pip install awscli --upgrade --user
curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.13.0/bin/darwin/amd64/kubectl
chmod +x ./kubectl
sudo vi /etc/sysctl.conf | |
# Add the following to sysctl.conf: | |
# Decrease TIME_WAIT seconds | |
net.ipv4.tcp_fin_timeout = 30 | |
# Recycle and Reuse TIME_WAIT sockets faster | |
net.ipv4.tcp_tw_recycle = 1 |
See also, http://libraryofalexandria.io/cgo/
cgo
has a lot of trap.
but Not "C" pkg also directory in $GOROOT/src
. IDE's(vim) Goto command not works.
So, Here collect materials.
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
# Add this snippet to the top of your playbook. | |
# It will install python2 if missing (but checks first so no expensive repeated apt updates) | |
# [email protected] | |
- hosts: all | |
gather_facts: False | |
tasks: | |
- name: install python 2 | |
raw: test -e /usr/bin/python || (apt -y update && apt install -y python-minimal) |
#!/bin/bash | |
# install CUDA Toolkit v8.0 | |
# instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network)) | |
CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb" | |
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG} | |
sudo dpkg -i ${CUDA_REPO_PKG} | |
sudo apt-get update | |
sudo apt-get -y install cuda |
from tensorflow.python.client import device_lib | |
def get_available_gpus(): | |
local_device_protos = device_lib.list_local_devices() | |
return [x.name for x in local_device_protos if x.device_type == 'GPU'] | |
get_available_gpus() |
package main | |
import ( | |
"database/sql" | |
"errors" | |
"fmt" | |
_ "github.com/bmizerany/pq" | |
"os" | |
"regexp" | |
"strings" |