pip install awscli --upgrade --usercurl -LO https://storage.googleapis.com/kubernetes-release/release/v1.13.0/bin/darwin/amd64/kubectl
chmod +x ./kubectl| sudo vi /etc/sysctl.conf | |
| # Add the following to sysctl.conf: | |
| # Decrease TIME_WAIT seconds | |
| net.ipv4.tcp_fin_timeout = 30 | |
| # Recycle and Reuse TIME_WAIT sockets faster | |
| net.ipv4.tcp_tw_recycle = 1 |
See also, http://libraryofalexandria.io/cgo/
cgo has a lot of trap.
but Not "C" pkg also directory in $GOROOT/src. IDE's(vim) Goto command not works.
So, Here collect materials.
Updated 4/11/2018
Here's my experience of installing the NVIDIA CUDA kit 9.0 on a fresh install of Ubuntu Desktop 16.04.4 LTS.
| # Add this snippet to the top of your playbook. | |
| # It will install python2 if missing (but checks first so no expensive repeated apt updates) | |
| # [email protected] | |
| - hosts: all | |
| gather_facts: False | |
| tasks: | |
| - name: install python 2 | |
| raw: test -e /usr/bin/python || (apt -y update && apt install -y python-minimal) |
| #!/bin/bash | |
| # install CUDA Toolkit v8.0 | |
| # instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network)) | |
| CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb" | |
| wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG} | |
| sudo dpkg -i ${CUDA_REPO_PKG} | |
| sudo apt-get update | |
| sudo apt-get -y install cuda |
| from tensorflow.python.client import device_lib | |
| def get_available_gpus(): | |
| local_device_protos = device_lib.list_local_devices() | |
| return [x.name for x in local_device_protos if x.device_type == 'GPU'] | |
| get_available_gpus() |
| package main | |
| import ( | |
| "database/sql" | |
| "errors" | |
| "fmt" | |
| _ "github.com/bmizerany/pq" | |
| "os" | |
| "regexp" | |
| "strings" |