"source":["# 試行錯誤いろいろ"]}],"metadata":{"kernelspec":{"display_name":"Python 2","language":"python","name":"python2"},"lanbuage_info":{"codemirror_mode":{"name":"ipython","version":2},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython2","version":"2.7.11"}},"nbformat":4,"nbformat_minor":0} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment