Some exercises from the Falsy Values workshops.
The good parts:
- HTTP server and client in same script
- Express cookies example
- Express routing example
- Express error handling
- Express middlewares example
- Simple HTTP proxy
Some exercises from the Falsy Values workshops.
The good parts:
{ | |
"lines.linewidth": 2.0, | |
"examples.download": true, | |
"patch.linewidth": 0.5, | |
"legend.fancybox": true, | |
"axes.color_cycle": [ | |
"#30a2da", | |
"#fc4f30", | |
"#e5ae38", | |
"#6d904f", |
/** | |
* To get started: | |
* git clone https://github.com/twitter/algebird | |
* cd algebird | |
* ./sbt algebird-core/console | |
*/ | |
/** | |
* Let's get some data. Here is Alice in Wonderland, line by line | |
*/ |
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats |
%%----------------------------------------------------------------------- | |
%% Make your own quadrille, graph, hex, etc paper! | |
%% Uses the pgf/TikZ package for LaTeX, which should be part of | |
%% any modern TeX installation. | |
%% Email: [email protected] | |
%% Twitter: @mcnees | |
%%----------------------------------------------------------------------- | |
\documentclass[11pt]{article} |
"""Character based language modeling with multi-layer GRUs. | |
To train the model: | |
python3 tf_char_rnn.py --mode training \ | |
--logdir path/to/logdir --corpus path/to/corpus.txt | |
To generate text from seed words: | |
python3 tf_char_rnn.py --mode sampling \ |
// | |
// ContentView.swift | |
// TestingMoreSwiftUI | |
// | |
// Created by Chris Eidhof on 04.06.19. | |
// Copyright © 2019 Chris Eidhof. All rights reserved. | |
// | |
import SwiftUI | |
import Combine |
all: pdf epub kindle html examples | |
BOOK_TITLE = A\ React\ Developer’s\ Guide\ to\ Hooks\ -\ Sebastien\ Castiel | |
dist: | |
@mkdir -p dist | |
pdf: dist/${BOOK_TITLE}.pdf | |
@echo '✅ PDF' |
import torch | |
import torch.utils.dlpack | |
import jax | |
import jax.dlpack | |
# A generic mechanism for turning a JAX function into a PyTorch function. | |
def j2t(x_jax): | |
x_torch = torch.utils.dlpack.from_dlpack(jax.dlpack.to_dlpack(x_jax)) | |
return x_torch |
""" | |
stable diffusion dreaming | |
creates hypnotic moving videos by smoothly walking randomly through the sample space | |
example way to run this script: | |
$ python stablediffusionwalk.py --prompt "blueberry spaghetti" --name blueberry | |
to stitch together the images, e.g.: | |
$ ffmpeg -r 10 -f image2 -s 512x512 -i blueberry/frame%06d.jpg -vcodec libx264 -crf 10 -pix_fmt yuv420p blueberry.mp4 |